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1 Introduction

Physical systems with some stochastic or chaotic properties have some randomness in

the setup of the fundamental hamiltonian, which could be effectively simulated in the

context of random matrix theory. When choosing an ensemble from random matrix theory

for a chaotic hamiltonian, we often need to consider the symmetries in the dynamics of

the related physical system. The choice of standard matrix ensembles from symmetries,

historically comes from the invention of Dyson [1], which is called three-fold way when

classifying Gaussian Unitary Ensemble (GUE), the Gaussian Orthogonal Ensemble (GOE),

and the Gaussian Symplectic Ensemble (GSE). For more general symmetry discussion of

interaction systems, the Altland-Zirnbauer theory gives a more complete description as a

ten-fold classification [2, 3]. In the practical usage, one of the most celebrated works would

be the classification of interaction inside topological insulators and topological phases in a

ten-fold way [4, 5].
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In the recent study, the rising interests of studies on Sachdev-Ye-Kitaev (SYK) model

gives another profound application in the random matrix theory classification. SYK

model [6–10] is a microscopic quantum hamiltonian with random Gaussian non-local cou-

plings among majonara fermions. As is maximally chaotic and nearly conformal, this model

could be treated as a holographic dual of quantum black hole with AdS2 horizon through

the (near) AdS/CFT correspondence [11–20]. In the recent research people have also

discussed several generalizations of the SYK model [21–24], such as higher dimensional

generalizations and supersymmetric constraints. Some other related issues and similar

models are discussed in [25–53]. In the recent discussions, people have discovered that the

SYK hamiltonian has a clear correspondence with the categories of the three fold standard

Dyson ensembles, unitary, orthogonal and sympletic ensembles, in the random matrix the-

ory [54–57]. In the recent work, [56, 57], it is understood that the time-dependent quantum

dynamics of the temperature-dependent spectral form factor, namely, the combinations of

partition functions with a special analytic continuation in SYK model, is computable in the

late time by form factors in the random matrix theory with the same analytic continuation,

as a probe of the discrete nature of the energy spectrum in a quantum black hole, and also

a solid confirmation on the three-fold classification [57].

In the route towards Dyson’s classification, one only considers the set of simple unitary

or anti-unitary operators as symmetries when commuting or anticomuting with the hamil-

tonian. An interesting question would be, what is the influence of supersymmetry, the sym-

metry between fermions and bosons in the spectrum, in the classification of symmetry class?

As is illuminated by research in the past, supersymmetry [58] has several crucial influ-

ences in the study of disorder system and statistical physics [59], and could be emergent

from condensed matter theory models [60]. Originating from particle physics, supersymme-

try will enlarge the global symmetry group in the theory, has fruitful algebras and strong

mathematical power used in several models in quantum mechanics and quantum field the-

ory, and is extremely useful to simplify and clarify classical or quantized theories. In the

recent study of SYK model, the supersymmetric generalization for the original SYK has

been discussed in detail in [24], which shows several different behaviors through super-

symmetric extensions. This model might give some implications in the quantum gravity

structure of black hole in two dimension in a supersymmetric theory, and also a related con-

jecture in [57] for spectral form factor and correlation functions in super Yang-Mills theory.

In order to explore the supersymmetric constraints on the random matrix theory clas-

sification, in this paper we will study the symmetry classification and random matrix

behavior of the N = 1 supersymmetric extension of SYK model by Fu-Gaiotto-Maldacena-

Sachdev’s prescription [24]. The effect of supersymmetry in the symmetry classification

could be summarized in the following aspects,

• Supersymmetry will cause the hamiltonian to show a quadratic expression. Namely,

we could write H as the square of Q. This condition will greatly change the distribu-

tion of the eigenvalues. From random matrix language [61], if Q is a Gaussian random

matrix, then H should be in a Wishart-Laguerre random matrix, with the eigenvalue

distribution changing from Wigner’s semi-circle to the Marchenko-Pastur distribu-
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tion. In another sense, the quadratic structure will fold the eigenvalues of Q and

cause a positivity condition for all eigenvalues. Namely, if Q has the eigenvalue dis-

tribution that eigenvalues come in pair with positive and negative signs, the squaring

Q will cause larger degeneracies and a folded structure in eigenvalues of energy. More

over, the coupling degree might be changed when considering Q instead of H. For

instance, in the N = 1 extended SYK model, Q is a non-local three point coupling,

which is not even. This will change the previous classification in the hamiltonian

based on the representation of Clifford algebra from mathematical point of view.

• We find the Witten index or Witten parity operator (−1)F , which is well-known

as a criterion for supersymmetry breaking [58, 62–64], is crucial in classifying the

symmetry class for supercharge Q. Some evidence of this point also could be found

in some other models or setups. For instance, Witten parity is the Klein operator

which separates the bosonic and fermionic sectors in the N = 2 supersymmetric sys-

tems [65, 66]. [67] provides a more nontrivial example, where the odd parity operators

are used to move states along a chain of different fermion sectors. Reversely, in some

systems where one can define a graded algebra, Klein operator serves as a key factor

in realizing supersymmetry, which is helpful in models of bosonization and higher spin

theories, etc. [68–71]. For example, [70] constructs the bosonized Witten supersym-

metric quantum mechanics by realizing the Klein operator as a parity operator. [71]

realize a Bose-Fermi transformation with the help of the deformed Heisenberg algebra

which involves a Klein operator. Another interesting application of Witten operator

is [72], where the author argues that incorporating the Witten operator is crucial

in some computation in supersymmetric systems with finite temperature. In the

supersymmetric SYK model we are considering, Witten parity and the anti-unitary

operator together become a new anti-unitary operator, which will significantly en-

large the set of symmetries in the hamiltonian, and change the eight-fold story for

supercharge Q and hamiltonian H.

These aspects will be investigated in a clearer and more detailed way in the paper.

This paper will be organized as the following. In section 2 we will review the model

construction and thermodynamics of SYK model and its supersymmetric extensions. In

section 3 we will discuss the random matrix classification for models, especially supersym-

metric extensions of the SYK model. In section 4 we will present our numerical confirmation

for symmetry classifications from the exact diagonalization, including the computation of

the density of states and spectral form factors. In section 5, we will arrive at a conclusion

and discuss the directions for future works. In the appendix, we will review some knowl-

edge to make this paper self-contained, including basics on Altland-Zirnbauer theory and

a calculation on the random matrix theory measure.

2 Introduction on models

In this paper, we will mostly focus on SYK models and their extensions. Thus before the

main investigation, we will provide a simple introduction on the necessary knowledge of

related models to be self-contained.
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2.1 The SYK model

In this part, we will simply review the SYK model mainly following [15]. The SYK model

is a microscopic model with some properties of quantum black hole. The hamiltonian1 is

given by

H =
∑

i<j<k<l

Jijklψ
iψjψkψl (2.3)

where ψi are Majorana fermions and they are coupled by the four point random coupling

with Gaussian distribution

〈Jijkl〉 = 0
〈
J2
ijkl

〉
=

6J2
SYK

N3
=

12J 2
SYK

N3
(2.4)

where JSYK and JSYK are positive constants, and JSYK =
√

2JSYK. The large N partition

function is given by

Z(β) ∼ exp

(
−βE0 +Ns0 +

cN

2β

)
(2.5)

where E0 is the total ground state energy proportional to N and it is roughly E0 =

−0.04N [57]. s0 is the ground state entropy contributed from one fermion, and one can

estimate it theoretically [15],

s0 =
G

2π
+

log 2

8
= 0.2324 (2.6)

where G is the Catalan number. c is the specific heat, which could be computed by

c =
4π2αS
JSYK

=
0.3959

JSYK
(2.7)

and αS = 0.0071 is a positive constant. This contribution c/β is from the Schwarzian, the

quantum fluctuation near the saddle point of the effective action in the SYK model. The

Schwarzian partition function is

ZSch(β) ∼
∫
Dτ(u) exp

(
− πNαS
βJSYK

∫ 2π

0
du

(
τ ′′2

τ ′2
− τ ′2

))
(2.8)

where the path integral is taken for all possible reparametrizations τ(u) of the thermal circle

in different equivalent classes of the SL(2,R) symmetry. The Schwarzian corresponds to

1One could also generalize the SYK model to general q point non-local interactions where q are even

numbers larger than four. The hamiltonian should be

H = iq/2
∑

i1<i2<...<iq

Ji1i2...iqψ
i1ψi2 . . . ψiq (2.1)

where 〈
Ji1i2...iq

〉
= 0

〈
J2
i1i2...iq

〉
=
J2
SYK(q − 1)!

Nq−1
=

2q−1

q

J 2
SYK(q − 1)!

Nq−1
(2.2)

Sometimes we will discuss the general q in this paper but we will mainly focus on the q = 4 case.
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the broken reparametrization symmetry of the SYK model. One can compute the one-loop

correction from the soft mode of the broken symmetry,

ZSch(β) ∼ 1

(βJSYK)3/2
exp

(
cN

2β

)
(2.9)

As a result, one can consider the correction from the soft mode if we consider an external

one-loop factor (βJSYK)−3/2. The density of states could be also predicted by the contour

integral of the partition function as

ρ(E) ∼ exp
(
Ns0 +

√
2cN(E − E0)

)
(2.10)

2.2 N = 1 supersymmetric extension

Following [24], in the supersymmetric extension of SYK model, firstly we define the super-

charge2

Q = i
∑
i<j<k

Cijkψ
iψjψk (2.13)

for Majonara fermions ψi. Cijk is a random tensor with the Gaussian distribution as the

coupling,

〈Cijk〉 = 0
〈
C2
ijk

〉
=

2JN=1

N2
(2.14)

where JN=1 is also a constant with mass dimension one. The square of the supercharge

will give the hamiltonian of the model

H = Ec +
∑

i<j<k<l

Jijklψ
iψjψkψl (2.15)

where

Ec =
1

8

∑
i<j<k

C2
ijk Jijkl = −1

8

∑
a

Ca[ijCkl]a (2.16)

where [· · · ] is the summation of all possible antisymmetric permutations. Besides the

shifted constant Ec, the distribution of Jijkl is different from the original SYK model

because it is not a free variable of Gaussian distribution, which changes the large N behavior

of this model. In the large N limit, the model has an unbroken supersymmetry with a

bosonic superpartner bi. The Lagrangian of this model is given by

L =
∑
i

1

2
ψi∂τψ

i − 1

2
bibi + i

∑
j<k

Cijkb
iψjψk

 (2.17)

2For the generic positive integer q̂ we can also define the N = 1 supersymmetric extension with non-local

interaction of 2q̂ − 2 fermions. The supercharge should be

Q = i
q̂−1
2

∑
i1<i2<...<iq̂

Ci1i2...iq̂ψ
i1ψi2 . . . ψiq̂ (2.11)

where 〈
Ci1i2...iq̂

〉
= 0

〈
C2
i1i2...iq̂

〉
=

(q̂ − 1)!JN=1

N q̂−1
=

2q̂−2(q̂ − 1)!JN=1

qN q̂−1
(2.12)

And q̂ = 3 will recover the case in the main text.
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In this model, the Schwarzian is different from the original SYK model. We also have the

expansion for the large N partition function

Z(β) ∼ exp

(
−βE0 +Ns0 +

cN

2β

)
(2.18)

But the results of E0 and s0 are different (while the specific heat is the same for these two

models). In the large N limit, the supersymmetry is preserved, thus we have the ground

state energy E0 = 0. The zero temperature entropy is given by

s0 =
1

2
log
(

2 cos
π

6

)
=

1

4
log 3 = 0.275 (2.19)

Moreover, the one-loop correction from Schwarzian action is different. As a result of su-

persymmetry constraint, the one-loop factor is (βJN=1)
−1/2

ZSch(β) ∼ 1

(βJN=1)
1/2

eNs0+cN/2β (2.20)

which predicts a different behavior for the density of states

ρ(E) ∼ 1

(EJN=1)1/2
eNs0+2cNE (2.21)

3 Random matrix classification

It is established that SYK model is classified by random matrix theory in that the random

interacting SYK hamiltonian fall into one of the three standard Dyson ensembles in the

eight-fold way [54–57]. It is natural to believe that the supersymmetric extension can also

be described by random matrix theory. To sharpen the argument, we derive the exact

correspondence between each SYK hamiltonian and some random matrix ensembles, in

other words, the eight-fold rule for supersymmetric case. A priori, the supersymmetric SYK

hamiltonian should lead to a different random matrix theory description than the original

case. Superficially, the original SYK theory and its supersymmetric cousin are different

have two major differences, which have been also mentioned in the previous discussions.

• The degeneracy of the two hamiltonian matrices are different. The degeneracy of

supersymmetric SYK model is also investigated by [24], which we derive again using

some different discussion in section 3.2.2. The degeneracy space is enlarged by super-

symmetry. Generally, the energy level distribution of random matrices is sensitive to

the degeneracy and is thus sensitive to the supersymmetric extension.

• Another difference is the apparent positive semidefiniteness of the hamiltonian being

the square of the supercharge. We will see later that the positive constraint leads to

a new eigenvalue distribution different from those of Gaussian ensembles.

Symmetry analysis is crucial in classifying the random matrix statistics of hamiltonian

matrices. [54, 57] argue that the particle-hole symmetry operator determines the class of

– 6 –
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random matrix theory statistics. The random matrix classification dictionary is deter-

mined by the degeneracy and the special relations required by having the symmetry. The

systematic method of random matrix classification is established as the Atland-Zirnbauer

theory [2, 3], reviewed in appendix A. The anti-unitary operators play a central role in the

classifications. The Atland-Zirnbauer also applies to extended ensembles different from the

three standard Dyson ensembles, which we find useful in classifying the supersymmetric

SYK theory. In section 3.1 we derive again the eight-fold way classification of original SYK

hamiltonian using Atland-Zirnbauer theory and find unambiguously the matrix represen-

tations of hamiltonian in each mod eight sectors. We notice that the matrix representation

of hamiltonian takes block diagonal form with each block being a random matrix from a

certain ensemble. This block diagonal form is also found by [54] in a different version.

Naively one would apply the same argument to the supersymmetric hamiltonian, since

it also enjoys the particle-hole symmetry. But this is not the full picture. First, one need to

take into account of hamiltonian being the square of the supercharge and is thus not totally

random. In section 3.2.1 we argue that the supercharge Q has a random matrix description

which falls into one of the extended ensembles. Using the Atland-Zirnbauer theory on Q we

obtain its matrix representation in block diagonal form and use it to determine the matrix

representation of the hamiltonian in section 3.2.2. Second, in order to obtain the correct

classification one needs to consider the full set of symmetry operators. Apparently particle-

hole is not enough since supersymmetry enlarges the SYK degeneracy space. We argue

that the Witten index operator, (−1)F , is crucial in the symmetry analysis of any system

with supersymmetry. Incorporating (−1)F we obtain the full set of symmetry operators.

Finally, the squaring operation, will change the properties of the random matrix theory

distribution of supercharge Q, from Gaussian to Wishart-Laguerre. The quantum mechan-

ics and statistics in supersymmetric SYK models, based on the main investigation in this

paper, might be a non-trivial and compelling example of supersymmetric symmetry class.

3.1 SYK

Now we apply the Altland-Zirnbauer classification theory (see appendix A for some nec-

essary knowledges) to the original SYK model [54–57]. This is accomplished by finding

the symmetry of the theory (and has been already discussed in other works, see [54, 57]).

First, one can change the majonara fermion operators to creation annihilation operators

cα and c̄α by

ψ2α =
cα + c̄α√

2
ψ2α−1 =

i(cα − c̄α)√
2

(3.1)

where α = 1, 2 · · · , Nd = N/2. The fermionic number operator F =
∑

α c̄
αcα divides the

total Hilbert space with two different charge parities. One can define the particle-hole

operator

P = K

Nd∏
α=1

(cα + c̄α) (3.2)

– 7 –
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where K is the complex conjugate operator (cα and c̄α are real). The operation of P on

fermionic operators is given by

PcαP = ηcα P c̄αP = ηc̄α PψiP = ηψi (3.3)

where

η = (−1)[3Nd/2−1] (3.4)

From these commutation relation we can show that

[H,P ] = 0 (3.5)

To compare with the Altland-Zirnbauer classification, we need to know the square of P

and this is done by direct calculation

P 2 = (−1)[Nd/2] =


+1 N mod 8 = 0

+1 N mod 8 = 2

−1 N mod 8 = 4

−1 N mod 8 = 6

(3.6)

Now we discover that P can be treated as a T+ operator and it completely determines

the class of the hamiltonian. Before we list the result, it should be mentioned that the

degeneracy of hamiltonian can be seen from the properties of P :

• N mod 8 = 2 or 6:

the symmetry P exchanges the parity sector of a state, so there is a two-fold degen-

eracy. However, there is no further symmetries caused by P in each block, Thus it is

given as a combination of two GUEs, where two copies of GUEs are degenerated.

• N mod 8 = 4:

the symmetry P is a parity-invariant mapping and P 2 = −1, so there is a two-fold

degeneracy. There is no further independent symmetries. From Altland-Zirnbauer

theory we know that in each parity block there is a GSE matrix. Also, where two

copies of GSEs are independent.

• N mod 8 = 0:

the symmetry P is a parity-invariant mapping and P 2 = 1. There is no further

symmetries so the degeneracy is one. From Altland-Zirnbauer theory we know that in

each parity block there is a GOE matrix. Also, two copies of GOEs are independent.

We summarize these information in the following table as a summary of SYK model,
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N mod 8 Deg. RMT Block Type Level stat.

0 1 GOE

(
A 0

0 B

)
A,B real symmetric R GOE

2 2 GUE

(
A 0

0 Ā

)
A Hermitian C GUE

4 2 GSE

(
A 0

0 B

)
A,B Hermitian quaternion H GSE

6 2 GUE

(
A 0

0 Ā

)
A Hermitian C GUE

where the level statistics means some typical numerical evidence of random matrix, for

instance, Wigner surmise, number variance, or ∆3 statistics, etc. Although the SYK hamil-

tonian can be decomposed as two different parity sectors, we can treat them as standard

Dyson random matrix as a whole because these two sectors are either independent or de-

generated (The only subtleties will be investigating the level statistics when considering

two independent sectors, where two mixed sectors will show a many-body localized phase

statistics instead of a chaotic phase statistics, which has been discussed originally in [54].)

In the following we will also numerically test the random matrix behavior, and based on

the numerical testing range of N we can summarize the following table for practical usage.

N 10 12 14 16 18 20 22 24 26 28

Ensemble GUE GSE GUE GOE GUE GSE GUE GOE GUE GSE

3.2 N = 1 supersymmetric classification

Supersymmetry algebra is a Z2-graded algebra, where states and operators are subdivided

into two distinct parity sectors. In such an algebra there may exist a Klein operator [73]

which anti-commutes with any operators with odd parity and commutes with any operators

with even parity. The Klein operator of supersymmetry algebra is naturally the Witten

index operator.

Witten index might plays a role in the symmetric structure and block decomposition

in the supersymmetric quantum mechanics. A simple example is [73], in N = 2 supersym-

metry algebra, Define W be the Witten operator. The Witten operator has eigenvalue ±1

and separates the Hilbert space into two parity sectors

H = H+ ⊕H− . (3.7)

We can also define projection operators P± = 1/2(1 ±W ). In the parity representation

the operators take 2× 2 block diagonal form

W =

(
1 0

0 −1

)
, P+ =

(
1 0

0 0

)
, P− =

(
0 0

0 1

)
. (3.8)
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Because of Q2 = 0 and {Q,W} = 0 the complex supercharges are necessarily of the form

Q =

(
0 A

0 0

)
, Q† =

(
0 0

A† 0

)
, (3.9)

which imply

Q1 =
1√
2

(
0 A

A† 0

)
, Q2 =

i√
2

(
0 −A
A† 0

)
. (3.10)

In the above equation, A takes H− → H+ and its adjoint A† takes H+ → H−. The

supersymmetric hamiltonian becomes diagonal in this representation

H =

(
AA† 0

0 A†A

)
. (3.11)

In this construction, the Hilbert space is divided by Witten parity operator. The hamilto-

nian is shown to take the block diagonal positive semidefinite form without even referring to

the explicit construction of the hamiltonian. It is remarkable that the above computation

is very similar to our work from section 3.2.1 to 3.2.2. Applications of this property can

be found in [65, 66]. They describe a supersymmetric Quantum Mechanics system where

fermions scatter off domain walls. The supercharges are defined as a differential operator

and its adjoint. From (3.11) the number of ground states of each Z2 sector is simply the

kernel of the differential operator and the Witten index is computed. A more non-trivial

example is provided by [67]. In this work, the Hilbert space is divided into an N fermions

Fock space. Thus the Hamiltonian can be expressed as the direct sum of all fermion sectors.

The ladder operators Q and Q† are odd operators and move states between different sectors.

The argument can also work in reversive way. Hidden supersymmetry can be found in

a bosonic system such as a Calogero-like model [74], a system of one dimensional Harmonic

oscillators with inverse square interactions and extensions. What makes supersymmetry

manifest is the Klein operator. The model and its various extensions are studied in [68–

71, 75]. A trivial simple Harmonic operator has algebra [a−, a+] = 1. The algebra describes

a bosonic system. Z2 grading is realized by introducing an operator K = cos(πa+a−). The

new operator anti-commutes with a− and a+ thus is a Klein operator. Based on the

Klein operator one can construct the projection operators on both sectors and also the

supercharge. In this way the simple harmonic oscillator is “promoted” to have supersym-

metry. A generalization to simple hamornic oscillator is the deformed Heisenberg algebra,

[a−, a+] = 1 + νK. The corresponding system is an N = 2 supersymmetric extension of

the 2-body Calogero. The model is also used in considerably simplifying Calogero model.

These evidences strongly support the argument that supersymmetry will change the

classification of symmetry class in quantum mechanical models. In the following work, we

will show that supersymmetric SYK model symmetry class can be explicitly constructed

and change the classification of random matrix theory ensembles.
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3.2.1 Supercharge in N = 1 SYK

In theN = 1 supersymmetric model, it should be more convenient to consider the spectrum

of Q instead of H, because H is the square of Q. Although Q is not a hamiltonian, since we

only care about its matrix type, and the Altland-Zirnbauer theory is purly mathematical,

Q can be treated as a hamiltonian. Similiar to the original SYK model, we are concerned

about the symmtry of the theory. We notice that the Witten index (−1)F is

(−1)F = (−2i)Nd
N∏
i=1

ψi =

Nd∏
α=1

(1− 2c̄αcα) (3.12)

which is the fermionic parity operator up to a sign (−1)Nd . Witten index and particle-hole

symmetry have the following commutation relation:

P (−1)F = (−1)Nd(−1)FP (3.13)

Now we define a new operator, R = P (−1)F . It has a compact form

R = K

Nd∏
α=1

(cα − c̄α) (3.14)

R and P are both anti-unitary symmetries of Q, with commutation relations:

N mod 8 P R

0 [P,Q] = 0 {R,Q} = 0

2 {P,Q} = 0 [R,Q] = 0

4 [P,Q] = 0 {R,Q} = 0

6 {P,Q} = 0 [R,Q] = 0

and squares

P 2 = (−1)[Nd/2], R2 = (−1)[Nd/2]+Nd (3.15)

Thus, in different values of N , the two operators P and R behave different and replace the

role in T+ and T− in the Altland-Zirnbauer theory. Now we can list the classification for

the matrix ensemble of N = 1 supersymmetric SYK model

N mod 8 T 2
+ T 2

− Λ2 Cartan Label Type

0 P 2 = 1 R2 = 1 1 BDI (chGOE) R
2 R2 = −1 P 2 = 1 1 DIII (BdG) H
4 P 2 = −1 R2 = −1 1 CII (chGSE) H
6 R2 = 1 P 2 = −1 1 CI (BdG) R

One can also write down the block representation of Q. Notice that the basis of block

decomposition is based on the ±1 eigenspaces of anti-unitary operators, namely, it is de-

composed based on the parity.
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3.2.2 Hamiltonian in N = 1 theory

Now we already obtain the random matrix type of the supercharge. Thus the structure of

the square of Q could be considered case by case. Before that, we can notice one general

property, that unlike the GOE or GSE group in SYK, in the supersymmetric model there is

a supercharge Q contains odd number of Dirac fermions as a symmetry of H, thus it always

changes the parity. Thus the spectrum of H is always decomposed to two degenerated

blocks. Another general property is that the spectrum of H is always positive because Q is

Hermitian and H = Q2 > 0. Thus the random matrix class of N = 1 will be some classes

up to positivity constraint.

• N = 0 mod 8: in this case Q is a BDI (chGOE) matrix. Thus we can write down the

block decomposition as

Q =

(
0 A

AT 0

)
(3.16)

where A is a real matrix. Thus the hamiltonian is obtained by

H =

(
AAT 0

0 ATA

)
(3.17)

Since AAT and ATA share the same eigenvalues ({R,Q} = 0 thus R flips the sign of

eigenvalues of Q, but after squaring these two eigenvalues with opposite signatures

become the same), and there is no internal structure in A (in this case P is a symmetry

of Q, [P,Q] = 0, but P 2 = 1, thus P cannot provide any further degeneracy), we

obtain that H has a two-fold degeneracy. Moreover, because AAT and ATA are both

real positive-definite symmetric matrix without any further structure, it is nothing

but the subset of GOE symmetry class with positivity condition. These two sectors

will be exactly degenerated.

• N = 4 mod 8: in this case Q is a CII (chGSE) matrix. Thus we can write down the

block decomposition as

Q =

(
0 B

B† 0

)
(3.18)

where B is a quaternion Hermitian matrix. Thus after squaring we obtain

H =

(
BB† 0

0 B†B

)
(3.19)

Since BB† and B†B share the same eigenvalues, and each block has a natural two-

fold degeneracy by the property of quaternion (Physically it is because {R,Q} = 0

thus R flips the sign of eigenvalues of Q, but after squaring these two eigenvalues

with opposite signatures become the same. Also, in this case P is a symmetry of

Q, [P,Q] = 0, and P 2 = −1), we get a four-fold degeneracy in the spectrum of H.
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Because BB† and B†B are quaternion Hermitian matrices when B is quaternion Her-

mitian,3 BB† = B†B are both quaternion Hermitian positive-definite matrix without

any further structure. As a result, it is nothing but the subset of GSE symmetry

class with positivity condition. These two sectors will be exactly degenerated.

• N = 2 mod 8: in this case Q is a DIII (BdG) matrix. Thus we can write down the

block decomposition as

Q =

(
0 Y

−Ȳ 0

)
(3.20)

where Y is a complex, skew-symmetric matrix. Thus after squaring we obtain

H =

(
−Y Ȳ 0

0 −Ȳ Y

)
(3.21)

Firstly let us take a look at the degeneracy. Since −Y Ȳ and −Ȳ Y share the

same eigenvalues and each block has a natural two-fold degeneracy because in skew-

symmetric matrix the eigenvalues come in pair and after squaring pairs coincide

(Physically it is because {P,Q} = 0 thus P flips the sign of eigenvalues of Q, but

after squaring these two eigenvalues with opposite signatures become the same. Also,

in this case R is a symmetry of Q, [R,Q] = 0, and R2 = −1), we obtain a four-fold

spectrum of H.

Now take the operator Q as a whole, from the previous discussion, we may note that

it is quaternion Hermitian because it could be easily verified that QΩ = ΩQ and

Q† = Q. Thus Q2 = H must be a quaternion Hermitian matrix (there is another

way to see that, which is taking the block decomposition by another definition of

quarternion Hermitian, squaring it and check the definition again). Moreover, H has

a two-fold degenerated parity decomposition thus in each part it is also a quarternion

Hermitian matrix. Because in the total matrix it is a subset of GSE symmetry class

(with positivity constraint), in each degenerated parity sector it is also in a subset of

positive definite GSE symmetry class (one can see this by applying the total measure

in the two different, degenerated part).

3We say a matrix M is a quaternion Hermitian matrix if and only if

M =

(
A+ iB C + iD

−C + iD A− iB

)

for some real A,B,C,D in a basis, and A is symmetric while B,C,D is skew-symmetric. There is an

equivalent definition that, defining

Ω =

(
0 1

−1 0

)
thus M is a quaternion Hermitian matrix if and only if M† = M and MΩ = ΩM . Thus it is shown directly

that if M is quaternion Hermitian then (MM†)† = MM† and MM†Ω = M(MΩ) = MΩM = ΩM2 =

ΩMM†, thus MM† = M2 = M†M is still a quaternion Hermitian matrix.
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• N = 6 mod 8: in this case Q is a CI (BdG) matrix. Thus we can write down the

block decomposition as

Q =

(
0 Z

Z̄ 0

)
(3.22)

where Z is a complex symmetric matrix. Thus after squaring we obtain

H =

(
ZZ̄ 0

0 Z̄Z

)
(3.23)

Since ZZ̄ and Z̄Z share the same eigenvalues ({P,Q} = 0 thus P flips the sign of

eigenvalues of Q, but after squaring these two eigenvalues with opposite signatures

become the same), and there is no internal structure in Z (in this case R is a symmetry

of Q, [R,Q] = 0, but R2 = 1, thus R cannot provide any further degeneracy), we

obtain that H has a two-fold degeneracy.

Similar with the previous N mod 8 = 2 case, we can take the operator Q and H as the

whole matrices instead of blocks. For H we notice that the transposing operations

make the exchange of these two sectors. However, the symmetric matrix statement

is basis-dependent. Formally, similar with the quarternion Hermitian case, we can

extend the definition of symmetric matrix by the following. Define

Ω′ =

(
0 1

1 0

)
(3.24)

and we could see that a matrix M is symmetric real (or symmetric Hermitian) if

and only if M † = M and MTΩ′ = Ω′M (where Ω′ means the basis changing over

two sectors). We can check easily that Q satisfies this condition, thus Q2 = H must

satisfy. Thus we conclude that the total matrix H in a subset of GOE symmetry

class (with positivity constraint).

Although from symmetric point of view, the hamiltonian of N = 1 model should be

classified in the subsets of standard Dyson ensembles. But what the subset exactly is?

In fact, the special structure of the squaring from Q to H will change the distribution of

the eigenvalues from Gaussian to Wishart-Laguerre [61, 76, 77] (Although there are some

differences in the powers of terms in the eigenvalue distributions.) We will roughly called

them as LOE/LUE/LSE, as has been used in the random matrix theory research. Some

more details will be summarized in the appendix B.

However, the difference in the details of the distribution, beyond numerical tests of the

distribution function of the one point-eigenvalues, will not be important in some physical

tests, such as spectral form factors and level statistics (eg. Wigner surmise). The reason

could be given as follows. From the supercharge point of view, because Q is in the Altland-

Zirnbauer distribution with non-trivial α̃ (see appendix B), the squaring operation will not

change the level statistics such as Wigner surmise and spectral form factors (which could

also be verified by numerics later). From the physical point, as is explained in [54], the
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details of distribution (even if not Gaussian), cannot change the universal properties of

symmetries.

Finally, we can summarize these statements in the following classification table (the

degeneracies have been already calculated in [24]),

N mod 8 Deg. RMT Block Type Level stat.

0 2 LOE

(
AAT 0

0 ATA

)
A real R GOE

2 4 LSE

(
−Y Ȳ 0

0 −Ȳ Y

)
Y complex skew-symmetric H GSE

4 4 LSE

(
BB† 0

0 B†B

)
B Hermitian quaternion H GSE

6 2 LOE

(
ZZ̄ 0

0 Z̄Z

)
Z complex symmetric R GOE

For our further practical computational usage, we may summarize the following table for

different Ns in the supersymmetric SYK random matrix correspondence. As we show in the

next section, for N ≥ 14, these theoretical consideration perfectly fits the level statistics.

N 10 12 14 16 18 20 22 24 26 28

RMT LSE LSE LOE LOE LSE LSE LOE LOE LSE LSE

Universal Stat. GSE GSE GOE GOE GSE GSE GOE GOE GSE GSE

4 Exact diagonalization

In this part, we will present the main results from numerics to test the random matrix

theory classification in the previous investigations. One can diagonalize the hamiltonian

exactly with the representation of the Clifford algebra by the following. For operators

acting on Nd = N/2 qubits, one can define

γ2ζ−1 =
1√
2

Nd−1∏
p=1

σzp

σxNd

γ2ζ =
1√
2

Nd−1∏
p=1

σzp

σyNd (4.1)

where σp means standard Pauli matrices acting on the p-th qubit, tensor producting the

identity matrix on the other parts, and ζ = 1, 2, . . . , Nd. This construction is a represen-

tation of the Clifford algebra

{γa, γb} = δab (4.2)

And one can exactly diagonalize the hamiltonian by replacing the majonara fermions with

gamma matrices to find the energy eigenvalues. Thus, all quantities are computable by

brute force in the energy eigenstate basis.
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Figure 1. The density of states for original SYK model Hamiltonian (left), supersymmetric SYK

Hamiltonian (middle) and SUSY SYK supercharge operators treated as Hamiltonian (right) by

exact diagonalization. Density of states from N = 10 to N = 28 are plotted in colors from light

blue to dark blue. The eigenvalues have been rescaled by E(Q)/NJ while the density of states has

been also rescaled to match the normalization that the integration should be 1.

The main results of the following investigation would be the following. In the density

of supercharge eigenstates and energy eigenstates in the supersymmetric SYK model, the

behavior is quite different, but coincides with our estimations from the random matrix

theory classification: the spectral density of supercharge Q shows clearly the informa-

tion about extended ensembles from Altland-Zirnbauer theory, and the spectral density

of energy H shows a clear Marchenko-Pastur distribution from the statistics of Wishart-

Laguerre. Moreover, because both Q and H both belongs to the universal level statistical

class for GOE, GUE and GSE, the numerics from Wigner surmise and spectral form factor

will show directly these eight-fold features.

4.1 Density of states

The plots for density of states in SYK model and its supersymmetric extension are shown

in figure 1 for comparison. For each realization of random hamiltonian, we compute all

eigenvalues. After collecting large number of samples one can plot the histograms for

all samples as the function ρ(E). For density of states in SYK model, in small N tiny

vibrations are contained, while in the large N the distribution will converge to a Gaussian

distribution besides the small tails. However, in the supersymmetric SYK model the energy

eigenvalue structure is totally different. All energy eigenvalues are larger than zero because

H = Q2 > 0. Because of supersymmetry the lowest energy eigenvalues will approach

zero for large N , and the figure will come to a convergent distribution. The shape of

this distribution matches the eigenvalue distribution of Wishart-Laguerre, which is the

Marchenko-Pastur distribution [78] in the large N limit. For the supercharge matrices, as

N becomes larger the curve acquires a dip at zero, which is a clear feature for extended

ensembles and could match the averaged density of eigenvalues of random matrices in CI,

DIII [3] and chiral [79] ensembles at large N .

For numerical details, we compute N = 10 (40000 samples), N = 12 (25600 samples),

N = 14 (12800 samples), N = 16 (6400 samples), N = 18 (3200 samples), N = 20 (1600

samples), N = 22 (800 samples), N = 24 (400 samples), N = 26 (200 samples), and

N = 28 (100 samples). The results for original SYK model perfectly match the density of

states obtained in previous works (eg. [15, 57]).
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Figure 2. The theoretical Wigner surmises for three different standard ensembles. The lower

(blue), middle (red) and higher (green) curves are corresponding to GOE, GUE and GSE universal

class respectively.

4.2 Wigner surmise

There exists a practical way to test if random matrices from a theory are from some

specific ensembles. For a random realization of the hamiltonian, we have a collection of

energy eigenvalues En. If we arrange them in ascending order En < En+1, we define,

∆En = En − En−1 to be the level spacing, and we compute the ratio for the nearest

neighbourhood spacing as rn = ∆En/∆En+1. For matrices from the standard Dyson

ensemble, the distribution of level spacing ratio satisfies the Wigner-Dyson statistics [80]

(which is called the Wigner surmise)

p(r) =
1

Z

(r + r2)
β̃

(1 + r + r2)1+3β̃/2
(4.3)

for GOE universal class, β̃ = 1, Z = 8/27; for GUE universal class, β̃ = 2, Z = 4π/(81
√

3);

for GSE universal class, β̃ = 4, Z = 4π/(729
√

3) (In fact, these are labels for the field of rep-

resentation. See appendices for more details). Practically we often change r to log r, and the

new distribution after the transformation is P (log r) = rp(r). Standard Wigner surmises

are shown in the figure 2. [54] has computed the nearest-neighbor level spacing distribution

of the SYK model, which perfectly matches the prediction from the eight-fold classification.

What is the story for the N = 1 supersymmetric SYK model? A numerical investi-

gation shows a different correspondence for the eight-fold classification, which is given by

figure 3. One can clearly see the new correspondence in the eight-fold classification for

supersymmetric SYK models, as has been predicted in the previous discussions.

Some comments should be given in this prediction. Firstly, one have some subtleties in

obtaining correct rs. Considering there are two different parities in the SYK hamiltonian

(F mod 2), each group of parity should only appear once in the statistics of rn. For

N mod 8 = 0, 4 in SYK, the particle hole operator P maps each sector to itself, thus if we

take all rn the distribution will be ruined, serving as a many-body-localized distribution
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Figure 3. The nearest-neighbor level spacing distribution for hamiltonian of N = 1 supersymmetric

SYK model for different N . The lower (blue), middle (red) and higher (green) curves are theoretical

predictions of Wigner surmises from GOE, GUE and GSE respectively. The black dashed curves

are distributions for all rs from a large number of samples.

(the Poisson distribution). For N mod 8 = 2, 6 in SYK, the particle hole operator P maps

even and odd parities to each other, and one can take all possible rs in the distribution

because all fermionic parity sectors are degenerated. Similar things are observed for all

even N in the supersymmetric SYK model. As we mentioned before, the reason is that the

supercharge Q is a symmetry of H, which always changes the particle number because it

is an odd-point coupling term. Moreover, the standard ensemble behavior is only observed

for N ≥ 14, and for small enough Ns we have no clear correspondence. Similar things

happen for original SYK model, where the correspondence works only for N ≥ 5, because

there is no thermalization if N is too small [54]. However, the threshold for obtaining a

standard random matrix from N = 1 supersymmetric extension is much larger.

In section 3.2.1, we argued that the supercharge operator Q in N = 1 supersymmetric

SYK theory are also random matrices in some extended ensembles [2, 3]. We compute

the level statistics of Q and compare it with the Wigner surmises of three standard Dyson
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Figure 4. The nearest-neighbour level spacing distribution for the supercharge matrix Q of N = 1

supersymmetric SYK model for different N . The lower (blue), middle (red) and higher (green)

curves are theoretical prediction of Wigner surmises from GOE, GUE and GSE, respectively. The

black dashed curves are distributions for all rs from a large number of samples.

ensembles in cases with different N . The result is presented in figure 4. We see the

level statistics of Q matrices match the same ensembles as the corresponding hamiltonian.

This result confirms the relationship between Q’s random matrix ensemble and that of the

corresponding H. That we do not see extended ensemble in the Q’s level statistics because

the level statistic does not see all the information in the ensembles.

4.3 Spectral form factors

Before presenting the numeric results of spectral form factors, we will review the discrete-

ness of spectrum and the spectral form factor following [57]. For a quantum mechanical

system, the partition function

Z(β) = Tr(e−βH) (4.4)

could be continued as

Z(β, t) = Z(β + it) = Tr(e−βH−iHt) (4.5)
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Figure 5. The spectral form factors g(t), gc(t) and gd(t) in the supersymmetric SYK model with

JN=1 = 1, β = 0, 5, 10 respectively.

The analytically continued partition function Z(β, t) is an important quantity to under-

stand a discrete energy spectrum. Typically, people will compute the time average to

understand the late time behavior, but for Z(β, t), it vibrates near zero at late time and

the time average should be zero. Thus, we often compute
∣∣∣Z(β,t)Z(β)

∣∣∣2. For a discrete energy

eigenvalue spectrum, we have∣∣∣∣Z(β, t)

Z(β)

∣∣∣∣2 =
1

Z(β)2

∑
m,n

e−β(Em+En)ei(Em−En)t (4.6)

It’s hard to say anything general directly for a general spectrum, but one can use the

long-term average
1

T

∫ T

0

∣∣∣∣Z(β, t)

Z(β)

∣∣∣∣2dt =
1

Z(β)2

∑
E

n2Ee
−2βE (4.7)

– 20 –



J
H
E
P
0
6
(
2
0
1
7
)
1
1
1

100 101 102 103 104 105 106

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

t

g(
t)

100 101 102 103 104 105 106

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

t

g
c
(t
)

100 101 102 103 104 105 106

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

t

g
d
(t
)

100 101 102 103 104 105 106

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

t

g(
t)

100 101 102 103 104 105 106

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

t

g
c
(t
)

100 101 102 103 104 105 106

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

t

g
d
(t
)

100 101 102 103 104 105 106

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

t

g(
t)

100 101 102 103 104 105 106

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

t

g
c
(t
)

100 101 102 103 104 105 106

100

10-1

10-2

10-3

10-4

10-5

10-6

10-7

10-8

10-9

t

g
d
(t
)

N = 10 N = 12 N = 14 N = 16 N = 18 N = 20 N = 22 N = 24 N = 26 N = 28

Figure 6. The “spectral form factors” g(t), gc(t) and gd(t) in the supersymmetric SYK model,

treating the supercharge matrix as the Hamiltonian, with JN=1 = 1, β = 0, 5, 10 respectively.

for large enough T (nE means the degeneracy). For a non-degenerated spectrum, it should

have a simple formula

∣∣∣∣Z(β, t)

Z(β)

∣∣∣∣2 =
Z(2β)

Z(β)2
(4.8)

However, for a continuous spectrum, the quantity has vanishing long-term average. Thus,

the quantity should be an important criterion to detect the discreteness. In this paper, we
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will use a similar quantity, which is called the spectral form factor

g(t, β) =
〈Z(β + it)Z(β − it)〉

〈Z(β)〉2

gd(t, β) =
〈Z(β + it)〉 〈Z(β − it)〉

〈Z(β)〉2

gc(t, β) = g(t, β)− gd(t, β) =
〈Z(β + it)Z(β − it)〉 − 〈Z(β + it)〉 〈Z(β − it)〉

〈Z(β)〉2
(4.9)

In the SYK model, these quantities will have similar predictions with the hamiltonian

replaced by random matrix from some specific given Dyson ensembles. For example, for a

given realization M from a random matrix ensemble with large L, we have the analytically

continued partition function

Zrmt(β, t) =
1

Zrmt

∫
dMij exp

(
−L

2
Tr(M2)

)
Tr(e−βM−iMt) (4.10)

where

Zrmt =

∫
dMij exp

(
−L

2
Tr(M2)

)
(4.11)

The properties of spectral form factors given by random matrix theory, grmt(t), have been

studied in [57]. There are three specific periods in grmt(t). In the first period, the spectral

form factor will quickly decay to a minimal until dip time td. Then after a short increasing

(the ramp) towards a plataeu time tp, grmt(t) will arrive at a constant plataeu. This

pattern is extremely similar with SYK model. Theoretically, in the early time (before td),

g(t) should not obtained by grmt(t) because of different initial dependence on energy, while

in the late time these two systems are conjectured to be coincide [57].

With the data of energy eigenvalues one could compute the spectral form factors,

which have been shown in figure 5 for supersymmetric SYK model. We perform the

calculation for three different functions g(t), gd(t) and gc(t) with β = 0, 5, 10 and several Ns.

Clear patterns similar with random matrix theory predictions are shown in these numerical

simulations. One could directly see the dip, ramp and plateau periods. For small βs there

exist some small vibrations in the early time, while for large β this effect disappears. The

function gd is strongly vibrating because we have only finite number of samples. One could

believe that the infinite number of samples will cancel the noisy randomness of the curves.

A clear eight-fold correspondence has been shown in the spectral form factor. Near the

plateau time of g(t) one should expect roughly a smooth corner for GOE-type, a kink for

GUE-type, and a sharp peak for GSE-type. Thus, we observe roughly the smooth corners

for N = 14, 16, 22, 24, while the sharp peaks for N = 18, 20, 26, 28 (although the peaks look

not very clear because of finite sample size). For N = 10, 12, as shown in figure 3 there is

no clear random matrix correspondence because N is too small, thus we only observe some

vibrations near the plateau time.

We also perform a similar test on the supercharge Q, plotted in figure 6. In section 4.2,

we numerically tested the nearest neighbour level statistics of Q which matches perfectly

the statistics of the corresponding H. The spectral form factors of Q are slightly different

from those of H, yet they show exactly the same eight fold behavior.
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Figure 7. The dip time td for supersymmetric SYK model. In the left figure, we evaluate three

different temperatures and compute the dip time with respect to N , where the error bar is given

as the standard deviation when evaluating td because of large noise is around the minimal point of

g(t). In the middle figure we fit the dip time by polynomials and exponential functions for td(N) at

the temperature β = 5. In the right figure we separately fit the dip time for two different random

matrix classes with the same temperature β = 5 and the same fitting functions.
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Figure 8. The plateau time tp for supersymmetric SYK model. We choose three different tem-

peratures and evaluate the plateau time with respect to N , and we use the exponential function to

fit tp(N). In the left figure we use all Ns, while in the right figure we separately fit two different

random matrix classes.

4.4 Dip time, plateau time and plateau height

More quantitative data could be read off from the spectral form factors. In figure 7, figure 8

and figure 9 we present our numerical results for dip time td of g(t), plateau time tp of g(t),

and plateau height gd of gc(t) respectively. For numerical technics, we choose the linear

fitting in the ramp period, and the plateau is fitted by a straight line parallel to the time

axis. The dip time is read off as the averaged minimal point at the end of the dip period,

and the error bar could be computed as the standard deviation.

It is claimed in [57] that polynomial and exponential fitting could be used to interpret

the dip time as a function of N with fixed temperature. We apply the same method to the

supersymmetric extension. However, we find that in the supersymmetric extension, the

fitting is much better if we fit the GOE-type group (N mod 8 = 0, 6) and the GSE-type

group (N mod 8 = 2, 4) separately. On the other hand, although we cannot rule out the

polynomial fitting, the fitting effect of exponential function is relatively better. On the

exponential fittings with respect to different degeneracy groups, the coefficients before N

are roughly the same (0.24N for β = 5) while the overall constants are different. That

indicates that the eight-fold degeneracy class or random matrix class might influence the

overall factors in the dip time exponential expressions.
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Figure 9. The plateau height gp for supersymmetric SYK model. In the left figure we choose

several temperatures and fix N in each curve, while in the right we fix β and evaluate gp(N).

One could also read off the plateau time and exponentially fit the data. Similar with

dip time, we could also separately fit the plateau time with respect to two different random

matrix classes, and one could find a difference in the overall factors of these two groups,

while the coefficients before N are the same. There is a non-trivial check here. Theoretically

from random matrix theory one can predict that the plateau time scales like tp ∼ eS(2β) [57].

In the large β limit, the entropy should be roughly the ground state entropy. Analytically,

the entropy is predicted by S(β = ∞) = Ns0 = 0.275N . Now check the largest β we

take (β = 10), we can read off the entropy by 0.277N (GSE-type), 0.275N (GOE-type), or

0.277N (two groups together), which perfectly matches our expectation.

For the plateau height, one can clearly see an eight-fold structure. From the previous

discussion we obtain that the plateau height should equals to Z(2β)/Z(β)2 times a con-

tribution from the degeneracy, which is clearly shown in the figure. For N = 14, 16, 22, 24

(GOE-type), the degeneracy is two thus points should be on the lower line, while for

N = 18, 20, 26, 28 (GSE-type), the degeneracy is four thus points should be on the upper

line. These observations match the prediction from random matrix theories.

5 Conclusion and outlook

In this paper, we use analytic arguments and numerical evidence to explore the super-

symmetric constraints on the random matrix theory symmetry class. We focus on the

N = 1 supersymmetric SYK model, a supersymmetric generalization of nonlocal-coupled

majonara fermions with similar chaotic behavior for a two dimensional quantum black hole.

Use the direct classification from random matrix theory, we show that for N = 1 super-

symmetric SYK model has a different behavior for N mod 8 structure. These arguments

might be made to be more general: supersymmetry could directly change the universal

class of Hamiltonian (GOE/GUE/GSE) by classifying the symmetry class of supercharge,

where combinations of Witten index and antiunitary operators will make some new anti-

unitaries; on the other hand, the quadratic structure of the Hamiltonian will change the

original type of distribution from Gaussian to Wishart-Laguerre. These points may happen

for generic supersymmetric statistical physics models.

We also use numerical method, exact diagonalization to confirm the random matrix

theory classification on the Hamiltonian and the supercharge of the supersymmetric SYK

model. It is clear that if we check the spectrum density, the supercharge Q shows a clear

– 24 –



J
H
E
P
0
6
(
2
0
1
7
)
1
1
1

feature from one-point function of extended random matrix theory ensembles, while the

Hamiltonian shows a feature of quadratic semi-circle (Marchenko-Pastur). However, for

level statistics (eg. Wigner surmise and spectral form factor), the universal class GSE/GOE

could capture important physical features, and the new eight-fold rule could be verified.

Several future directions could be investigated. Firstly, one may consider higher super-

symmetry constraints on the SYK model, such as N = 2 generalization. Many thermody-

namical and field theory properties of higher supersymmetric SYK theory are non-trivial,

and it might be interesting to connect these properties to random matrix theory. Moreover,

to understand the spectral form factor with supersymmetric constraints, one could also try

to study superconformal field theory partition functions at late time. Finally, introducing

supersymmetries in the symmetry classification of phases in the condensed matter the-

ory will bring more understanding at the boundary of condensed matter and high energy

physics. We leave these interesting possibilities to future works.
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A Review on Altland-Zirnbauer theory

In this appendix we make a brief review the Altland-Zirnbauer theory (eg., see [2, 3]) that

brings hamiltonians to ten different random matrix classes. In a physical system, symmtries

can appear and they consist a group G, then the space of physical states is a projective

representation of the symmetry group. A fundamental question we can ask is, what is the

most general type of hamiltonian the system can have.

We may visit the simplest example to get some intuitions. The action of an element of G

on the Hilbert space V can be either unitary or antiunitary, thus there is a homomorphism

from group G to Z2 which labels unitarity of operators. Let G0 be the subgroup of unitary

operators, then V splitts into irreps of G0:

V =
⊕
i

Vi ⊗ Cmi (A.1)

where Vi are irreps and mi are their multiplicities in V . If there is no antiunitary operators

then followed by Schur’s lemma, the most general Hamitonians are those belong to the set⊕
i

EndG(Vi ⊗ Cmi) =
⊕
i

End(Cmi) (A.2)
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plus Hermicity. This is called Type A in the Altland-Zirnbauer theory, without any anti-

unitary operators. The case with the presence of antiunitary operators is more complicated.

Let T be an antiunitary operator, then the conjugation by T , i.e. U 7→ TUT−1, is an

automorphism of G0, thus T maps a component Vi ⊗ Cmi to another Vj ⊗ Cmj . A simple

case is when i 6= j, which is easy to see that the most general hamiltonian is of form [2, 3]

(H,THT−1) (A.3)

where H is an Hermitian operator in component i and THT−1 acts on component j. Thus

it’s also of Type A.

The Type A is the simplest structure without any further symmetries. However, if

we consider i = j, and consider more anti-unitary operators, the situation is much more

technical. It turns out that possible hamiltonians with specific symmetric structures can

be classified into ten classes. Here we skip the detailed analysis and directly present the

final results. These classes are classified by the following three different operators,

• T+, antiunitary, commutes with hamiltonian, and T 2
+ = ±1

• T−, antiunitary, anticommutes with hamiltonian, and T 2
− = ±1

• Λ, unitary, anticommutes with hamiltonian, and Λ2 = 1

If two of these three operators exist, the third will be determined by the following identity,

Λ = T+T− (A.4)

The properties of these three operators can classify the hamiltonian in the following ten

classes,
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T 2
+ T 2

− Λ2 Cartan label Block Type

A (GUE) M complex: M † = M C
1 AI (GOE) M real: MT = M R
−1 AII (GSE) M quaternion: M † = M H

1 AIII (chGUE)

(
0 Z

Z† 0

)
Z complex C

−1 C (BdG)

(
A B

B̄ −Ā

)
A Hermitian

B complex symmetric
C

1 D (BdG) M pure imaginary, skew-symmetric C

1 1 1 BDI (chGOE)

(
0 A

AT 0

)
A real R

1 −1 1 CI (BdG)

(
0 Z

Z̄ 0

)
Z complex symmetric R

−1 1 1 DIII (BdG)

(
0 Y

−Ȳ 0

)
Y complex, skew-symmetric H

−1 −1 1 CII (chGSE)

(
0 B

B† 0

)
B quaternion H

where there are no values in some corresponding operators we mean that there is no such

a symmetry in the system. We also present the block representation in this table, where

blocks are classified by the ±1 eigenspace of anti-unitary operators. The first three en-

sembles in this table are original Dyson ensembles, while other extended ensembles are

their subsets with higher symmetries. These classifications are widely used in theoretical

physics, for example, the symmetry classifications of topological insulators and topological

phases [4, 5].

B Eigenvalue distribution

This appendix is a simple introduction on the random matrix theory eigenvalue distribution

(for instance, see [76, 77]), the measure in the eigenvalue basis. For Wigner-Dyson ensemble,

this is given by the formula

P (λ)dλ = C(N, β̃)|∆(λ)|β̃
∏
k

e−
Nβ̃
4
λ2kdλk (B.1)

where λ = (λ1, · · · , λN ) is the set of eigenvalues, ∆(λ) is the Vandermont determinant

defined by

∆(λ) =
∏
k>l

(λk − λl) (B.2)

and C(N, β̃) is a normalization constant depending on β̃ and N . For different ensembles,

β̃ is defined as
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RMT β̃

AI(GOE) 1

A(GUE) 2

AII(GSE) 4

For the remaining ensembles, the eigenvalues occur in pairs (because the T− operator

introduced in the last appendix anticommutes with Q), and the eigenvalues probability

distribution is given by

P (λ)dλ = C(N, β̃, α̃)|∆(λ2)|β̃
∏
k

λα̃k e
−Nβ̃

4
λ2kdλk (B.3)

where we only take the positive one from a pair of eigenvalues, and C(N, β̃, α̃) is defined

also as the corresponding normalization constant. In the Altland-Zirnbauer classification,

constants α̃ and β̃ are set as (considering the real model of us, we have set the flavor

number Nf = 0 and the topological index ν = 0 in chiral ensembles)

RMT β̃ α̃

BDI(chGOE) 1 0

AIII(chGUE) 2 1

CII(chGSE) 4 3

CI(BdG) 1 1

D(BdG) 2 0

C(BdG) 2 2

DIII(BdG) 4 1

We will also need the eigenvalue distribution of the hamiltonian which is the square of Q,

so we can take the square distribution of B.3, which will change Gaussian distribution to

Wishart-Laguerre, which is

P (λ)dλ = C ′(N, β̃, α̃)|∆(λ)|β̃
∏
k

λ
α̃−1
2

k e−
Nβ̃
4
λkdλk (B.4)

here λk are nonnegative and C ′(N, β̃, α̃) is a new normalization constant which is one half

of C(N, β̃, α̃). We could also write

P (λ)dλ ∼ |∆(λ)|β̃
∏
k

λµ̃ke
−Nβ̃

4
λkdλk (B.5)

where µ̃ = (α̃− 1)/2. The following table summarize the related index for supersymmetric

SYK model

N mod 8 Q α̃ β̃ µ̃

0 BDI (chGOE) 0 1 −1/2

2 DIII (BdG) 1 4 0

4 CII (chGSE) 3 4 1

6 CI (BdG) 1 1 0
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In N mod 8 = 0, 4, the index µ̃ precisely matches Wishart matrix. Moreover, Although

the result has µ̃ dependence for N mod 8 = 2, 6, which does not precisely match Wishart

matrix from Dyson Gaussian ensemble by index µ̃, we could also use the terminology

LOE/LSE to refer the universal class from squaring of Gaussian matrix, similar with

Altland-Zirnbauer classification as a subset of Dyson, regardless multiple anti-unitary sym-

metries. Thus, we call N mod 8 = 0, 2, 4, 6 as LOE/LSE/LSE/LOE respectively,

Open Access. This article is distributed under the terms of the Creative Commons
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