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configurations are black branes afflicted by a Gregory-Laflamme instability. We numer-
ically evolve Einstein’s equations to follow the instability until the system settles down
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temperature but non-constant energy density. We show that the time evolution of the
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from which the inhomogeneous final states can be derived.
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1 Introduction

Hydrodynamics is one of the most successful theories in physics, capable of describing the
dynamics of very different systems over an enormous range of length scales. Traditionally,
it is thought of as an effective theory for the conserved charges of a system, constructed as
a derivative expansion around local thermal equilibrium. From this perspective hydrody-
namics is only expected to be valid when these gradient corrections are small compared to
all the microscopic scales. However, in recent years it has been discovered that the regime
of validity is actually much broader.

From an experimental viewpoint, hydrodynamics has been extremely successful at
describing the post-collision dynamics of the drops of matter produced in ultra-relativistic
collisions of large nuclei at RHIC [1-3] and the LHC [4-6]. Multi-particle correlations in
these collisions are well described by hydrodynamics [7—14], provided one assumes that the
latter is valid in the presence of large gradients [15]. Also, the recent finding of similar
correlations in even smaller proton-proton collisions [16-18] provides a strong indication
that hydrodynamics is applicable even at a baryonic scale [19-22]. From a theoretical
viewpoint, studies of non-abelian gauge theories have shown that hydrodynamics is valid
for systems with large gradients both at strong [23-27] and weak coupling [28, 29].

In this paper we use the gauge/string duality to test the validity of hydrodynamics in
a theory with a first-order thermal phase transition. We place the theory on a cylinder
in a variety of homogeneous, unstable initial states. In the gauge theory the instability is
a spinodal instability associated to the presence of a first-order phase transition. On the
gravity side the instability is a long-wave length, Gregory-Laflamme-type instability [30].
We use the gravity description to follow the evolution of these states until they settle down
to a stationary, inhomogeneous final state. We then compare both the time evolution and
the final configurations to the corresponding hydrodynamic predictions. Recent related
work includes [31-33].



To the best of our knowledge, from the boundary theory viewpoint our results provide
the first example of a first-principle, non-perturbative, complete dynamical evolution of
a spinodal instability in a strongly coupled gauge theory. From the gravity viewpoint,
they provide the first example of the full dynamical evolution of a Gregory-Laflamme-type
instability in an asymptotically anti-de Sitter space.

2 Model

Motivated by simplicity, we study the Einstein-plus-scalar model with action
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with ¢ the asymptotic curvature radius and ¢p; = 2.3. The dual gauge theory is a Con-

(2.2)

formal Field Theory (CFT) deformed with a dimension-three scalar operator with source
A, which appears as a boundary condition for the scalar. This is exactly the potential
of [34] except for the sign reversal of the fourth term in V. This difference has dramatic
implications for the thermodynamics of the gauge theory, which we extract from the ho-
mogeneous black brane solutions of the gravity model. In particular, the gauge theory
possess a first-order phase transition at a critical temperature T, = 0.247A, as illustrated
by the multivalued plot of the energy density as a function of the temperature in figure 1.
States on the dashed red curve are locally thermodynamically unstable since the specific
heat is negative, ¢, = d€/dT < 0. In this region the speed of sound, ¢? = s/¢,, with s
the entropy density, becomes imaginary. This leads to a dynamical, spinodal instability
(see e.g. [35]) whereby the amplitude of small sound excitations grows exponentially with
a momentum-dependent growth rate dictated by the sound dispersion relation:

N _ L fAn QN2
D(k) ~ |es| k 2T<35+8>k, (2.3)

where 7 and ¢ are the shear and bulk viscosities. In our model /s = 1/47 [36] and we
compute ¢ numerically following [37].

The corresponding statement on the gravity side is that the black branes dual to the
states on the dashed red curve are afflicted by a long-wave length instability. Although
this is similar to the Gregory-Laflamme instability of ref. [30], we will see below that there
are also crucial differences between the two.

3 Inhomogeneous horizon

To investigate the fate of the spinodal instability we compactify the gauge theory direction
z on a circle of length L ~ 57/A. This infrared cut-off reduces the number of unstable
sound modes to a finite number. We then consider a set of homogeneous, unstable initial
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Figure 1. Energy density versus temperature for the gauge theory dual to (2.1). At high and low T
there is only one phase shown in dashed-dotted blue. The preferred phase in the multivalued region
is shown in solid purple. The dotted green curve is metastable. The dashed red curve is locally un-
stable. The black vertical line indicates T, = 0.247A. The top (bottom) dashed, grey horizontal line
indicates the highest (lowest) average energy density that we have considered. The top (bottom)
dotted, grey horizontal line indicates the maximum (minimum) value of the energy in the corre-
sponding final states. The solid, black horizontal line is the state for which we show specific results.

states with energy densities in the range £/A* ~ (0.002,0.016),' as indicated by the grey,
dashed horizontal lines in figure 1. For concreteness we will show results for the state with
E/A* ~ 0.0096, whose temperature and entropy density are T} ~ 0.251A and s; = 0.037A3.
To trigger the instability, we introduce a small z-dependent perturbation in the energy
density corresponding to a specific Fourier mode on the circle. For concreteness we will show
results for the case with k = 3(27/L) ~ 1.37;. This mode is unstable with positive growth
rate I' = 0.0247 A according to (2.3). For numerical simplicity we impose homogeneity
along the transverse directions.?

On the gravity side the sound-mode instability may be viewed [39-41] as a Gregory-
Laflamme instability [30]. We follow it by numerically evolving the Einstein-plus-scalar
equations as in [27, 38] until the system settles down to a state with an inhomogeneous
Killing horizon with constant temperature Ty = 0.250A. Note that this is close but not
identical to T; or T,. From the dynamical metric we extract the boundary stress tensor.
The result for the energy density is shown in figure 2. The time dependence of the ampli-
tudes of several modes of the energy density is shown in figure 3. The n = 3 mode grows
with a rate that agrees with (2.3) within 4%. Resonant behavior makes the modes with

'We work with the rescaled quantities (£, P, Pr) = (k2/20%)(=T¢, TZ, Tat-).
2Sound modes with transverse momentum would also be unstable. We thus do not investigate the most
general possible end state. We leave this for future work.
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Figure 2. Energy density for the initial state indicated by the solid, black horizontal line in figure 1,

perturbed by the third Fourier mode. The color coding on the final-time slice is the same as in
figure 1.
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Figure 3. Time evolution of some Fourier modes of the energy density £. The dashed horizontal
line is the average energy density.
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Figure 4. Final entropy density extracted from the area of the horizon (continuous, blue curve)
and estimated from the equation of state (dashed, black curve), in units of A3/100.

n =6,9,... grow at a rate that is roughly the corresponding multiple of the n = 3 rate.
Numerical noise makes some non-multiples of the n = 3 mode (of which only three are
shown in the figure) grow too. At late times the non-linear dynamics stops the growth of
all these modes and the system settles down to a stationary, inhomogeneous configuration
consisting of three identical domains. The fact that their size is comparable to the inverse
temperature, Az = L/3 ~ 0.4/T%, is our first indication that spatial gradients are large.

In figure 4 we show the final entropy density as extracted from the area of the horizon.
The fact that s is not constant proves that the horizon itself (not just the boundary energy
density) is inhomogeneous. We see in the figure that s is very well estimated by a point-wise
application of the equation of state to the final energy density of figure 2, suggesting that
the evolution is quasi-adiabatic. This is confirmed by the fact the final average entropy
density is only 1% larger than the initial one.

In the paragraphs above we have been careful to use the term “stationary” as opposed
to “static” to refer to the final, time-independent state to which the system settles down.
The reason is that the final metric is stationary but not static. The physical reason for this
is that the dtdz off-diagonal terms in the final metric do not vanish. As a consequence,
the final state is time-independent but not time-reversal invariant (although it is invariant
under the simultaneous sign reversal of both ¢ and z). The fact that this is a true property
of the solution and not just a consequence of our metric ansatz follows from the fact that
the timelike Killing vector of our solution is not hypersurface-orthogonal. Interestingly,
the g, component of the final-state metric falls off quickly enough near the AdS boundary
so that there is no energy flux in the z-direction. In other words, the one-point function
of the T! component of the boundary stress tensor vanishes identically. As a consequence,
at the level of one-point functions the final state on the gauge theory side looks not only
stationary but static. Since hydrodynamics is an effective theory for one-point functions,
in the next section we will speak of a (hydro)static final state. However, it must be kept in
mind that the full microscopic state in the gauge theory is only stationary, since n-point
functions with n > 1 would be sensitive to the properties of the dual metric deep in the
bulk and hence would reveal the lack of staticity.



4 Hydrostatic final state

Previous holographic studies have established that hydrodynamics can describe the evolu-
tion of the stress tensor in the presence of large gradients. Here we investigate whether it
can also describe the static inhomogeneous configuration at the endpoint of the spinodal
instability.

In the hydrodynamic approximation the stress tensor is expanded in spatial gradients
in the local fluid rest frame. Up to second order, the constitutive relations are

T;}ngd = T;ij,?/eal —Nopv — CH Ap,y + H/(EV) (41)

where, in the fluid rest frame, T /i?,eal = Diag{€, Poq(€)}, Peq(€) is the equilibrium pressure
of the homogeneous states shown in figure 1, 0, and II are the shear and bulk stresses,
and A, is the projector onto the spatial directions. The tensor H,(EV) contains all the
second-order terms. In a non-conformal theory this tensor contains thirteen £-dependent
second-order transport coefficients and its explicit expression may be found in [42]. A
subset of these coefficients for the model of [34] has been computed in [43].

In a static configuration the fluid three-velocity field is identically zero, the stress tensor
is diagonal, both o, and II vanish, and the leading gradient corrections are those in H,(f,,)
This tensor also simplifies since only two independent second-order terms survive in this

limit. In the Landau frame, the constitutive relations reduce to

PP = Pog(€) + L (€)(0:6)* + fL(E)(D2€), (4.2)
PP = Pug(€) + o1(€)(0:6)% + fr(€)(92E) .

The statement that hydrodynamics describes the final states is the statement that the cor-
responding pressures are given by these equations with second-order transport coefficients
cr,7(€) and fi, 7(£) that depend on the local energy density® but not on any other details
of the final states. We have verified this state independence by varying both the average
energy densities within the range shown in figure 1 and the length of the circle L.
Equivalently, a hydrodynamic description of the final states means that, once cg, 7(€)
and fi, 7(£) have been extracted from a given state (or computed microscopically), they
can be used to predict the pressures of a different state given its energy density profile. This
is illustrated in figure 5, where we compare the true pressures obtained from the gravity
side for the end state of figure 2 with the hydrodynamic predictions (4.2) and (4.3) based
on coefficients extracted from a different state. It is remarkable that hydrodynamics works
despite the fact that the second-order terms in these equations are as large as the equilib-
rium pressure, as can be seen in the figure from the difference between the continuous gray
curve and the true pressures. This is particularly dramatic for the longitudinal pressure,
Pr,, which must be z-independent since, in a static state, conservation of the stress tensor
reduces to 9,7%* = 0. While the equilibrium contribution to Py, inherits z dependence from
the energy density, this modulation is precisely compensated by the second-order contri-
bution. We conclude that the second-order gradients sustain the inhomogeneous state.

3They can be expressed as linear combinations of the coefficients 7.7, Tr1¢, A4 and &4 identified in [42].
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Figure 5. (Top) Pressures of the end state of figure 2. The true pressures deviate significantly from
the Peq but are in excellent agreement with the hydrodynamic predictions (4.2)—(4.3). (Bottom)
Zoom-in plot of P, and difference between the true pressures and the hydrodynamic predictions.
Note the different scales in the top and bottom plots.

Taking the applicability of hydrodynamics one step further, we can use it to predict all
other static, inhomogeneous configurations.* Time independence implies that P, must be
constant, which in the hydrodynamic approximation reduces to a second-order, non-linear
differential equation for £(z) via eq. (4.2). This depends on two integration constants that
can be traded for the length of the circle (more precisely, the size of the domains) and the
average energy density. Once £(z) is known Pr is predicted by eq. (4.3).

4Unless the second-order approximation breaks down for gradients even larger than those that we have

considered.
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Figure 6. Time evolution of the pressures at Az = 0, in units of A*/10%. P4 denotes the
hydrodynamic pressure with only first-order terms included, whereas P™9 includes these plus the
second-order terms of egs. (4.2) and eq. (4.3).

5 Hydrodynamic evolution

The second-order coefficients that we have extracted also control the dynamical evolution of
the instability. However, unlike in the stationary final configuration, during the dynamical
evolution there are non-zero momentum fluxes, leading to a small but non-vanishing three-
velocity field. To approximate the full time evolution by hydrodynamics it is thus necessary
to include the first-order shear and bulk tensor contributions in eq. (4.1). Similarly, while
the systems evolves there are additional second-order gradients beyond those considered
in eqgs. (4.2) and (4.3). However, these additional second-order terms are quadratic in the
velocity field and can be consistently neglected.

In figure 6 we show the time evolution of the pressures at z A = 0. The very early time
behavior is the exponential decay of the quasi-normal modes (QNM) that are excited by the
perturbation that we introduce to trigger the instability. After this short time, the predic-
tions of second-order hydrodynamics match the true pressures. Second-order terms become
increasingly important as the instability saturates, where the first-order approximation, let
alone the equilibrium pressure, fails to predict the true pressures while the second-order
approximation continues to do so accurately. We conclude that hydrodynamics with large
second-order gradients describes the evolution and the saturation of the spinodal instability.

6 Discussion

We have uncovered a new example of the applicability of hydrodynamics to systems with
large gradients. As in other known examples, part of the reason behind this success is the
relaxation of the non-hydrodynamic QNMs at the relevant time scales of the evolution, as



in the early transient behaviour observed in figure 6. The analysis of the exponential decay
of these modes reveals that this process occurs over a time I'qnm ~ el with ¢ ~ 3.4,
consistent with [44]. In contrast, for the unstable hydrodynamic mode, assuming ¢/n ~ 1
and /s = 1/4x, eq. (2.3) yields the typical growth rate I' ~ |cs|* T, which in our case
is suppressed with respect to I'qnam by the small value of |cs|2 ~ 0.03. Although this
argument may explain why hydrodynamics provides a good description at intermediate
times, once the QNMs have decayed, it remains surprising that it also describes the late-
time evolution and the final state, where the spatial gradients are large. Moreover, it
suggests that it would be interesting to explore other values of the parameter ¢j; for which
the first-order transition becomes stronger and |cs| can become of order unity. Our static
inhomogeneous configurations do not describe the separation of the system into two stable
phases. For example, the maxima of the end state of figure 2 do not lie on the green
stable branch but on the red unstable branch of figure 1. Presumably the reason is that,
if the available average energy density is small, the cost of the necessary gradients for the
peaks to reach the green stable branch makes the corresponding configuration disfavored.
Similar considerations seem to be responsible for the fact that the final state of figure 2
exhibits three identical domains. We have found another static configuration with five
peaks which is also well described by hydrodynamics but whose entropy is smaller than
that of the three-peak state. Moreover, we have studied the dynamics of the system when
perturbed by an n = 1 mode instead of by an n = 3 mode. Despite the fact that we have
followed the evolution for very long times we have found that this configuration does not
seem to settle down to a stationary state; nevertheless, we have observed that throughout
its non-linear evolution it develops a second peak. This suggest that a phase separated
configuration that naively one would expect to reach by starting with the n = 1 mode may
simply not exist for the average energy density and the box size that we have considered.
A logical possibility compatible with all the above is therefore that, under these conditions,
the three-peak configuration that we have presented is the thermodynamically preferred
state. We emphasize, however, that establishing this definitively would require comparing
the entropies of all possible inhomogeneous states of the system with the same average
energy density and box size, which is certainly beyond the scope of this paper.

We suspect that the reason why the phase-separated configuration is seemingly not
allowed for the box size that we have considered is the fact that the two stable phases in
our phase diagram in figure 1 differ by several orders of magnitude. This suggests that, in
order to realise the phase-separated configuration, one may need a much larger box.

As pointed out above, from the gravity viewpoint the gauge theory spinodal instability
translates into an instability of the dual black brane. This is similar to the Gregory-
Laflamme instability of a black string in five-dimensional flat space [30] in that it is a
long wavelength instability associated to the sound mode of the system that appears below
a certain mass or energy density. However, there is also one crucial dissimilarity that
makes the time evolution and the final state of our system and those of a black string [45]
completely different. This is the fact that the black string is unstable for any mass density
below a certain critical value, whereas in our case the black brane is only unstable in a
certain energy band (the red dashed curve in figure 1). In the case of the black string, at



intermediate stages in the evolution the horizon can be described as a sequence of three-
dimensional spherical black holes joined by black string segments. Since these segments
are themselves subject to a Gregory-Laflamme instability, the evolution results in a self-
similar cascade, where ever-smaller satellite black holes form connected by ever-thinner
string segments. In contrast, in our case this evolution stops (roughly speaking) once the
energy density at a certain point is low enough to lie in the stable region of the phase
diagram, i.e. below the dashed red curve in figure 1.
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