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1 Introduction

Quantum field theories in six dimensions were objects of curiosity before the 1990’s. Rea-

soning based on perturbation theory around a Gaussian fixed point (which implied the ex-

istence of a continuum Lagrangian) suggested that no such theories existed by themselves,

needing some UV completion. But, observations based on the possibility of encountering a

strongly coupled fixed point and having at the same time anomaly cancellations, gave cred-

ibility to the existence of these theories, making them objects of interest [1]. These ideas
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were supported by the construction of Hanany-Witten brane set-ups [2] for six-dimensional

field theories. Indeed, the papers [3, 4], found the first of those realisations.

These ideas were subsequently developed and in the past few years, the different ver-

sions of the (2, 0) six-dimensional SCFT were used as an effective way to organise and

understand various features of lower dimensional CFTs — see for example [5]. The Mal-

dacena conjecture [6] gave another important piece of evidence to ascertain the existence

of these theories.

For six-dimensional CFTs with minimal N = (1, 0) SUSY, the same holographic ideas

were used by the authors of [7]–[17]. These authors constructed backgrounds in Type

II supergravity that realise the SO(2, 6) (with an AdS7 factor) and the necessary SU(2)

R-symmetry. These backgrounds are dual to the SCFTs realised at low energies, on the

six-dimensional intersection among NS5-D6-D8-branes. The six-dimensional N = (1, 0)

SUSY CFTs provides us with a well defined holographic pair (quiver CFT-background)

on which different ideas and methods developed in the last twenty years can be tested.

The extension of these ideas to the case in which orientifold planes are present have been

carefully discussed in [18].

One of these developments is the possibility of finding integrability of the field theory.

Classical integrability, first formalised by Liouville, is a frame to solve Hamiltonian prob-

lems via quadratures. Indeed, if the system has the same number of conserved quantities

as coordinates in phase space, one could move to action-angle variables (Ik, θk) and solve

θk = Ikt. This was further developed later under the name of the classical inverse scattering

method. Of course, integrability does not equal solvability. Integrability refers to the prop-

erty of systems to exhibit regular orbits in phase space (in contrast to chaotic ones). When

a system displays classical integrability, there are various methods to find the exact solution

to the system. These properties extend, with some limitations to the quantum case.

In contrast, in systems that do not display integrability one cannot in general, write

a closed analytic solution. Some non-integrable systems, present the feature of a strong

sensitivity to the initial conditions. This notion is formalised by the (largest) Lyapunov

exponent, a quantity that characterises the rate of separation of two trajectories that start

being arbitrarily close together in phase space. Another quantity characterising chaotic

systems (or the transition from integrable to chaotic by a growing non-integrable pertur-

bation) are the Poincaré sections [19]. For integrable systems, the phase space is foliated by

the so-called KAM tori [19], but these start to disappear as the non-integrable perturbation

grows in influence.

Showing the integrability of a system is usually quite a difficult task. In some situations,

it may be easier to prove that it is non-integrable. There are different methods developed to

this end. We will use those in the papers [20, 21]. The idea is to find a string soliton (in the

holographic language, this soliton captures the dynamics of a long, spinning, heavy operator

in the dual CFT) and show that the dynamics of such an object is non-integrable in the

sense defined by Liouville. Various techniques developed by mathematicians studying this

problem are explained and used in this paper. This can be complemented numerically, by

studying the chaos indicators (Poincaré sections, Lyapunov exponent) of the Hamiltonian

system in question.
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In the rest of this work, we deal with six-dimensional N = (1, 0) SUSY CFTs. We

discuss the constructions of the dual backgrounds and study some of their properties and

observables. After that, we focus on their (non-) integrability properties. The plan of the

paper is the following: in section 2, we will discuss generalities of the CFTs of interest in

this work. We shall briefly review the formalism developed in the papers [7]- [10]. We give

new examples of pairs (CFT-backgrounds) and present some developments that might be

useful in future studies of these systems. In section 3, we discuss the (non-) integrability of

these CFTs. By focusing on the generic examples developed in section 2, we analytically

show their non-integrable behaviour. In section 4, we provide a careful numerical analysis

of the material in section 3, showing that indeed, those systems are chaotic. We summarise

and give an outlook for future developments in section 5. Various interesting appendices

complement our technical presentation.

2 Six-dimensional SCFTs and their holographic description

In dimension higher than four, when flowing up in energies, a Yang-Mills theory becomes

strongly coupled and non-renormalisable. Hence, the field theory needs a UV-completion.

It was suggested in [1], that such a completion is given in terms of a conformal field theory

at strong coupling. The existence of these field theories was supported by the computation

of anomalies in [22], that showed that the inclusion of vector, hyper and tensor multiplets

gives place to anomaly-free field theories.

Such expectations were realised with the brane construction of six-dimensional field

theories [3, 4]. These constructions are based on intersections of NS5-D6-D8-branes. All

the branes extend along R1,5. The NS5-branes are located at fixed x6i positions. The D6-

branes extend on the x6 intervals (between pairs of NS5-branes) and are point-like objects

in the [x7, x8, x9] directions. Finally, the D8-branes extend on [x7, x8, x9] being localised in

x6. The system preserves eight supercharges, which is associated with the chiral N = (1, 0)

super-algebra. The isometries of the brane set-up are SO(1, 5)×SO(3). The SO(3) ∼ SU(2)

is the R-symmetry algebra of the N = (1, 0) conformal algebra.

The anomaly cancellation implies that for every gauge group the number of flavour

fields doubles the number of gauge fields Nf = 2Nc. In the brane set-up Nc is the number

of D6-branes in a given interval [x6,i, x6,i+1] between two NS five-branes. On the other

hand, the number Nf = ND6,i+1 +ND6,i−1 +ND8 counts the D6-branes in the two adjacent

intervals and the number of D8-branes in the interval (these are hypermultiplets in the

six-dimensional low energy field theory realised on the D6-branes).

Unlike all other Hanany-Witten brane set-ups realising field theories in lower dimen-

sions, the tensor multiplets living on the NS5-branes play an important role in the can-

cellation of anomalies and provide self-dual two-forms, which give place (in the case in

which the NS5-branes become coincident) to tensionless strings. In fact, the positions of

the NS5-branes are not fixed like in lower dimensional set-ups, but they are represented

by a real scalar field Φi, which gets a VEV. This scalar field couples to the gauge field

strength on the D6-branes, leading to a term in the Lagrangian L ∼ (Φi+1−Φi)F
2
mn + . . ..

When the five-branes become coincident, the effective gauge coupling 1
g26

= 〈Φi+1 − Φi〉
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diverges. In this limit, the field theory flows to the conjectured CFT [1]. Some pieces of

evidence support this proposal: the number of supercharges preserved by the brane set-up,

the isometries — associated with the unique N = (1, 0) superconformal algebra, the mass-

less string solitons corresponding with D2-branes that extend in [x0, x1, x6] and end on the

five-branes. A detailed explanation of the story summarised above can be found in [23].

Important evidence for the existence of the N = (1, 0) SCFTs, comes from holography.

Indeed, the paper [7] started a very fertile line of research, searching for supersymmetric

AdS7 solutions in Type II supergravities.

The metric was proposed to be of the form,

ds2 = f1(z)ds2
AdS7

+ f2(z)dz2 + f3(z)(dχ2 + sin2 χdξ2),

with Neveu-Schwarz and Ramond-Ramond fields preserving the isometries SO(2, 6)×SO(3)

and eight supercharges.

In the particular case of Massive type IIA supergravity a system of BPS equations

was written and a family of solutions found. The paper [8], pointed out the type of field

theories these Massive IIA solutions are holographically dual to. Various efforts to solve

the BPS equations and interpret the solutions followed [9]. These lead to the formulation

by Cremonesi and Tomasiello [10], where a precision test was put forward, calculating

the a-central charge, both in the CFT and in holography. Other interesting developments

deal with flows away from, and compactifications of the six-dimensional SCFTs, see for

example [11–17]. In the following, we summarise the Massive IIA backgrounds as written

by Cremonesi and Tomasiello. This is the language in which we shall present the different

findings of this paper.

2.1 Cremonesi-Tomasiello formulation of the holographic duals to N = (1, 0)

SCFTs

After various manipulations, Cremonesi and Tomasiello [10] wrote the Massive IIA back-

grounds dual to the six-dimensional conformal field theories as,

ds2 = f1(z)ds2
AdS7

+ f2(z)dz2 + f3(z)dΩ2(χ, ξ),

B2 = f4(z)VolS2 , F2 = f5(z)VolS2 , eφ = f6(z). (2.1)

We have defined dΩ2(χ, ξ) = dχ2 + sin2 χ dξ2 and VolS2 = sinχ dχ ∧ dξ. The functions

fi(z) are written in terms of another function α(z) and its derivatives,

f1(z) = 8
√

2π

√
− α

α′′
, f2(z) =

√
2π

√
−α
′′

α
, f3(z) =

√
2π

√
−α
′′

α

(
α2

α′2 − 2αα′′

)
,

f4(z) = π

(
−z +

αα′

α′2 − 2αα′′

)
, f5(z) =

(
α′′

162π2
+

πF0αα
′

α′2 − 2αα′′

)
,

f6(z) = 2
5
4π

5
2 34 (−α/α′′)

3
4√

α′2 − 2αα′′
. (2.2)

The different geometries specified by α(z) are supersymmetric solutions of the Massive IIA

equations of motion (with mass parameter F0), if α(z) solves the differential equation

α′′′ = −162π3F0. (2.3)
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SU(N) SU(2N) SU(3N) SU(4N)

Figure 1. The quiver encoding the dynamics of our first example CFT.

Given a six-dimensional N = (1, 0) super-conformal field theory encoded in a quiver dia-

gram, Cremonesi and Tomasiello [10] gave a recipe to find the precise solution to eq. (2.3),

such that when replaced in eq. (2.1) gives the holographic dual to the SCFT. We discuss

now some interesting examples.

2.1.1 Examples of SCFTs and their holographic type IIA backgrounds

Given a quiver diagram encoding the dynamics of a six-dimensional N = (1, 0) SCFT, we

revise here the prescription of [10] to construct the function α(z).

It is clear that solutions to the eq. (2.3) are of the form

α(z) = c0 + c1z + c2z
2 − 27π3F0z

3.

In general the solutions we search for, are continuous, differentiable and piecewise defined

in the interval (i, i+ 1) with i an integer. The first region is (0, 1), here the function α(z)

must satisfy that α(z = 0) = 0. In the last region, the interval (P, P + 1), the other

boundary condition is α(z = P + 1) = 0. In general, this allows for a solution of the form,

α(z) = −81π2



a1z + a2
2 z

2 + a3
6 z

3 0 ≤ z ≤ 1

b0 + b1(z − 1) + b2
2 (z − 1)2 + b3

6 (z − 1)3 1 ≤ z ≤ 2

c0 + c1(z − 2) + c2
2 (z − 2)2 + c3

6 (z − 2)3 2 ≤ z ≤ 3

. . . i ≤ z ≤ i+ 1

p0 + p1(z − P ) + p2
2 (z − P )2 + p3

6 (z − P )3 P ≤ z ≤ P + 1

where the constants (a2, a3), (b2, b3),. . . , (p2, p3) are determined by inspecting the function

R(z) that describes the ranks of the gauge groups. In fact, this implies that a2 = 0 and

a3 is the slope corresponding to the first node in the quiver. The other coefficients are

determined by imposing continuity of the functions α(z), α′(z), and that α(z = P +1) = 0.

The procedure to be followed is better understood by inspecting some examples.

Let us first consider the quiver depicted in figure 1, with three gauge groups SU(N)×
SU(2N) × SU(3N) ending with a flavour group SU(4N). Notice that each node satisfies

Nf = 2Nc. The function R(z) describing the ranks of this first quiver is

R1(z) = N

{
z 0 ≤ z ≤ 3

12− 3z 3 ≤ z ≤ 4,

indicating the presence of gauge groups SU(N) at z = 1, SU(2N) at z = 2 and SU(3N)

at z = 3. In this sense, the z-direction of the supergravity background encodes the field
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theory information. The slope of the first three nodes is s = N , which translates to

a3 = b3 = c3 = N . Similarly p3 = −3N . The change in slope ∆s = −4N indicates the

presence of the SU(4N) flavour group. On the other hand, in the first interval 0 ≤ z ≤ 1,

there is no gauge group, hence a2 = 0, while the gauge group in the second interval is

SU(N), indicating that b2 = 1. Similarly c2 = 2 and p2 = 3, reflecting the presence of the

SU(2N) and SU(3N) gauge groups. With this, we can write,

α(z) = −81π2N


a1z + 1

6z
3 0 ≤ z ≤ 1

b0 + b1(z − 1) + 1
2(z − 1)2 + 1

6(z − 1)3 1 ≤ z ≤ 2

c0 + c1(z − 2) + 2
2(z − 2)2 + 1

6(z − 2)3 2 ≤ z ≤ 3

p0 + p1(z − 3) + 3
2(z − 3)2 − 1

2(z − 3)3 3 ≤ z ≤ 4.

where the remaining constants are determined by imposing continuity of α, α′ and that

α(z = 4) = 0. This gives,

a1 = −5

2
, b1 = −2, c1 = −1

2
, p1 = 2; b0 = −7

3
, c0 = −11

3
, p0 = −3.

(2.4)

The function α(z) describing the background in eq. (2.1), dual to the quiver CFT in figure 1

reads

α1(z) = −81π2N


−5

2z + 1
6z

3 0 ≤ z ≤ 1

−7
3 − 2(z − 1) + 1

2(z − 1)2 + 1
6(z − 1)3 1 ≤ z ≤ 2

−11
3 −

1
2(z − 2) + 2

2(z − 2)2 + 1
6(z − 2)3 2 ≤ z ≤ 3

−3 + 2(z − 3) + 3
2(z − 3)2 − 1

2(z − 3)3 3 ≤ z ≤ 4.

(2.5)

We have worked with a quiver with three colour nodes and one flavour node. Strictly

speaking, the supergravity description is valid if the number of colour nodes is taken to be

large [10]. Our example in eq. (2.5) illustrates the procedure. In order to have a better

holographic description of the CFT, we should work with a quiver with SU(N)×SU(2N)×
SU(3N)× SU(4N)× . . . × SU(PN) closed by an SU(PN +N)-flavour group (and taking

P to be large). In that case, we write the function,

− α1(z)

81π2N
=


a1z+ 1

6z
3 0≤ z≤ 1

(ka1 + k3

6 )+(a1+k2

2 )(z−k)+k
2(z−k)2+1

6(z−k)3 k≤z≤(k+1),

(Pa1 + P 3

6 )+(a1 + P 2

2 )(z−P )+ P
2 (z−P )2− P

6 (z−P )3 P ≤ z≤P +1,

where

k = 1, . . . ,P −1, −6a1 = P 2 + 2P. (2.6)

The case of a quiver with increasing ranks, not closed by the flavour group, is described

holographically by the function α1(z) = −81π2N(a1z + z3

6 ), being a1 a free parameter.

It is instructive to plot the function −α1(z)
81π2 and its derivatives for the background

defined by eq. (2.5), see figure 2. We also plot the fields defining the background and the

Ricci scalar, see figures 3 and 4. None of these functions are divergent for the α(z) in

eq. (2.5). We shall use this background in the coming sections to study the dynamics of a

string configuration that rotates and winds on it.
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Figure 2. The function α̂(z) ≡ α(z)
81π2N and its derivatives, that describe the CFT associated with

the quiver in figure 1.

Figure 3. From top-left to bottom-right, the functions f1(z), . . . , f6(z), that describe the CFT

associated with the quiver in figure 1.

Figure 4. The Ricci scalar associated to the quiver in figure 1.
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SU(N) SU(N) SU(N) SU(N) SU(N)

Figure 5. The quiver encoding the dynamics of our second example CFT.

As a second example, we can work out the function α(z) for the quiver in figure 5.

This quiver starts with an SU(N)-flavour node followed by three nodes SU(N)-colour, and

it is closed by a final SU(N)-flavour node. The function describing the ranks is,

R2(z) = N


z 0 ≤ z ≤ 1

1 1 ≤ z ≤ 3

4− z 3 ≤ z ≤ 4,

and the function that determines the holographic description α2(z) is,

α2(z) = −81π2N


−3

2z + 1
6z

3 0 ≤ z ≤ 1

−4
3 − (z − 1) + 1

2(z − 1)2 1 ≤ z ≤ 2

−11
6 + 1

2(z − 2)2 2 ≤ z ≤ 3

−4
3 + (z − 3) + 1

2(z − 3)2 − 1
6(z − 3)3 3 ≤ z ≤ 4.

(2.7)

The holographic description of this CFT is trustable when the number of nodes is large.

We take the above quiver to be long enough for the illustrative purposes we aim at.

Finally, we shall consider an endless quiver. The quiver starts with an SU(N)-flavour

group and is continued by an infinite tail of SU(N)-colour groups. As a consequence, the

z-coordinate is unbounded. There is one integration constant that remains undetermined.

The function describing the ranks is

R3(z) = N

{
z 0 ≤ z ≤ 1

1 1 ≤ z ≤ ∞,

The function α3(z) reads,

α3(z) =−81π2N



a1z+ 1
6z

3 0≤ z≤ 1

(a1 + 1
6)+(a1 + 1

2)(z−1)+ 1
2(z−1)2 1≤ z≤ 2

(2a1 + 7
6)+(a1 + 3

2)(z−2)+ 1
2(z−2)2 2≤ z≤ 3

(3a1 + 19
6 )+(a1 + 5

2)(z−3)+ 1
2(z−3)2 3≤ z≤ 4

(4a1 + 37
6 )+(a1 + 7

2)(z−4)+ 1
2(z−4)2 4≤ z≤ 5

. . .

(Pa1 + 3P 2−3P+1
6 )+(a1 + 2P−1

2 )(z−P )+ 1
2(z−P )2 P ≤ z≤P +1

. . . .

(2.8)

Ending the quiver with a flavour SU(P + 1) node, reflects in a cap-off of the geometry at

z = P + 1. This is achieved by adding a term −1
6(z − P )3 to the last line and choosing

– 8 –
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SU(N) SU(N) SU(N) k SU(N) SU(N) SU(N)

Figure 6. The quiver encoding the dynamics of the third example CFT. The long tail of colour

SU(N) ends with a flavour group.

a1 = −P
2 . This would correspond to the quiver in figure 6. The various background

functions associated with the holographic description of the quivers in eqs. (2.7)–(2.8) are

displayed in appendix A. Let us now analyse some observables characterising these CFTs.

2.2 Page charges and central charge

In this short section, we will discuss the Page and central charges characterising the back-

grounds described in section 2.1.1. Most of this material, in different notation and for

slightly different examples, was discussed in [7]–[17].

In the backgrounds of eq. (2.1), we have that B2 ∧ B2 = 0. This gives for the Page

charges,

QDp =
1

2κ2
10TDp

∫
F8−p −B2 ∧ F6−p,

QNS5 =
1

2κ2
10TNS5

∫
H3, 2κ2

10TDp = (2π)7−pgsα
′ 7−p

2 , 2κ2
10TNS5 = (2π)2gsα

′.

As in the rest of this paper, we set α′ = gs = 1. We start computing the charge of NS-five-

branes. Using that H3 = dB2 and integrating on a three-manifold Σ3 = [z, χ, ξ] we have,

QNS5 =
1

4π2

∫
H3 =

1

4π2

∫
Ω2

B2(z = z∗)−B2(z = 0) = −(P + 1). (2.9)

We have used the expression for B2 in eq. (2.1), the explicit expression for the function

f4(z) in eq. (2.2) and the fact that α(0) = α(z∗ = P + 1) = 0 in our backgrounds.

The Page charge of D6-branes is,

QD6 =
1

2π

∫
Ω2

F2 − F0B2 =
1

81π2
(α′′ + 162π3F0z) =

1

81π2
(α′′ − α′′′z). (2.10)

We have used the expression for F2, B2 in eqs. (2.1)–(2.2) and the differential equation (2.3)

that guarantees BPS solutions. For the two generic quivers described around eqs. (2.6)

and (2.8) we find

QD6,1 = −N


0 0 ≤ z ≤ 1

k k ≤ z ≤ (k + 1), k = 1, 2, 3, 4 . . . P − 1

P P ≤ z ≤ P + 1

(2.11)

and

QD6,2 = −N


0 0 ≤ z ≤ 1

1 k ≤ z ≤ (k + 1), k = 1, 2, 3, 4 . . . P − 1

1 P ≤ z ≤ P + 1

(2.12)
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The negative sign reflects a choice in orientation. The D8-brane charge can be found by

studying F0 from the equation (2.3).

It is also interesting to calculate the central charge of these N = (1, 0) SCFTs. A

detailed study is presented in [10]. Here we do a related calculation as described in [24].1

As explained in these papers, in any background (with dilaton Φ) dual to a d+1 dimensional

field theory,

ds2 = α dx2
1,d + αβ dR2 + gijdθ

idθj , Φ(R, θi),

we calculate the quantities,

Vint =

∫
dθi

√
e−4Φ det[gint]αd, H = V 2

int,

and together with the Newton constant GN = 8π6 (in the units we choose here), we

calculate a monotonic quantity

c =
dd

GN

βd/2H( 2d+1
2

)

(H ′)d
. (2.13)

Using the expressions in eqs. (2.1)–(2.2) and Poincaré coordinates to parametrise the AdS7

space, we find

α = f1(z)R2, β =
1

R4
, d = 5, ds2

int = f2dz
2 + f3dΩ2,

Vint = NR5, N = −2

(
2

3

)8 ∫ z∗

0
α(z)α′′(z)dz,

c =
1

16GN

(
2

3

)8 ∫ z∗

0
−α(z)α′′(z)dz. (2.14)

Notice that eq. (2.14) is reminiscent of eq. (4.10) in the paper [10]. In fact, α′′(z) is

proportional to the rank-function R(z).

We calculate the integral
∫ z∗

0 −α(z)α′′(z)dz for the two generic quivers described

around eqs. (2.6) and (2.8). For the background described around eq. (2.6), we find

∫ z∗

0

α1α
′′
1

(81π2N)2
=


10a1+1

30 0≤ z≤ 1
1
30

(
1+5k+10k2+10k3+5k4+10a1(1+3k+3k2)

)
k≤ z≤ (k+1),

P 4+P 3

12 + a1P 2

2 + P 2

30 + a1P
6 P ≤ z≤P +1.

We sum over all the intervals, and use that k = 1, . . . , (P − 1) and −6a1 = P 2 + 2P . In

the holographic limit of large P (when the background above are trustable duals to the

corresponding quivers) we obtain,

c1 =
2

45π2
N2P 5 (1 +O(1/P )) . (2.15)

For the background described around eq. (2.8), we obtain

∫ z∗

0
α3α

′′
3 = (81π2N)2


10a1+1

30 0 ≤ z ≤ 1
1
12

(
1 + 6k2 + 6a1 + 12ka1

)
k ≤ z ≤ (k + 1),

P 2

4 + a1P
2 −

P
12 + a1

6 + 1
30 P ≤ z ≤ P + 1.

1For a refinement of this formulas see ref. [25] and ref. [26].
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Summing over all the intervals k = 1, . . . , (P − 1), we obtain, in the holographic limit,

c3 =
1

6π2
N2P 3 (1 +O(1/P )) . (2.16)

This concludes the analysis of the characteristic charges of the quivers, as calculated from

the dual backgrounds.

2.3 A formal elaboration

In this section we discuss a formal development that might find some applications in further

studies of six-dimensional CFTs and their dual backgrounds.

Consider the differential equation (2.3) defining the function α(z). We explained a

way of solving it in section 2.1. Another way may be to extend the function F0 in an

even-periodic way, with period T = 2(P + 1) and attempt a solution in terms of a Fourier

series. For example, in the case of the background defined around eq. (2.6),

α′′′1 = −162π3F0 = −81π2N


−P −(P + 1) ≤ z ≤ −P
1 −P ≤ z ≤ P
−P P ≤ z ≤ P + 1.

We then decompose this even function in terms of a cosine-Fourier series,

α′′′1 = −162πN(P + 1)
∞∑
n=1

[
sin(nπPP+1)

n

]
cos

(
nπ

P + 1
z

)
. (2.17)

This implies that after integrating three times,

α1 =
162N(P + 1)4

π2

∞∑
n=1

[
sin(nπPP+1)

n4

]
sin

(
nπ

P + 1
z

)
. (2.18)

We have chosen the three integration constants to zero. Notice that in this way, we satisfy

the boundary conditions α(z = 0) = α(z = P + 1) = 0. Evenly-extending F0 guarantees

that the function α is odd.

For the example of the background with α(z) defined around eq. (2.8), we proceed

similarly. In this case we have

α′′′3 = −162π3F0 = −81π2N



−1 −(P + 1) ≤ z ≤ −P
0 −P ≤ z ≤ 1

1 −1 ≤ z ≤ 1

0 1 ≤ z ≤ P
−1 P ≤ z ≤ P + 1.

and by the same reasoning as above we find,

α3 =
162N(P + 1)3

π2

∞∑
n=1

[
sin( nπ

P+1) + sin(nπPP+1)

n4

]
sin

(
nπ

P + 1
z

)
. (2.19)

– 11 –



J
H
E
P
0
6
(
2
0
1
8
)
0
7
8

Some observations are in order. First, if we use the functions α(z) as defined by eqs. (2.18)

and (2.19), their plot looks exactly like those in figures 2 and 15. Second, studying the

Fourier series one can check that it can be written as a sum of poly-logarithmic functions

Lin(z) =
∑∞

k=1
zk

kn . Third, the third derivative of α(z) is afflicted by the Gibbs phenomenon

at the discontinuity points.

More interestingly is the observation that we are writing α(z) ∼
∑

sin(ωz), a sum

of harmonics. Each of the harmonics solves the equation (2.3), defining a background

that has α′′ = −ω2α and hence has constant warp factors of the AdS7 and z-direction

f1(z) ∼ f2(z) ∼ 1. It also has the warp factor of the S2(χ, ξ), f3(z) ∼ sin2(ωz)
3−cos2(ωz)

, again

vanishing in the two ends of the space (but depending on the harmonic in some intermediate

points too). The background generated by each harmonic is non-singular as can be seen

by computing the Ricci scalar and the dilaton, both bounded. Each of these harmonics

contributes to the central charge as

c ∼ −
∫ P+1

0
αα′′ ∼ P + 1

2
,

therefore, the coefficient of the Fourier series is relevant for this counting. Indeed, let us

study this in detail. For the expansions in eqs. (2.18) and (2.19) we compute −α(z)α′′(z)

and integrate it in [0, P + 1]. Using orthogonality relations and the definition in eq. (2.13),

we find

c1 =
1

16GN

(
2

3

)8 (162)2

2π2
N2(P + 1)7

∞∑
n=1

[
sin(nπPP+1)

n3

]2

,

c3 =
1

16GN

(
2

3

)8 (162)2π2

2π2
N2(P + 1)5

∞∑
n=1

[
sin( nπ

P+1) + sin(nπPP+1)

n3

]2

. (2.20)

The sums can be explicitly evaluated in terms of poly-logarithmic functions. We can use

that these formulas are good approximations in the limit of very long linear quivers and

expanding at first order for P →∞, we find

c1 ∼
2N2P 5

45π2
, c3 ∼

N2P 3

6π2
, (2.21)

in coincidence with the leading order result of eqs. (2.15) and (2.16).

We now move into the study of integrability for these quivers. We will use the holo-

graphic perspective as described above.

3 Dynamics of strings on AdS7 ×M3 backgrounds

In this section, we study the dynamics of classical strings moving in backgrounds dual

to N = (1, 0) SCFTs. We will apply the formalism developed in the papers [20, 21] to

show that a given string soliton is non-integrable in the Liouvillian sense. This in turns

translates into the non-integrability of the SCFT, as discussed in the introduction.
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We will study the dynamics derived from the Polyakov action,

SP =
1

4πα′

∫
Σ
d2σ(Gµρh

αβ +Bµρε
αβ)∂αX

µ∂βX
ρ, (3.1)

supplemented by the Virasoro constraint Tab = 0, with

Tab = ∂aX
µ∂bX

ρGµρ −
1

2
habh

cd∂cX
µ∂dX

ρGµρ. (3.2)

In the equations above, we choose by convention −hττ = hσσ = 1 and ετσ = 1. We consider

a string soliton sitting at the centre of the AdS7 space given by,

t = t(τ), z = z(τ), χ = χ(τ), ξ = νσ, (3.3)

where the parameter ν indicates how many times the string winds around the ξ-direction.

The equations of motion derived from the action in eq. (3.1) are equivalent to those derived

from the effective Lagrangian (in eq. (2.2), the reader can find the definitions of fi),

L = f1(z)ṫ2 − f2(z)ż2 − f3(z)χ̇2 + ν2f3(z) sin2 χ+ 2νf4(z) sinχχ̇. (3.4)

These equations of motion read,

2f1(z)ṫ = 2E

2f3(z)χ̈ = 2νf ′4(z)ż sinχ− 2f ′3(z)χ̇ż − 2ν2f3(z) sinχ cosχ

2f2(z)z̈ = − f ′1(z)

f1(z)2
E2 − ż2f ′2(z) + f ′3(z)(χ̇2 − ν2 sin2 χ)− 2νχ̇ sinχf ′4(z). (3.5)

The dot indicates a derivative with respect to τ and the prime, as above, a derivative with

respect to z. Notice also that the t-equation, the first in (3.5) was used in the equation

for z(τ). These equations need to be supplemented by the Virasoro constraint. On this

configuration it takes the form,

2Tττ = 2Tσσ = −f1(z)ṫ2 + f2(z)ż2 + f3(z)χ̇2 + ν2f3(z) sin2 χ = 0,

Tστ = 0. (3.6)

Using the Euler-Lagrange eqs. (3.5), the reader can check that ∂σTσσ = ∂τTσσ = 0. Hence

the constraint Tσσ = Tττ = 0 can be satisfied by a judicious choice of the integration

constant E in the first equation of (3.5).

It is useful to define the conjugate momenta and the effective Hamiltonian,

ṫ =
pt

2f1(z)
, χ̇ = − 1

2f3(z)
(pχ − 2νf4(z) sinχ), ż = − pz

2f2(z)
,

H =
p2
t

4f1(z)
− p2

z

4f2(z)
− 1

4f3(z)
(pχ − 2νf4(z) sinχ)2 − ν2f3(z) sin2 χ. (3.7)
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The Hamilton equations are,

ṫ =
pt

2f1(z)
, ż = − pz

2f2(z)
, χ̇ = − 1

2f3(z)
(pχ − 2νf4(z) sinχ), ṗt = 0,

ṗχ = 2ν2

(
f4(z)2

f3(z)
+ f3(z)

)
sinχ cosχ− ν f4(z)

f3(z)
pχ cosχ,

ṗz =
p2
t

4f1(z)2
f ′1(z)− p2

z

4f2(z)2
f ′2(z) + ν2f ′3(z) sin2 χ

− f ′3(z)

4f3(z)2
(pχ − 2νf4 sinχ)2 − νf ′4(z)

f3(z)
sinχ(pχ − 2νf4(z) sinχ). (3.8)

The reader can check that these equations are equivalent to the Euler-Lagrange equa-

tions (3.5).

In what follows, we will use the formalism of [21]–[36] to analytically study the (non)

integrability of the string soliton in eq. (3.3).

3.1 Liouvillian integrability

The strategy we will use to prove (non-) integrability in the Liouville sense is the one

described in [21] and exploited in various papers [27]–[42].

We inspect the equations in (3.5). In our case, we have only two equations, those

for z(τ) and χ(τ). We shall find a simple solution for one of these equations. Then, we

study a fluctuation of the remaining equation (evaluated in the solution found above). We

call this the Normal Variational Equation (NVE). We apply Kovacic’s criterium to this

fluctuated NVE equation, in order to determine the classical Liouvillian integrability (or

non-integrability), of the system.

In fact, for the case of eqs. (3.5), one can check that the choice χ(τ) = χ̇(τ) = χ̈(τ) = 0,

reduces the system of equations to,

2f2(z)z̈ = − f ′1(z)

f1(z)2
E2 − ż2f ′2(z). (3.9)

Using the explicit expression for f1(z), f2(z), this equation reads,

2

√
−α
′′

α
z̈ =

(
αα′′′ − α′α′′

2α2

)√
− α

α′′

(
ż2 − E2

16π2

)
, (3.10)

which, after a convenient choice of integration constants, admits a simple solution

zsol =
E

4π
τ. (3.11)

We now study the equation for the functions χ(τ) = 0 + εx(τ) and expand for small values

of ε. We obtain the NVE,

ẍ(τ) + Bẋ(τ) +Ax(τ) = 0,

B =
Ef ′3(z)

4πf3(z)
|zsol , A =

(
ν2 − ν Ef

′
4(z)

4πf3(z)

)
|zsol . (3.12)
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More explicitly, using the expressions in eq. (2.2) the coefficients A and B are

A =

(
ν2 − Eν

4π
√

2

1√
−αα′′

(−3α′2α′′ + 6αα′′2 − 2αα′α′′′)

(−α′2 + 2αα′′)

)
zsol

,

B =
E

8π

(
3
α′

α
+

(α′2 + 2αα′′)

(α′2 − 2αα′′)

α′′′

α′′

)
zsol

. (3.13)

The Liouvillian integrability of the string soliton depends on the function α(z) defining the

background. Below, we shall study this integrability.

3.2 Analytical study of the (non) integrability of the SCFTs

In this section, we apply the Kovacic algorithm [43] to the eqs. (3.12)–(3.13). For a summary

of Kovacic’s procedure see appendix B. We particularise in the cases studied in section 2,

more concretely for the quivers in figures 1 and 5. The whole problem boils down to study

the presence — (or not) of Liouvillian solutions to eqs. (3.12), given the different functions

α(z).

Consider first the case in which the function α(z) is

α(z) = −81π2k

(
1

2
z2 − 2R2

0

81π2k2

)
. (3.14)

This function corresponds to a background in (massless) Type IIA — since α′′′ = 0. In

this background there are k D6-branes. Once lifted to eleven dimensions the metric is

AdS7 × S4/Zk. Notice that the coordinate range is |z| ≤ 2R0
9πk . The background is singular

at the ends of the space. We find that the NVE equation (3.12) reads in this case,

ẍ(τ)− 243E2k2π2τ

16π2
(
4R2

0 − 81k2π2(Eτ4π )2
) ẋ(τ) + ν

ν +
27kEπ

4π
√

4R2
0 − 81k2π2(Eτ4π )2

x(τ) = 0.

(3.15)

This equation is hard to solve exactly. We observe that for large values of the parameter

R0 (or for very short times), the eq. (3.15) reduces to an oscillator equation. This indicates

that in such a regime of parameters, the string soliton is Liouville integrable and possibly

the full CFT is integrable in that limit too. This may be reminiscent of the ‘islands

of integrability’ discussed in [37]. In fact they appear in the regime in which Eτ → 0.

Nevertheless, for finite R0 (or Eτ ∼ R0) we failed to find a Liouvillian solution.

Let us perform a more refined analysis — the details of the logic behind the analysis

are in appendix B.

The first step is to write the NVE as a second order differential equation with rational

coefficients. We choose 64R2
0 = 81k2E2 = 1 to ease the algebra (not loosing generality).

The NVE equation reads,

ẍ− 3τ

1− τ2
ẋ+

(
1 +

3√
1− τ2

)
x = 0.
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We change variables to τ =
√

1− v2. The NVE differential equation in this new variable

reads,

x′′(v) + C(v)x′(v) +D(v)x(v) = 0, C =
1
dv
dτ

(
B(v) +

d

dv

(
dv

dτ

))
, D =

A(v)

( dvdτ )2
. (3.16)

Where, in this particular case we have

v =
√

1− τ2,
dv

dτ
= −
√

1− v2

v
,

d

dv

(
dv

dτ

)
=

1

v2
√

1− v2
,

C =
3v2 − 4

v − v3
, D =

v2 + 3v

1− v2
. (3.17)

Following the analysis detailed in appendix B, we construct a function 4V (v) = 4D−C2−
2C′,

4V = −4 +
3

4(v − 1)2
− 17

4(v − 1)
− 24

v2
+

3

4(v + 1)2
− 31

4(v + 1)
. (3.18)

The pole structure of this function is analysed according to the criteria in appendix B. The

existence of poles of order-one and the fact that the function V is of order-one at infinity,

implies that none of the three possible cases detailed in appendix B can be satisfied. There-

fore, the equation has a non-Liouvillian solutions. The string soliton is non-integrable, and

also is non-integrable the associated CFT. For a study of the integrability of a membrane

equations in the eleven dimensional lift of this solution see appendix C.

3.3 Integrability for the quivers of figures 1 and 5

Consider now the quiver CFT with holographic dual defined by the function α1(z) in

eq. (2.5). Finding an exact solution to eqs. (3.12)–(3.13) is challenging. We may attempt

to rewrite eq. (3.12) by redefining x(τ) = e−
1
2

∫
Bdτf(τ), leading to an equation in the

Schrödinger form,

f ′′(τ) + V (τ)f(τ) = 0, V (τ) = A− 1

4
B2 − 1

2
B′|zsol . (3.19)

To solve exactly this last equation is a daunting task. Nevertheless, we can simplify matters

if we study the problem very close to z ∼ τ ∼ 0, that is for short times. Indeed, choosing

E = 4π and ν = 1 to avoid cluttered expressions we find for a series expansion in τ ,

A ∼ γ1 − γ2τ
2, B ∼ γ4

τ
− γ3τ. (3.20)

The explicit expression of the coefficients γ1, γ2, γ3, γ4 is not important for this analysis.

Using the leading terms in eq. (3.20), the differential eqs. (3.12), (3.19) admit Liouvillian

solutions. Nevertheless, when the subleading terms are included, both equations present

solutions that contain Hermite polynomials, and hypergeometric functions 1F1. This im-

plies the non-Liouvillian character of the solution, indicating non-integrability of the string

soliton of eq. (3.3).

A more refined study is presented in appendix B. We change variables to have an NVE

with rational coefficients. The necessary conditions for this NVE to admit Liouvillian
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solutions are not satisfied — the details are given below eq. (B.3). This translates into the

non-integrability of the N = (1, 0) SCFT described by the quiver in figure 1. The same

can be concluded about any background whose defining function α(z) starts as α(z) ∼
a1z + a3z

3 close to z = 0.

The non-Liouvillian integrability can also be studied numerically. In what follows, we

provide a detailed numerical analysis of different observables that suggest that the system

of equations (3.5), (3.8) is non-Liouvillian and chaotic.

4 Numerical analysis

In this section, we carry out some explicit numerical computations that provide a solid back-

up to our findings of analytic non-integrability associated with N = (1, 0) SCFTs in six di-

mensions. We study the dynamics of classical strings on the backgrounds in eqs. (2.1)–(2.3).

We demonstrate that the phase space dynamics of classical strings on these backgrounds is

chaotic (and hence non-integrable). Let us mention that non-integrability does not neces-

sarily imply chaos. However, as far as the Gauge/Gravity duality is concerned, all the ex-

amples encountered, that have been found to be non-integrable were also chaotic in general.

The evolution of a dynamical system is given by a set of deterministic differential equa-

tions that allows us to calculate the state of a system at a time t, knowing an earlier state of

the system at some initial time t0. A dynamical system is said to be chaotic when it is ex-

ponentially sensitive to its initial conditions, making it practically impossible to accurately

predict the long term dynamical behaviour. Indeed, when we have two adjacent initial con-

ditions x1(t0) and x2(t0) = x1(t0) + ε, we say the system exhibits chaotic dynamics when

|x1(t) − x2(t)| ∼ eλt, provided that the trajectory of our system in phase-space remains

bounded. This boundedness of the trajectories is to rule out the trivial case where the trajec-

tories move off to infinity and only diverge exponentially because they are moving apart [19].

In our case we are studying the motion of classical strings that sit at the centre of

AdS7 spacetime, while moving and rotating in an internal space of the form R× S2. This

is described by the system in eqs. (3.5)–(3.6) or their analog (3.8). The coordinates z, χ

are bounded and the respective momenta along the pz and pχ-directions are bounded also

due to the conserved Hamiltonian in eq. (3.7).

The trajectory of this string embedding in the phase space will therefore be bounded if

the z-coordinate itself is bounded. In this case, the Lyapunov exponent (that measures the

exponential divergence of initial conditions) indeed provides a good observable to determine

whether the dynamics of this classical string embedding is chaotic or not.

The numerical analysis that follows is quite dense. The plan is the following: first, in

section 4.1, we examine the motion of classical strings over the background solutions (2.5)

and (2.7), by numerically evaluating the equations of motion. We calculate the correspond-

ing power spectra and discuss how this is indicative of chaotic dynamics. In section 4.2,

we explore the Lyapunov spectrum [44], demonstrating that the dynamical behaviour is

indeed chaotic. We end the analysis in section 4.3, discussing the Poincaré sections of these

solutions and their implications on the chaotic dynamics associated to classical string con-
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(a) z(t) and pz(t) in blue and yellow respectively.
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cos(χ)

(b) χ(t).

Figure 7. Numerical evolution for a string on the background solution (2.7) (quiver 3) with initial

conditions χ(0) = 0.001, pχ(0) = 0, z(0) = 2 and pz(0) = 1, corresponding to an energy E ≈ 3.83.

figurations considered in this paper. Appendix D complements the numerical analysis with

some rigorous definitions.

4.1 Numerical evolution and power spectra

The equations of motion for the classical strings (3.5)–(3.6) are considerably simplified with

the choice χ̈ = χ̇ = χ = 0 (or χ = π), i.e. when the string stays fixed at the north or the

south pole of the 2-sphere. With this choice, the remaining equation for the motion along

z is,

2f2(z)z̈ + ż2f ′2(z) +
f ′1(z)

f1(z)2
E2 = 0, (4.1)

which is eq. (3.9).

Let us study how the classical string dynamics becomes increasingly disorganised as

we allow the strings to move further away from the poles of the two-sphere. First, consider

a classical string on the background solutions that were already discussed in eqs. (2.5)

and (2.7). Below, we refer to them as quiver 1 and quiver 3 respectively. In figure 7a, we

see that when the string stays very close to the poles of the two-sphere, it moves along the

z-direction until it hits the end of the z-domain. Then, it turns around and moves back

along the z-direction. On the two-sphere, the string starts out located near the north pole

(at, χ=0.01). However, when the string turns around along the z-direction it moves almost

instantaneously from the north-pole to the south-pole (see, figure 7b).

Now, we move the initial position of the string away from the poles (that are located

at χ = 0 or, χ = π) to the middle of the two-sphere, located at χ(0) = π/2. We keep

all the other initial conditions the same. In figure 8b, we consider an initial χ(0) = 0.1,

corresponding to E ≈ 6.75. We see that the square shaped trajectory that the string

traces out in the (z, χ)-plane gets deformed. The dynamics of the system becomes more

complicated as the additional χ-dependence weighs in eqs. (3.5). Similar conclusions could

be drawn for the background in eq. (2.5) — quiver 1. Like in the previous example, the

trajectories start looking unstructured as we increase χ(0).

– 18 –



J
H
E
P
0
6
(
2
0
1
8
)
0
7
8

1 2 3 4
z

-1.0

-0.5

0.5

1.0

cos(χ)

(a) χ(0) = 0.01, E ≈ 3.83, tmax = 400.

1 2 3 4
z

-1.0

-0.5

0.5

1.0

cos(χ)

(b) χ(0) = 0.10, E ≈ 6.75, tmax = 400.
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(c) χ(0) = 0.25, E ≈ 14.31, tmax = 400.

1 2 3 4
z
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-0.5
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cos(χ)

(d) χ(0) = 0.9, E ≈ 43.82, tmax = 100.

Figure 8. Different trajectories in the (z, χ)-plane for a string-embedding of the form in eq. (3.3)

on the background in (2.7), we run the evolution up to t = tmax and only change the initial condition

χ(0).

We now discuss the power spectra [19]. By taking the Fourier transform of the numer-

ical evolutions in figure 8, we can distinguish whether z(t) and χ(t) are periodic, quasi-

periodic or chaotic. When a signal is perfectly periodic with a frequency ω, its Fourier

spectrum will show a vertical line at the characteristic frequency of the system.

Notice that, for very low values of χ(0), the string moves almost periodically along the

z-direction with a jigsaw motion (see figure 7a) and along the χ-direction with a square-

wave profile (see figure 7b). From figure 8a, we can see that this motion is not exactly

periodic, as the path of the string in the (z, χ)-plane does not exactly close on itself. We

can see a confirmation of this in the corresponding Fourier spectrum — see figure 9a. In

fact, we clearly see a fundamental frequency of value 0.02 and the corresponding oscillations

along the z-axis that have a period of roughly 55t. In addition to this, we see the higher

harmonics of the jigsaw and box shaped waveforms. The finite width of these peaks however

suggests that this is not a periodic signal but that there is instead some noise present. Such

a noisy power spectrum is a typical characteristic of a deterministic chaotic system.

As we increase the value of χ(0), we first see that the jigsaw and box-shaped waveforms

become distorted — see figure 8b. This is reflected by the corresponding power spectrum,

loosing their higher harmonics as shown in figure 9b. Increasing χ(0) even further, we see

that a broad band of noise around a frequency 0.35 starts to overpower the spectrum —

see figures 9b–9c. At even higher values of χ(0), we even loose the initial peak at frequency

0.02. The spectrum becomes primarily dominated by noise.
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(a) χ(0) = 0.01, E ≈ 3.83.
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(b) χ(0) = 0.10, E ≈ 6.75.
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(c) χ(0) = 0.25, E ≈ 14.31.
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(d) χ(0) = 0.90, E ≈ 43.82.

Figure 9. Power spectra for the trajectories in figures 8a–8d. Here the spectra for both z(t)

and χ(t) are shown in yellow and blue respectively. To calculate these spectra we ran a numerical

evolution up to t = 5000 (roughly 100 oscillations along the z-direction), with a resolution of 10

data-points per time-unit.

These plots and its analysis have been done for the background in eq. (2.7) — quiver

3. For the background defined by eq. (2.5), we see exactly the same qualitative behaviour,

for roughly the same values of χ(0).

4.2 The Lyapunov spectrum

The Lyapunov spectrum is generally introduced as a measure of the dynamical informa-

tion loss in a chaotic system. This loss of information is what sources the dynamical

Kolmogorov-Sinai (KS) entropy production within a chaotic system. Typically, for dy-

namical systems with a non-zero Lyapunov, the time evolution associated with two nearby

trajectories in the phase space turns out to be highly sensitive to a tiny change in the

initial conditions that is eventually amplified exponentially at sufficiently late times. In

other words, the existence of a non-zero Lyapunov exponent, for a point X = (q, p) in the

phase space with initial condition X0 = (q(t = 0), p(t = 0)) is,

λ = lim
τ→∞

lim
∆X0→0

1

τ
log

∆X(X0, τ)

∆X(X0, 0)
(4.2)

– 20 –



J
H
E
P
0
6
(
2
0
1
8
)
0
7
8

0 100 200 300 400 500

-1.0

-0.5

0.0

0.5

1.0

Steps

LC
E
s

(a) LCE massless: t = 0, z = 0.05, χ = 0.05, pt =

0.5, pz = 4.60155, pχ = 0.01. Integration: τ = 0.1,

K = 500, T = 0.009.
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(b) LCE quiver 1: t = 0, z = 0.15, χ = 0.15, pt = 15,

pz = 0.845631, pχ = 0.01. Integration: τ = 0.1,

K = 150, T = 0.01.
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(c) LCE quiver 2 t = 0, z = 0.09, χ = 0.09, pt = 15,

pz = 0.491105, pχ = 0.22. Integration: τ = 0.5,

K = 200, T = 0.02.
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(d) LCE quiver 3 t = 0, z = 0.09, χ = 0.09, pt = 9,

pz = 0.821405, pχ = 0.22. Integration: τ = 0.5,

K = 200, T = 0.02.

Figure 10. LCEs for different quivers.

is intimately related to the degree of randomness associated with the dynamical phase

space of a Hamiltonian system. It is typically introduced as a quantitative measure of the

rate of separation between two infinitesimally close trajectories in the phase space. The

function ∆X(X0, τ) measures the separation between two infinitesimally close trajectories

(at very late times) as a function of this initial location. Typically, for chaotic systems,

one ends up with

∆X(X0, τ) ∼ ∆X(X0, 0)eλτ . (4.3)

Below, we provide a detailed analysis of the computation of the Lyapunov expo-

nents [44] corresponding to various background solutions, characterised by a function α(z).

We will also be interested in the massless background solution described in eq. (3.14)

and in the solution corresponding to the quiver that never ends described by eq. (2.8)

— without the ‘closure’. We denote this last one as quiver 2 in the plots below. We set

P = 10 to be the length of the quiver for the purposes of the numerical analysis.

– 21 –



J
H
E
P
0
6
(
2
0
1
8
)
0
7
8

0 50 100 150 200 250 300

-1.0

-0.5

0.0

0.5

1.0

Steps
LC
E
s

Figure 11. LCEs for the massless solution with large R0.

The computation of the Lyapunov exponents is solely based on the prescription of [44].2

The initial conditions are fixed to satisfy the Hamiltonian constraint, H = 0. This in turn

implies that for a 2N dimensional phase space,

2N∑
i=1

λi = 0 (4.4)

where we denote by λi the i-th Lyapunov Characteristic Exponent (LCE). It is the measure

of the exponential growth associated to the ith direction in the phase space. For some

systems, the sum of all positive Lyapunov exponents measures the KS entropy production

during the dynamic evolution in the phase space.

We substitute some appropriate initial conditions into the dynamical equations in order

to generate a solution. Choosing these initial conditions for the phase space variables to

satisfy the vanishing of the Hamiltonian, we find the corresponding Lyapunov spectrum for

each of the quiver configurations, which clearly have non-zero LCEs — see figures 10a–10d.

Notice that, in our analysis, we are eventually computing four LCEs (λi) that characterise a

four-dimensional dynamical phase space. The addition of all them gives a vanishing number

as it corresponds to a Hamiltonian system. At this stage, it is worthwhile to mention an

interesting limit associated with the massless solution mentioned above. This is the limit in

which we set the parameter R0 →∞, which as can be seen from eq. (3.15) yields the NVE,

ẍ(τ) + ν2x(τ) = 0 (4.5)

which is therefore trivially integrable.

To perform the corresponding (numerical) computation on the LCEs, we choose the

parameters

k = 1, R0 = 500, ν = 1 (4.6)

taking as initial conditions for the phase space variables:

t = 0, z = 0.05, χ = 0.05, pt = 100, pz = 0.159689, pχ = 0.01 (4.7)

2The details of the numerical techniques and the precise definition of K and T are provided in the

appendix D.
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that satisfy the vanishing of the Hamiltonian. From the plot in figure 11, it is easy to

notice that the largest LCE is substantially reduced for large enough times.

4.3 Poincaré sections and non-integrability

An N -dimensional integrable system possesses N independent integrals of motion that

are in involution, namely, the Poisson bracket of any two of these conserved quantities

vanishes. As a consequence of this, the corresponding phase space trajectories are confined

to the surface of an N -dimensional KAM torus [19]. When we change our variables to

action-angle variables (qi, pi) → (φi, Ji), such that our Hamiltonian only depends on Ji,

the corresponding trajectories on this KAM torus are completely specified in terms of N

frequencies (ωi) that specify the velocities along the different angles on this torus. When

there is no set of integers ni such that ωin
i = 0, these trajectories are said to be quasi-

periodic, they do not close on themselves but fill the surface of a KAM torus.

As a consequence of this, we can see whether a system is integrable or not, by taking

cross-sections of its phase-space trajectories. When we plot for example (φ1, J1) every time

φ2 = 0 we will see a large number of foliated circular KAM curves associated with the

2-dimensional cross-sections of these foliated KAM tori. Such a cross-section is known as a

Poincaré section [19]. The KAM theorem tells us how these KAM curves will change when

we perturb an integrable Hamiltonian with a small deformation εH ′, where ε � 1. The

resonant tori — for which these trajectories close on themselves, will be destroyed by this

perturbation. However, a large number of these non-resonant KAM tori will survive. As

we continue to increase the strength of this perturbation, more and more of these tori are

destroyed until the motion becomes seemingly random and we loose all of the KAM curves

in our Poincaré section.

In order to generate Poincaré sections for the background solutions in eqs. (2.5)

and (2.7) we first choose a set of different initial conditions, all having the same energy E.

We do this by setting, z(0) = 2, pχ(0) = 0, and varying pz(0) ∈ [0, 10] and χ(0) in such

a way that the Virasoro constraint in eq. (3.6) is always satisfied for a given value of the

energy. We then run the numerical evolution for these initial points, and plot the points

(z, pz) every time χ(t) = 0 — see figure 12.

If the string motion were integrable, the corresponding trajectories would have been

constrained to a 2-dimensional torus in this (z, pz, χ, pχ) phase-space. The Poincaré cross-

sections of the phase-space would then show the different resonant tori as embedded circles.

The absence of such embedded circular KAM curves — in figures 12, 13 and 14 — indicates

that we are dealing with a non-integrable system, in agreement with the results we found

in the earlier sections.

From our earlier study of the numerical evolution in section 4.1, we know that for low

energies the string oscillates between the different poles of the two-sphere when turning

around along the z-axis. As we explained, the point χ(t) = 0 corresponds to the string

being on the north pole of the two-sphere. We noticed that for low enough energies the

string stays localised at this pole while moving along the z-axis. This is clearly seen from

the horizontal lines in figure 12a. Also, notice that for very low momenta the string does

not reach the other side of the z-domain and stays localised around one of the endpoints.
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Figure 12. Poincaré sections for the (z, pz)-plane at χ(t) = 0, for the quiver in eq. (2.7) at different

energies.

As we increase the energy (and consequently choose a higher value for χ to satisfy

the Virasoro constraint) the string is no longer fixed at the pole but starts to oscillate

quasi-periodically around the poles as it transverses the z-direction. This is the nature of

the circles that we see appearing along the horizontal lines in figures 12b and 12c. Finally,

as we increase the energy even further we see that the Poincaré section looses all of its

structure, since the string seems to move randomly along the 2-sphere as the string moves

along the z-direction.

Similar Poincaré sections for the background in eq. (2.5) — quiver 1, can be seen

in figure 14. Though this second quiver solution is not left-right symmetric along the

z-direction the behaviour of its numerical evolution is in both cases very similar.

Finally, a different Poincaré cross-section for the quiver in eq. (2.7) is shown in figure 14.

Here we choose our initial conditions in a similar manner but we now plot the points (χ, pχ)

every time z = 2. We see again that for low energies the string stays located at the poles

where cosχ = 1 or cosχ = −1. As we go to higher energies the string is located at random

points on the two-sphere every time we cross z = 2.
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Figure 13. Poincaré sections for the (χ, pχ)-plane at z(t) = 2, for the quiver in eq. (2.7) at different

energies.
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Figure 14. Poincaré sections for the (z, pz)-plane at χ(t) = 0, for the quiver in eq. (2.6) at different

energies.
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5 Conclusions and future work

We conclude our paper by first summarising the key ideas that drive the present analysis

and highlighting the main results obtained. Finally, we list some of the key questions

suggested by these results which are worth further investigation.

The purpose of this work is to explore the dynamics of six-dimensional SCFTs with

N = (1, 0) SUSY. We discussed the holographic representation of the strongly coupled

dynamics and focused on analytically showing the non-integrability of these theories. The

fact that the system is strongly coupled at the conformal fixed point, together with the

absence of a local Lagrangian, makes it a very difficult task to explore anything using the

field theory description itself. However, studying the dual string description is promising.

In the Massive IIA dual background one can perform semi-classical computations that

unveil some of the issues related to the non-integrability.

The traditional way of establishing the analytic integrability of a dynamical system

is to find the appropriate Lax pair. Unfortunately, there is no general prescription to

construct Lax pairs for a given field theory. Therefore, we choose a different procedure,

namely to consider a solitonic excitation in the dual string background, and study it as a

dynamical system. We used a simple prescription (that goes under the name of Kovacic’s

algorithm [43]) to show the presence of non-integrability associated with the phase space

of our classical string embedded in massive type IIA. This implies that the eigenvalues of

the dilatation operator of the CFT cannot be determined with the usual techniques.

By probing the dual type IIA background with a classical string (our soliton) and

studying the Hamiltonian dynamics of this excitation, we gain information on ‘long’ oper-

ators of different quivers in the N = (1, 0) SCFTs. These operators have large quantum

numbers (scaling and angular momentum). The classical strings correspond to that specific

sector within the dual SCFTs. By virtue of the Maldacena duality, the analysis is equiv-

alent to exploring the non-integrability associated to that specific CFT sector. In fact, if

the classical dynamics associated to specific string embeddings in the bulk fails to satisfy

the Kovacic’s criterium, the corresponding phase space dynamics is non-integrable. This,

in turn, implies non-integrability in the full dual N = (1, 0) SCFTs.

In order to put our analytic findings on a more solid ground, we carry out a numerical

analysis where we compute various physical quantities like the Lyapunov coefficients, the

power spectra and the Poincaré sections that eventually display the onset of the chaotic

behaviour associated with the corresponding phase space dynamics of the classical string

embeddings.

These observations eventually give rise to deeper questions that one might wish to

explore further. In the following we mention a few of them.

• It would be interesting to explore other correlation functions of different operators

using the holographic perspective and examples described here. For example, the

study of a BMN sector and associated pp-wave presents similar features as those

in [45]. Similarly, the study of magnons, spiked-strings, meson spectra and other

similar observables are natural to explore in the context of the string duals discussed

here.
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• On the same line, the generalisation of our integrability study to the many AdSp ×
M10−p backgrounds found in recent classifications, might teach generic lessons about

CFTs.

• The examples of non-integrability found in this paper, add to the list of [21]–[42]. It

is then natural to ask: what is the characteristic of the field theory that causes the

non-integrability? It is not the amount of SUSY, nor the global symmetries. Surely,

the stringy character of our solitons is essential, as all these effects vanish when the

wrapping ν vanishes. What other characteristics of the field theory-background pair

should we take into account to diagnose non-integrability?

• It would be of interest to study flows away from some of our quiver solutions, to

other fixed points. The behaviour of the central charge as we defined it (and other

correlators) should depend on the particular quiver we start with.

• In the same vein, the study of the chaos-indicators (Lyapunov coefficients, Poincaré

sections, power spectra), is of huge interest. It is natural to wonder if there is some

quiver CFT for which the onset of chaos is parametrically delayed. Similarly, the

study of our string soliton under a RG-flow to another fix point might show how

these chaos indicators change under RG-flow.

• It is certainly of interest to relate the chaos observed here to the out-of-order four

point correlation function of some hermitian operators, as studied in [46]. Possibly,

string worldsheet four point correlators on our sigma model display similar behaviour

to those in [47].

We hope to report on some of these questions in future publications.
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A The function α(z) for the quivers in figures 5 and 6

In this appendix we plot the function α(z)
81π2N

and its derivatives for the quivers in figures 5

and 6. For the quiver in figure 1, we have:
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Figure 15. α̂(z) and its first and second derivatives, for the dual background of the quiver in

figure 5.

Figure 16. fi(z) for the dual background to the quiver in figure 5.

Figure 17. α̂(z) and its first and second derivatives, for the dual background of the quiver in

figure 6.

With these values of α(z) and its derivatives, we can easily construct the functions

fi(z) that describe the gravitational background. We plot, in order, fi(z) where i ∈
{1, 2, 3, 4, 5, 6}.

Now we do the same for the quiver in figure 6. We depict the function α(z) and its

derivatives in figure 17 and fi(z) in figure 18.

It is easy to construct the Ricci scalar of these geometries. It can be written in terms

of α(z) and its derivatives:

R =
1

4
√

2πα2α′′2(α′2 − 2αα′′)2

√
− α

α′′
[
− 21α′6α′′2 + 42αα′5α′′α(3)

−252α2α′3α′′2α(3) + 336α3α′α′′2α(3) + 8α3α′2α′′(13(α(3))2 − 7α′′α(4))
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Figure 18. fi(z) for the dual background to the quiver in figure 6.

Figure 19. The Ricci scalars for the backgrounds associated to the quivers in figures 5 and 6

respectively.

+12α3α′′2(−7α′′3 − 15α(α(3))2 + 6αα′′α(4)) + αα′(4)(63(α′′)3 − 21α(α(3))2 + 10αα′′α(4))
]

In figure 19 we plot the Ricci scalar for both geometries.

B On Liouvillian integrability and Kovacic’s algorithm

In this appendix, we briefly describe Kovacic’s algorithm [43]. Consider a second order

differential equation,

y′′(x) +B(x)y′(x) +A(x)y(x) = 0, (B.1)

where A(x), B(x) are complex rational functions. We are interested in the existence of

closed form solutions, namely solutions that can be expressed in terms of algebraic, ex-

ponential, and trigonometric functions, and integrals of the previous functions. If this is

the case, we call the solution Liouvillian. The algorithm of [43] provides one such solu-

tion or shows there is none (in which case we refer to the differential equation (B.1) as

non-integrable). We will not describe the algorithm itself (that is efficiently implemented

by many different softwares). We will limit us to explain the logic behind Kovacic’s algo-
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rithm and some necessary but not-sufficient conditions that a combination of the functions

A,B,B′ must satisfy, for the eq. (B.1) to be Liouville-integrable.

We start by redefining the function y(x) and rewriting the differential equation as,

y(x) = e
∫
w(x)−B(x)

2
dx,

w′(x) + w(x)2 = V (x), V (x) =
2B′ +B2 − 4A

4
. (B.2)

It was shown that if the function w(x) is algebraic of degrees 1,2,4,6, or 12, then the eq. (B.1)

is Liouville integrable [43]. This results comes from the application of Galois theory to

differential equations (this is called Picard-Vessiot theory). This formalism studies the most

general group of invariances of the differential equation (B.1), that is the transformations

that act on the solutions of the equation, that is a subgroup of SL(2, C). Kovacic showed

that there are four possible cases of subgroups of SL(2, C) that can arise

• Case 1: the subgroup is generated by the matrix of the form

G =

[
a 0

b 1
a

]
,

with a, b complex numbers. In this case w(x) is a rational function of degree 1.

• Case 2: the subgroup of SL(2, C) is generated by matrices of the form (here c is a

complex number),

G =

[
c 0

0 1
c

]
, G =

[
0 c

−1
c 0

]
,

in this case the function w(x) is rational of degree 2

• Case 3: the situation in which G is a finite group, not included in the two above

cases. In this case, the degree of w(x) is either 4,6 or 12.

• Case 4: the group is SL(2, C) and the solutions for w(x), if they exist are non-

Liouvillian.

Interestingly, Kovacic provided not only an algorithm to find the solutions in the first three

cases above, but also a set of necessary but not sufficient conditions that the function V (x)

in eq. (B.2) must satisfy to be in any of the first three cases detailed above [43]. For each

of the cases as ordered above, the conditions are:

• Case 1: every pole of V (x) has order 1 or has even order. The order of the function

V (x) at infinity is either even or greater than 2.

• Case 2: V (x) has either one pole of order 2, or poles of odd-order greater than 2 .

• Case 3: the order of the poles of V does not exceed 2, and the order of V at infinity

is at least 2.

If none of the above is satisfied, the analytic solution (if it exists), is non-Liouvillian.
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B.1 One example

Let us work out an example to see the criteria at work. We study the NVE in eqs. (3.12)–

(3.13). To simplify matters, we will just study the NVE in the interval 0 ≤ z ≤ 1, so that

the function α(z) = −81π2N(a1z + z3

6 ). In this case the coefficients are

A = 1−
√

3
(z4 + 20a1z

2 − 60a2
1)√

−6a1 − z2(z4 + 12a1z2 − 12a2
1)
,

B =
2

z
+

3z

(6a1 + z2)
− 4

6a1z + z3

(z4 + 12a1z2 − 12a2
1)
. (B.3)

To avoid cluttering the expressions, we have chosen the coefficients E = 4π (such that

z = τ) and ν = 1.

The coefficients of this NVE are not rational functions. To amend this, we change

from z to a new variable v,

z =
√
−6a1 − v2 (B.4)

denoting x′ = dx
dv , the NVE reads

x′′(v) + Cx′(v) +Dx(v) = 0, C =

(
B(v) + d

dv
dv
dz

)
dv
dz

, D =
A(v)

(dvdz )2
. (B.5)

According to what was explained around eq. (B.2), we now need to analyse the principal

part of the potential 4V = 2dCdv + C2 − 4D.

For the particular case of the A and B, and the change of variables in eqs. (B.3)–(B.4)

we find,

C =
v6 − 12a1v

4 − 240a2
1v

2 − 576a3
1

v(v2 + 6a1)(v4 − 48a2
1)

,

D = −1 +
6a1 + 5

√
3v

v2 + 6a1
− 4
√

3v(v2 − 4a1)

v4 − 48a2
1

,

4V = 4 +
γ0

v2
+

γ1

(v2 + 6a1)2
+

γ2 + γ3v

(v2 + 6a1)
+

γ4v
2

(v4 − 48a2
1)2

+

+
γ5 + γ6v + γ7v

2 + γ8v
3

(v4 − 48a2
1)

. (B.6)

The coefficients γi are numerical constants, not very relevant for our analysis below. Notice

that the potential has a pole of order one at v = ±i
√

6a1. The order of the potential

(leading power of the degrees of the denominator minus numerator) is one. Hence, V (x)

does not fall in any of the three allowed cases. The solution to the equation should then

be non-Liouvillian.

Notice that this analysis covers the cases of our quivers in figures 1 and 5. Indeed, both

these quivers start with the function α(z) = −81π2N(a1z+ z3

6 ). Hence, both backgrounds

and both quiver CFTs are non-integrable.
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C Integrability of the configuration in type IIA and M-theory

In this short appendix (the details of which will be fully worked out elsewhere), we will

indicate the steps that lead to the a more detailed study of our string configuration for

the case in which the function α(z) = (R2 − µ2z2), characterising a background in Type

IIA (with mass parameter m = 0) that lifts to and AdS7 × S4/Zk in eleven dimensional

supergravity. This is the case we studied around eq. (3.14). We shall lift the background

to eleven dimensions, and then study the dynamics of a membrane that mimics our type

IIA string. The lifted background is,

ds2
11 = f

−2/3
6

[
f1 ds

2
AdS7

+ f2 dz
2 + f3 dΩ2(χ, ξ)

]
+ f

4/3
6 (dy − f5 cosχ dξ)2,

6C3 = f4 sinχ dχ ∧ dξ ∧ dy. (C.1)

We define γij = Gµν∂iX
µ∂jX

ν , where i, j = τ, σ, ρ are the world-volume coordinates of the

membrane, the functions fi are all functions of z and are defined in eq. (2.2). We use the

action and constraints for a membrane (see for example [48]),

S =

∫
dτdσdρ

(
γττ + L2 det(γαβ) + 2LεijkCµνδ∂iX

µ∂jX
ν∂kX

δ
)
.

γτα = 0, γττ + L2 det γαβ = 0. (α, β = σ, ρ) (C.2)

We propose a membrane configuration that is the natural lift of the string soliton we

proposed in the main part of the paper,

t = t(τ), z = z(τ), χ = χ(τ), ξ = kσ, y = λρ. (C.3)

We find an effective Lagrangian and constraint that can be written as,

L = f
−2s/3
6

[
f1ṫ

2 − f2ż
2 − f3χ̇

2 + L2k2λ2f3f
4s/3
6 sin2 χ+ Lkλf4f

2s/3
6 χ̇ sinχ

]
,

0 = −f1ṫ
2 + f2ż

2 + f3χ̇
2 + L2k2λ2f3f

4s/3
6 sin2 χ. (C.4)

One can see that choosing s = 0 (and identifying Lλk = ν), we recover the expressions for

strings written below eq. (3.3). On the other hand, for s = 1, we have the Lagrangian and

constraint for the membrane.

We now study the equations of motion derived from eq. (C.4). We find,

ṫ =
E

f1
f

2s/3
6 , (C.5)

2f3χ̈ = −2L2k2λ2f3 cosχ sinχf
4s/3
6 − 2żχ̇f ′3 + 2Lkλ sinχżf ′4f

2s/3
6 +

4s

3

f3f
′
6

f6
żχ̇.

z̈ + E2 f
4s/3
6

2f1f2

(
f ′1
f1
− 2s

3

f ′6
f6

)
+ ż2

(
f ′2
2f2
− s

3

f ′6
f6

)
+ χ̇2 f3

2f2

(
− f ′3
f3

+
2s

3

f ′6
f6

)
+

+Lkλ sinχ χ̇
f ′4
f2
f

2s/3
6 + L2k2λ2 f3f

4s/3
6 sin2 χ

2f2

(
f ′3
f3

+
2s

3

f ′6
f6

)
= 0.

The reader can check that for s = 0 the equation of motion of the string are recovered.
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We now apply the same algorithmic procedure as in the main body of the paper. The

configuration with χ(τ) = χ̇(τ) = χ̈(τ) = 0 solves the χ−equation of motion and leaves

the z−equation as,

z̈ + E2 f
4s/3
6

2f1f2

(
f ′1
f1
− 2s

3

f ′6
f6

)
+ ż2

(
f ′2
2f2
− s

3

f ′6
f6

)
= 0. (C.6)

Calculating explicitly for the function α(z) = µ(1 − z2) (after choosing constants appro-

priately), using the explicit expression for fi(z), we find that z−equation is solved by

zs(τ) = cosh τ. (C.7)

Fluctuating the χ−equation as χ(τ) = 0 + εf(τ), we find the NVE,

f̈ + Bḟ +Af = 0, (C.8)

B = ż(τ)

(
f ′3
f3
− 2s

3

f ′6
f6

)
|zs = 2 coth τ,

A = L2k2λ2f
4s/3
6 − Lλkf2s/3

6

f ′4
f3
ż(τ)|z=zs = n1 sinh τ + n2 sinh2 τ.

With n1, n2 two numbers. In what follows we take s = 1 to discuss the case of the membrane

only. It is convenient to change the variable v = e−τ , to have an NVE that reads,

f ′′ +
3v2 + 1

v(v2 − 1)
f ′ +

( n1

2v3
(1− v2) +

n2

4v4
(1− v2)2

)
f = 0. (C.9)

We denoted f ′ = df
dv . We can construct the effective potential of the associated Schrödinger

problem, as indicated in eq. (B.2),

V (v) =
2B′ + B2 − 4A

4
=

3

4v2
− n1

2v3
+
n1

2v
− n2

4v4
− n2

4
+

n2

2v2
. (C.10)

We observe that the first of the necessary conditions discussed in appendix B is satisfied.

The Kovacic algorith should produce a Liouvillian solution for the membrane, making the

membrane configuration in eq. (C.3) Liouville-integrable.

We see that the problem with the string is that it ‘misses’ the effects of the dilaton,

represented above by the various powers of f
2/3
6 . It is the presence of the dilaton (that

the ‘classical limit’ of the Polyakov action misses), what changes the equation to introduce

integrability. Note that the dilaton goes very large at the ends of the interval z = ±1 (in

these units), hence it cannot be neglected.

D Computation of the Lyapunov spectrum

In the following we discuss the algorithm used to compute the Lyapunov characteristic

exponents (LCEs) for a generic system, in particular for a system of canonical equations

such as the ones we have previously studied. We will make use of the prescription de-

scribed in [44]. Let us consider a generic n-dimensional smooth dynamical system, which

can generically be written as:

q̇ = V (q) (D.1)
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where q(τ) is the n-dimensional state vector q =
(
~X(τ), ~P (τ)

)
at time τ , q̇ = dq

dτ and V is

a vector field on an open set U of the phase space manifold, which generates a flow f :

ḟ τ (q) = V (f τ (q)) for all q ∈ U, τ ∈ R (D.2)

where f τ (q) = f(q, τ).

Consider the evolution under the flow of two nearby points in the phase space, q0 and

q0+δ0, being δ0 a small perturbation of the initial point q0. After a time τ , the perturbation

δτ will become:

δτ ≡ f τ (q0 + δ0)− f τ (q0) ≈ Dq0f
τ (q0) · δ0 (D.3)

The average exponential rate of divergence (or convergence) of two trajectories is defined by:

λ(q0, δ0) = lim
τ→∞

1

τ
log
||δτ ||
||δ0||

= lim
τ→∞

1

τ
log ||Dq0f

τ (q0) · δ0|| (D.4)

being ||δ|| the length of the vector δ. If λ(x, u) > 0, we have exponential divergence of

nearby orbits. Under weak conditions on the nature of the dynamical system, the limit D.4

exists, it is finite and it is equal to the largest LCE λ1, see [49] for reference.

The LCEs of order p, 1 ≤ p ≤ n, are introduced to describe the mean rate of growth

of a p-dimensional volume in the tangent space. Considering a parallelepiped U0 in the

tangent space whose edges are the p vectors δ1, . . . , δp, the LCEs of order p are defined by:

λp(q0, U0) = lim
τ→∞

1

τ
log[Volp(Dq0f

τ (U0))] (D.5)

being Volp the p-dimensional volume defined in the tangent space. It can be seen [49] that

there exist p linearly independent vectors u1, . . . , up satisfying:

λp(q0, U0) = λ1 + . . .+ λp (D.6)

The tangent vector δτ defined in D.3 evolves in time satisfying:

Φ̇τ (q0) = DqV (f τ (q0)) · Φτ (q0), Φ0(q0) = I (D.7)

where Φτ (q0) = Dq0f
τ (q0). To calculate the trajectory, we have to integrate the system:{
q̇

Φ̇

}
=

{
V (q)

DqV (q) · Φ

}
,

{
q(τ0)

Φ(τ0)

}
=

{
q0

I

}
(D.8)

To compute the spectrum of LCEs, we will use the algorithm discussed in [50], based on

the calculation of the order-p LCEs defined in equation (D.6) and on a repeated application

of a Gram-Schmidt orthonormalization procedure (which avoids technical difficulties that

arise in the implementation of the recipe described in [49]) that we briefly summarize here.

Recall that if we compute an orthonormal set of vectors {δ̂i} out of the original set of

vectors {δi}, by using the Gram-Schmidt orthogonalisation procedure, the volume of the

parallelepiped spanned by δ1, . . . , δp is

Vol{δ1, . . . , δp} = ||δ̂1|| . . . ||δ̂p|| (D.9)
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Then the algorithm starts by choosing an initial condition q0 and a n × n matrix

∆0 = [δ0
1 , . . . , δ

0
n]. Using the Gram-Schmidt procedure, we calculate the corresponding

matrix of orthonormal vectors ∆̂0 = [δ̂0
1 , . . . , δ̂

0
n] and integrate the equation (D.8) from

{q0,∆0} for a short interval T , to obtain q1 = fT (q0) and

∆1 ≡ [δ1
1 , . . . , δ

1
n] = Dq0f

T (∆0) = ΦT (q0) · [δ0
1 , . . . , δ

0
n] (D.10)

The algorithm proceeds by repeating this integration-orthonormalization procedure K

times. During the k-th step, the p-dimensional volume Volp defined in D.5 increases by

a factor of ||wk1 || . . . ||wkp ||, where {wk1 , . . . , wkp} is the set of orthogonal vectors calculated

from Uk using the Gram-Schmidt technique. Then:

λp(q0,∆0) = lim
k→∞

1

kT

k∑
i=1

log(||δ̂i1|| . . . ||δ̂ip||) (D.11)

From which we can derive

λp = lim
k→∞

1

kT

k∑
i=1

log ||δ̂ip|| (D.12)

To obtain the Lyapunov spectrum, we continue calculating the quantities:

1

KT

K∑
i=1

log ||δ̂i1|| ≈ λ1, . . . ,
1

KT

K∑
i=1

log ||δ̂n1 || ≈ λn (D.13)

for a suitable value of T , until they show convergence.

E A relation with non-Abelian T-duality?

Let us briefly discuss a possible (and quite weak at the moment of this writing!) relation

between the metrics in the Cremonesi-Tomasiello backgrounds (see section 2.1) and non-

Abelian T-duality.

Since the work of Sfetsos and Thompson [51], the non-Abelian version of the usual T-

duality has regained interest and played a role as a solution generating technique. Various

papers taking a perspective inspired by holography, have made clear that when applied

to symmetric enough backgrounds (characteristically AdSp+1 × M9−p backgrounds) the

generated solutions correspond to CFTs in p dimensions, realised on a Dp −NS5 −Dp+2

system — for a sample of results, see the papers [52–56] for early attempts and [57–60] for

more recent and precise connections between non-Abelian T-duality and brane set-ups.

It is natural to ask if the Massive IIA AdS7 backgrounds studied in this paper can be

thought of as the non-Abelian T-dual of some background, conjecturally in Type IIB, with

dilaton and F3 flux.

Let us give some comments in the direction of realising the previous idea. We consider

a solution in Massive IIA that is the simplest possible. Consider, for example, the case in

which the function α(z) in Massive IIA is

α(z) = A sinωz.
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This is a solution to the equation of motion if α′′′ = −162π2F0 = −Aω3 cosωz, which

implies that the mass-parameter is actually position dependent. A possible way to under-

stand this, suggests a position dependent smearing of D8-branes. Since α′′ = −ω2α, we

have that the background and the Ricci scalar read,

ds2 = 8π

√
2

ω
AdS7 +

√
2πωdz2 +

√
2π

ω

(
sin2 ωz

1 + sin2 ωz

)
dΩ2, (E.1)

e−2φ = e−2φ0(1 + sin2 ωz), B2 = π

(
−z +

sinωz cosωz

ω(1 + sin2 ωz)

)
dΩ2, F0 = −Aω

3 cosωz

162π2

F2 = −Aω
2

81π2

(
sin3 ωz

1 + sin2 ωz

)
dΩ2, R =

ω sin4 ωz

4
√

2π

(
12 + 100 cot2 ωz + 75 cot4 ωz

1 + sin2 ωz

)
Notice that the background is non-singular. We expand this Massive IIA solution close to

z → 0 and we find,

ds2 ∼ 8π

√
2

ω
AdS7 +

√
2πω

(
dz2 + z2dΩ2

)
, (E.2)

e−2φ ∼ e−2φ0(1 + ω2z2), B2 ∼ −
5πω2

3
z3dΩ2, F2 ∼ −

Aω5

81π2
z3dΩ2, F0 ∼ −

Aω3

162π2
.

We want to think about this background as obtained by non-Abelian T-duality applied

on some seed-solution. We can consider a space-time of the form AdS7 × S3 in Type IIB.

Notice that this is not a solution to the equations of motion. Hence we need to consider

a more complicated background, depending on the coordinates of S3. Importantly, notice

that this background needs not be SUSY, it may be the case that the duality creates the

supersymmetry. This putative background should have warp factors that can be decom-

posed in harmonics of S3. Consider the s-wave and perform non-Abelian T-duality on it.

We insist, this s-wave should not be a solution of the equations of motion. We shall obtain,

ds2 = L2
AdSAdS7 + L2

(
dr2 +

r2

r2 + 1
dΩ2

)
, (E.3)

e−2φ = e−2φ0(1 + r2), B2 = µ0
r3

1 + r2
dΩ2, F2 = ν0

r3

1 + r2
z3dΩ2, F0 = f0.

Where µ0, ν0, LAdS, L, f0, φ0 are some constants. Consider an expansion of this background

near r → 0. We find that after appropriately choosing the constants, it has the form in

eq. (E.2).

Notice that the same result would be obtained by starting with the background de-

scribed around eq. (2.6) and expanding for z → 0. This is obvious as close to z = 0 the

function α = a1z + z3

6 and α = A sinωz coincide for some choice of A,ω, a1.

This is reminiscent of the observations in the paper [57]. In fact, there the non-Abelian

T-dual of AdS5 × S5 (the Sfetsos-Thompson solution [51]) was considered. A solution in

type IIA with a linear charge density λ = Nz is found and a completion of the geometry

is proposed. Analogously, for the background defined around eq. (2.6), we have linear

charge density, and for small values of the z-coordinate, the charge density (that is the

rank function R(z) = −α′′ ) is also linear for the background in eq. (E.1).
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In other words, the backgrounds in eq. (2.6) or that in eq. (E.1) provide a completion

to a background like that in eq. (E.3), obtained via non-Abelian duality on a putative

Type IIB background. This structure, observed in examples with AdS4, AdS5, AdS6 could

be repeated for the case of AdS7 if a true-solution in Type IIB could be found, such that

its non-Abelian T dual has the form given in eq. (E.3).
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non-Abelian T-duals of AdS5 × S5 and their field theory duals, JHEP 01 (2018) 071

[arXiv:1711.09911] [INSPIRE].

[46] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106

[arXiv:1503.01409] [INSPIRE].

[47] J. de Boer, E. Llabrés, J.F. Pedraza and D. Vegh, Chaotic strings in AdS/CFT, Phys. Rev.

Lett. 120 (2018) 201604 [arXiv:1709.01052] [INSPIRE].
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