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1 Introduction

The Cachazo-He-Yuan(CHY) formula [1–5] provides a new perspective to understand scat-

tering amplitudes for massless particles in arbitrary dimensions. The skeleton of CHY-

formula consists of so-called scattering equations

Ea =
n∑

b 6=a,b=1

sab
za − zb

= 0 , a = 1, . . . , n , (1.1)

where za’s, a = 1, . . . , n are complex variables. The Mandelstam variable sab is defined by

sab = 2ka · kb and ka denotes the momentum of external particle a. Möbius invariance of

scattering equations allows us to reduce the number of independent equations to (n − 3),

while the equations (1.1) have (n − 3)! independent solutions. Based on the scattering

equations (1.1), CHY formula expresses an n-point tree-level scattering amplitude An for

massless particles as follows,

An =

∫
dz1 . . . dzn

Vol [SL(2,C)]

∏
a

′δ

∑
b 6=a

sab
zab

 ICHY
n . (1.2)
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The scattering equations and the measure of CHY-integrals are universal for all theories

while ICHY
n encodes all the information, including external polarizations, for a specific

field theory.

Although the CHY-formulation is simple and beautiful, the evaluation of amplitude

is difficult. It is almost impossible to perform computation beyond five points by directly

solving the scattering equations due to the complicated nature of algebraic system. A few

studies on the direct solutions can be found in [6–15], but restricted to four-dimension and

at special kinematics. Alternative methods for evaluating CHY-integrals without explic-

itly solving scattering equations are proposed by several groups from different approaches.

Some of the methods borrow the ideas from computational algebraic geometry, by use of Vi-

eta formula [16], elimination theory [17–19], companion matrix [20], Bezoutian matrix [21].

Based on the polynomial form [22] of scattering equations, polynomial reduction techniques

are also introduced in this problem [23, 24]. In [25, 26], differential operators are applied to

the evaluation of CHY-integrals. More computational efficient methods are also developed

recently. Techniques for contour integration of the CHY-integrals are proposed and sharp-

ened in [27–29], where the concept of Λ scattering equations is introduced, and it results to

a recursive computation of CHY-integrand from lower-point sub-CHY-integrands until end

up with some simple building blocks. In [30, 31], Feynman-like diagrams are introduced for

the evaluation of CHY-integral by some kind of rules, and in [32], Berends-Giele recursions

are also applied to the situations where CHY-integrands are products of two Parke-Taylor

factors. While along the other routine, string theory inspired method has been developed

systematically in [33–35] and [36], named integration rule method. The discovery of cross-

ratio identity further sharpens the computational power of integration rule method [37–39],

making it simple and automatic for evaluating any generic CHY-integrand.1

The integration rule method combined with cross-ratio identity has now become

an ideal tool for evaluating CHY-integrals. The evaluation of amplitudes in the CHY-

formulism can be performed with only the knowledge of CHY-integrands, ignoring the

solutions of scattering equations, the CHY-integral measure, etc. However, some issues do

need further clarification. For the integration rule method to be valid, the terms to be

evaluated should be Möbius invariant. In the current case, it means the CHY-integrand

behaves as 1
z4i

under zi → ∞. While all the CHY-integrands for the known field theories

so far are by construction Möbius invariant, each single term in the expansion of CHY-

integrands is not apparently Möbius invariant, which causes trouble for the intermediate

computation. This issue is not yet completely solved, but for most CHY-integrands con-

taining the reduced Pfaffian of matrix Ψ, a rewriting of certain entries of matrix Ψ would

be suffice to make every term in the expansion of CHY-integrands Möbius invariant. For

the situations where integration rule method is applicable, we then confront the double

pole (or more generically, higher-order pole) problem. For field theories, the physical am-

plitudes should possess only single poles. However in the setup of CHY-framework, terms

in the expansion of CHY-integrands would be evaluated to results of higher-order poles in

1By private communication, Yong Zhang provides a mathematica code for CHY evaluation. Readers

who are interested in the code can contact the email address yongzhang@itp.ac.cn.
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the intermediate steps. Of course summing over all results the higher-order poles should

be canceled by factors in the numerator, but in most computations we would get a large

size of data which makes it impossible to simplify further in a normal desktop. Hence the

cancelation of higher-order poles is inexplicit in the final result generated by integration

rule method. It is not unexpected that, the origin of higher-order poles can be traced

back to the CHY-integrand level, and a thorough understanding of how the cancelation

works out in the CHY-integrand level would be a crucial step towards the generalization

of CHY-formalism.

In this paper, we systematically study the cancelation of potential higher-order poles

in various field theories described by CHY-integrands. This paper is organized as follows.

In section 2, we provide a review on the CHY-integrands in various field theories, the

expansion of Pfaffian and cross-ratio identities. A diagrammatical expansion of reduced

Pfaffian is provided in section 3. The cancelation of double poles in Yang-Mills theory

and gravity are investigated in section 4, where explicit examples are provided. General

discussions on the cancelation of double poles for other field theories are given in section 5.

Conclusion can be found in section 6, and in appendix we give detailed studies on the off-

shell and on-shell identities of CHY-integrands and illustrate their applications to simplify

complicated CHY-integrands.

2 A review of CHY-integrand, the expansion of Pfaffian and cross-ratio

identity

In this section, we provide a review on the CHY-integrand of various field theories and the

related knowledge, e.g., the expansion of Pfaffian, the cross-ratio identity and integration

rules, which is useful for later discussions.

The CHY-integrands: the field theory is fully described by its corresponding CHY-

integrand ICHY, and in the concern of integration rule method, only CHY-integrand is

necessary for the evaluation of amplitude. The building block of CHY-integrands are

Parke-Taylor(PT) factor

PT(α) :=
1

zα1α2zα2α3 · · · zαn−1αnzαnα1

, zij = zi − zj , (2.1)

and the Pfaffian and reduced Pfaffian of certain matrix. For n-particle scattering, let us

define the following four n× n matrices A,B,C,X with entries

Aa 6=b = ka·kb
zab

, Ba 6=b = εa·εb
zab

, Ca 6=b = εa·kb
zab

, Xa 6=b = 1
zab

,

Aa=b = 0 , Ba=b = 0 , Ca=b = −∑c 6=a
εa·kc
zac

, Xa=b = 0 .
(2.2)

Special attention should be paid to the diagonal entries of matrix C since they will break

the Möbius invariance of terms in the expansion of CHY-integrands. In the practical

computation, the definition

Caa =
∑
i 6=a,t

(εa · ki)
zit

ziazat
(2.3)

– 3 –
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is adopted, which is equivalent to the original definition by momentum conservation and

scattering equations. This definition provides a better Möbius covariant representation,

i.e., it is uniform weight-2 for za and weight-0 for others. The zt is a gauge choice and can

be chosen arbitrary. With matrices A,B,C, we can define a 2n× 2n matrix Ψ,

Ψ =

(
A − CT
C B

)
, (2.4)

where CT is the transpose of matrix C.

With these building blocks (2.1), (2.2) and (2.4), we are able to construct CHY-

integrands for a great number of theories. For such purpose, the Pfaffian of skew-symmetric

matrix is introduced. The determinant of an anti-symmetric matrix Ψ is a perfect square

of some polynomial, and the Pfaffian Pf Ψ is defined as the square root of the determinant.

In the solution of scattering equations, the 2n × 2n matrix Ψ is degenerate, so we need

further to introduce the reduced Pfaffian Pf ′ Ψ defined as

Pf ′Ψ :=
2(−)i+j

zij
Pf Ψ

(ij)
(ij) , (2.5)

where Ψ
(ij)
(ij) stands for the matrix Ψ with the i-th and j-th column and rows removed.

Of course the definition of Pfaffian and reduced Pfaffian applies to any skew-symmetric

matrices, for instance the matrix A defined in (2.2).

With above definitions, we list the CHY-integrand for various theories [40] as,

The described theory IL IR
Bi-adjoint scalar PTn(α) PTn(β)

Yang-Mills theory PTn(α) Pf ′Ψn

Einstein gravity Pf ′Ψn Pf ′Ψ̃n

Einstein-Yang-Mills theory (single trace) PTm(β) Pf Ψn−m Pf ′Ψ̃n

Born-Infeld theory (Pf ′An)2 Pf ′Ψn

Nonlinear sigma model PTn(α) (Pf ′An)2

Yang-Mills-scalar theory PTn(α) (Pf Xn) (Pf ′An)

Einstein-Maxwell-scalar theory (Pf Xn) (Pf ′An) (Pf Xn)(Pf ′An)

Dirac-Born-Infeld theory (Pf ′An)2 (Pf Xn) (Pf ′An)

Special Galileon theory (Pf ′An)2 (Pf ′An)2

where we have used the fact that the CHY-integrands ICHY is a weight-4 rational functions

of zi’s which can usually be factorized as product of two weight-2 ingredients ICHY =

IL × IR.

The expansion of CHY-integrand: the difficulty of evaluation comes from the terms

of Pfaffian in the CHY-integrands, which would produce higher-order poles. So a genuine

expansion of Pfaffian is possible to simplify our discussion. In [31], it is pointed out that

– 4 –
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the reduced Pfaffian Pf ′Ψ can be expanded into cycles as,

Pf ′Ψ = −2n−3
∑
p∈Sn

(−1)p
WIUJ · · ·UK
zIzJ · · · zK

, (2.6)

where the permutation p has been written into the cycle form with cycles I, J, . . . ,K. The

zI for a given cycle I = (i1, i2, · · · , im) is defined as zi1i2zi2i3 · · · zimii . For length-m cycle

I, a constant factor (−1)m+1 should be considered, which sums together to give the (−)p

factor in (2.6). The open cycle W is defined as

WI = εiλ ·
(
Fi2 · Fi3 · · ·Fim−1

)
· εjν , (2.7)

in which εiλ and εjν denote the polarizations of particles i, j respecting to the deleted rows

and columns (i.e., the gauge choice). The closed cycle U is defined as

UI = 1
2 Tr(Fi1 · Fi2 · · ·Fim) , (for I containing more than one element) ,

UI = Cii (for I contains only one element i) .
(2.8)

In eqs. (2.7) and (2.8), Fµνa is defined as

Fa := kµa ε
ν
a − εµakνa . (2.9)

The Pfaffian which is used in e.g., EYM theory also have a similar expansion,

Pf Ψm = (−1)
1
2
m(m+1)

∑
p∈Sm

(−1)p
UIUJ · · ·UK
zIzJ · · · zK

, (2.10)

where Ψm is an 2m×2m sub-matrix of Ψn by deleting the rows and columns corresponding

to a set of (n−m) external particles.

For presentation purpose, we would use the following notation for open and closed

cycles,

[a1, a2, · · · , an] := za1a2za2a3 · · · zan−1an ,

〈a1, a2, · · · , an〉 := za1a2za2a3 · · · zan−1anzana1 . (2.11)

The cross-ratio identity and others: to expand the terms of Pfaffian with higher-

order poles into terms with single poles, we shall apply various identities on the CHY-

integrands [37–39]. Some identities are algebraic, for instance

zabzdc
zaczbc

=
zad
zac
− zbd
zbc

, (2.12)

which does not require the z to be the solutions of scattering equations. We will call

them off-shell identities. The other identities are valid only on the solutions of scattering

equations, and we will call them on-shell identities. An important on-shell identity is the

cross-ratio identity,

− 1 =
∑

i∈A/{a},j∈Ac/{b}

sij
sA

ziazjb
zijzab

, (2.13)

– 5 –
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where A is a subset of {1, 2, . . . , n} and Ac is its complement subset. sA is the Lorentz

invariant scalar product of momenta labeled by set A, i.e., sA = (
∑
i∈A

ki)
2. Because of

momentum conservation we have sA = sAc . The choice of (a, b) is called the gauge choice

of cross-ratio identity, and different gauge choice will end up with different but equivalent

explicit expressions.

In the appendix A we will give detailed studies on the various identities and their

applications to reduce complicated CHY-integrands to simple ones.

The order of poles: during the process of evaluation, the CHY-integrand is expanded

into many Möbius invariant terms, with the generic form,

f(ε, k)∏
1≤i<j≤n z

αij
ij

, (2.14)

where f(ε, k) is kinematic factors, which is irrelevant for the evaluation. The integration

rule method provides a way of examining the poles that are to appear in the final result

after evaluation as well as the order of poles. The Möbius invariant term (2.14) can be

represented by 4-regular graph, where each zi is a node and a factor zij in denominator is

represented by a solid line from zi to zj while a factor zij in numerator is represented by a

dashed line. We would generically express the factor zij in numerator as zij with negative

αij . In this setup, the possible poles of a term (2.14) is characterized by the pole index

χ(A) [33–35]:

χ(A) := L[A]− 2(|A| − 1) . (2.15)

Here, the linking number L[A] is defined as the number of solid lines minus the number of

dashed lines connecting the nodes inside set A and |A| is the length of set A. For a set

A = {a1, a2, . . . , am} with pole index χ(A), the pole behaves as 1/ (sA)χ(A)+1 in the final

result. If χ(A) < 0, sA will not be a pole, while if χ(A) = 0, sA will appear as a single

pole, and if χ(A) > 0, it will contributes to higher-order poles. The higher-order poles

do appear term by term in the expansion of CHY-integrals. For example, in Yang-Mills

theory with a single reduced Pfaffian, we can have double poles in some terms. While in

Gravity theory with two reduced Pfaffian, we can have triple poles in some terms.

As mentioned, the wight-4 CHY-integrand ICHY has a factorization ICHY = IL × IR
where IL, IR are weight-2 objects. We can also define the pole index for them as

χL(A) := L[A]IL − (|A| − 1) , χR(A) := L[A]IR − (|A| − 1) , (2.16)

and

χ(A) = χL(A) + χR(A) , (2.17)

where the linking number is now counted inside each IL or IR. It is easy to see that,

for PT-factor given in (2.1) we will always have χ(A) ≤ 0. For the reduced Pfaffian or

Pfaffian of sub-matrix given in (2.6) and (2.10), we have χ(A) ≤ 1. The condition χ(A) = 1

happens when and only when the set A contains one or more cycles (i.e., a cycle belongs to

A or their intersection is empty). This explains the observation mentioned above that, for

CHY-integrands given by the product of PT-factor and reduced Pfaffian, individual terms

– 6 –
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can contribute to double poles, while for gravity theory with CHY-integrands given by the

product of two reduced Pfaffian, individual terms can contribute to triple poles.

3 Diagrammatic rules for the expansion of Pfaffian

To evaluate amplitudes via CHY-formula, we should expand the (reduced) Pfaffian as

shown in (2.6) and (2.10). In this expansion, there are two pieces of information. One is

the variables zi’s and the other one is the kinematics (ki’s, εi’s). The WI , UI factors given

in (2.7), (2.8) are compact collection of many terms and since each term has its individual

character, further expansion of W and U -cycles into terms of products of (ki · kj), (εi · kj)
and (εi · εj) is needed. In this section, we establish a diagrammatic rule for representing

this expansion.

3.1 Rearranging the expansion of Pfaffian

In (2.6) and (2.10) we sum over all possible permutations p of n elements. This sum can

be rearranged as follows. We sum over the distributions of n elements into possible subsets

and then sum over all permutations for each subset in a given distribution. Then, for any

given term · · ·UI · · · containing a cycle UI = 1
2 Tr(Fi1 ·Fi2 · · ·Fim) (m > 2), we can always

find another term which only differs from the former one by reflecting the UI -cycle. For

example, for n = 4, we can have a (1)(234) and also a (1)(432) which are related by a

refection of the second cycle (234). Since both the U -cycle and PT-factor satisfy the same

reflection relation,

UI :=
1

2
Tr(Fi1Fi2 · · ·Fim) = (−1)m

1

2
Tr(Fi1Fi2 · · ·Fim) := (−1)mUI′ ,

zI :=
1

zi1i2zi2i3 · · · zimi1
= (−1)m

1

zi1im · · · zi3i2zi2i1
:= (−1)mzI′ , (3.1)

we can pair them together as[
(−1)I

UI
zI

+ (−1)I
′UI′

zI′

]
(−1)J · · · (−1)K

UJ · · ·UK
zJ · · · zK

= (−1)I+J+···+K
ŨIUJ · · ·UK
zIzJ · · · zK

, (3.2)

where the sign (−1)I is 1 when I has odd number of elements and (−1) when I has even

number of elements. The ŨI is defined as

ŨI := 2UI = Tr(Fi1Fi2 · · ·Fim) , m > 2 . (3.3)

The cases with m = 1 and m = 2 are not included since the refections of cycles (i1) and

(i1i2) are themselves. So we define Ũ = U for m = 1, 2. The W -cycle is not included since

its two ends have been fixed. Using this manipulation, we rewrite the expansion of reduced

Pfaffian and Pfaffian of sub-matrix (2.6), (2.10) as

Pf ′Ψ = −2n−3
∑
p̃∈Sn

(−1)p̃
WI ŨJ · · · ŨK

zp̃
, zp := zIzJ · · · zK , (3.4)

– 7 –
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Type-1 Type-2 Type-3

Figure 1. Three types of lines.

Figure 2. If a node i) belongs to a W -cycle but is not an end of W -cycle or ii) belongs to an

U -cycle with more than one element, it gets contribution from the corresponding W - or U -cycle as

shown by figures (a) and (b). The two structures are related by flipping a sign because they are

corresponding to the pµεν and −pνεµ of Fµν .

and

Pf Ψm = (−1)
1
2
m(m+1)

∑
p̃∈Sm

(−1)p̃
ŨI ŨJ · · · ŨK

zp̃
, zp := zIzJ · · · zK . (3.5)

Here we sum over all possible partitions of m elements into subsets and for given partition,

we sum over reflection independent permutations for each subset. Remember that ŨI = UI
when I only contains one or two elements. For example, if m = 4, the cycles p̃ of Pf Ψm

are given by{
(1)(234) , (2)(134) , (3)(124) , (4)(123) , (1)(2)(34) , (1)(3)(24) , (1)(4)(23) , (2)(3)(14) ,

(2)(4)(13) , (3)(4)(12) , (12)(34) , (13)(24) , (14)(23) , (1234),(1243) , (1324) , (1)(2)(3)(4)
} .
(3.6)

In the rest of this paper, we will always mention the U -cycles as the Ũ -cycles and use the

rearranged expansions (3.4) and (3.5).

3.2 Diagrammatic rules

Now let us establish the diagrammatic rules for writing Pfaffian or reduced Pfaffian explic-

itly. To do this, we expand each W and Ũ -cycle in terms of products of factors (ε ·ε), (k ·k)

and (ε ·k). A diagrammatic interpretation for this expansion can be established as follows,

• We associate nodes with external particles. Two nodes a and b can be connected by

(1) type-1 line if we have (εa·εb)
zab

, or (2) type-2 line if we have (εa·kb)
zab

, or (3) type-3 line

if we have (ka·kb)
zab

, as shown in figure 1. In this definition, the direction of lines would

matter and we will fix the convention of direction later.

• Contributions from W -cycle: terms of a W -cycle always have two ends. The two

nodes play as the ends of W -cycle should be connected with curved lines, i.e., type-1

line or the curved part of type-2 line. This means if one end of such a line is node a,

we only have (εa · εi) or (εa · ki) but do not have (ka · εi) and (ka · kb). Other nodes

on W -cycle between the two ends get contributions which are shown by figure 2.

– 8 –
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We should also have another type of line connecting the two nodes a and b, which

represents 1
zba

(although in this paper, we will not deal with W -cycle).

• Contributions from U -cycles with more than one element: a U -cycle with more than

one element produces loop structures. Each node belongs to an U -cycle also gets two

kinds of contributions from this cycle, as shown in figure 2.b. An important point is

that the two lines connecting to the node must be one straight line and one wavy line.

In the definition of Ũ (3.3), we have required that there are at least three elements.

When there are only two elements, we have instead

1

2
Tr
(
(kaεa − εaka)(kbεb − εbkb)

)
= (εa · kb)(εb · ka)− (εa · εb)(kb · ka) . (3.7)

The disappearance of factor 1
2 is the reason that we can treat U -cycle with at least

two elements uniformly. Another thing is that, the U -cycle contains many terms with

relative ± sign. The diagrams with only type-2 lines will have (+) sign, and the sign

of others shall be determined from it. We will address the sign rule soon after.

• Contributions from U -cycles with only one element: if a node a belongs to a U -cycle

with only one element (i.e., Caa), it could be connected with all other nodes via
(εa·ki)
zai

. More precisely speaking, using (2.3) one line connecting node a and i from

Caa should be
(
zit
zat

)
(ki·εa)
zia

, where t is the gauge choice. Thus this cycle contributes

type-2 lines whose curved part is connected to node a, multiplied by a factor
(
zit
zat

)
.

This type of cycles can contribute to either loop structure or tree structure.

• Directions of lines: for a loop diagram, we read it clockwise. For tree structures

(which coming from Caa) connected to loop diagrams, we always read a (type-2) line

from the straight part (k) to the curved part (ε).

• Overall signs: remember that each cycle is associated by a factor 1 when it contains

odd number of elements and (−1) when it contains even number of elements. This

is the overall sign.

With this diagrammatic interpretation, Pfaffian can be expanded as tree structures rooted

at loops. This diagrammatic rule can be regarded as a generalization of spanning tree

expression for MHV gravity [41] and EYM amplitudes [10].

3.3 Examples

Now let us take the expansion of Pfaffian Pf (Ψ4) as an example to illustrate. There are five

types of cycles: (abcd), (a)(bcd), (ab)(cd), (a)(b)(cd) and (a)(b)(c)(d), where a, b, c, d can la-

bel as permutations of 1, 2, 3, 4. All reflection independent cycles are already given by (3.6).

The (abcd) contains only U -cycle with more than one element, while the (a)(b)(c)(d) only

gets contribution from Caa’s. We consider these cycles one by one.

For the U -cycle (1234), we have four possible structures, as shown by the diagrams

A(1), A(2), A(3) and A(4) in figure 3. We consider each diagram as a function of εa, ka,

– 9 –



J
H
E
P
0
6
(
2
0
1
7
)
1
3
3

Figure 3. All possible structures in the four-element example.

εb, kb, εc, kc and εd, kd, and denote e.g, A(1) by

A1(abcd) := (ka · εb)(kb · εc)(kc · εd)(kd · εa) . (3.8)

With this notation, Ũ(1234) is given by

Ũ(1234) = (−1)
[
A1(1234)−A2(1234)−A2(4123)−A2(3412)−A2(2341) (3.9)

+A1(1432)−A2(1432)−A2(2143)−A2(3214)−A2(4321)

+A3(1234) +A3(4123) +A3(3412) +A3(2341) +A4(1234) +A4(4123)
]
.

Let us pause a little bit to explain (3.9). With Tr(FFFF ), after expanding we will get 16

terms as in (3.9). However, some terms share the same pattern and in current case, there

are four patterns. Now we present a trick to find these patterns for a loop diagram:

• First let us assign a number to three types of lines: 0 for the type-1, 1 for the type-2

and 2 for the type-3. In fact, this number is the mass dimension of these lines. With

this assignment, we can write down the cyclic ordered lists for Ai as

A1 → (1, 1, 1, 1) , A2 → (2, 0, 1, 1) ,

A3 → (2, 1, 0, 1) , A4 → (2, 0, 2, 0) . (3.10)

– 10 –



J
H
E
P
0
6
(
2
0
1
7
)
1
3
3

• Now we can see the construction of patterns for Ũ(1234). First we split 4 into four

number ni to construct the ordered list (n1, n2, n3, n4), such that: (1) ni ∈ {0, 1, 2},
(2)

∑4
i=1 ni = 4, (3) If ni = 2, then both ni−1, ni+1 can not be 2. Similarly If ni = 0,

then both ni−1, ni+1 can not be 0. After getting the ordered list, we compare them.

If two ordered lists (n1, n2, n3, n4) and (ñ1, ñ2, ñ3, ñ4) are the same either by cyclic

rotation or by order-reversing, we will say they have defined the same pattern.

With above rule, it is easy to see that, (1) When there are two ni taking value 2,

the only allowed list is A4 : (2, 0, 2, 0), (2) When there is only one ni taking value 2,

for example, n2 = 2, there are four possibilities (0, 2, 0, ∗), (1, 2, 1, ∗), (0, 2, 1, ∗) and

(1, 2, 0, ∗). However, the sum to be 4 picks only the latter three (1, 2, 1, 0), (0, 2, 1, 1)

and (1, 2, 0, 1). Since the last two are related by order-reversing, we get the patterns

A3 : (1, 2, 1, 0) and A2 : (1, 2, 0, 1), (3) When there is no ni = 2, the only possibility

is A1 : (1, 1, 1, 1).

• In fact, we can get all patterns and their relative sign starting from the fundamental

pattern A1 : +(1, 1, 1, 1),2 by the so called flipping action. The flipping action is

defined as taking two nearby (ni, ni+1) and changing it to (ni − 1, ni+1 + 1) or (ni +

1, ni−1+1). It is worth to notice that the allowed flipping action must satisfy that (1)

obtain new ni ∈ {0, 1, 2}, (2) no two 2 or two 0 are nearby. If a pattern is obtained

from fundamental pattern by odd number of flipping actions, its sign is negative,

while if a pattern is obtained from fundamental pattern by even number of flipping

actions, its sign is positive.

Using above rule, it is easy to see that the sign for A2 is (−) and for A3, A4, (+).

Having done the (1234), we move to the (1)(234) case and the result is

Ũ(1)Ũ(234) =
z1t
z2t

[
B(1)(1234) +B(1)(1243)−B(2)(1234)−B(2)(1243)

−B(3)(1234)−B(3)(1243)−B(4)(1234)−B(4)(1243)
]

+ Cyclic{2, 3, 4} . (3.11)

Again let us give some explanations. Unlike the case (1234), because of the cycle (1),

the node of 2, 3, 4 connecting to node 1 is special, so cyclic symmetry is lost although the

order reversing symmetry is still kept. Using the algorithm, we split 3 into three ordered

positions to get B1 = (1, 1, 1), B4 = (2, 1, 0), B3 = (0, 2, 1), B2 = (1, 0, 2) (another three

(2, 0, 1), (1, 2, 0), (0, 1, 2) are order reversing comparing to previous three, so we do not

count). Furthermore, B2, B3, B4 are obtained from B1 by one flipping action, so their

relative sign is (−).

For the third case (12)(34), the result is

Ũ(12)Ũ(34) = D(1)(1234)−D(2)(3412)−D(2)(1234) +D(3)(1234) . (3.12)

Since each (ab) gives +(1, 1),−(2, 0) patterns, when multiplying together, we get D1 =

+(1, 1)(1, 1), D2 = −(1, 1)(2, 0), D3 = +(2, 0)(2, 0) three patterns as shown in figure 3.

2The fundamental pattern is the one with all ni = 1 and its sign is always +1. One must be careful for

the rule of type-2 line.
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The fourth case (1)(2)(3)(4) is a little bit different. Unlike the loop diagram (i.e., cycle

with at least two elements) with three types of lines, here we can have only type-2 line for

single cycle Caa. Thus the problem is reduced to find the 2-regular graph, i.e., each node

has two and only two lines connecting to it. Thus there are only two patterns: D1 and A1.

One complication for the single cycle is that there is an extra factor zit
zat

attaching to the

type-2 line.

For the last case (a)(b)(cd), the situation is the most complicated. The (cd) cycle gives

(1, 1) and (2, 0) two patterns, but depending on how single cycles are attached, we can

have (1) for a, b attached to each other, it reduces to D1, D2, D3, (2) for a attached to b,

but b attached to, for example, c, it gives C1, C4, (3) for a, b attached to same point, for

example, d, it gives C3, C6, (4) for a, b attached to different points, it gives C2, C5.

4 The cancelation of double poles in Yang-Mills theory and gravity

In this section, we investigate the cancelation of higher-order poles in Yang-Mills and

gravity theories. The building blocks of these two theories are PT-factor and the reduced

Pfaffian. Since for PT-factor, we always have χL(A) ≤ 0, and the trouble comes from

the reduced Pfaffian, where χR(A) = 1 do appear. For instance, if we consider higher-

order pole with three elements {a, b, c},3 we only need to consider the terms with cycles

(abc), (a)(bc), (b)(ac), (c)(ab) and (a)(b)(c). When summing together, it is easy to see that

these terms having the form · · ·Pf(Ψabc). According to the definition of linking number,

L = 3 for the cycle (abc) because we have zabzbczca in the numerator. Thus χ[(abc)] =

3 − 2(3 − 1) = 1. The cycles (a)(bc) contains a one-element cycle Caa. When expanding

Caa by (2.3), we can find two terms (εa · kb) zbt
zbazat

and (εa · kc) zct
zcazat

, each contributes 1 to

linking number. Together with (bc), which contributes 2 to linking number, such a term

provides L = 1 + 2 = 3. Then the corresponding pole index is again 1. Similarly, (c)(ab)

and (a)(b)(c) also contribute terms with χ = 1. Therefore potential double poles exist in

· · ·Pf(Ψabc). This pattern is general, thus for possible double pole sA, our focus will be

Pf(ΨA). We will show by some examples that after using various on-shell and off-shell

identities, Pf(ΨA) could effectively have χ(A) = 0, by either terms with explicit χ = 1

having numerator factor sA or when summing some terms together, the χ = 1 is reduced

to χ = 0.

4.1 The cancelation of higher-order poles with two elements

This is the first non-trivial case, and we will study it from different approaches to clarify

some conceptual points.

Let us start with explicit evaluation of Pf(Ψ12). There are two cycles (12) and (1)(2).

For (12) cycle, the contribution is

1
2Tr((k1ε1 − ε1k1)(k2ε2 − ε2k2))

〈12〉 =
(k1 · ε2)(k2 · ε1)− (k1 · k2)(ε1 · ε2)

〈12〉 , (4.1)

3We will not consider the case where elements of the subset A have been chosen as gauge for reduced

Pfaffian. We will discuss this situation later.
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Figure 4. Diagrams contributing to double pole in s12 channel.

where for simplicity the notation (2.11) has been applied. For the cycle (1)(2), when

using (2.3), we take the same gauge choice t = n, and get(ε1 · k2)
z2t
z21z1t

+

n−1∑
j=3

(ε1 · kj)
zjt
zj1z1t


(ε2 · k1)

z1t
z12z2t

+

n−1∑
q=3

(ε2 · kq)
zqt
zq2z2t

 . (4.2)

It is easy to see that the other terms will have χ({1, 2}) ≤ 0, except the following part{
(ε1 · k2)

z2t
z21z1t

}{
(ε2 · k1)

z1t
z12z2t

}
=

(k1 · ε2)(k2 · ε1)
〈12〉 . (4.3)

Now we need to combine these two terms with the proper sign and get

(k1 · ε2)(k2 · ε1)
〈12〉 − (k1 · ε2)(k2 · ε1)− (k1 · k2)(ε1 · ε2)

〈12〉 =
(k1 · k2)(ε1 · ε2)

〈12〉 . (4.4)

We see immediately that, although the denominator 〈12〉 gives χ({1, 2}) = 1, the explicit

numerator factor (k1 · k2) = 1
2s12 will reduce double pole to single pole.

Above calculation is correct but a little too rough. We need to show that the result

should not depend on the gauge choice for the single cycle. Now let us present a systematic

discussion on this issue,

• Firstly, from the expansion (2.3) we see that there are two choices for the gauge t.

In the first choice, we choose t ∈ A. In this case, no matter which j is, the linking

number is always +1, so we need to sum over all j. In the second choice, we choose

t 6∈ A, thus only when j ∈ A, we get the linking number one which contributes to

double pole. This tells us that to simplify the calculation, we should take t 6∈ A.

• In our previous calculation, although we have taken t 6∈ A, we have made the special

choice to set the same t for both C11, C22. In general we could take two different

gauge choices, so we are left with(again, with such gauge choice, only those j ∈ A
are needed to be summed over){

(ε1 · k2)
z2t
z21z1t

}{
(ε2 · k1)

z1t̃
z12z2t̃

}
=

(k1 · ε2)(k2 · ε1)
〈12〉

z2tz1t̃
z1tz2t̃

=
(k1 · ε2)(k2 · ε1)

〈12〉
z2t̃z1t + z21ztt̃

z1tz2t̃
→ (k1 · ε2)(k2 · ε1)

〈12〉 . (4.5)

Among the two terms at the second line, since the numerator z21 in the second term

has decreased the linking number by one, we are left with only the first term, which

is the same result as (4.3).
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• Now we consider the gauge choice t ∈ A, for example t = 1 for C22. Then we will have

{
(ε1 · k2)

z2t
z21z1t

}
n∑
j=3

(ε2 · kj)
zj1
zj2z21


=

n∑
j=3

(ε1 · k2)(ε2 · kj)
−〈12〉

zj1z2t
zj2z1t

=

n∑
j=3

(ε1 · k2)(ε2 · kj)
−〈12〉

zj2z1t + zjtz21
zj2z1t

. (4.6)

Again, after dropping the second term, we are left with

n∑
j=3

(ε1 · k2)(ε2 · kj)
−〈12〉 =

(ε1 · k2)(ε2 · k1)
〈12〉 , (4.7)

which is the same result as (4.3).

By the above detailed discussions, we see that after properly using the various (such as

Schouten) identities, momentum conservation and on-shell conditions, we do get the same

answer for arbitrary gauge choices. With this clarification, in the latter computations we

will take proper gauge choice without worrying the independence with the gauge choice.

Now we will use our diagrammatic rules to re-do above calculation. The purpose

of presenting both calculations is to get familiar with our new technique and find the

general pattern for later examples. The potential contribution of double poles with two

elements 1 and 2 comes from the cycles (12) and (1)(2). There are two kinds of diagrams

(see figure 4).4 The first diagram gets contribution from both (12) cycle and (1)(2) cycle.

Particularly, it reads (noticing that each two-element cycle contains a (−1) and one element

cycle contains 1)

− (k1 · ε2)(k2 · ε1)
〈12〉 +

z1t
z2t

(k1 · ε2)
z12

z2t
z1t

(k2 · ε1)
z21

= 0 , (4.8)

where we choose the same gauge zt for C11 and C22. The second diagram evaluates to

(k1 · k2)(ε1 · ε2)
〈12〉 . (4.9)

Thus we have simply reproduced (4.3).

4.2 The cancelation of higher-order pole with three elements

Now let us consider the cancelation of double poles with three elements using the dia-

grammatic rules developed in this paper. There are cycles (123), (1)(23), (12)(3), (13)(2)

and (1)(2)(3) contributes. We collect their contributions according to the pattern of kine-

matic factors,

4As we have explained above, for single cycle Caa to contribute to χ(A) = 1, we must have j ∈ A, which

can be seen clearly if we take gauge t 6∈ A. Thus for cycle (1)(2), we need to consider only the case when

node 1 is connected to node 2.
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Figure 5. Diagrams contributing to double pole, which only contain type-2 lines.

Figure 6. Diagrams contributing to double pole, which contain type-1 and type-3 lines.

• Diagrams containing at least one type-2 loop (loops constructed by only type-2 lines)

are shown by figure 5. This is the complicated case since both cases, i.e., U -cycle

with at least two elements and single cycle merging, will contribute. Thus figure 5.1

gets contribution from (123) and (1)(2)(3) cycles and can be evaluated to

− (ka · εb)(kb · εc)(kc · εa)
〈abc〉 +

zat
zbt

(ka · εb)
zab

zbt
zct

(kb · εc)
zbc

zct
zat

(kc · εa)
zca

= 0 . (4.10)

Similarly, figure 5.2 gets contribution from (a)(bc) and (a)(b)(c) cycles and can be

evaluated to

(εa · kc)
zac

[
−(ka · εb)(kb · εa)

〈bc〉 +
zat
zbt

(ka · εb)
zab

zbt
zat

(kb · εa)
zba

]
= 0 . (4.11)

Thus all diagrams containing a type-2 loop are canceled.

• Diagrams do not contain any type-2 loop. In this case, all loop structures should also

contain type-1 and type-3 lines. For the case with three elements, we have two kinds

of typical diagrams, as shown in figure 6. The first one comes from the cycle (abc)

while the second diagram comes from (a)(bc). Thus the two diagrams in figure 6 gives

− εa ·kc
zac

εc ·εb
zcb

[
kb ·ka
zba

+
zct
zat

kb ·kc
zbc

]
=−εa ·kc

zac

εc ·εb
zcb

[
kb ·ka
zba

(
1+

kb ·kc
kb ·ka

zba
zbc

zct
zat

)]

=
εa ·kc
zac

εc ·εb
zcb

kb ·ka
zba

∑
i 6=a,b,c,t

kb ·ki
kb ·ka

zba
zbi

zit
zat

=
εa ·kc
zac

εc ·εb
zcb

 ∑
i 6=a,b,c,t

kb ·kizit
zbizat

 , (4.12)
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where the cross-ratio identity (2.13) has been used with the subset A = {a, b} and

gauge choice (a, t). The part inside the bracket has the following features, (1) cance-

lation of (ka ·kb) between numerator and denominator, (2) cancelation of zba between

numerator and denominator. In the final form, the r.h.s. of above expression is still

weight-2 graph for all nodes, but the linking number contribution is effectively re-

duced by one, i.e., L({a, b, c}) = 3− 1 = 2 by zaczcb.

Before finishing this subsection, let us compare this example with the one in the previ-

ous subsection. These two examples have shown two different patterns of removing double

poles. In the first example, it is the explicit numerator factor sab that removes the double

pole but the linking number is not changed. In the second example, after using the cross-

ratio identity, linking number is effectively decreased by one but there is no sabc factor in

the numerator.

4.3 The cancelation of higher-order poles with four elements

It is natural to generalize the discussions above to more complicated cases, which can be

summarized as, (1) all diagrams containing at least one type-2 loop should be canceled,

(2) the other diagrams (containing type-1 and type-3 lines) are grouped together if they

give the same diagram when all type-3 lines in them are removed (e.g., the two diagrams

in figure 6). The cancelation of double poles in these diagrams are results of cross-ratio

identity. Now let us take the cancelation of double poles with four elements as a more

general example to see these two kinds of cancelations.

The cancelation between diagrams containing type-2 loops. A pure type-2 loop

can come from either U -cycle with more than one element or a product of U -cycles each

containing one element. In the four-element case, the diagrams containing type-2 loops

are given by (A1), (B1), (C1), (C2), (C3), (D1) and (D2) in figure 3. We take the (A1)

diagram in figure 3 as an example. The diagram (A1) of figure 3 receives the following

contribution from U -cycle (abcd) with four elements,

− 1

〈abcd〉(ka · εb)(kb · εc)(kc · εd)(kd · εa) , (4.13)

and a contribution from U -cycles (a)(b)(c)(d), each containing one element, i.e.,

1

〈abcd〉
zat
zbt

(ka·εb)
zbt
zct

(kb·εc)
zct
zdt

(kc·εd)
zdt
zat

(kd·εa) =
1

〈abcd〉(ka·εb)(kb·εc)(kc·εd)(kd·εa) , (4.14)

where all one-element cycles taking the same gauge choice t 6= a, b, c, d. These two contri-

butions are canceled with each other.

This cancelation is easily generalized to cases containing at least one type-2 loop. If we

consider a diagram containing a type-2 loop with nodes a1, a2, . . . , am on it, the U -cycle

with m elements (a1a2 · · · am) and the product of m one-element U -cycles (ai), i = 1, . . . ,m)

contribute to this loop. According to (3.3) and (3.1), the U -cycle (a1a2 · · · am) contributes

(−1)m+1 Tr(Fa1Fa2 · · ·Fam) (4.15)
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where the prefactor (−1)m+1 is −1 for even number of elements, while +1 for odd number

of elements. A type-2 loop

(−1)m+1 1

〈a1a2 · · · am〉
(−1)m (ka1 · εa2) (ka2 · εa3) · · · (kam · εa1) , (4.16)

is obtained by picking the contraction of −kaiεai from Fµνai = kµaiε
ν
ai − kνaiε

µ
ai (i = 1, . . . ,m)

in the trace. According to (2.3), a one-element U -cycle Caiai contains a term

(kai−1 · εai)
zai−1t

zai−1aizait
, (4.17)

where we define ka0 ≡ kn. The product of one-element U -cycles Ca1a1Ca2a2 · · ·Camam
(see (2.3)) then contributes a type-2 loop

1

〈a1a2 · · · am〉
za1t
za2t

(ka1 · εa2)
za2t
za3t

(ka2 · εa3) · · · zamt
za1t

(kam · εa1)

=
1

〈a1a2 · · · am〉
(ka1 · εa2) (ka2 · εa3) · · · (kam · εa1) , (4.18)

where we have chosen the t (t 6= a1, · · · , am) for all Cii to be the same. This expression

is precisely canceled with the corresponding contribution (4.16) from m-element U -cycle.

After such cancelations, the diagrams (A1), (B1), (C1), (C2), (C3), (D1) and (D2) in

figure 3 are all canceled. Thus only those diagrams which do not contain any type-2

loop survive.

The cancelation of double poles in diagrams which do not contain any type-2

loop. Now let us turn to the diagrams with no type-2 loop. As shown in the case of three-

element poles, we should group together those diagrams which are the same after removing

all type-3 lines. The cancelation of double poles can be found by applying cross-ratio

identity. In the four-element case, we have the following types of cancelations,

(1) The first type of cancelation happens between diagrams (A2), (B4) and (C4) with

respect to the cycles (abcd), (a)(dbc) and (a)(d)(bc). The potential contributions to four-

element higher-order poles are collected as

.

(4.19)

The r.h.s. of above equation reads(
−ka · kb

zab
+
kd · kb
zdb

zdt
zat
− kb · kc

zbc

zct
zat

)
εb · εc
zbc

kc · εd
zcd

kd · εa
zda

= −ka · kb
zab

(
1 +

sbd
sba

zba
zbd

zdt
zat

+
sbc
sba

zba
zbc

zct
zat

)
εb · εc
zbc

kc · εd
zcd

kd · εa
zda

. (4.20)
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Applying cross-ratio identity (2.13), this contribution becomes

ka · kb
zab

 ∑
e 6=a,b,c,d,t

sbe
sba

zba
zbe

zet
zat

 εa · kd
zad

εd · kc
zdc

εc · εb
zcb

= −

 ∑
e 6=a,b,c,d,t

kb · kezet
zbezat

 εa · kd
zad

εd · kc
zdc

εc · εb
zcb

, (4.21)

in which, while keeping the weight-2 conditions for every nodes, the linking number for

this part is decreased to m− 1 = 4− 1 = 3.

(2) The second type of cancelation happens between diagrams (A3), (B3) and (C5).

Particularly, we have

, (4.22)

whose r.h.s. is explicitly written as[
−ka · kb

zab

(
1 +

sbd
sba

zba
zbd

zdt
zat

)
+
ka · kc
zac

zct
zbt

(
1 +

scd
sca

zca
zcd

zdt
zat

)]
εa · kd
zad

εd · εc
zdc

kc · εb
zcb

. (4.23)

According to the cross-ratio identity (2.13), we have

1 +
sbd
sba

zba
zbd

zdt
zat

= − sbc
sba

zba
zbc

zct
zat
−

∑
e 6=a,b,c,d,t

sbe
sba

zba
zbe

zet
zat

, (4.24)

1 +
scd
sca

zca
zcd

zdt
zat

= − scb
sca

zca
zcb

zbt
zat
−

∑
e 6=a,b,c,d,t

sce
sca

zca
zce

zet
zat

. (4.25)

Plugging these identities into (4.23), we immediately arrive at

− 1

2

 ∑
e 6=a,b,c,d,t

sbe
zbe

zet
zat
−

∑
e 6=a,b,c,d,t

sce
zce

zet
zat

 εa · kd
zad

εd · εc
zdc

kc · εb
zcb

. (4.26)

Again, while keeping the weight-2 conditions for all nodes, the linking number is decreased

to 3.
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(3) The third kind of cancelation happens among diagrams (A4) and (D3). In particular,

,

(4.27)

where the r.h.s. reads(
−ka · kb

zab

kc · kd
zcd

+
ka · kc
zac

kb · kd
zbd

+
ka · kd
zad

kc · kb
zcb

)
εb · εc
zbc

εd · εa
zda

. (4.28)

According to the cross-ratio identity (2.13), we have the following expressions

−ka · kb
zab

= (ka · kc)
zct
zaczbt

+ (ka · kd)
zdt
zadzbt

+
∑

i 6=a,b,c,d,t
(ka · ki)

zit
zaizbt

, (4.29)

−kd · kb
zdb

= (kd · kc)
zct
zdczbt

+ (kd · ka)
zat
zdazbt

+
∑

i 6=a,b,c,d,t
(kd · ki)

zit
zdizbt

, (4.30)

−kc · kb
zcb

= (kc · ka)
zat
zcazbt

+ (kc · kd)
zdt
zcdzbt

+
∑

i 6=a,b,c,d,t
(kc · ki)

zit
zcizbt

, (4.31)

where t 6= a, b, c, d. Plugging these equations into (4.28), we finally obtain∑
i 6=a,b,c,d,t

[
(ka · ki)

zit
zaizbt

kc · kd
zcd

+ (kd · ki)
zit
zdizbt

ka · kc
zac

− (kc · ki)
zit
zcizbt

ka · kd
zad

]
εb · εc
zbc

εd · εa
zda

,

(4.32)

which decrease the linking number to m− 1 = 3 while keeping the weight-2 conditions for

all nodes.

(4) The fourth type of cancelation is between diagrams (B2) and (C6). All such contri-

butions are collected as

. (4.33)

The r.h.s. is given by

kc · kd
zcd

zbt
zat

(
1 +

sca
scd

zcd
zca

zat
zdt

+
scb
scd

zcd
zcb

zbt
zdt

)
kb · εa
zba

εd · kb
zdb

εb · εc
zbc

. (4.34)
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Using the cross-ratio identity (2.13), we arrive at

kc · kd
zcd

zbt
zat

− ∑
e 6=a,b,c,d,t

sce
scd

zcd
zce

zet
zdt

 kb · εa
zba

εd · kb
zdb

εb · εc
zbc

, (4.35)

which decreases the linking number to m− 1 = 3.

5 No higher-order poles by more general consideration

In the above section, we have used explicit calculations to show the cancelation of higher-

order poles when summing over all contributions. In this section, we will take a different

approach to study the same problem. Comparing with the previous method, this new

approach is simpler and general, which is the advantage of this method. However, it can

not present the explicit picture of how the cancelation happens, which is an advantage of

the first method.

Our starting point is to show that the reduced Pfaffian does not contribute to the

double pole. The key for this conclusion is that, the expansion of reduced Pfaffian (2.6)

is independent of the gauge choice of removing the two rows and columns [2]. Bearing

this in mind, we then present the arguments. For a given subset A of n-elements, we can

always take the gauge choice (µ, ν) of the reduced Pfaffian, such that µ ∈ A and ν 6∈ A.

From (2.16), it is known that for χ(A) = 1, we need subset A to be given as the union of

cycles of permutation p ∈ S′n. However, with our special gauge choice, the cycle WI does

not belong to A, thus we have shown that χ(A) ≤ 0 for all terms in the (2.6). Since for any

pole (i.e., any subset A), we can always make the gauge choice to show the absence of the

double pole as above and the whole result is independent of the gauge choice, we have shown

the absence of all possible double poles in the reduced Pfaffian. It is worth to emphasize

that in the above argument, the independence of gauge choice for the reduced Pfaffian

has played crucial role. However, this fact is true based on both the gauge invariance and

scattering equations, so it is the on-shell property.

With above scenario, we can show immediately that when (2.10) appears as a factor

in the CHY-integrand, it will not contribute double pole sA, where A is the subset of these

m-particles. The argument is very easy. If we choose the gauge µ, ν 6∈ A, the reduced

Pfaffian can be written as

Pf ′Ψn = Pf Ψm

(∑
· · ·
)

+ · · · , (5.1)

where possible double pole contribution for sA comes only from the first term at the

right handed side. However, since Pf ′Ψn does not contain double pole sA and terms

inside (
∑ · · · ) have different structures of ε, k contractions, consistency at both sides will

immediately imply that the factor Pf Ψm will not give double poles either by providing

an overall factor sA in numerator or by decreasing the linking number by one after using

various on-shell or off-shell identities. This claim can be used to explain the following facts,

• For the single trace part of Einstein-Yang-Mills theory [4] given by

IEYM
r,s = PTr(α)Pf ΨSPf ′Ψn , (5.2)
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the naive counting indicates the χ(S) = 1. However, as we have argued, the factor

Pf ΨS will provide a factor P 2
S in numerator or decrease the linking number by one,

so this double pole does not appear.

As a comparison, the double trace of gluons without gravitons in Einstein-Yang-Mills

theory has the CHY-integrand [4]

IEYM
r+s = srPTr(α)PTs(β)Pf ′Ψn . (5.3)

The double cycle PTr(α)PTs(β) will generate manifest double pole s2r when one

integrates zi’s, thus the explicit kinematic factor sr is needed to make it to be physical

amplitude.

• For Yang-Mills-Scalar theory with q scalars and r = n− q gluons the CHY-integrand

is given by [4]

IYMs = PTn(α) (PTq(α) Pf Ψr) . (5.4)

The naive double pole s2q from z-integration will be canceled by the kinematic numer-

ator factor s2q provided by Pf Ψr (the part with effectively reduced linking number

will not give double pole after z-integration). Similar argument holds for more general

CHY-integrand with q scalars, r gluons and s = n− q − r gravitons,

I =
(

PTq+r(α) Pf Ψs

)
×
(

PTq(β) Pf Ψr+s

)
. (5.5)

So naive double poles of P 2
s and P 2

s+r will not appear.

5.1 Dimensional reduction to EYM theory

The argument given in (5.1) has shown that Pf ΨA will contribute double pole of sA.

However, it is not obvious that the double poles sB⊂A in Pf Ψm (for example, the CHY

-integrand (5.2)) will not appear. To understand this point, we can use the technique of

dimensional reduction.

To demonstrate the method, let us focus on the single trace part of

Einstein-Yang-Mills theory given in (5.2). We start from gravity CHY-integrand

Pf ′Ψn(ki, εi, zi) Pf ′Ψn(ki, ε̃i, zi), which gives result containing only single poles for all al-

lowed physical configurations. Now we divide n particles into two subsets, 1, 2, . . . ,m ∈ {g}
and m + 1,m + 2, . . . , n ∈ {h} and assign the particular physical configurations as fol-

lows. Firstly, all momenta in (D + d)-dimensions are split into D-dimensional part and

d-dimensional part as

{(k1, η), (k2,−η), (ki, 0)} , i = 3, . . . , n, ki ∈ R1,D−1 , η ∈ Rd , (5.6)

where on-shell conditions require

η2 = 0 , k2i = 0 , i = 1, 2, . . . , n ,

n∑
i=1

ki = 0 . (5.7)
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Secondly, the polarization vectors are taken as

{(0, ε̃1) , (0, ε̃2) , (0, ε̃i) , (ε̃j , 0)} , i = 3, 4, . . . ,m , j = m+ 1,m+ 2, . . . , n , (5.8)

which satisfy

η · ε̃1 = η · ε̃2 = 0 , ε̃i = ε̃ , i = 3, . . . ,m , ε̃2 = 0 ,

ε̃1 · ε̃ = 0 , ε̃j · kj = 0 , j = m+ 1, . . . , n . (5.9)

This condition can always be achieved when d is large enough. It is obvious that when we

do the dimensional reduction from (D + d) to D, polarization assignment in (5.8) means

that, particles {1, . . . ,m} will become the gluons while particles {m+1, . . . , n} will remain

to be gravitons. Having imposed these conditions, we can see,

• The scattering equation in the full (D + d)-dimensions also implies the scattering

equations in D-dimensions since all Ki ·Kj = ki · kj .

• The Cii for gluon subset are given by

C11 = C22 = 0 , Cii = ε̃ · η z12
z1izi2

, i = 2, 3, . . . ,m , (5.10)

where we have chosen the gauge t = 2 for i = 3, . . . ,m. The Ckk for graviton subset

are given as

Ckk =
∑
j 6=k

ε̃k · kj
zjt

zjkzkt
, k = m+ 1, . . . , n , (5.11)

which are nothing but those in Pfaffian of gravitons in D-dimensions.

Now we evaluate the (D+d)-dimensional reduced Pfaffian Pf ′Ψn(ki, ε̃i, zi) by choosing

the gauge (1, 2). For this choice, the allowed permutations will be the following cycle

structures,

(1α12)(α2) · · · (αm)Cj1j1 · · ·Cjtjt , (5.12)

and we consider these cycles one by one as,

• For W -cycle, the numerator is

ε1 · Uα1(1)Uα2(2) · · · · ε2 . (5.13)

Now using Ui = kiεi − εiki and imposing conditions (5.8), (5.9), we see that for all

subsets α1 ⊂ {3, 4, . . . , n}, the contraction is zero. So the only non-zero contribution

from W -cycle is when α1 = ∅ with factor

ε̃1 · ε̃2
〈12〉 . (5.14)

• For U -cycle with at least two elements, if i ∈ {3, . . . , r} inside an U -cycle, the com-

bination

Uk · (kiε̃i − ε̃iki) · Ut (5.15)
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will be zero, since by our reduction conditions, for any k ∈ {3, 4, . . . , n} we will

always have

Uk · εi = 0 . (5.16)

In other words, any i ∈ {3, 4, . . . , r} can not be inside an U -cycle with at least

two elements.

With above discussions, we see that non-zero contributions are

Pf ′Ψn(ki, ε̃i, zi)→
ε̃1 · ε̃2
〈12〉 C33 · · ·Cmm

{∑
· · ·
}

=
ε̃1 · ε̃2
〈12〉 C33 · · ·CmmPf ΨG . (5.17)

Result (5.17) is not the form (5.2) we are looking for. To reach that, we must use (5.10)

and the insertion relation (A.11). Thus

ε̃1 · ε̃2
(12)

C33 · · ·Crr =
∑
α

(ε̃1 · ε̃2)(ε̃ · η)m−2PT(1α(3, · · · ,m)2) . (5.18)

Combining (5.17) and (5.18), we see that the Pf ′Ψn(ki, ε̃i, zi) indeed has been reduced

to the sum of the form PT(1α(3, · · · ,m)2)Pf ΨG .

Having finished the part Pf ′Ψn(ki, ε̃i, zi), we are left with the part Pf ′Ψn(ki, εi, zi),

which is in (D+d)-dimension. To reduce to D-dimension, we must impose proper choice of

polarization vectors ε
(D+d)
i . It is easy to see that the choice ε

(D+d)
i = (εi, 0) will do the job.

Putting all together we see that, starting from (D + d)-dimensional gravity theory,

we are able to reduce to single trace part of EYM theory with CHY-integrand (5.2).5

Since the gravity theory does not contain any double poles, so is (5.2). This finishes our

general proof.

5.2 Dimensional reduction to (Pf ′An)2

In effective theories, such as non-linear sigma model and Dirac-Born-Infeld theory, we also

encounter (Pf ′An)2. This (Pf ′An)2 can also be obtained from Pf ′Ψ by taking appropriate

dimensional reduction. Specifically, we impose momenta and polarization vectors in (d +

d+ d)-dimensions as follows,

Ka = (ka; 0; 0) , ε̂a 6=α,β = (0; εa; 0) , ε̂i = (0; 0; εi) ,

i = α, β , a = 1, 2, . . . , n , (5.19)

where α, β are the gauge choice for reduced Pfaffian. With this assignment Ka · ε̂b = 0, so

transverse condition of polarization vector has kept and the C-block of matrix Ψ is zero.

Thus we have

Pf ′Ψ(d+d+d) = Pf ′A(d+d+d) Pf B(d+d+d) . (5.20)

Furthermore, with the choice in (5.19), we see two facts. First, the Pf ′A in (d + d + d)-

dimension is in fact in d-dimension. Second, ε̂i · ε̂a = 0 when i = α, β and a 6= α, β, thus

we have

Pf B =
(−)α+βεα · εβ

zαβ
Pf Bαβ

αβ ∼ `2kα · kβ Pf ′A|εa→`ka , (5.21)

5If taking the graviton subset to be empty, we have reduced the gravity theory to Yang-Mills theory.
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where in the last step, we have set εi = `ki for i = 1, . . . , n. Putting all together, we see

that up to factor `2kα · kβ , we do dimensionally reduce the reduced Pfaffian to (Pf ′An)2.

There is one obvious generalization. Instead of just two α, β, we divide all n-particles

into m groups, and polarization vectors of each group belongs to independent subspace.

Then we can take εa ∼ ka, so

Pf B →
m∏
i=1

Pf Ai . (5.22)

6 Conclusions

In this paper, we systematically discuss the cancelation of higher-order poles in CHY-

formula. By expanding the cycles of (reduced) Pfaffian into pieces we established a di-

agrammatic representations. Grouping diagrams appropriately and applying cross-ratio

identity, we show that the linking number for a pole sA receives a value of |A|− 1 from the

Pfaffian. This means there isn’t any higher-order poles in Yang-Mills theory and gravity.

We then developed the dimensional reduction procedures, by which integrands of other

theories can be produced from gravity theory. Thus higher-order poles will not exist in

these theories by the consistent reduction.

Inspired by results in this paper, there are several interesting questions worth to inves-

tigate. The first thing is that although with explicit examples of two, three, four points,

we have shown the pattern how the explicit cancelation of double poles work, writing down

the general explicit argument is still welcome.

Another thing is that, in papers [5, 40], CHY-integrands for various field theories have

been proposed through various techniques, such as compactifying, generalized dimensional

reduction, generalizing, squeezing and extension from soft limit, etc. Starting from a physi-

cal meaningful mother theory,6 some techniques guarantee physically meaningful daughter

theories at the end, such as the compactifying and generalized dimensional reduction. This

is exactly the aspect we are using in this paper. However, some techniques, such as squeez-

ing and extension from soft limits, are not so obvious to produce physical meaningful

daughter theories at the end. Thus it is definitely important to study these techniques

further and to see if all these different techniques can be unified from a single picture.

Furthermore, finding the algorithm to read out the daughter theory (i.e., its field contents

and Lagrangian) from the known mother theory in various construction techniques is also

an interesting question.
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A The on-shell and off-shell identities of CHY-integrands

In the decomposition of reduced Pfaffian as sum of Parke-Taylor factors, we have taken

advantages of many non-trivial relations between rational functions of zi’s. Some relations

are valid at the algebraic level, and we call them off-shell relations. The others are valid

only when zi takes values of the solutions of scattering equations and we call them on-

shell ones. The most important one of the latter case is the cross-ratio identities (2.13) ,

derived from the original scattering equations. Any others can be derived from them. For

the off-shell identities, we borrow the name from amplitude relations and have (recall the

notation (2.11))

• The Schouten identity,

[a b]

[a c][c b]
=

[a d]

[a c][c d]
+

[d b]

[d c][c b]
, (A.1)

• The U(1)-decoupling relation,∑
�

1

〈a1, {a2, . . . , an}� {b}〉
= 0 , (A.2)

• The KK-relation,

1

〈a1, α, an, β〉
= (−)nβ

∑
�

1

〈a1, α� βT , an〉
, (A.3)

where nβ is the number of elements in set β, and βT is the reverse of set β.

The Schouden identity is trivial, by understanding that

[a b][c d] = [a c][b d] + [a d][c b] .

The proof of U(1)-relation: to prove the U(1)-decoupling relation, let us start from

the Schouten identity

[a1, an]

[a1, b][b, an]
=

[a1, an−1]

[a1, b][b, an−1]
+

[an−1, an]

[an−1, b][b, an]
. (A.4)

Repeatedly using the Schouten identity

[a1, ak]

[a1, b][b, ak]
=

[a1, ak−1]

[a1, b][b, ak−1]
+

[ak−1, ak]

[ak−1, b][b, ak]
(A.5)

until k = 2, we get

[a1, an]

[a1, b][b, an]
=

n∑
k=2

[ak−1, ak]

[ak−1, b][b, ak]
. (A.6)
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Then

1

〈a1, a2, . . . , an, b〉
= − 1

〈a1, a2, . . . , an〉

(
[a1, an]

[a1, b][b, an]

)
= −

n∑
k=2

1

〈a1, a2, . . . , an〉
[ak−1, ak]

[ak−1, b][b, ak]
, (A.7)

which is nothing but the U(1)-relation after canceling the numerator [ak−1, ak] with its

corresponding factor in the 〈a1, . . . , an〉.

The proof of the KK-relation: the KK-relation can be proven by induction.7 For

nβ = 1, it is the U(1)-relation, which has already been proven. Assuming (A.3) is valid for

β = {β1, β2, . . . , βm}, when nβ = m+ 1, we have

1

〈a1, α, an, β1, β2, . . . , βm, βm+1〉
=

1

〈a1, α, an, β1, β2, . . . , βm〉
[βm, a1]

[βm, βm+1][βm+1, a1]
(A.8)

=
∑
�

(−)m
1

〈a1, α� {βm, βm−1, . . . , β1}, an〉
[βm, a1]

[βm, βm+1][βm+1, a1]
.

The second line can be rewritten as
nα∑
s=1

∑
�

(−)m
1

[a1,α1, . . . ,αs,βm][βm,{αs+1, . . . ,αnα
}�{βm−1, . . . ,β1},an][an,a1]

[βm,a1]

[βm,βm+1][βm+1,a1]

=

nα∑
s=1

∑
�

(−)m
[βm,a1]

〈a1,α1, . . . ,αs,βm,βm+1〉[βm,{αs+1, . . . ,αnα
}�{βm−1, . . . ,β1},an][an,a1]

=

nα∑
s=1

∑
�,�1

(−)m+1 [βm,a1]

〈a1,{α1, . . . ,αs}�1{βm+1},βm〉[βm,{αs+1, . . . ,αnα
}�{βm−1, . . . ,β1},an][an,a1]

=
∑
�

(−)m+1 1

〈a1,α�{βm+1,βm, . . . ,β1},an〉
=
∑
�

(−)nβ
1

〈a1,α�βT ,an〉
, (A.9)

where in the third line we have used the U(1)-relation for 1/〈a1, α1, . . . , αs, βm, βm+1〉. This

ends the induction proof.

Some implications can be deduced from the U(1)-relation (A.2) and KK-relation (A.3).

From the U(1)-relation with the expression (A.7),

1

[a1, a2, . . . , an][an, b][b, a1]
= −

n∑
k=2

1

[an, a1][a1, a2, . . . , an]

[ak−1, ak]

[ak−1, b][b, ak]
, (A.10)

we immediately get the so called insertion relation,

1

[a1, a2, . . . , an]

[a1, an]

[a1, b][b, an]
=

n−1∑
i=1

1

[a1, . . . , ai, b, ai+1, . . . , an]
, (A.11)

where we have inserted the node b between a1 and an. From the KK-relation (A.3), we get

the so called open-up relation,

[a1, an]

〈a1, α, an, β〉
= (−)nβ+1

∑
�

1

[a1, α� βT , an]
, (A.12)

7Similar discussions can be found in [42].
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which opens a closed cycle 〈a1, α, an, β〉 to a sum of open cycles. This relation can be

trivially seen by applying KK-relation (A.3) for the denominator. We can diagrammatically

abbreviate it as,

=a1 an a1 an , (A.13)

where a line with white dots means there are other zi’s locating along the line, with its

explicit definition in (A.12).

A sketch of expanding into PT-factors: having presented the off-shell and on-shell

identities, now we show how to use them to simplify the CHY-integrand to the PT-factors,

which are easily evaluated by integration rule method [33–36] without referring to the

scattering equations. This algorithm has been laid out in [39], but here we provide an

alternative understanding. It is trivial to see that any weight-2 CHY-integrand can be

written as product of a PT-factor with n nodes and cross-ratio factors such as
[ai aj ][ak a`]
[ai ak][aj a`]

.

Thus by showing the reduction of one cross-ratio factor is suffice to explain any situations.

Let us focus on the following CHY-integrand, given as

1

〈a1, a2, . . . , an〉
[ai aj ][ak a`]

[ai ak][aj a`]
=

(
[ai aj ]

〈a1, a2, . . . , an〉

)
[ak a`]

[ai ak][aj a`]
. (A.14)

Applying (A.12) to the expression in the bracket, we will get two possible results

for (A.14), as

ai aj
aℓak

ai aj
akaℓ

(A.15)

where the expression in the bracket leads to the line with white dots from zi to zj , and

the other factors denoted by half circles. For the first situation in (A.15), we can again

apply (A.13) to the up-half plane, which ends up with

aj
akaℓ , (A.16)
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which is a PT-factor. For the second situation in (A.15), we shall use the cross-ratio

identity

− 1 =
∑

i′∈A/{k}
j′∈Ac/{`}

si′j′

sA

[ai′ ak][aj′ a`]

[ai′ aj′ ][ak a`]
, (A.17)

where we choose set A to be collection of zi’s in the left-most cycle, so j′ runs over white

dots in between ak, a` or those in between a`, aj . The factor [ak a`] in denominator cancels

the dashed line, so after multiplying (A.17) to the second figure of (A.15), we get the

following contributions depending on the location of aj′ ,

ai aj
aℓakai′ aj′ aℓakai′ aj′

ai aj
aℓakai′

aj′
aj

aℓakai′

aj′

.

(A.18)

The result in the first line is already PT-factor, while the result in the second line has

the same structure as the second figure in (A.15), but with fewer zi’s in between aj′ , a`.

Recursively applying cross-ratio identity, we will end up with the situation where there is

no zi in between aj′ , a`, hence the dashed line is canceled and we get two disjoint cycles.

In such case, we can apply cross-ratio identity again as

, (A.19)

where for the cross-ratio identity (A.17) we have chosen ai′ , ak in one cycle and aj′ , a`
in the other cycle. Then applying the open-up identity (A.13) in both sides, we get the

desired result.
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