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1 Introduction

The well-known Cachazo-He-Yuan (CHY) formulation [1–5] is an elegant new representa-

tion of tree-level amplitudes for massless particles in arbitrary dimensions, as given by

An =

∫ ∏n
i=1 dzi

vol SL(2,C)

∏
a

′
δ(Ea) ICHY

n , (1.1)

which possesses the Möbius SL(2,C) invariance. It expresses amplitudes of a large variety

of quantum field theories as multi-dimensional contour integrals over auxiliary variables

zi’s, which are completely localized on the Riemann sphere by constraints known as the

scattering equations

Ea ≡
∑

b∈{1,2,...,n}\{a}

sab
zab

= 0 , a = 1, 2, . . . , n , (1.2)

where sab ≡ 2ka · kb is the Mandelstam variable and zab is defined as zab ≡ za − zb. The

scattering equations and the integration measure are universal, while the integrand ICHY
n

obeys some general constraints (such as of weight-4 under Möbius transformations), and it

also depends on the specific field theory.

This formulation indicates that a tree amplitude can be calculated by solving scattering

equations and summing over different solutions. However, it is hardly possible to get direct

solutions beyond five points due to the Abel-Ruffini theorem for algebraic systems. Thus, to

search for a new computation method to avoid the explicit solutions of algebraic equations
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becomes a crucial challenge. Among investigations from various directions [6–18], the so-

called integration rule method inspired by string theory is one of the most efficient and

systematic approaches [17–19]. This approach replies only on the CHY integrands, without

mentioning the solutions of scattering equations and the integration measure. Applying

this method, one can extract all the correct pole structures from a given integrand, and

directly obtain the result via the corresponding Feynmann diagrams, rather than solving the

scattering equations. However, one shortcomings of the original integration rules [17–19]

is that it requires the CHY integrand under consideration containing simple poles only,

therefore cannot be applied to arbitrary physically acceptable integrands in general.

To handle this disadvantage, there are two alternative approaches. One is to derive

integration rules for higher order poles [20], and the other is to reduce terms containing

higher order poles into those with simple poles only [17, 21]. In the first direction, inte-

gration rules for several special configurations of CHY integrands with higher order poles

are conjectured in [20]. Although its analytic proof is absent, these rules are numerically

verified. A more hopeful approach comes from the second direction, thanks to the discovery

of the cross-ratio identities, which reveals relations between different rational functions of

zij ’s [22]. By applying these identities iteratively, one can expand a term involving higher

order poles as terms with simple poles only. After this decomposition, one can obtain the

integrated result through the original integration rules. The fesasibility of this algorithm

is verified in [26]. Further applications of the cross-ratio identities can be seen in [23–25].

It is natural to ask: can we prove the conjectured integration rules of higher order

poles in [20] via the cross-ratio identity method? In this paper, we will derive these rules

analytically by applying those identities. Our derivation depends on the choices of the

cross-ratio identities, thus different choices yield different expressions for the same pole

configuration. The expressions of rules in this paper will be different from those conjectured

in [20], and we will prove their equivalence for two cases.

This paper is organized as follows. In section 2, we summarize some useful notations,

and some general properties of the CHY integrands and cross-ratio identities. In section 3,

we derive the integration rule for CHY integrands containing a single double pole. In

section 4, we derive the integration rule for that containing a single triple pole. For this

case, the equivalence between our formula and the conjectured one is rather non-trivial, and

the proof of their equivalence indicates a new kind of integration rule, as will be discussed

explicitly. In section 5, we derive the integration rule for those containing duplex-double

poles, regarding a simplest special case. A brief conclusion is given in section 6.

2 Preparation

Before going to the details, for clarity we give a summary of notations. Each CHY integrand

corresponds to a weight-4 graph, in which n nodes are connected by a number of lines.

Each line corresponds to a factor zij .
1 Furthermore, since factor zij can appear in both

the numerator and the denominator, to distinguish them, we use a solid line to represent

zij in the denominator and a dashed line to represent that in the numerator. With this

1To distinguish them from lines in Feynman diagrams, we will call the latter “Feynman lines”.
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assignment, the weight-4 condition becomes that there are four lines connecting to each

node, where a solid line is counted as +1 and a dashed line −1.

For a set Λ containing |Λ| points of zi, we call a line connecting two points in Λ the

internal line of Λ, and a line connecting at least one point inside Λ and the other outside

Λ the external line of Λ. The number of internal lines of Λ is denoted by L[Λ], and that of

external lines by E[Λ].2 Furthermore, we denote the number of lines connecting two sets

Λ1 and Λ2 as L[Λ1,Λ2].

The order of poles corresponding to the set Λ is defined as

χ[Λ] = L[Λ]− 2(|Λ| − 1) . (2.1)

For convenience we call a set corresponding to simple poles as a “simple set”, and similar

for sets corresponding to double and triple poles. Due to the weight-4 condition, we have

4|Λ| = 2L[Λ] + E[Λ], thus (2.1) can be rewritten as

χ[Λ] = 2− E[Λ]

2
, (2.2)

which will be useful later. Then, we have the following corollaries:

• A simple set has 4 external lines.

• A double set has 2 external lines.

• A triple set has 0 external lines.

• If a set Λ contains only one point i, i.e., |Λ| = 1, we have E[Λ] = 4 and thus

χ[Λ] = 0 from (2.2). Although it does not contribute any simple pole, we still call it

a simple set.

A set Λ may contain many subsets which correspond to different poles. Similar to the

definition of compatible combinations for the full set of zi’s, one can define the compatible

combinations for the set Λ, and denote the sum of these combinations as C[Λ]. The differ-

ence is, if the full set Λ contributes a pole, C[Λ] must include this pole. For example, for

a set {1, 2, 3, 4}, if the full set does not correspond to any pole but {1, 2, 3}, {1, 2}, {3, 4}
contribute poles, then C[Λ] is defined as3

C[Λ] =
1

s123s12
+

1

s12s34
. (2.3)

However, if the full set contributes a pole, C[Λ] now should be

C[Λ] =
1

s1234

(
1

s123s12
+

1

s12s34

)
. (2.4)

For the set with a single point i, we have C[{i}] = 1.

2Again, the number of lines are counted as +1 for a solid line and −1 for a dashed line.
3When we write down (2.3) and (2.4), we have assumed that all poles are simple. For non-simple poles,

further modification is needed.
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Each CHY integrand may give a number of terms and each term can be represented by

a Feynman diagram with only cubic vertices. Except the special case of n = 3 (i.e., there

are only three external nodes), each cubic vertex contains at least one internal propagator.

At each endpoint of this internal propagator (there are two), two branches are produced.

They can be two external nodes, or one external node and one internal propagator, or

two internal propagators. No matter in which situation, this internal propagator will be

associated with a subset Λ and its complement Λ, thus we have

C[Λ] =
∑
〈Λ1Λ2〉

1

sχ+1
Λ

C[Λ1]C[Λ2] , (2.5)

where Λ1 and Λ2 are two branches (two subsets with Λ1
⋃

Λ2 = Λ) associated with the

endpoints of subset Λ. The summation is over all correct divisions of Λ1, Λ2, and a special

division is denoted as 〈Λ1Λ2〉.
The major machinery we use in this paper is the cross ratio identity

−sΛ = −sΛ =
∑

i∈Λ/{p}

∑
j∈Λ/{q}

sij
zipzjq
zijzpq

(2.6)

given in [22]. Let us give some explanations of (2.6):

(1) (p, q) is the gauge choice. Although different gauge choices give equivalent expres-

sions, some choices will simplify the calculation.

(2) We have double sums over all subsets Λ and Λ.

(3) For each term in the sum, we have a kinematic factor sij . The two denominators zij
and zpq (fixed for all terms in the sum) between subsets Λ and Λ increase E[Λ] and

E[Λ] by 2, thus from (2.2), χ[Λ] and χ[Λ] are reduced by 1. Similarly, two numerators,

i.e., zip in the subset Λ and zjq in Λ, reduce L[Λ] and L[Λ] by 1, thus from (2.1), χ[Λ]

and χ[Λ] are reduced by 1.

As when applying the cross-ratio identities, one needs to choose a gauge which includes

two points and a set corresponding to a pole, for simplicity we use [p, q,Λ] to denote the

gauge choice, as well as the corresponding pole.

3 Rule I: single double pole

In this section, we will derive the Feynman rule I for a single double pole. The corresponding

conjectured formula in [20] is given as

RI
ule[pA, pB, pC , pD] =

2pA · pC + 2pB · pD
2s2
AB

. (3.1)
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3.1 CHY configuration

First we try to understand CHY configurations with only one double pole sΛ. This means

that all subsets A have χ[A] ≤ 0, except one subset Λ with χ[Λ] = 1. Furthermore, for

simplicity we will assume the numerator of CHY integrand is just 1.4 With the assumption

above, we can give some statements of CHY configurations.

First, we have

E[Λ] = 2 , (3.2)

which means that there are two and only two lines connecting subset Λ and its complement

Λ. Now we will show that these two lines cannot meet at the same node. Let us assume

the two lines are given by a point a ∈ Λ connecting to Λ, then

χ[Λ/{a}] = L[Λ/{a}]− 2(|Λ| − 1− 1) = L[Λ]− 2− 2(|Λ| − 1− 1)

= L[Λ]− 2(|Λ| − 1) = 1 , (3.3)

where we have used the fact that point a has four connecting lines, so there are two lines

connecting point a and the subset Λ/{a}. Since we have assumed that all χ[A] ≤ 0 with

A 6= Λ, (3.3) contradicts with this assumption. This means that there are two points

a1, a2 ∈ Λ and two points b1, b2 ∈ Λ, such that there are one line connecting a1, b1 and

the other connecting a2, b2. As will be discussed cautiously, when we apply the cross-ratio

identities to find the Feynman rule, the good gauge choice is either [a1, b2,Λ] or [a2, b1,Λ].5

Second, we will show that there is no subset A ⊂ Λ containing both a1, a2 satisfying

χ[A] = 0. If such a subset exists, we can consider its complement Ã = Λ/A. Since χ[A] = 0,

we have E[A] = 4. Because a1, a2 ∈ A, we have L[A, Ã] = 2. Now since a1, a2 6∈ Ã, we have

E[Ã] = 2 so χ[Ã] = 1, which contradicts with our assumption. Thus, four nodes a0, b0, c0

and d0 belong to four different simple subsets, as shown in figure 1a.

Third, we will show that there is no subset Σ = α
⋃
β, such that α ⊂ Λ, β ⊂ Λ

satisfying χ[Σ] = 0. If such a subset exists, we have

0 = χ[Σ] = L[Σ]− 2(|Σ| − 1) = L[α] + L[β] + L[α, β]− 2(|α|+ |β| − 1)

= (L[α]− 2(|α| − 1)) + (L[β]− 2(|β| − 1)) + (L[α, β]− 2) . (3.5)

Since from our assumption χ[α] ≤ 0 and χ[β] ≤ 0, we have (L[α, β] − 2) ≥ 0. With the

condition L[α, β] ≤ L[Λ,Λ] = 2, the equation above holds when and only when

χ[α] = 0 , χ[β] = 0 , L[α, β] = 2 =⇒ a1, a2 ∈ α , b1, b2 ∈ β , (3.6)

which contradicts with the second observation in the previous paragraph.

4Although we will not give a rigorous proof for CHY integrands with nontrivial numerators in this paper,

we believe Feynman rule I will be applicable to this more general situation. In fact, when we derive the rule

III, we will meet the situation where although the numerator is not one, the same rule I has been applied

to get the correct results.
5As we have remarked, the claim above, i.e., there are only two lines za1b1 and za2b2 , has neglected the

possibility that there are nontrivial numerators in CHY integrands, which will bring more solid lines (i.e.,

factors in the denominator) connecting Λ,Λ. To deal with this case, one can use, for example,
zabzdc
zaczbc

=
zad
zac
− zbd

zbc
, (3.4)

to get rid of the numerator. In this paper, for simplicity we will not discuss such more general configurations.
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A B

CD

(a) Original integrand

A B

CD

(b) Cross-ratio identity

Figure 1. Configuration of the original integrand and the cross-ratio identity of the rule I. Four

red lines represent the term
zia0zjc0
zijza0c0

provided by the cross-ratio identity.

With these observations for single pole structures, we move to the maximal compatible

combinations of poles, i.e., the possible Feynman diagrams. The claim is: all maximal

compatible combinations must contain the double subset Λ. The reason is: to get nonzero

contributions, the number of compatible subsets must be n− 3. Since we have argued that

there is no single pole Σ = α
⋃
β with α ⊂ Λ, β ⊂ Λ, all single poles are either in Λ or

in Λ. But Λ can contain at most (|Λ| − 2) compatible poles, while Λ can contain at most

(|Λ| − 2) ones. Thus their combinations contribute only (n − 4) compatible single poles,

and we need to include the double pole to get nonzero contributions.

3.2 Some examples

To demonstrate how to derive the Feynman rule using cross ratio identities, we present

several examples in this subsection. The same picture will be used when derive other

Feynman rules later although explicit examples will not be given.

Let us start with the simplest example with only four points with the CHY integrand

I4;a =
1

z3
12z

3
34z23z41

. (3.7)

This example contains only one double pole sΛ with Λ = {1, 2}. There are two lines [14],

[23] connecting Λ and Λ = {3, 4}. Now we apply the cross ratio identities. There are two

different gauge choices, for the first one [2, 3,Λ], we have

I4;a =
1

z3
12z

3
34z23z41

(−1

s12
s14

z43z12

z14z23

)
=
−s14

s12

1

z2
12z

2
34z

2
23z

2
41

=
−s14

s12

(−1

s12
+
−1

s23

)
=
−s13

s2
12

.

(3.8)

For the second one [2, 4,Λ], we have

I4;a=
1

z3
12z

3
34z23z41

(−1

s12
s13

z34z12

z13z24

)
=
−s13

s12

1

z2
12z

2
34z23z41z13z24

=
−s13

s12

1

s12
=
−s13

s2
12

. (3.9)
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We see that for the first gauge choice, pole s23 is introduced since in addition to original

lines z12, z34, new lines z23, z14 have been added by the cross ratio identity. For the second

gauge choice, no new pole is introduced, so its calculation is simpler.

This phenomenon in fact suggests the general pattern. From the discussion in the

previous subsection, for a given Feynman diagram, Λ has been split to two subsets A1, A2

and Λ has been split to two subsets B1, B2 such that ai ∈ Ai, bi ∈ Bi, i = 1, 2. If the gauge

choice is [p ∈ A2, q ∈ B2,Λ], it is possible to find two subsets α ⊂ A2, β ⊂ B2 satisfying

the following conditions

χ[α] = 0 , χ[β] = 0 , a2 ∈ α , p 6∈ α ; b2 ∈ β , q 6∈ β =⇒ L[α, β] = 1 . (3.10)

Thus after multiplying the CHY integrand by sij
zipzjq
zijzpq

, we have

χ[α
⋃
β] = L[α] + L[β] + L[α, β] + 1− 2(|α|+ |β| − 1) = 0 , (3.11)

where the extra +1 comes from the denominator zij for any i ∈ α, j ∈ β. In other words,

we will get a new pole sα
⋃
β , which does not exist in the original integrand. If we adopt

the gauge p ∈ A2, q ∈ B1, such a phenomenon will not happen since L[A2, B1] = 0.

Thus to avoid this problem, from now, we will always adopt the gauge p ∈ A2, q ∈ B1 or

p ∈ A1, q ∈ B2. Furthermore, since the splitting of Λ into A1, A2 is, in general, arbitrary,

it is hard to guarantee that a node a always stays in A1. The only exception is that nodes

a1, a2 (which connect to b1, b2 ∈ Λ) from the second observation in the previous subsection,

i.e., a1 and a2 are always in different subsets of the split Λ. Thus there is a universal gauge

choice for all Feynman diagrams, which can be either [a1, b2,Λ] or [a2, b1,Λ].6

The next example is the 5-point CHY integrand

I5;a = − 1

z3
12z23z2

34z
2
45z53z51

, (3.12)

which, according to the Feynman rule (3.1), will lead to

1

s34
RI

ule[{1}, {2}, {3, 4}, {5}] +
1

s45
RI

ule[{1}, {2}, {3}, {4, 5}]

=
1

s34

2p1p34 + 2p2p5

2s2
12

+
1

s45

2p1p3 + 2p2p45

2s2
12

=
s25

s34s2
12

+
s13

s45s2
12

− 1

s2
12

. (3.13)

Now we derive this result using the cross ratio identity for the double pole s12 (so Λ = {1, 2}
and Λ = {3, 4, 5}. The two lines connecting Λ,Λ are z15 and z23. Under the gauge [2, 5,Λ],7

6As it will be seen in the derivation of Feynman rule III, in general we can not find the good gauge

choice such that there is no extra pole introduced. At the same place, we will show how these extra poles

have been canceled when summing all contributions together.
7If we adopt the gauge [2, 3,Λ], it will produce an extra pole s23. If we adopt [2, 4,Λ], it will produce

an extra pole s15. Thus, to avoid new poles, in this gauge choice 5 is the only option if we have chosen 2.
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we have

− 1

z3
12z23z2

34z
2
45z53z51

−1

s12

(
s13

z12z35

z13z25
+ s14

z12z45

z14z25

)
=
s13

s12

z35

z2
12z23z2

34z
2
45z53z51z13z25

+
s14

s12

z45

z2
12z23z2

34z
2
45z53z51z14z25

=
s13

s12

(
1

s12s34
+

1

s12s45

)
+
s14

s12

(
1

s12s34

)
=
s13 + s14

s2
12s34

+
s13

s2
12s45

=
2p1 · p34

s2
12s34

+
2p1 · p3

s2
12s45

. (3.14)

It seems that we get only a part of the result (3.13). Under the gauge [1, 3,Λ] we have

− 1

z3
12z23z2

34z
2
45z53z51

−1

s12

(
s25

z21z53

z13z25
+ s24

z21z43

z24z13

)
=
s25

s12

z35

z2
12z23z2

34z
2
45z53z51z13z25

+
s24

s12

z34

z2
12z23z2

34z
2
45z53z51z24z13

=
s25

s12

(
1

s12s34
+

1

s12s45

)
+
s24

s12

(
1

s12s45

)
=

2p2 · p5

s2
12s34

+
2p2 · p45

s2
12s45

. (3.15)

Again this is not the full result but the other part of the result (3.13). Now we see the

solution: summing up (3.14) and (3.15), we arrive

s13 + s14 + s25

2s2
12s34

+
s13 + s25 + s24

2s2
12s45

=
2p1 · p34 + 2p2 · p5

2s2
12s34

+
2p1 · p3 + 2p2 · p45

2s2
12s45

, (3.16)

which matches the Feynman rule (3.13).

Although simple, this example reveals that: (1) It seems that we can define different

“Feynman rules”; (2) Different Feynman rules come from different gauge choices.

One can use more examples to better understand these two observations, as they per-

sist to all configurations of the current category. In the next subsection, we will give an

analytic proof.

3.3 Analytic proof

Having understood those examples, now we can give a general analytic proof. First, from

the assumption of CHY integrands, i.e., there is one and only one subset satisfying χ[Λ] = 1

and for all others χ[A] ≤ 0, we have the following statement:

• All maximal compatible combinations contain the subset Λ, i.e., all nonzero Feynman

diagrams contain the double pole 1
s2Λ

.

• There are four special nodes a0, b0 ∈ Λ and c0, d0 ∈ Λ, such that there is one line

connecting nodes a0, d0 and one connecting nodes b0, c0.8

8Again, this claim holds only if we assume the numerator is just 1.
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Now we consider the Feynman rule with different gauge choices. For [a0, c0,Λ], the

corresponding cross ratio identity is

1 =
−1

sΛ

∑
i∈Λ/{a0}

∑
j∈Λ/{c0}

sij
zia0zjc0
zijza0c0

, (3.17)

as shown in figure 1b. Now we consider new CHY integrands Iorg
zia0

zjc0
zijza0c0

for each (i, j)

pair. First, all integrands contain only simple poles in our construction. Second, as we

have argued, under this gauge choice, all possible poles are those already appeared in the

original Iorg and no new pole will appear. Based on these two facts, now we focus on the

contributions to a particular Feynman diagram with the pole structure 1
sAsBsCsD

(where

A
⋃
B = Λ and C

⋃
D = Λ, a0 ∈ A, b0 ∈ B, c0 ∈ C and d0 ∈ D)9 from these CHY

integrands. For this pole structure, summation after inserting the cross ratio identity can

be divided into the following four parts:

G(a0, c0)I =
−1

sΛ

∑
i∈A/{a0}

∑
j∈C/{c0}

sij
zia0zjc0
zijza0c0

Iorg ,

G(a0, c0)II =
−1

sΛ

∑
i∈A/{a0}

∑
j∈D

sij
zia0zjc0
zijza0c0

Iorg ,

G(a0, c0)III =
−1

sΛ

∑
i∈B

∑
j∈C/{c0}

sij
zia0zjc0
zijza0c0

Iorg ,

G(a0, c0)IV =
−1

sΛ

∑
i∈B

∑
j∈D

sij
zia0zjc0
zijza0c0

Iorg . (3.18)

Let us analyze them one by one. For G(a0, c0)I , since χ(A) = 0 for the original integrand,

after multiplying it by
zia0

zjc0
zijza0c0

, we have χ(A) = −1 due to the numerator zia0 . In other

words, Iorg
zia0

zjc0
zijza0c0

will not contain the pole 1
sA

. Similarly, the numerator zjc0 will lead

to the fact that there is no pole 1
sC

. Altogether, we find the G(a0, c0)I part will not

contribute to the pole structure 1
sAsBsCsD

. The same argument tells that, we can exclude

the contribution from G(a0, c0)II andG(a0, c0)III . For theG(a0, c0)IV part, each term gives

the same contribution10 to the particular pole structure, and we find the total coefficient

is given by

−1

sAB

∑
i∈B

∑
j∈D

sij =
2pB · pD
sAB

. (3.19)

Summing over all possible splittings A,B,C,D, we get

ICHY →
∑
B⊂Λ

∑
D⊂Λ

2pB · pD
s2

Λ

C[A]C[B]C[C]C[D],

a0 ∈ A = Λ/B , b0 ∈ B , c0 ∈ C = Λ/D , d0 ∈ D , (3.20)

9As we have proven, four special nodes must be in four different corners.
10It is easy to see that each term contributes the same pole structure, but it is hard to see that each term

gives with same sign. The sign can, in principle, be determined by using either the method in [3] or that

in [22]. The discussion of sign is too complicated for us to give a general, simple argument.
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which is one possible Feynman rule. From the same argument, one can see that for the

gauge choice [b0, d0,Λ], among four parts, only one gives nonzero contribution with the

coefficient

−1

sAB

∑
i∈A

∑
j∈C

sij =
2pA · pC
sAB

, (3.21)

thus the other possible Feynman rule is

ICHY →
∑
A⊂Λ

∑
C⊂Λ

2pA · pC
s2

Λ

C[A]C[B]C[C]C[D] ,

a0 ∈ A , b0 ∈ B = Λ/A , c0 ∈ C , d0 ∈ D = Λ/C . (3.22)

Averaging over these two contributions, we get the Feynman rule

ICHY →
∑
A⊂Λ

∑
C⊂Λ

2pA · pC + 2pB · pD
2s2

Λ

C[A]C[B]C[C]C[D],

a0 ∈ A , b0 ∈ B = Λ/A , c0 ∈ C , d0 ∈ D = Λ/C , (3.23)

which is the original Feynman rule we conjectured. We would like to emphasize that all

three rules (3.20), (3.22) and (3.23) are correct, but when applying these rules, one must

stick to the same rule for all Feynman diagrams (i.e., all possible splittings of subsets

Λ→ A
⋃
B and Λ→ C

⋃
D) in order to get the correct final answer.

4 Rule II: single triple pole

In this section, we consider CHY configurations with only one triple pole sΛ. The equiva-

lence between our formula and the conjectured one proposed in [20] is rather subtle, and

it indicates a new kind of integration rule involving quartic vertices, as will be discussed

cautiously.

4.1 CHY configuration

The assumption of only single triple pole requires that all subsets A have χ[A] ≤ 0, except

one subset Λ with χ[Λ] = 2. Furthermore, for simplicity, we will assume the numerator of

CHY integrand is just 1.11 With above assumption, we can make some statements of CHY

configurations.

First, the triple set Λ satisfies E[Λ] = 0, thus there is no line between Λ and its

complement subset Λ. In other words, subset Λ and Λ give weight-4 graphes by themselves

(or a legitimate CHY integrands for smaller nodes). As a consequence, if a subset A ⊂ Λ

gives a simple pole, so is B = Λ \ A since E[A] = E[B] = L[A,B] = 4. Similarly, if subset

C ⊂ Λ gives a simple pole, so is D = Λ/C. To make things simpler, we will assume node

1 ∈ Λ and node n ∈ Λ. Furthermore, when split at the two ending points of internal

propagator sΛ, we will assume that 1 ∈ A, n ∈ D and denote the splitting as 〈ABCD〉
with B = Λ/A and C = Λ/D. The corresponding configuration is shown in figure 2a.

11Again, although we do not have the proof, we think the Feynman rule could be applied to the case with

nontrivial numerators.
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A B

CD

(a) Original integrand

A B

CD

(b) Cross-ratio identity

Figure 2. Configuration of the original integrand and the cross-ratio identity of the rule II. Four

red lines represent the term
zjnz1i
zijz1n

provided by the cross-ratio identity.

Secondly, using (3.5), one can observe that there is no pole corresponds to the set

Σ = α
⋃
β such that α ⊂ Λ and β ⊂ Λ, since χα ≤ 0, χβ ≤ 0 and L[α, β] = 0. Finally, for

any maximal compatible combination, by the same argument as in the previous section,

one can see that it must contain the subset Λ. Thus, the CHY integrand will give the

contribution like ∑
i∈A⊂Λ

∑
n∈D⊂Λ

X

s3
Λ

C[A]C[B]C[C]C[D] , (4.1)

where the factor X is what we need to derive for the Feynman rule.

4.2 Derivation of new Feynman rules

Having understood the configurations, now we drive the rule. Since it is the triple pole,

we need to use the cross-ratio identities twice to reach simple poles. At the first step, we

chose the gauge [1, n,Λ] to get

1 = −
∑

i∈Λ\{1}

∑
j∈Λ\{n}

sij
sΛ

zjnzi1
zijz1n

=
∑

i∈Λ\{1}

∑
j∈Λ̄\{n}

sij
sΛ

zjnz1i

zijz1n
, (4.2)

as can be seen in figure 2b. For given (i, j), the CHY integrand Iorg
zjnz1i
zijz1n

is nothing but

the configuration we have considered in previous section, i.e., the one with only one double

pole. It is easy to see the point: the denominators zij and z1n have created two connecting

lines between Λ and Λ. One may worry about the numerator zjn in Λ and z1i in Λ. But as

we have remarked, although our proof is given for the case with numerator 1, we believe

the rule holds for nontrivial numerator as current situation. Furthermore, at least for the

current CHY graph, there is always a closed Hamiltonian circle containing 1 and i in the

subset Λ (or n and j in the subset Λ). Thus, one can use the open-relation in [23] (eq. (3.4))

or [25] (eq. (A12)) to eliminate the numerator (dashed line) to the case with numerator 1.
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Since the problem has been reduced to the case with only one double pole, we can use

the previous result to write down

Iorg
zjnz1i

zijz1n
→
∑
B⊂Λ

∑
D⊂Λ

2pB · pD
s2

Λ

C[A]C[B]C[C]C[D] ,

1 ∈ A = Λ/B , i ∈ B , j ∈ C = Λ/D , n ∈ D , (4.3)

for the gauge choice [1, j,Λ] for the second step. Or

Iorg
zjnz1i

zijz1n
→
∑
A⊂Λ

∑
C⊂Λ

2pA · pC
s2

Λ

C[A]C[B]C[C]C[D] ,

1 ∈ A , i ∈ B = Λ/A , j ∈ C , n ∈ D = Λ/C , (4.4)

for the gauge choice [i, n,Λ] for the second step. Now putting (4.3) and (4.4) back to (4.2)

we get ∑
i∈Λ\{1}

∑
j∈Λ\{n}

sij
sΛ

∑
B⊂Λ

∑
D⊂Λ

2pB · pD
s2

Λ

C[A]C[B]C[C]C[D] ,

1 ∈ A = Λ/B , i ∈ B , j ∈ C = Λ/D , n ∈ D , (4.5)

for the gauge choice [1, j,Λ]. Or∑
i∈Λ\{1}

∑
j∈Λ\{n}

sij
sΛ

∑
A⊂Λ

∑
C⊂Λ

2pA · pC
s2

Λ

C[A]C[B]C[C]C[D] ,

1 ∈ A , i ∈ B = Λ/A , j ∈ C , n ∈ D = Λ/C , (4.6)

for the gauge choice [i, n,Λ]. To continue, we exchanging the ordering of summing to

arrive at

Iorg →
∑
A⊂Λ

∑
D⊂Λ

(2pB · pC)(2pB · pD)

s3
Λ

C[A]C[B]C[C]C[D] ,

1 ∈ A , B = Λ/A , C = Λ/D , n ∈ D , (4.7)

for the gauge choice [1, j,Λ]. Or

Iorg →
∑
A⊂Λ

∑
D⊂Λ

(2pB · pC)(2pA · pC)

s3
Λ

C[A]C[B]C[C]C[D] ,

1 ∈ A , B = Λ/A , C = Λ/D , n ∈ D , (4.8)

for the gauge choice[i, n,Λ]. Results (4.7) and (4.8) are, in fact, two possible Feynman rules

for the triple pole.12 It is worth to emphasize that when exchanging the ordering of the

sum, the
∑

i∈Λ\{1}
∑

j∈Λ\{n} sij produces (2pB ·pC). Also, changing of summation ordering

is allowed because we have fixed the first gauge choice 1 ∈ Λ, n ∈ Λ for all splittings

of 〈ABCD〉. The first gauge choice is crucial for the previous Feynman rule, while the

second gauge has some natural choice. Since we will use different gauge choices, we will

use [1, n; 1; Λ] for the gauge choice leading to the rule (4.7) and [1, n;n; Λ] for the gauge

choice leading to the rule (4.8).

12Again, we need to stick to the same rule for all splittings of 〈ABCD〉 to get the right result.
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4.3 Comparison with conjectured formula

The Feynman rules found in the previous subsection is not the one conjectured in [20],

which is given by

RII
ule[pA, pB, pC , pD] (4.9)

=
(2pA · pC)(2pA · pD)+(2pB · pC)(2pB · pD)+(2pC · pA)(2pC · pB)+(2pD · pA)(2pD · pB)

4s3
AB

− (p2
A − p2

B)2 + (p2
C − p2

D)2

4s3
AB

+
2

9

(p2
A + p2

B)(p2
C + p2

D)

4s3
AB

.

Comparing these different Feynman rules, we see that the major difference is that the

rule (4.9) is gauge independent, while rules (4.7) and (4.8) depend on both the first gauge

choice and the second gauge choice. Because of this, the later two Feynman rules are

simpler than the first one. In this subsection, we discuss how to arrive at (4.9) from (4.7)

and (4.8).

For simplicity, let us assume that Λ = {1, 2, . . . ,m}, Λ = {m + 1,m + 2, . . . , n}. The

final result of a given CHY integrand in our case will be the sum of different splittings

〈ABCD〉

A =
∑

1∈A⊂Λ

∑
n∈D⊂Λ

X

s3
Λ

C[A]C[B]C[C]C[D] , (4.10)

with B = Λ/A and C = Λ/D, where to fix the ambiguity, we have set the subset containing

node 1 as A, and the subset containing node n as D. The factor 4 in the denominator (4.9)

implies that we should average over four different gauge choices, just like (3.1) is reproduced

by average two different gauge choices in previous sections.

Now we consider the following four different gauge choices. For the first gauge choice

[1, n; 1; Λ], we get ∑
1∈A⊂Λ

∑
n∈D⊂Λ

(2pB · pC)(2pB · pD)

s3
Λ

C[A]C[B]C[C]C[D] , (4.11)

where the rule (4.7) has been used. For the second gauge choice [1, n;n; Λ], we get∑
1∈A⊂Λ

∑
n∈D⊂Λ

(2pB · pC)(2pA · pC)

s3
Λ

C[A]C[B]C[C]C[D] , (4.12)

where the rule (4.8) has been used. For the third gauge choice [m;n;m; Λ], the thing is a

little bit complicated: since we have fixed the subset A to be the one containing node 1,

we need to consider two different cases. When m is also in the subset A, we get∑
1,m∈A⊂Λ

∑
n∈D⊂Λ

(2pB · pC)(2pB · pD)

s3
Λ

C[A]C[B]C[C]C[D] . (4.13)

When m is not in the subset A, we get∑
1∈A⊂Λ;m 6∈A

∑
n∈D⊂Λ

(2pA · pC)(2pA · pD)

s3
Λ

C[A]C[B]C[C]C[D] . (4.14)
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Adding these two parts (4.13) and (4.14) together, we get the expression for the third gauge

choice

∑
1∈A⊂Λ

∑
n∈D⊂Λ

(2pA · pC)(2pA · pD)

s3
Λ

C[A]C[B]C[C]C[D] (4.15)

+
∑

1,m∈A⊂Λ

∑
n∈D⊂Λ

(2pB · pC)(2pB · pD)− (2pA · pC)(2pA · pD)

s3
Λ

C[A]C[B]C[C]C[D] .

For the fourth gauge choice [1,m+1;m+1; Λ], we need to consider two different cases too.

When (m+ 1) ∈ D, we get

∑
1∈A⊂Λ

∑
n,(m+1)∈D⊂Λ

(2pB · pC)(2pA · pC)

s3
Λ

C[A]C[B]C[C]C[D] . (4.16)

When (m+ 1) 6∈ D, we get

∑
1∈A⊂Λ

∑
n∈D⊂Λ;(m+1) 6∈D

(2pD · pA)(2pD · pB)

s3
Λ

C[A]C[B]C[C]C[D] . (4.17)

Summing over (4.16) and (4.17), the expression of the fourth gauge choice is

∑
1∈A⊂Λ

∑
n∈D⊂Λ

(2pD · pA)(2pD · pB)

s3
Λ

C[A]C[B]C[C]C[D] (4.18)

+
∑

1∈A⊂Λ

∑
n,(m+1)∈D⊂Λ

(2pB · pC)(2pA · pC)− (2pD · pA)(2pD · pB)

s3
Λ

C[A]C[B]C[C]C[D] .

Now we average four different gauge choices (4.11), (4.12), (4.15) and (4.18) to reach X

in (4.10) as

A =
∑

〈ABCD〉

XC[A]C[B]C[C]C[D] (4.19)

+
∑

1∈A⊂Λ

∑
n,(m+1)∈D⊂Λ

(2pB · pC)(2pA · pC)− (2pD · pA)(2pD · pB)

4
C[A]C[B]C[C]C[D]

+
∑

1,m∈A⊂Λ

∑
n∈D⊂Λ

(2pB · pC)(2pB · pD)− (2pA · pC)(2pA · pD)

4
C[A]C[B]C[C]C[D] ,

where

X =
(2pA ·pC)(2pA ·pD) + (2pB ·pC)(2pB ·pD) + (2pC ·pA)(2pC ·pB) + (2pD ·pA)(2pD ·pB)

4
.

(4.20)
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Thus to reproduce the rule (4.9), we need to show that

∑
1∈A⊂Λ

∑
n∈D⊂Λ

−(p2
A − p2

B)2 + (p2
C − p2

D)2 + 2
9(p2

A + p2
B)(p2

C + p2
D)

4s3
Λ

C[A]C[B]C[C]C[D]

=
∑

1∈A⊂Λ

∑
n,(m+1)∈D⊂Λ

(2pB · pC)(2pA · pC)− (2pD · pA)(2pD · pB)

4s3
Λ

C[A]C[B]C[C]C[D]

+
∑

1,m∈A⊂Λ

∑
n∈D⊂Λ

(2pB ·pC)(2pB ·pD)−(2pA ·pC)(2pA ·pD)

4s3
Λ

C[A]C[B]C[C]C[D] . (4.21)

To make the comparison explicitly, we rewrite (2pB · pC)(2pB · pD) − (2pA · pC)(2pA · pD)

as follows

(2pB · pC)(2pB · pD)− (2pA · pC)(2pA · pD)

= (2pB ·pC)(2pB ·pD)−(2pΛ ·pC)(2pΛ ·pD)+(2pB ·pC)(2pΛ ·pD)+(2pΛ ·pC)(2pB ·pD)

−(2pB ·pC)(2pB ·pD)

= −(2pΛ ·pC)(2pΛ ·pD)−(2pB ·pC)(2pΛ ·pD)−(2pΛ ·pC)(2pB ·pD)

= −(2sC+2pC ·pD)(2sD+2pC ·pD)−(2pB ·pC)(2sD+2pC ·pD)−(2pB ·pD)(2sC+2pC ·pD)

= −(2pC ·pD)(sC+sD+2pC ·pD+2pB ·pC+2pB ·pD)−4sCsD−sC(2pC ·pD+4pB ·pD)

− sD(2pC ·pD + 4pB ·pC)

= −(2pC ·pD)(sA − sB)− 4sCsD − sC(2pC ·pD + 4pB ·pD)− sD(2pC ·pD + 4pB ·pC)

= −sΛ(sA − sB) +K1 , (4.22)

where

K1 = −4sCsD − sC(2pC · pD + 4pB · pD + sB − sA)− sD(2pC · pD + 4pB · pC + sB − sA) ,

(4.23)

and similarly

(2pA · pC)(2pB · pC)− (2pA · pD)(2pB · pD) = −sΛ(sD − sC) +K2 , (4.24)

where

K2 = −4sAsB − sA(2pA · pB + 4pC · pB + sC − sD)− sB(2pA · pB + 4pC · pA + sC − sD) .

(4.25)

We will prove that∑
1,m∈A⊂Λ

sΛ(sA − sB)C[A]C[B] =
∑

1∈A⊂Λ

(sA − sB)2C[A]C[B] , (4.26)

∑
m+1,n∈D⊂Λ

sΛ(sD − sC)C[C]C[D] =
∑

n∈D⊂Λ

(sC − sD)2C[C]C[D] , (4.27)
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Figure 3. Creation of the quartic vertex from a cubic vertex.

and ∑
1,m∈A⊂Λ

∑
n∈D⊂Λ

K1C[A]C[B]C[C]C[D]

=
∑

1∈A⊂Λ

∑
n,(m+1)∈D⊂Λ

K2C[A]C[B]C[C]C[D]

=
∑

1∈A⊂Λ

∑
n∈D⊂Λ

1

9
(sA + sB)(sC + sD)C[A]C[B]C[C]C[D] . (4.28)

Putting (4.26), (4.27) and (4.28) back to (4.21), we see the identity is proved.

Let us start with the relation (4.26). At the left handed side, since we have assumed

that A contains at least two points 1 and m, using (2.5) we know that sAC[A]C[B] will

remove the single pole 1
sA

inside C[A] and split to
∑
〈A1A2〉 C[A1]C[A2] with A = A1

⋃
A2.

This procedure removes the propagator 1/sA from the cubic vertex, and creates a new quar-

tic vertex by pushing A1 and A2 to the original cubic vertex, as shown in figure 3. Similarly,

if B also contains at least two points, sBC[B] =
∑
〈B1B2〉 C[B1]C[B2] with B = B1

⋃
B2. In

other words, we will have

(sA − sB)C[A]C[B] =
∑
〈A1A2〉

C[A1]C[A2]C[B]−
∑
〈B1B2〉

C[A]C[B1]C[B2] , (4.29)

where to fix the ambiguity we will assume that 1 ∈ A1. The summation in the first term is

over all correct divisions of A1 and A2, and the summation in the second term is over all cor-

rect divisions of B1 and B2. We emphasize that a correct division must ensure that A1, A2,

B1 and B2 are simple sets since they corresponding to Feynman lines in Feynman diagrams.

If B contains only one point, we have

(sA − sB)C[A]C[B] =
∑
〈A1A2〉

C[A1]C[A2]C[B] . (4.30)

The discussion above implies that
∑

(sA−sB)C[A]C[B] with 1,m ∈ A will be the summation

of several C[Λ1]C[Λ2]C[Λ3]’s, where Λ1, Λ2 and Λ3 are simple sets satisfy Λ1
⋃

Λ2
⋃

Λ3 = Λ.
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We fix the configuration as 1 ∈ Λ1. Thus we can consider the coefficient of C[Λ1]C[Λ2]C[Λ3]

under a special division 〈Λ1Λ2Λ3〉. There are several cases:

(1) If m ∈ Λ1, there are three correct configurations which are {A1 =Λ1, A2 =Λ2, B=Λ3},
{A1 = Λ1, A2 = Λ3, B = Λ2} and {A = Λ1, B1 = Λ2, B2 = Λ3}, thus, after summing

over all correct divisions, the coefficient of C[Λ1]C[Λ2]C[Λ3] is 1 + 1 − 1 = 1. Notice

that for the third configuration above, {A = Λ1, B1 = Λ3, B2 = Λ2} gives the same

situation B = Λ2
⋃

Λ3 as {A = Λ1, B1 = Λ2, B2 = Λ3}, so we chose only one of them.

An alternative way is to add them together and divide by the symmetry factor 2.

(2) If m ∈ Λ2 (m ∈ Λ3 gives the same situation), there is only one correct configuration

{A1 = Λ1, A2 = Λ2, B = Λ3}, thus the coefficient is 1.

Thus, the coefficient of any C[Λ1]C[Λ2]C[Λ3] is 1, we get∑
1,m∈A⊂Λ

sΛ(sA − sB)C[A]C[B] = sΛ

∑
〈Λ1Λ2Λ3〉

C[Λ1]C[Λ2]C[Λ3] . (4.31)

One may observe that (4.30) can be ignored when counting the coefficient of

C[Λ1]C[Λ2]C[Λ3]. The reason is, if we consider the configuration {A=Λ1, B1 =Λ2, B2 =Λ3},
we have assumed that B contains at least two points. If we consider other configurations,

the structure of B is not important. The set Λ can always be divided into three simple

subsets if it contains at least three points. We can take the perspective that A and B are

constructed by three subsets, then the irrelevant cases (such as B can not be divided into

two simple subsets) will be neglected automatically.

Having considered the left handed side of relation (4.26), we move to the right handed

side, i.e., the (sA − sB)2C[A]C[B] part. By similar argument, we can write it as

(sA−sB)2C[A]C[B] = (sA−sB)

 ∑
〈A1A2〉

C[A1]C[A2]C[B]−
∑
〈B1B2〉

C[A]C[B1]C[B2]

. (4.32)

If one of A and B is a single point, one term in the bracket vanishes. Thus∑
(sA − sB)2C[A]C[B] also provides several C[Λ1]C[Λ2]C[Λ3]’s. Let us count the coefficient

of C[Λ1]C[Λ2]C[Λ3] with 1 ∈ Λ1, under the summation
∑

(sA − sB)2C[A]C[B] which is over

all divisions 〈AB〉, without the constraint m ∈ A. There are three correct configurations,

{A1 = Λ1, A2 = Λ2, B = Λ3}, {A1 = Λ1, A2 = Λ3, B = Λ2} and {A= Λ1, B1 = Λ2, B2 = Λ3},
then the coefficient is

(sΛ1Λ2 − sΛ3) + (sΛ1Λ3 − sΛ2)− (sΛ1 − sΛ2Λ3) = sΛ1Λ2Λ3 = sΛ . (4.33)

Notice that if some of Λi’s are single points, i.e., sΛi = 0, the above relation still holds, as

can be verified directly. Thus, after summing over contributions from different divisions

〈AB〉, We get∑
1,m∈A⊂Λ

sΛ(sA − sB)C[A]C[B] =
∑

1∈A⊂Λ

(sA − sB)2C[A]C[B] = sΛ

∑
〈Λ1Λ2Λ3〉

C[Λ1]C[Λ2]C[Λ3] ,

(4.34)

which has proven the relation (4.26).
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Exactly similar argument shows∑
m+1,n∈D⊂Λ

sΛ(sD−sC)C[C]C[D]=
∑

n∈D⊂Λ

(sC−sD)2C[C]C[D]=sΛ

∑
〈Λ1Λ2Λ3〉

C[Λ1]C[Λ2]C[Λ3],

(4.35)

where Λ1, Λ2 and Λ3 are three simple sets with Λ1
⋃

Λ2
⋃

Λ3 = Λ, which has proved the

relation (4.27).

Then we turn to the most difficult relation (4.28). We divide
∑K1C[A]C[B]C[C]C[D]

into following three parts:

Y1 =
∑

1,m∈A⊂Λ

∑
n∈D⊂Λ

−(sC + sD)(sB − sA)C[A]C[B]C[C]C[D] , (4.36)

Y2 =
∑

1,m∈A⊂Λ

∑
n∈D⊂Λ

−
(
sC(2pC ·pD+4pB ·pD)+sD(2pC ·pD+4pB ·pC)

)
C[A]C[B]C[C]C[D] ,

(4.37)

Y3 =
∑

1,m∈A⊂Λ

∑
n∈D⊂Λ

−4sCsDC[A]C[B]C[C]C[D] , (4.38)

and will treat them one by one.

First, using (4.31) we get

Y1 =
∑

n∈D⊂Λ

(sC + sD)C[C]C[D]
∑

〈Λ1Λ2Λ3〉

C[Λ1]C[Λ2]C[Λ3]

=
∑

n∈D⊂Λ

 ∑
〈C1C2〉

C[C1]C[C2]C[D] +
∑
〈D1D2〉

C[C]C[D1]C[D2]

 ∑
〈Λ1Λ2Λ3〉

C[Λ1]C[Λ2]C[Λ3] .

(4.39)

We assume that n ∈ D1. We can consider the coefficient of C[Λ1]C[Λ2]C[Λ3]C[Λ1]C[Λ2]C[Λ2]

with n∈Λ1. There are three correct configurations which are {D1 =Λ1, D2 =Λ2, C=Λ3},
{D1 = Λ1, D2 = Λ3, D = Λ2} and {D = Λ1, C1 = Λ2, C2 = Λ3}, thus we have

Y1 = 3
∑

〈Λ1Λ2Λ3〉

∑
〈Λ1Λ2Λ3〉

(
C[Λ1]C[Λ2]C[Λ3]

)(
C[Λ1]C[Λ2]C[Λ3]

)
. (4.40)

Secondly, considering Y2 gives

Y2 =
∑

1,m∈A⊂Λ

∑
n∈D⊂Λ

−
(

(2pC · pD + 4pB · pD)
∑
〈C1C2〉

C[C1]C[C2]C[D]

+ (2pC · pD + 4pB · pC)
∑
〈D1D2〉

C[C]C[D1]C[D2]

)
C[A]C[B] . (4.41)

Now we fix A, B, and count the coefficient of C[Λ1]C[Λ2]C[Λ3] with n ∈ Λ1 under the sum-

mation over divisions 〈CD〉. The correct configurations have been given when considering
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Y1, thus the coefficient is

−
(

2pΛ1Λ2
· pΛ3

+ 4pΛ3
· pB + 2pΛ1Λ3

· pΛ2
+ 4pΛ2

· pB + 2pΛ2Λ3
· pΛ1

+ 4pΛ1
· pB

)
= −2(sA − sB) + 2sΛ1

+ 2sΛ2
+ 2sΛ3

. (4.42)

Substituting it into (4.41) we get

Y2 =
∑

1,m∈A⊂Λ

∑
〈Λ1Λ2Λ3〉

(
− 2(sA−sB)+2sΛ1

+2sΛ2
+2sΛ3

)(
C[A]C[B]

)(
C[Λ1]C[Λ2]C[Λ3]

)
= −2

∑
〈Λ1Λ2Λ3〉

∑
〈Λ1Λ2Λ3〉

(
C[Λ1]C[Λ2]C[Λ3]

)(
C[Λ1]C[Λ2]C[Λ3]

)

+ 2
∑

1,m∈A⊂Λ

C[A]C[B]
∑

〈Λ1Λ2Λ3〉

( ∑
〈Λ11Λ12〉

C[Λ11]C[Λ12]C[Λ2]C[Λ3]

+
∑
〈Λ21Λ22〉

C[Λ1]C[Λ21]C[Λ22]C[Λ3] +
∑
〈Λ31Λ32〉

C[Λ1]C[Λ2]C[Λ31]C[Λ32]

)
, (4.43)

where (4.31) has been used again. In the last line, Λi1 and Λi2 are two simple subsets

of Λi. For the term C[λ1]C[λ2]C[λ3]C[λ4] with n ∈ λ1 and λ1
⋃
λ2
⋃
λ3
⋃
λ4 = Λ, its

coefficient under the summation over divisions
〈
Λ1Λ2Λ3

〉
can be counted by following six

configurations: {Λ11 =λ1,Λ12 =λ2,Λ2 =λ3,Λ3 =λ4}, {Λ11 =λ1,Λ12 =λ3,Λ2 =λ2,Λ3 =λ4},
{Λ11 = λ1,Λ12 = λ4,Λ2 = λ2,Λ3 = λ3}, {Λ1 = λ1,Λ21 = λ2,Λ22 = λ3,Λ3 = λ4},
{Λ1 = λ1,Λ21 = λ2,Λ22 = λ4,Λ3 = λ3}, {Λ1 = λ1,Λ21 = λ3,Λ22 = λ4,Λ3 = λ2}. Thus,

we find

Y2 = −2
∑

〈Λ1Λ2Λ3〉

∑
〈Λ1Λ2Λ3〉

(
C[Λ1]C[Λ2]C[Λ3]

)(
C[Λ1]C[Λ2]C[Λ3]

)
+ 12

∑
1,m∈A⊂Λ

C[A]C[B]
∑

〈λ1λ2λ3λ4〉

C[λ1]C[λ2]C[λ3]C[λ4] . (4.44)

Similar to the appearing of quartic vertexes, the term C[λ1]C[λ2]C[λ3]C[λ4] can be explained

as a new quintic vertex.

Finally, we consider Y3 to obtain

Y3 = −4
∑

1,m∈A⊂Λ

C[A]C[B]
∑

n∈D⊂Λ

( ∑
〈C1C2〉

C[C1]C[C2]

)( ∑
〈D1D2〉

C[D1]C[D2]

)
, (4.45)

where C1 and C2 are two simple subsets of C, D1 and D2 are two simple subsets

of D with n ∈ D1. Considering the coefficient of C[λ1]C[λ2]C[λ3]C[λ4] with n ∈ λ1

under the summation over divisions 〈CD〉, one can find three correct configurations:

{D1 = λ1, D2 = λ2, C1 = λ3, C2 = λ4}, {D1 = λ1, D2 = λ3, C1 = λ2, C2 = λ4} and

{D1 = λ1, D2 = λ4, C1 = λ2, C2 = λ3}, thus we arrive at

Y3 = −12
∑

1,m∈A⊂Λ

C[A]C[B]
∑

〈λ1λ2λ3λ4〉

C[λ1]C[λ2]C[λ3]C[λ4] . (4.46)
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Adding Y1, Y2 and Y3 together, we can see that the quintic vertexes cancels each other,

and the result is given as∑
1,m∈A⊂Λ

∑
n∈D⊂Λ

K1C[A]C[B]C[C]C[D]

=
∑

〈Λ1Λ2Λ3〉

∑
〈Λ1Λ2Λ3〉

(
C[Λ1]C[Λ2]C[Λ3]

)(
C[Λ1]C[Λ2]C[Λ3]

)
. (4.47)

Similar calculation gives∑
1∈A⊂Λ

∑
n,m+1∈D⊂Λ

K2C[A]C[B]C[C]C[D]

=
∑

〈Λ1Λ2Λ3〉

∑
〈Λ1Λ2Λ3〉

(
C[Λ1]C[Λ2]C[Λ3]

)(
C[Λ1]C[Λ2]C[Λ3]

)
. (4.48)

To finish our proof, let us we consider the last term of relation (4.28)∑
1∈A⊂Λ

∑
n∈D⊂Λ

1

9
(sA + sB)(sC + sD)C[A]C[B]C[C]C[D]

=
∑

1∈A⊂Λ

∑
n∈D⊂Λ

1

9

( ∑
〈A1A2〉

C[A1]C[A2]C[B] +
∑
〈B1B2〉

C[A]C[B1]C[B2]

)
( ∑
〈C1C2〉

C[C1]C[C2]C[D] +
∑
〈D1D2〉

C[C]C[D1]C[D2]

)
, (4.49)

with 1 ∈ A1, n ∈ D1. This situation is familiar for us now. There are three configurations

for C[Λ1]C[Λ2]C[Λ3] with 1 ∈ Λ1 and three configurations for C[Λ1]C[Λ2]C[Λ3] with n ∈ Λ1,

thus there are totally nine configuations for the term C[Λ1]C[Λ2]C[Λ3]C[Λ1]C[Λ2]C[Λ3]

which leads ∑
1∈A⊂Λ

∑
n∈D⊂Λ

1

9
(sA + sB)(sC + sD)C[A]C[B]C[C]C[D]

=
∑

〈Λ1Λ2Λ3〉

∑
〈Λ1Λ2Λ3〉

(
C[Λ1]C[Λ2]C[Λ3]

)(
C[Λ1]C[Λ2]C[Λ3]

)
. (4.50)

Thus, we have ∑
1,m∈A⊂Λ

∑
n∈D⊂Λ

K1C[A]C[B]C[C]C[D]

=
∑

1∈A⊂Λ

∑
n,(m+1)∈D⊂Λ

K2C[A]C[B]C[C]C[D]

=
∑

1∈A⊂Λ

∑
n∈D⊂Λ

1

9
(sA + sB)(sC + sD)C[A]C[B]C[C]C[D]

=
∑

〈Λ1Λ2Λ3〉

∑
〈Λ1Λ2Λ3〉

(
C[Λ1]C[Λ2]C[Λ3]

)(
C[Λ1]C[Λ2]C[Λ3]

)
. (4.51)

This ends the proof of relation (4.28).
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Before ending this section, we would like to point out a by-product in this section. We

have shown that the final result of the integration can be expressed as

A =
1

s3
Λ

( ∑
〈Λ→AB〉

∑
〈Λ→CD〉

XC[A]C[B]C[C]C[D]

− 1

4
sΛ

∑
〈Λ→CD〉

∑
〈Λ→Λ1Λ2Λ3〉

(
C[C]C[D]

)(
C[Λ1]C[Λ2]C[Λ3]

)
− 1

4
sΛ

∑
〈Λ→AB〉

∑
〈Λ→Λ1Λ2Λ3〉

(
C[A]C[B]

)(
C[Λ1]C[Λ2]C[Λ3]

)

+
1

4

∑
〈Λ→Λ1Λ2Λ3〉

∑
〈Λ→Λ1Λ2Λ3〉

(
C[Λ1]C[Λ2]C[Λ3]

)(
C[Λ1]C[Λ2]C[Λ3]

))
, (4.52)

where X is defined in (4.20). This formulation can be considered as a new kind of inte-

gration rule. Now instead of just cubic vertexes like 〈Λ→ AB〉 and
〈
Λ→ CD

〉
, there are

new quartic vertexes like 〈Λ→ Λ1Λ2Λ3〉 and
〈
Λ→ Λ1Λ2Λ3

〉
.

5 Rule for duplex-double pole

In this section, we will derive the Feynman rule for duplex-double pole. In [20], the Feynman

rule is conjectured to be

RIII
ule[pA, pB, pE , pC , pD] =

(2pA · pD)(2pB · pC)− (2pA · pC)(2pB · pD)

s2
ABs

2
CD

− (p2
E)(2pA · pD + 2pB · pC − 2pA · pC − 2pB · pD)

4s2
ABs

2
CD

. (5.1)

In this section, we will derive a different rule for the special case p2
E = 0 for simplicity. The

new rule will be different from the one given in (5.1). Since we have restricted ourselves only

on the special case, we will not present the equivalent proof of these two rules in this paper.

5.1 CHY configuration

Like other two cases, first let us specify the CHY configurations in this section, i.e., all

poles are simple poles except two double poles sΛ1 and sΛ2 (Λ1
⋂

Λ2 = ∅). Furthermore, to

simplify the problem, we have assumed the numerator is one for CHY integrands and the

E = Λ1
⋃

Λ2 is just a single node e. With above specifications, we can derive the following

statements:

(1) By the same argument for the case with only one double pole, for the subset Λ1, there

are two points a, b having a line connecting to subset Λ1. Similarly, for the subset

Λ2, there are two points c, d having a line connecting to subset Λ2.

(2) Because E = {e}, we see immediately that there are four lines [ae], [be], [ce] and [de].
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(3) For all Feynman diagrams, Λ1 will split into two simple corners A and B with a ∈ A,

b ∈ B, and similarly Λ2 will split into two simple corners C and D with c ∈ C, d ∈ D,

as can be seen in figure 4a.

(4) Using (3.5), there is no single pole Σ = α
⋃
β with true subsets α ⊂ Λ1, β ⊂ Λ2 by

the same argument.

(5) Using (3.5), there is no single pole Σ = α
⋃
E with the true subset α ⊂ Λ1. The

reason is that if χ[α] = 0, then L[α,E] ≤ 1 since b, a can not belong to same single

pole. In other words, we will have L[α,E] + χ[α] ≤ 1. Similarly there is no single

pole Σ = β
⋃
E with the true subset β ⊂ Λ2.

(6) For the case Σ = α
⋃
β
⋃
E with true subsets α ⊂ Λ1, β ⊂ Λ2, we find

χ[Σ] = χ[α] + χ[β] + L[α, β] + L[α,E] + L[β,E]− 4 , (5.2)

with L[α, β] = 0, L[α,E] + χ[α] ≤ 1 and L[β,E] + χ[β] ≤ 1, we get χ[Σ] < 0 always,

i.e., there is no such a simple pole.

Based on above observations, we see that all maximal compatible combinations must

contain Λ1 and Λ2. The reason is that there are at most (|Λ1|−2) compatible combinations

from Λ1 and (|Λ2| − 2) compatible combinations from Λ2, thus at most we can get (n− 5)

compatible poles. Therefore one must add two poles sΛ1 and sΛ2 to achieve the correct

number (n − 3) for all poles. In other words, all allowed Feynman diagrams will contain

the following cubic vertex where double poles sΛ1 and sΛ2 meet with the node e. With this

picture, the integrated result should be13

ICHY →
∑

〈ABCD〉

X

s2
Λ1
s2

Λ2

C[A]C[B]C[C]C[D]C[E] ,

a ∈ A ⊂ Λ1, b ∈ B = Λ1/A, c ∈ Λ2/D, d ∈ D ⊂ Λ2 . (5.3)

Now we need to determine the expression X to get the Feynman rule.

5.2 Derivation

Now we derive the rule. Since there are two double poles sΛ1 and sΛ2 , we need to use the

cross-ratio identities twice. In the first step, our choice of the gauge is [a, d,Λ1], then the

identity is given by

−1 =
∑

i∈Λ1\{a}

∑
j∈Λ2\{d}

sij
sΛ1

zjdzia
zijzad

+
∑

i∈Λ1\{a}

sie
sΛ1

zedzia
ziezad

, (5.4)

where we have split the sum j ∈ Λ1/{d} into two parts, as shown in figure 4b and figure 4c

respectively. For the first part, the factor
zjdzia
zijzad

has reduced the double pole s2
Λ2

to simple

pole sΛ2 simultaneously by the numerator zjd. Furthermore, it does not create any new

simple poles. Firstly, it can not create new simple poles of the form α
⋃
E with α the

13For single note, since C[{e}] = 1, one can drop this factor.
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A B

CD

E

(a) Original integrand

A B

CD

E

(b) Cross-ratio identity: the

T1 part

A B

CD

E

(c) Cross-ratio identity: the

T2 part

Figure 4. Configuration of the original integrand and the cross-ratio identity of the rule III. The

red lines represent terms
zjdzia
zijzad

and zedzia
ziezad

provided by the cross-ratio identity.

true subsets of either Λ1 or Λ2. Secondly, it can not create new simple poles of the form

α
⋃
β with α, β the true subsets of Λ1 and Λ2 respectively. Using (3.5), one see that after

multiplying the factor
zjdzia
zijzad

, L[α, β] can change from zero to one at most. Similarly, it can

not create new simple poles of the form α
⋃
β
⋃
E with α, β the true subsets of Λ1 and

Λ2 respectively. For this one, we need to use (5.2) and again L[α, β] can change from zero

to one at most. Above analysis shows that the first term has been reduced to the case

without any higher order poles. Thus the integration rules given in [17–19] can be applied

straightforwardly. Putting all considerations together, the first part of (5.4) gives

T1 =
∑

〈ABCD〉

2pB · pC
sΛ1

1

sΛ1sΛ2

C[A]C[B]C[C]C[D]C[E] . (5.5)

Now we consider the second part of (5.4). Because of the factor zedzia
ziezad

, especially the

denominator zie, it is easy to see from (3.5) that now the subset α
⋃
E with i, b ∈ α, a 6∈ α,

α ⊂ Λ1 and χ[α] = 0 will become a new single pole. This phenomenon will complicate our

discussion a lot. Also, for this part, the double pole s2
Λ2

still exists, thus we need to use

cross ratio identity again. In fact, if we set Λ̃1 = Λ
⋃
E = Λ2 and Λ̃2 = Λ2, Iorg

zedzia
ziezad

is

the case with only one double pole sΛ2 studied in previous section, where a, e are special

points in Λ̃1 and d, c are the special points in Λ̃2. Using result (3.21) we get

(2pB · pE)

sΛ1

∑
Ã⊂Λ̃1

∑
C⊂Λ2

(2p
Ã
· pC)

s2
Λ2

C[Ã]C[B̃]C[C]C[D] , (5.6)

where we have used the fact Λ̃2 = Λ2. Now coming to the key point: the allowed splitting

of Λ̃1 can be divided into two cases. In the first case, B̃ = E and Ã = Λ1. Furthermore,

the Ã split into two corners A,B and we have

C[Ã]C[B̃] =

 1

sΛ1

∑
〈AB〉

C[A]C[B]

 C[E] . (5.7)
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Putting it back, we get

T2;1 =
∑

〈ABCD〉

(2pB · pE)

sΛ1

(2(pA + pB) · pC)

s2
Λ2

1

sΛ1

C[A]C[B]C[C]C[D]C[E] . (5.8)

In the second case, Ã = A and B̃ = B
⋃
E. Unlike the first case, we know for sure that

C[Ã] =
(

1
sΛ1

∑
〈AB〉 C[A]C[B]

)
. Here node e can be attached to some propagators in the

sub-Feynamn diagrams of subset B. We will show that the final result for the second case is

T2;2 =
∑

〈ABCD〉

(2pA · pC)sΛ1

s2
Λ1
s2

Λ2

C[A]C[B]C[C]C[D]C[E] . (5.9)

Putting (5.5), (5.8) and (5.9) together with proper sign, we get the final result14

T1 − T2;1 − T2;2 , (5.10)

which implies that the X in (5.3) is given by

X〈ABCD〉 = (2pB · pC)sΛ2 − (2pB · pE)(2(pA + pB) · pC)− (2pA · pC)sΛ1 . (5.11)

The Feynman rule (5.3) with X given by (5.11) has been checked numerically with several

examples.

Now we explain the result (5.9) for the second splitting of Λ̃1 = Ã
⋃
B̃ with Ã = A

and B̃ = B
⋃
E. For a given subset B, there are several compatible combinations, i.e.,

several sub-Feynman diagrams. Let us focus on a particular sub-Feynman diagram Γ,

which is shown in figure 5a. For this Γ, there is a sequence of single subsets such that

Bm ⊂ Bm−1 ⊂ · · · ⊂ B1 ⊂ B with Bm = {b}. The reason we consider this sequence is

that by our previous argument, it is exactly these subsets Bt, which can combine with

the subset E = {e} to create a new single pole when the sum i ∈ Bt in the second part

of (5.4). In other words, for the second splitting of Λ̃1, the node e will attach exactly to

these propagators Bt in the Feynman diagram Γ, as can be seen in figure 5b. Now we can

write down the expression when node e is attached to propagator Bt as

TΓ;Bt =


2pBt ·pE

sBEsB1E
...sBtEsBtsBt+1

...sBm−1
γ t ≥ m− 1 ,

2pBt ·pE
sBEsB1E

...sBm−1E
sBmE

γ t = m.

(5.12)

Let us explain the meaning of (5.12). First, to be able to attach e to the propagator Bt,

the sum i in the second part of (5.4) can only be those i ∈ Bt, so we get the numerator

2pBt ·pE . Secondly, along the sequence of propagators, when the node e has been attached,

the later propagators will carry corresponding momentum, so we have the propagators

sBtE , sBt−1E , sBt−2E until sBE . Thirdly, γ =
∏
t γBt is the other part of propagators,

which are not affect by node e, as shown in figure 5. It will be the same for all TΓ;Bt .

14The relative minus sign is because for the second part we have inserted another cross ratio identity.
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b

γBm

γBm−1

γB1

γB2

1

(a) The Feynmann diagram Γ

e

1

(b) e attaches to the propagator 1
sBt

Figure 5. The Feynmann diagram Γ of the sequence Bm ⊂ Bm−1 ⊂ · · · ⊂ B1 ⊂ B and the node

e attaches to this diagram.

Having obtained the expression, we can carry out the sum. It is easy to see that

TΓ;Bm−1 +TΓ;Bm =
γ

sBEsB1E . . . sBm−2EsBm−1E

{
2pBm−1 · pE
sBm−1

+
2pBm · pE
sBmE

}
=

γ

sBEsB1E . . . sBm−2EsBm−1E
× sBm−1E

sBm−1

=
γ

sBEsB1E . . . sBm−2EsBm−1

,

(5.13)

where at the second line we have used the fact p2
E = 0 since E = {e} is just a single node.

Adding TΓ;Bm−2 , we get

TΓ;Bm−2 + TΓ;Bm−1 + TΓ;Bm

=
γ

sBEsB1E . . . sBm−2E

{
1

sBm−1

+
2pBm−2 · pE
sBm−2sBm−1

}
=

γ

sBEsB1E . . . sBm−2E
× sBm−2E

sBm−2sBm−1

=
γ

sBEsB1E . . . sBm−3EsBm−2sBm−1

. (5.14)

Now we can see the recursive pattern, which leads to

m∑
t=0

TΓ;Bt =
γ

sBsB1 . . . sBm−3sBm−2sBm−1

. (5.15)

This is just the expression of Γ itself. This summation can be understood diagrammatically

as in figure 6. This calculation has also shown how the new created poles have been canceled

out when summing over all terms.

– 25 –



J
H
E
P
0
6
(
2
0
1
7
)
0
9
1

+ + + =

Figure 6. The summation
∑m

t=0 TΓ;Bt
.

Having above preparations, we are ready to write down the contribution from the

second splitting of Λ̃1 as

T2;2 =
1

sΛ1

∑
Λ̃1=A

⋃
B̃

2pA · pC
s2

Λ2

C[A]C[C]C[D]
∑

Γ

{
m∑
t=0

TΓ;Bt

}
, (5.16)

where the Feynman rule (3.21) has been used. Using (5.15) to above expression, we arrive

at the wanted result (5.9).

6 Conclusion

In this paper, we use the cross-ratio identity to derive the Feynman rules of higher-order

poles in the CHY construction conjectured in [20]. The first rule is valid for CHY integrands

containing a double pole, the second rule is valid for integrands containing a triple pole,

while the third rule is valid for integrands containing a duplex-double pole. The new

expression of rules obtained in this paper depends on the gauge choices of cross-ratio

identities, however the final results of integrations after summing over all correct compatible

combinations are gauge invariant.

For the first and second rule, we make the comparison of them with those conjectured

in [20]. For the second rule, the equivalence between our formula and the conjectured one

is non-trivial. We have found that the result of integration can be arranged into a new

version of rule which contains quartic vertexes. This is an interesting phenomenon.

For the first two rules, we have performed special gauge choices to ensure that new

poles which do not satisfy the desired compatible combination will not emerge. For the

third rule however, this idea can not be realized, i.e., one can not avoid the appearing of

new poles. Thus we have provided a treatment of new poles for this rule.

In general, searching for integration rules for higher-order poles is not efficient enough

for practical computation, since one can not reduce the most general CHY integrands

which contain higher order poles into a few configurations. Rules in this paper or rules

in [20] only cover some special cases. When encountering new cases, we need new rules.

However, since we have proven the conjectured rules through the cross-ratio identities,

we can conclude that the cross-ratio identity method is a powerful and universal tool for

analytic calculation.
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