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1 Introduction

Various types of electroweakly interacting massive particles (EWIMPs) are introduced in

new physics models beyond the standard model (SM). For instance, in supersymmetric

(SUSY) extensions of the SM, almost all supersymmetric partners of SM particles are

charged under the electroweak symmetry, namely SU(2)L × U(1)Y gauge symmetry. This

is also the case for other new physics models such as extra dimension models, extended

Higgs models and so on. Such EWIMPs often play significant roles for the origin of the

electroweak symmetry breaking and/or can be excellent candidates for dark matter in our

universe.

The latter role is particularly interesting, as the electroweak interaction makes the

dark matter satisfying the weakly interacting massive particle (WIMP) hypothesis and

visible at direct and indirect dark matter detection experiments. One of such candidates

is the wino dark matter in SUSY having the electroweak quantum number of 30, and

it has actually rich dark matter signatures thanks to the interaction [1–7]. It is also

worth pointing out that the wino dark matter is motivated very well from the viewpoint

of particle physics theory; it is a generic prediction from SUSY SMs with the anomaly

mediation [8, 9]. This framework is known to be compatible with the so-called “mini-split

SUSY” scenario [10–15], and the discovery of the 125 GeV Higgs boson [16, 17] triggers the

framework to attract more and more attention [18–24]. In fact, detailed phenomenological

studies on the wino dark matter are stimulated in many studies [25–28]. Another interesting

candidate is the dark matter having a large electroweak quantum number, because such

a quantum number makes the dark matter particle stable without imposing any ad hoc

dark matter parity. The quintet fermion whose quantum number is 50 and the septet

scalar having the quantum number of 70 are such examples. Those are now referred as

the “minimal dark matter” [29–31]. There also be an interesting candidate motivated

from the electroweak symmetry breaking; the Higgsino having the electroweak quantum
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number of 2±1/2, which is often predicted to be the lightest SUSY particle in the so-called

natural SUSY scenario [32]. Interestingly, its mass is required to be smaller than 350 GeV

to obtain the electroweak scale naturally [33, 34], which is kinematically accessible at the

Large Hadron Collider (LHC). Discovery and measurement of EWIMP at colliders are thus

a crucial test for physics beyond the SM.

Collider signals of EWIMP is strongly model-dependent. For instance, it is crucial

whether or not the EWIMP is also charged under the SU(3)C symmetry for its production

at hadron colliders. Moreover, collider signatures are strongly affected by whether and

how the EWIMP decays. The search for the EWIMP at hadron colliders becomes difficult

in general if its decay products are very soft [35–43]. A prominent example is the direct

production of the electroweakly interacting dark matter. Though the search for the large

missing energy accompanied with high PT jets or photons is conventionally used to search

for the EWIMP, it does not work efficiently due to huge SM backgrounds as well as the

small production cross section of the EWIMP. In some cases, the mass difference among

the SU(2)L multiplet becomes so small that its charged component is long-lived. When

the charged track caused by the long-lived particle is detectable, it may overcome the huge

SM backgrounds.1 This is, however, not a generic feature of EWIMP. Even if we consider

EWIMP dark matter, its coupling to the Higgs field may enhance the mass difference,

making the decay length of the charged component too short [58–60]. It is therefore

important to develop an independent method for the EWIMP search which does not rely

on the charged track search.

We consider an indirect probe of EWIMP through its radiative corrections to SM

processes. We particularly focus on the dilepton production by the Drell-Yan process

at the LHC; the EWIMP is expected to modify the lepton invariant mass distribution

(m``). It is known that, when m`` is much smaller than twice the EWIMP mass (m),

the correction is effectively described by dimension-six operators and is proportional to

m2
``/m

2. On the other hand, the EWIMP affects the running of the electroweak gauge

couplings when m`` � 2m, leading to the correction proportional to ln(m2
``/m

2) [61–63].

In this paper, we show that the correction becomes an extremum of O(0.1–10)% when

m`` ' 2m, making the EWIMP detectable at the LHC utilizing this feature. We find that

the present observation of the dilepton mass distribution already excludes the EWIMP

having a large electroweak quantum number. It will be possible to search for the EWIMP

having a smaller quantum number at the high-luminosity LHC (HL-LHC), so that the

indirect EWIMP search becomes as important as the direct production search with mono-

X and missing energy in the future.

1In fact, the most sensitive search for the pure wino dark matter is based on this strategy [44–49], as

the charged wino has a decay length of about 6 cm [50, 51]. Furthermore, it has been shown recently that

a much shorter decay length becomes detectable by improving the track reconstruction and/or modifying

the detector [52, 53]. It is then even possible to detect the almost pure Higgsino whose charged component

has a decay length shorter than 1 cm. The strategy based on the charged track is also applicable to the case

that EWIMP is not dark matter but a coannihilating partner like the gaugino coannihilation [54–56]; the

search for the EWIMP becomes powerful despite its soft decay products when it is long-lived enough [57]
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Figure 1. Radiative correction from the electroweakly interacting massive particle (EWIMP).

2 Radiative correction from EWIMP

We focus on the Drell-Yan process pp→ `+`−+X in this paper with p and `± being a proton

and a lepton, and discuss how EWIMP modifies the lepton invariant mass distribution m``

at high energy hadron colliders. The EWIMP affects the differential cross section of the

process through the loop correction shown in figure 1. After integrating the EWIMP

field out from the original Lagrangian at one-loop level, we obtain the following effective

Lagrangian:2

Leff =LSM+κ
g2CWW

8
W a
µν Π(−D2/m2)W aµν+κ

g′2CBB
8

Bµν Π(−∂2/m2)Bµν + · · · , (2.1)

where LSM is the SM Lagrangian, m is the EWIMP mass, g (g′) is the gauge coupling

of SU(2)L (U(1)Y) and W a
µν (Bµν) is the corresponding field strength tensor, respectively,

with D being the covariant derivative acting on W aµν . Parameters CWW and CBB are

defined as CWW ≡ ξ(n3 − n)/6 and CBB ≡ 2ξnY 2 for the SU(2)L n-tuplet EWIMP

having the hypercharge Y and the color degree of freedom ξ, while κ takes a value of

1/2, 1, 4 and 8 when the EWIMP is a real scalar, complex scalar, Majorana and Dirac

fermions, respectively. The ellipsis in the Lagrangian includes operators composed of the

strength tensors more than two, but those are not relevant to the following discussion. The

function Π(x) is the renormalized self-energy of the electroweak gauge bosons from the

EWIMP loop:

Π(x) =


1

16π2

∫ 1

0
dy y(1− y) ln[1− y(1− y)x− i0+] (Fermion),

1

16π2

∫ 1

0
dy (1− 2y)2 ln[1− y(1− y)x− i0+] (Scalar).

(2.2)

We have used the MS regularization scheme with the renormalization scale of µ = m.

All the effect of the EWIMP on the process is encoded in the operators involv-

ing two field strength tensors. When the EWIMP mass is much larger than the par-

tonic collision energy ŝ1/2, namely m2 � −∂2 = ŝ, the operators give dimension-six

ones, (DµW
aµν)(DρW a

ρν) and (∂µB
µν)(∂ρBρν). In contrast, the function Π behaves as

2We only take the electroweak gauge interactions of the EWIMP into account for simplicity and neglect

other renormalizable interactions (such as the Yukawa interaction, etc.) to derive the effective Lagrangian.
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<[Π(−∂2/m2)] ∼ log(ŝ/m2) when m2 � −∂2 = ŝ, which is eventually translated into the

running effect of the electroweak gauge couplings. The effect of the EWIMP in these two

extreme regions has already been studied in several papers [61–63]. On the other hand, we

use the effective Lagrangian in eq. (2.1) directly, as we are interested in the effect at the

region around s ∼ 4m2.

The matrix element of the Drell-Yan process is obtained from the effective Lagrangian.

Leading order (LO) contribution is from SM interactions and its explicit form is

MLO[q(p)q̄(p′)→ `−(k)`+(k′)] =
∑

V=γ, Z

[v̄(p′)γµΓVq u(p)][ū(k)γµΓVl v(k′)]

ŝ−m2
V

, (2.3)

where ΓZf = gZ(vf − afγ5) and Γγf = eQf , while gZ = g/cW and e = gsW , where sW =

sin θW and cW = cos θW with θW being the weak mixing angle. Coefficients (vf , af , Qf )

are (1/4− 2s2
W /3, 1/4, 2/3), (−1/4 + s2

W /3, −1/4, −1/3) and (−1/4 + s2
W , −1/4, −1) for

up-type quarks, down-type quarks and charged leptons, respectively. The mass of the

electroweak gauge boson is given by mV , while the center-of-mass energy at this parton-

level process is denoted by ŝ1/2. Next leading order contribution (NLO) to the matrix

element from the EWIMP loop diagram shown in figure 1 is given by the following formula:

MBSM[q(p)q̄(p′)→ `−(k)`+(k′)] =
∑
V,V ′

dV V ′ [v̄(p′)γµΓVq u(p)] ŝΠ(ŝ/m2) [ū(k)γµΓV
′

l v(k′)]

(ŝ−m2
V )(ŝ−m2

V ′)
,

(2.4)

where each coefficient dV V ′ in the numerator is defined as dZZ = κ (g2
Z/2)(c4

WCWW +

s4
WCBB), dγγ = κ (e2/2)(CWW + CBB) and dZγ = dγZ = κ (e gZ/2)(c2

WCWW − s2
WCBB),

respectively.

We show in figure 2 that how the EWIMP contribution modifies the lepton invariant

mass distribution at the 13 TeV LHC, where the difference between the differential cross

sections of the Drell-Yan process with and without the EWIMP contribution (normalized by

the SM prediction at LO) is shown as a function of the lepton invariant mass m`` = ŝ1/2 for

three EWIMP cases; Wino (Majorana fermion with the quantum number of 30), Higgsino

(Dirac fermion with the quantum number of 2±1/2) and bosonic minimal dark matter (real

scalar with the quantum number of 70) with their masses fixed to be 300 GeV. The SM

cross section σ̂SM is calculated at leading order. The cross section of the fermionic minimal

dark matter (Majorana fermion with the quantum number of 50) [29–31] is about five times

larger than that of the wino. It can be seen that the modification becomes small when

m`` � m, while receives a logarithmic correction when m`` � m, as expected from the

discussion above. On the other hand, when m`` ∼ 2m, the correction shows a characteristic

feature due to the interference between LO and NLO contributions. The deviation becomes

an (almost) extremum at ŝ1/2 = 2m for a fermionic (scalar) EWIMP, which is analytically

given by

σ̂BSM − σ̂SM

σ̂SM
' <

[
2MNLO

MLO

]
' κ g2 (n3 − n)

6
Π(4), (2.5)
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Figure 2. The difference between the differential cross sections of the Drell-Yan process with

and without the EWIMP contribution (normalized by the SM prediction) at the 13 TeV LHC as

a function of m`` = ŝ1/2. Three EWIMP cases are depicted: Wino (Majorana fermion with the

quantum number of 30), Higgsino (Dirac fermion with the quantum number of 2±1/2) and bosonic

minimal dark matter (real scalar with the quantum number of 70) with their masses fixed to be

300 GeV.

where the effect of gauge boson mass and U(1)Y interaction is neglected. The loop

function Π(4) takes a value of −1/(36π2) for a fermionic EWIMP and −1/(72π2) for a

scalar EWIMP. This characteristic feature is expected to be utilized to detect the EWIMP

efficiently.

Note that the EWIMP affects the self-energy of the Z boson at p2 = m2
Z . To compen-

sate this effect, we should shift the SM parameters properly to maintain the correct defini-

tions of low-energy observables such as GF , α and mZ . The effect is, however, small for a

heavy EWIMP with moderate gauge quantum numbers, for the EWIMP contribution to the

self-energy is suppressed both by its mass and numerical factors: 16π2Π(x→ 0)→ −x/30.

For instance, the wino with a mass of 100 GeV affects the SM parameters only at the level

of O(0.01) %. On the other hand, the wino affects the Drell-Yan process for m`` & 2m at

O(1) %. We hence neglect the EWIMP effect on the modification of the SM parameters in

following discussions.

Here, it is important to discuss the constraints from the the electroweak precision

observables (EWPO) at the LEP, Tevatron and LHC experiments. It then turns out that

the constraints on the EWIMP is not severe at present. For instance, a constraint is put

by the measurement of the W boson mass, which is obtained from the EWIMP oblique

correction to various SM processes [64–67]. This correction is approximately given as

follows:

δmW '
( m

100 GeV

)−2
(0.08n (n2 − 1) + 0.3nY 2)κ ξ [MeV]. (2.6)

Since the uncertainty of the W boson measurement is about 12 MeV at present [68–70],

the mass shift by the EWIMP contribution is not significant. Various EWPO constraints

– 5 –
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Figure 3. The current constraints on Majorana fermion with hypercharge zero from the electroweak

precision measurements. The region above each line is excluded at 95% confidence level.

on a Majorana fermion with hypercharge zero are shown in figure 3. The SU(2)L quantum

number ‘n’ is formally treated as a real number to depict the figure. All the constraints are

given at 95% confidence level, which are obtained from the measurement of the W boson

mass mW (observed value: 80.379 ± 0.012 GeV & SM prediction: 80.361 ± 0.006 GeV),

the partial decay width of the Z boson into leptons ΓZ→`` (observed value: 83.984 ±
0.086 MeV & SM prediction: 83.995 ± 0.010 MeV), and the effective weak mixing angle

sin2 θeff (observed value: 0.23153± 0.00016 & SM prediction: 0.23152± 0.00005) [70, 71].

The constraint from the cross sections and the forward-backward asymmetries of various

fermion pair production processes e+e− → ff̄ at the LEP II experiment [72] is also shown

in the figure.

3 Analysis of collider signal

We discuss here the detection capability of EWIMP by measuring the dilepton distribution

at the LHC, where 36 fb−1 data at the 13 TeV running is mainly used in our analysis [73].

We consider two different methods to deal with the O(0.1–1)% deviation from the SM back-

ground. One is the “fitting based search”, for the EWIMP contributes to the distribution

destructively, as we have seen in the previous section. The other one is based on the back-

ground estimation through the Monte-Carlo simulation. The simulation now reproduces

the observed data very well, so that the EWIMP contribution will be efficiently searched

for through the likelihood test of the “EWIMP signal + SM background” hypothesis.

3.1 Fitting based search

The analysis is essentially the same as the conventional bump search at dilepton channels.

Since the SM background is expected to give a smooth distribution on the channels and the

observed data shows such a smooth distribution too, we can estimate the SM background

– 6 –
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Figure 4. Fitting the observational data by the SM background based on the function in eq. (3.1)

for (a) dielectron and (b) dimuon channels with m`` being the lepton invariant mass. The data

of 36 fb−1 at the 13 TeV LHC is used. Bottom panel in each figure shows the ratio between the

data and the background as well as expected signals of the wino with the mass of 100 GeV and the

fermionic (5-tuplet) minimal dark matter (MDM) with its mass fixed to be 300 GeV and 500 GeV.

in a data-driven way, namely by fitting the data using the following function [74]:

dNBG

dm``
= p1 (1− x)p2 xp3+p4 log(x)+p5 log2(x), (3.1)

where NBG is the leptonic invariant mass (m``) distribution of the SM background pro-

cess, and x = m``/s
1/2 with s1/2 = 13 TeV being the center-of-mass energy of the proton

collision. The fitting is performed in the region of 150 GeV < m`` < 3000 GeV, and the

result is shown in figure 4(a) and figure 4(b) for the dielectron and the dimuon channels,

respectively. The background function used in eq. (3.1) is seen to fit the observed data

very well.

We then perform the likelihood test of the “EWIMP signal + SM background” hy-

pothesis by comparing the observational data shown in figure 4 with the following function:

dN

dm``
=
dNBG

dm``
+
dNEWIMP

dm``
. (3.2)

The likelihood is calculated in each bin of the lepton invariant mass based on the Pois-

son distribution, and maximize the total likelihood in the region of 150 GeV < m`` <

3000 GeV. The main contribution to the signal part, dNEWIMP/dm``, comes from the in-

terference between the LO (SM diagram) and the NLO (EWIMP one-loop diagram). In

order to take into account the effect of k-factor, kinematical selection and so on, we calculate

dNEWIMP/dm`` by multiplying the factor (σ̂BSM− σ̂SM)/σ̂SM obtained in the previous sec-

tion to the so-called Z/γ∗ background number estimated by the ATLAS collaboration [73]

at each bin.

3.2 MC based search

The analysis is almost the same as the previous one, but the SM background is estimated

by the Monte-Carlo (MC) simulation, as the ATLAS collaboration adopts. The current

– 7 –
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(a) Fitting based search (b) MC based search

Figure 5. The constraint on a Majorana fermionic EWIMP at 95% confidence level obtained by

the fitting based analysis (left panel) and the MC based analysis (right panel) on the plane of the

EWIMP mass and the SU(2)L quantum number ‘n’. The present constraint from 36 fb−1 data at the

13 TeV running is shown as a thick red line (associated with a small hatch) in both panels, while

the future expected constraint from 3 ab−1 data at the 14 TeV running is shown as a blue solid

line in the left panel and blue solid, dashed and dotted lines in the right panel, depending on the

systematic uncertainty associated with the SM background estimation. Regions above the lines are

(expected to be) excluded. Theoretical predictions from the well-motivated EWIMP candidates;

wino, fermionic minimal dark matter (5plet MDM) and Higgsino, are also shown as horizontal

(thin solid) black lines. On the other hand, the green solid line represents the constraint from the

electroweak precision measurements, while the green dashed line is the future prospect assuming

the electroweak precision measurements at the Giga-Z option. The future expected constraint from

fermion pair productions at the international linear collider (ILC) with the 250 GeV running is

shown as a black dotted line.

systematic uncertainty is a few percent for m`` . 1 TeV. Using the MC based background

and its systematic uncertainty given by the collaboration, we construct the likelihood for the

“EWIMP signal + SM background” hypothesis, and put a constraint on the EWIMP. We

assume that the systematic uncertainty at each bin is independent of others for simplicity.

3.3 Capability of EWIMP detection at LHC

We are now at the position to discuss the capability of the EWIMP detection at the LHC.

Figure 5 shows the constraint on a Majorana fermionic EWIMP at 95% confidence level.

The SU(2)L quantum number ‘n’ is treated as a real number to depict the figure with the

hypercharge of the EWIMP being zero. Three horizontal (thin solid) black lines are predic-

tions from the well-motivated EWIMP candidates; wino, fermionic minimal dark matter

(5plet MDM) and Higgsino. The SU(2)L quantum number of the Higgsino is estimated

to be n ' 2.43, as it is not a Majorana fermion but a Dirac one. Since the effect of non-

zero hypercharge on the Higgsino prediction is negligibly small, it is set to be zero. The

constraint obtained by the “fitting based search” in section 3.1 is shown in the left panel

(figure 5(a)), while that obtained by the “MC based search” in section 3.2 is shown in the

right panel (figure 5(b)), respectively.

– 8 –
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The present constraint using 36 fb−1 data at the 13 TeV running is given by a thick

red line (associated with a small hatch) in both panels. It can be seen that the fermionic

minimal dark matter with the mass below about 250 GeV is already excluded in both

searches. We also consider the future prospect of the EWIMP detection at the HL-LHC

assuming 3 ab−1 data at the 14 TeV running,3 which is given by a blue solid line in the left

panel and blue solid, dashed and dotted lines in the right panel, as the future expected

constraint at 95% confidence level. The systematic uncertainty in the MC based search is

set to be 5% (blue solid line), 2% (blue dashed line) and 0% (blue dotted line), respectively.

In the fitting based analysis, it is possible to test Higgsino, wino and fermionic minimal

dark matter with their masses up to 150 GeV, 300 GeV, and 700 GeV, respectively. On

the other hand, in the MC based analysis, it is in principle to test these well-motivated

EWIMPs with their masses up to 380 GeV, 550 GeV, and 1200 GeV, respectively. This

result, of course, depends strongly on how well the systematic uncertainty (associated

with the estimation of the SM background) is controlled. The use of the characteristic

feature on the dilepton channels is actually very powerful. To make this fact clearer, we

show the present constraint on the EWIMP from the electroweak precision measurements

(combination of the four EWPOs in figure 3), which is shown as a green solid line in both

panels. In addition, we also show the future prospects obtained by the EWPOs as a green

dashed line, assuming the experimental uncertainties δmW = 0.006 GeV, δΓZ = 0.8 MeV

and δ sin2 θ`eff = 0.0001 at the Giga-Z option [75]. Moreover, we also show in both panels

the future prospects of the EWIMP detection at the 250 GeV international linear collider

(ILC) as a black dotted line assuming the integrated luminosity of 2 ab−1 and the beam

polarizations of (P− = 80% and P+ := 30%). This prospect is obtained from the precision

measurement of the dilepton process, e−e+ → µ−µ+, with the systematic uncertainty being

0.2% [76]. It can be seen that HL-LHC and ILC play a complementary role to search for

the EWIMP; the HL-LHC has a good sensitivity for heavier EWIMPs, while the ILC has

for lighter ones.

4 Conclusion and discussion

We have discussed in this paper the possibility of detecting EWIMP through the precision

measurement of the dilepton (dielectron and dimuon) channels at the LHC. The EWIMP

affects the lepton distribution of the channels through radiative corrections at O(1)% level.

Since detecting such a small deviation from the SM prediction is not trivial, we have

considered two different methods to analyze data. It then turned out that both gives

almost the same result. Moreover, the dilepton channels are comparable to and has a

potential to be better than that of the mono-X search with large energy to detect the

EWIMP.

3In the fitting based search, the mock data is generated based on the fitting function (3.1), which is

corrected by multiplying the ratio between σ̂SM at
√
s = 14 TeV and 13 TeV. In the MC based analysis,

the mock data is generated based on the background distribution estimated by ATLAS [73] instead of the

fitting function.

– 9 –
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Though we focus mainly on non-colored EWIMPs which are an (almost) electroweak

gauge eigenstate and has a tiny decay width, the method developed here is applicable to

more generic EWIMPs. For instance, a neutralino or a chargino, which is described by

a mixture of different electroweak gauge eigenstates, also provide the same effects on the

Drell-Yan process. Another prominent example in the SM would be a top quark.

In order to make our analysis to be more accurate, we should take the following two

issues into account: first, the correlation of systematic uncertainties among the bins of the

lepton invariant mass should be included, which requires more detailed information about

the estimation of the SM background. Next, the radiative correction from the EWIMP at

around the threshold, namely ŝ ∼ 4m2, receives a further correction by the so-called the

threshold singularity when the electroweak quantum number of the EWIMP is large. Since

we propose a novel idea to detect the EWIMP through the threshold observation, inclusion

of these two issues is beyond our scope, and we leave it for a future work.

The effect of EWIMP scarcely affects the observables on the Z pole as long as the

EWIMP is much heavier than the Z boson, as discussed in section 2. On the other hand,

particularly when the EWIMP mass becomes comparable to the Z boson mass, the effect

should be involved to define all electroweak parameters consistently in the setup with the

EWIMP, as we claim the measurement at the accuracy of O(1)% [63]. The main contribu-

tion of the effect would be on the cross section of SM background processes. Although the

size of the EWIMP signal will not be altered and thus our conclusion will keep unchanged,

the above effects are eventually required to take into account for making the theoretical

prediction of the EWIMP signal correctly at the accuracy of O(1)%. We leave this issue

for a future work.

There are other interesting channels to detect the EWIMP at the LHC. For instance,

observing the transverse mass distribution of a lepton and a missing energy (a neutrino)

from the Drell-Yan process (s-channel exchange of the W boson) is also sensitive and

expected to give a similar constraint on the EWIMP. An advantage of this channel is that

its cross section is larger than those of the dilepton channels that we have developed in

this paper.

Another interesting aspect of the threshold observation is the measurement of the

EWIMP nature rather than the discovery. As seen in figure 2, the EWIMP correction

depends strongly on its spin and electroweak quantum number. It would then be possible

to pin down the EWIMP nature by measuring the Drell-Yan process precisely at hadron

colliders.
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