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1 Introduction

Currently there are many available examples of AdS/CFT correspondence [1–3], from which

one may study various aspects of gravity and field theories in a rather precisely defined

setup. Numerous aspects of strongly coupled field theories have been understood by study-

ing the bulk dynamics based on the AdS/CFT correspondence. However understanding

certain aspects of gravity system are still lacking, which in particular include degrees behind

horizon and gravitational singularities.

In this note, we focus on the gravity dynamics based on the 3d BTZ black hole [4]/

thermofield double [5] correspondence which was first introduced in [6]. Here we consider

three dimensional case only, which of course can be generalized to other dimensions. An

interesting deformation [7, 8] of thermofield double system has appeared based on the

Janus geometries [7, 9]. The deformation makes the systems living in the left and the right

boundaries of the BTZ black hole different from each other with an exactly marginal oper-

ator turned on. The corresponding black hole solution becomes time-dependent, which is

called as Janus time-dependent black hole (TDBH). The corresponding thermofield initial

state of the boundary CFT involves an Euclidean time evolution U = e−
β
4
HRe−

β
4
HL where

HL/R is respectively for the Hamiltonian of the left/right system and β is the inverse of
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the late-time equilibrium temperature. Looking at the system from the viewpoint of one

boundary, the Janus TDBH solution describes thermalization of an initial perturbation

of thermal system. Namely the above deformation brings the system an initially out-of-

equilibrium state, which will be exponentially relaxed away by thermalization leading to

the equilibrium state. This late time behaviors are basically controlled by the physics of

quasi-normal modes. Thus the late-time regime is in a quasi-equilibrium but, in general,

the system is not even in a quasi-equilibrium under relaxation, during which the thermo-

dynamic variables such as temperature and free energy are not well defined.

In this note, we shall consider rather generic perturbations of the BTZ geometry in

the framework of the AdS/CFT correspondence, for which the boundary Hamiltonians

remain intact. The thermofield initial states of the system, however, can still be deformed

rather generically, which is followed by a time evolution by undeformed Hamiltonians.

This will be achieved by inserting an arbitrary linear combination of operators at the mid-

point of the Euclidean time evolution as U = e−
β
4
H0e−

∑
I CIOI e−

β
4
H0 with H0 denoting

the undeformed BTZ Hamiltonian. Based on the operator-state correspondence, a rather

generic perturbation of thermal system can be achieved. Namely such states are still

particularly entangled from the viewpoint of a two sided observer. These out-of-equilibrium

perturbations will be exponentially relaxed away in the far future. Thus the deformations

are describing thermalization of generic perturbation of thermal system. We illustrate these

using scalar primary operators dual to bulk scalar fields. Below we shall find the explicit

solution of the scalar field to the leading order which takes a rather simple form. We solve

the back-reacted geometries to the quadratic order of the scalar perturbation parameter

which we take as γ.

These geometries have many interesting applications. These may be viewed as a real-

ization of micro thermofield deformations of the BTZ geometry. We argue that the bulk

observer of a particular side cannot extract the full microscopic information available in

the reduced density matrix of the same side by studying the perturbative gravity dynamics

including full back-reactions. The micro-geometries are also expected to play an impor-

tant role in understanding the behind-horizon degrees, which is beyond the scope of the

present work.

In section 2, we present the three dimensional AdS Einstein scalar system and the BTZ

background. In section 3, we present the perturbation equations including the gravity

back-reactions to their leading order. We solve these gravity equations for the simplest

perturbation of the m2 = 0 scalar field. We analyze the deformation of the corresponding

Penrose diagram and horizon area. In section 4, we present the field theory description

of the above perturbation. In section 5, we generalize the above construction to micro-

geometries corresponding to other deformations of thermofield states. In section 6, we

describe the bulk dynamics and their decoding problem. Last section is devoted to our

concluding remarks. In appendices, we present more examples of gravity solutions for

various scalar perturbations.

Note added: upon preparing the submission, there appeared a paper [19], whose results

partially overlap with ours in this paper.
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2 Einstein scalar system

We begin with the three dimensional Einstein scalar system

S =
1

16πG

∫
d3x
√
−g
(
R+

2

`2
− gab∂aφ∂bφ−m2φ2

)
(2.1)

One may turn on linear combination of the above bulk scalar fields or even other bulk

fields with non-zero spins. Here we shall limit our consideration to the case of scalar fields.

There are also in general interactions between these bulk fields, which we shall ignore in

this note. The dimension ∆ of the corresponding dual operator is related to the mass by

∆(∆− d) = `2m2 (2.2)

where d is the spacetime dimension of the boundary CFT which equals 2 for the present

case. For the m2 = 0 case, this theory can be fully consistently embedded into type IIB

gravity [7]. For non-zero m2 that corresponds to integral dimensions, the solution can

be consistently embedded into IIB supergravity only for the leading order fluctuations

including the gravity back reaction. Here we set the AdS radius ` to be unity for simplicity

and recover it whenever it is necessary. The Einstein equation reads

Rab +

(
2

`2
−m2φ2

)
gab = ∂aφ∂bφ (2.3)

and the scalar equation of motion is given by

∇2φ−m2φ = 0 (2.4)

Any resulting solutions involving nontrivial scalar field will be deformations of the well

known AdS3 × S3 ×M4 background where M4 may be either T 4 or K3 [10]. Thus our

construction is based on this full microscopic AdS/CFT correspondence.

The BTZ black hole in three dimensions can be written as

ds2 = −r
2 −R2

`2
dt2 +

`2

r2 −R2
dr2 + r2dϕ2 (2.5)

where the coordinate ϕ is circle compactified with ϕ ∼ ϕ + 2π. Of course here we turn

off the scalar field. Note that the horizon is located at r = R. The regularity near r = R

is ensured if the Euclidean time coordinate tE has a period β = 2π `
2

R . The corresponding

Gibbons-Hawking temperature is then

T =
R

2π`2
(2.6)

The mass of the black hole can be identified as

M =
R2

8G`2
(2.7)

The boundary system is defined on a cylinder

ds2
B = −dt2 + `2dϕ2 (2.8)

– 3 –



J
H
E
P
0
6
(
2
0
1
7
)
0
7
9

whose spatial size is given by L = 2π`. The central charge of the boundary conformal field

theory is related to the Newton constant by

c =
3`

2G
(2.9)

Thus the entropy of the system becomes

S =
2πR

4G
=
cπ

3
T 2π` (2.10)

while the energy of the system can be expressed as

M =
cπ

6
T 2 2π` (2.11)

in terms of the quantities of CFT.

3 Linearized perturbation

Introducing new coordinates (τ, µ, x) defined by

r

R
=

cos τ

cosµ

tanh
tR

`2
=

sin τ

sinµ

x =
R

`
ϕ (3.1)

the BTZ black hole metric (2.5) can be rewritten as

ds2 =
`2

cos2 µ

[
−dτ2 + dµ2 + cos2 τdx2

]
(3.2)

Motivated by the form of the above metric, we shall make the following ansatz

ds2

`2
=
−dτ2 + dµ2

A(τ, µ, x)
+

dx2

B(τ, µ, x)
, φ = φ(τ, µ, x) (3.3)

which describes general static geometries. It is then straightforward to show that the

equations of motion (2.3) and (2.4) reduce to

(~∂A)2 +
B

2A
(∂xA)2 −A ~∂2A = 2A− `2m2Aφ2 −A2 (~∂φ)2 +AB (∂xφ)2

3(~∂B)2 − 2B ~∂2B +
6B3

A3
(∂xA)2 − 2B2

A2

(
∂xA∂xB + 2B∂2

xA
)

=
B2

A
(8− 4`2m2φ2 − 4B(∂xφ)2)

~∂B · ~∂φ+ 2
B2

A2
∂xA∂xφ−

B

A
∂xB∂xφ− 2B ~∂2φ− 2

B2

A
∂2
xφ+ 2`2m2B

A
φ = 0, (3.4)

where we introduced the notation ~∂ = (∂τ , ∂µ) with inner product with metric ηij =

diag(−1,+1). This solves the full equations of motion up to some extra integration con-

stants. Using the remaining components of equations of motion, these integration constant

should be fixed further.
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As a power series in γ, the scalar field may be expanded as

φ(τ, µ, ϕ) =

∞∑
n=0

γ2n+1φ(2n+1)(τ, µ, ϕ) (3.5)

where we resume the general dependence on the coordinate ϕ. Then the scalar equation

in the leading order becomes

tanµ∂µh+ tan τ ∂τh+ ~∂2h− `2m2

cos2 µ
h+

`2

R2 cos2 τ
∂2
ϕ h = 0 (3.6)

where h(τ, µ, ϕ) denotes φ(1)(τ, µ, ϕ). By separation of variables, one may try the ansatz

h(τ, µ) cos jϕ and h(τ, µ) sin jϕ with j = 0, 1, 2, · · · . Here for simplicity, we shall consider

only the case j = 0 in which the above equation becomes

tanµ∂µh+ tan τ ∂τh+ ~∂2h− `2m2

cos2 µ
h = 0 (3.7)

In the following, we will construct the most general solutions of this equation for the mass

corresponding to integral dimensions.

The leading perturbation of the metric part begins at O(γ2) with even powers of γ

only. Let us organize the series expansions of the metric variables by

A = A0

(
1 +

γ2

4
a(τ, µ) +O(γ4)

)
, B = B0

(
1 +

γ2

4
b(τ, µ) +O(γ4)

)
, (3.8)

where

A0 = cos2 µ, B0 =
cos2 µ

cos2 τ
(3.9)

The leading order equations for the metric part then become

−2a+ cos2 µ ~∂2a = +4 cos2 µ(~∂h)2 + 4`2m2 h2, (3.10)

sin 2µ∂µb+ 2 cos2 µ tan τ ∂τ b+ cos2 µ ~∂2b = +4a+ 8`2m2h2 (3.11)

These linear partial differential equations (with the source term), (3.7), (3.10) and (3.11)

are of our main interest below. As we discussed before, this set solves the full equations

of motion up to some extra homogeneous solutions. Using the remaining components

of equations of motion, these coefficients of extra homogeneous solutions should be fixed

further. In this section, we shall be working in the case of m2 = 0 for which one has ∆ = 2

with the simplest solution of (3.7).

3.1 Linearized solution including back reaction

We begin with a following solution of the leading order scalar equation

h = cos2 µ sin τ (3.12)

The solution of (3.10) and (3.11) for the geometry part can be organized as

a = α0(µ) + α1(µ) cos 2τ

b = β0(µ) + β1(µ) cos 2τ (3.13)

– 5 –



J
H
E
P
0
6
(
2
0
1
7
)
0
7
9

where

α0 =
1

64
(1 + 6 cos 2µ+ 5 cos 4µ) + c1 tanµ+

21

16
(1 + µ tanµ)

α1 = − 1

16
(5 + cos 4µ+ 6µ(2 + cos 2µ) tanµ) + c3 cos2 µ+ c4(2 + cos 2µ) tanµ

β0 = c2 −
1

16
(13 + 16c3) cos2 µ+

3

8
cos4 µ+

(
− 2c4 +

3

4
µ

)
cosµ sinµ

+

(
c1 +

21

16
µ

)
tanµ)

β1 = − 1

32
+
c3

2
− 5

16
cos 2µ− 3

32
cos 4µ+

(
c4 −

3

8
µ

)
tanµ (3.14)

We then set all the odd homogeneous terms to zero by requiring c1 = c4 = 0. Then

α0 =
1

64
(1 + 6 cos 2µ+ 5 cos 4µ) +

21

16
(1 + µ tanµ)

α1 = − 1

16
(5 + cos 4µ+ 6µ(2 + cos 2µ) tanµ) + c3 cos2 µ

β0 = c2 −
1

16
(13 + 16c3) cos2 µ+

3

8
cos4 µ+

3

4
µ cosµ sinµ+

21

16
µ tanµ

β1 = − 1

32
+
c3

2
− 5

16
cos 2µ− 3

32
cos 4µ− 3

8
µ tanµ (3.15)

To fix the remaining coefficients c2 and c3, now note that the metric functions A and B

in (3.8) can be written in more convenient forms

cos2 µ

(
1 +

γ2

4
(α0 + α1 cos 2τ)

)
=

cos2 κµ

κ2

(
1 +

γ2

4
(ᾱ0 + ᾱ1 cos 2τ) +O(γ4)

)
cos2 µ

(
1 +

γ2

4
(β0 + β1 cos 2τ)

)
=

cos2 λµ

λ2

(
1 +

γ2

4
(β̄0 + β̄1 cos 2τ) +O(γ4)

)
(3.16)

where we introduce

κ(τ, µ) = 1− γ2

8

(
21

16
− 3

8
(1 + 2 cos2 µ) cos 2τ

)
+O(γ4)

λ(τ, µ) = 1− γ2

8

(
21

16
+

3

4
cos2 µ− 3

8
cos 2τ

)
+O(γ4) (3.17)

One then finds

ᾱ0 =
1

64
(1 + 6 cos 2µ+ 5 cos 4µ)

ᾱ1 = − 1

16
(5 + cos 4µ− 6(2 + cos 2µ)) + c3 cos2 µ

β̄0 = c2 −
21

16
− 1

16
(25 + 16c3) cos2 µ+

3

8
cos4 µ

β̄1 = − 1

32
+
c3

2
− 5

16
cos 2µ− 3

32
cos 4µ+

3

8
(3.18)
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We now require that A and B have expansions

cos2 κµ

κ2

(
1 +

γ2

4
(ᾱ0 + ᾱ1 cos 2τ) +O(γ4)

)
= (µ− µ0)2 +O[ (µ− µ0)3]

cos2 λµ

λ2

(
1 +

γ2

4
(β̄0 + β̄1 cos 2τ) +O(γ4)

)
= (µ− µ0)2 +O[ (µ− µ0)3] (3.19)

near infinity with µ0(τ) = π
2κ(τ,π/2) . By comparing the coefficients of (µ − µ0)2, one may

fix c2 = 21
16 and c3 = −9

8 . This choice fixes the freedom of coordinate scaling. Therefore

one has

ᾱ0 = − 1

16
cos2 µ(7− 10 cos2 µ)

ᾱ1 =
1

8
cos2 µ(1− 4 cos2 µ)

β̄0 = − 1

16
cos2 µ(7− 6 cos2 µ)

β̄1 =
1

8
cos2 µ(1− 6 cos2 µ) (3.20)

Thus

α0 = − 1

16
cos2 µ(7− 10 cos2 µ) +

21

16
(1 + µ tanµ)

α1 =
1

8
cos2 µ(1− 4 cos2 µ)− 3

8
(1 + 2 cos2 µ)(1 + µ tanµ)

β0 = − 1

16
cos2 µ(7− 6 cos2 µ) +

1

16
(21 + 12 cos2 µ)(1 + µ tanµ)

β1 =
1

8
cos2 µ(1− 6 cos2 µ)− 3

8
(1 + µ tanµ) (3.21)

One further finds

µ0(τ) =
π

2

[
1 +

γ2

8

(
21

16
− 3

8
cos 2τ

)
+O(γ4)

]
(3.22)

In this coordinate system, the (orbifold) singularity is still located at τ = ±π
2 . Hence the

τ directional coordinate is ranged over [−π/2, π/2], which is the same as before. On the

other hand, the spatial infinity is at µ = ±µ0(τ) so that the µ coordinate is ranged over

−µ0(τ) ≤ µ ≤ µ0(τ) (3.23)

We depict the corresponding Penrose diagram of the perturbed BTZ black hole in figure 1.

One finds the Penrose diagram is elongated horizontally in a τ -dependent manner. We

find that any boundary two points cannot be connected by lightlike geodesics through the

bulk including the present case as well as the cases discussed below. This in particular

implies that the left and the right boundaries are causally disconnected completely. Hence

there cannot be any interactions between the left and the right CFT’s. We also find that

µ0(τ) ≥ π/2 for all the cases considered below but we are not so sure if this holds in general.

– 7 –
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0

µ
0
(τ)

0τ

0
τ

µ
0
(τ

)

γ=0

γ=0.1

γ=0.2

γ=0.3

γ=0.4

γ=0.5

-π/2 π/2
-π/2

π/2

-π/2 π/2
π/2

1.03π/2

1.06π/2

Figure 1. Penrose diagram of the perturbed BTZ black hole depicted for various γ. The relevant

solution involves the scalar perturbation (3.12) with m2 = 0.

3.2 Boundary stress tensor and horizon area

We let O(t, ϕ) the operator dual to the scalar field φ. Then its vacuum expectation value

may be identified as

〈O(t, ϕ)〉 =
γR2

8πG`3
1

cosh2 tR
`2

tanh
tR

`2
=
γ cπ

3β2

1

cosh2 2πt
β

tanh
2πt

β
(3.24)

where we used the standard holographic dictionary [11]. This shows exponential decaying

behaviors. Here the temperature should be the late time equilibrium temperature since the

system is time dependent. The perturbation may be characterized by the initial conditions

〈O(0, ϕ)〉 = 0

∂

∂t
〈O(t, ϕ)〉|t=0 =

2cπ2

3β3
γ (3.25)

The initial perturbation are exponentially relaxed away in late time, which describes a

thermalization of initial perturbation. The thermalization are controlled by the time scale

td =
β

2π
(3.26)

Let us now show that the expression for the boundary stress tensor remains unper-

turbed. For this purpose, we shall construct asymptotic metric which is valid up to order

(µ − µ0)4. Let us define µ̄(τ) by µ̄(τ) = µ − µ0(τ). The functions A and B can be

expanded as

A = µ̄2

(
1− 1

3
µ̄2 +

γ2

2
q µ̄ cos 2τ + · · ·

)
B =

µ̄2

cos2 τ

(
1− 1

3
µ̄2 − γ2

2
q µ̄+ · · ·

)
(3.27)
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L
t

t
R

Figure 2. The future and past horizons are depicted by straight lines. The horizon length along

the future horizon grows monotonically in time. The red lines are the horizons of the right side

observer whereas the blue lines represent the horizons of the left side observer.

where q = 3π
16 and · · · denotes higher order terms in µ̄ and γ. By the coordinate

transformation,

µ̄ = µ̃+
γ2

4
q cos 2τ̃ sin2 µ̃+ · · ·

τ = τ̃ +
γ2

8
q sin 2τ̃ sin 2µ̃+ · · · (3.28)

the metric becomes

ds2

`2
=

1

µ̃2
(
1− 1

3 µ̃
2 + · · ·

) [−dτ̃2 + dµ̃2 + cos2 τ̃ dx2
]

(3.29)

which agrees with the standard BTZ metric. Thus the stress energy tensor remains un-

changed. The mass and pressure are then given by

M = 2π` p =
1

8G

R2

`2
(3.30)

which are time independent.

In figure 2, we draw the future and past horizons from the both boundaries. The

horizons associated with the right/left boundary are depicted in red/blue color respectively.

Let us now compute the horizon area along the right-side future horizon that is given by

µ(τ) = τ − π

2
+ µ0

(π
2

)
= τ + γ2 27π

256
+O(γ4) (3.31)

The horizon area (length) becomes

A(τ) = 2πR

[
1− γ2

128

(
27−9 cos2 τ+22 cos4 τ − 24 cos6 τ − 27

(
π

2
− τ
)

tan τ

)
+O(γ4)

]
(3.32)

In the region near τ = −π
2 , our small γ approximation breaks down since the coefficient of

γ2 term becomes too large. In this region, one has to use B(τ, µ) in (3.16) in the evaluation

of A(τ), from which one finds A(−π/2) = 0 as expected. We draw the time dependence

– 9 –



J
H
E
P
0
6
(
2
0
1
7
)
0
7
9

0
τ

-20

-15

-10

-5

0

γ-2
[A

(τ
)/
2

πR
-1
]

0
τ

-0.1

-0.05

0

γ-2
[A

(τ
)/
2
πR

-1
]

-π/2 π/2-π/4 π/4

π/4 π/2

↓

Figure 3. The future horizon area minus 2πR is depicted as a function of τ . In the region near

τ = −π2 , our small γ approximation breaks down since the coefficient of γ2 term becomes too large.

The validity requires that |A(τ)/(2πR)− 1| � 1.

of the horizon area in figure 3. One finds A(π/2) agrees with the BTZ value 2πR whereas

A(0) is given by

A(0) = 2πR

[
1− γ2

8
+O(γ4)

]
(3.33)

The area is monotonically increasing as a function of time along the future horizon from

zero to 2πR. The corresponding entropy S(τ) = A(τ)/4G will be interpreted as a coarse-

grained entropy of the system as discussed in detail in the next section.

3.3 Convenient form of coordinates

One may get a new coordinate system in which the form of the metric simplifies. For this

we make the following coordinate transformation

µ = σ +
3γ2

64

(
σ cos 2σ cos 2ν +

7

2
σ

)
+O(γ4)

τ = ν − 3γ2

64

(
σ sin 2σ + cos2 σ +

1

2

)
sin 2ν +O(γ4) (3.34)

Then the metric turns into the form

ds2

`2
=

1

cos2 σ

[
− dν2

1 + γ2

4 aν +O(γ4)
+

dσ2

1 + γ2

4 aσ +O(γ4)
+

cos2 ν dx2

1 + γ2

4 bx +O(γ4)

]
(3.35)

where

aσ = − 1

16
cos2 σ(7− 10 cos2 σ)− 1

8
cos2 σ(11 + 4 cos2 σ) cos 2ν

aν =
21

16
− 1

16
cos2 σ(7− 10 cos2 σ) +

1

8
cos2 σ(1− 4 cos2 σ) cos 2ν

bx =
18

16
− 1

16
cos2 σ(1− 6 cos2 σ) +

1

16

(
−3 + 4 cos2 σ(2− 3 cos2 σ)

)
cos 2ν (3.36)

By further coordinate transformation, one may put bx to zero but there seems no essential

simplification in doing so. Note also that the entire Penrose diagram is covered by the

coordinate ranges ν, σ ∈ [−π/2, π/2].
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4 Field theory construction

In the field theory side, initial states can be prepared following the thermofield construction

in [6], which is generalized in [8]. Let us begin with general construction first. We insert

operators along the Euclidean boundary, which deforms the field-theory Lagrangian by

L(−itE , ϕ) = L0(−itE , ϕ) + γg(tE , ϕ)O(−itE , ϕ) (4.1)

where tE = it is the Euclidean boundary time that is circle compactified by

tE ∼ tE + β (4.2)

Here we choose tE ranged over [−β/2, β/2) and g(tE , ϕ) to satisfy the reflection positivity

defined by

g∗(tE , ϕ) = g(−tE , ϕ) (4.3)

assuming

O†(t, ϕ) = O(t, ϕ) (4.4)

The Euclidean Lagrangian density is not real in general but the Euclidean action is real.

Let H(tE) denote a corresponding Hamiltonian at Euclidean time tE . Then the thermofield

initial state is given by

|ψ(0, 0)〉 =
1√
Z

∑
mn

〈n|U |m〉 |m̄〉L ⊗ |n〉R (4.5)

where Z is the normalization factor and |m̄〉 denotes the state dual to |m〉. The operator

U is in general given by

U = T exp

[
−
∫ 0

−β
2

dtEH(tE)

]
(4.6)

The Lorentzian time evolution is given by the Hamiltonian

−HT
L (tL)⊗ 1 dtL + 1⊗HR(tR) dtR (4.7)

where the left-right Hamiltonians are identified with

HL(tL) = H

(
− itL −

β

2

)
HR(tR) = H

(
itR

)
(4.8)

We associate the interval [−β
2 ,−

β
4 )⊕(β4 ,

β
2 ] /(−β

4 ,
β
4 ) to the Lorentzian time tL/tR of the

left/right system by the analytic continuation where tL/tR is ranged over (−∞,∞). This

is depicted in the figure 4 where both the Euclidean and the Lorentzian geometry appear
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L
t

t
R

Figure 4. The combination of the Lorentzian and the Euclidean geometries is depicted. This is

used to construct a thermofield initial state and subsequent Lorentzian time evolution.

at the same time. In this figure, we draw only the lower half of Euclidean evolution which

is relevant to the initial ket state.

The red color is for the right side whereas the blue is for the left system. One can

motivate the above choice in the following manner. Even with deformations, the coordinate

transformation like (3.1) can be introduced for the asymptotic regions of the right and the

left infinities. Then with µ = ±µ0(τ), one has the relations

tanh
2π

β
tR = sin τ

tanh
2π

β
tL = − sin τ (4.9)

which identifies the boundary times tR and tL. Since τ is ranged over [−π
2 ,

π
2 ], one sees

that tR and tL are ranged over (−∞,∞) as expected. Now by analytic continuation, the

above becomes

tan
2π

β
tRE = sinh τE

tan
2π

β
tLE = − sinh τE (4.10)

where, from the Euclidean geometry, one finds that τE is ranged over (−∞,∞). One

finds that tRE can be chosen to be ranged over (−β
4 ,

β
4 ) whereas tLE to be ranged over

[−β
2 ,−

β
4 )⊕(β4 ,

β
2 ]. The right and the left parts cover the entire thermal circle in the end.

Note that the points tE = ±β
4 is not associated with the right nor the left boundaries of the

Lorentzian spacetime. Below we shall use these points to generate the state deformation

without deforming the Hamiltonian.

As we already indicated, the identification of the Lorentzian Hamiltonian involves an

analytic continuation from the Euclidean space. The lower half of the Euclidean solution

covered by the interval [−β
2 , 0] is used to construct the thermofield initial state. Then

the upper half is associated with the dual state of the thermofield state. This analytic

continuation may not be allowed in general unless there is a further restriction on the form

of g(τE , ϕ). For the Janus deformation in [8], one finds the analytic continuation indeed

works. We leave further clarification of this issue to future works.
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Thus the time evolution is given by

|ψ(tL, tR)〉 = T exp

[
i

∫ tL

0
dt′LH

T
L (t′L)⊗ 1

]
T exp

[
−i
∫ tR

0
dt′R1⊗HR(t′R)

]
|ψ(0, 0)〉

(4.11)

With this preliminary, let us consider an entanglement between the left and the right.

For this, we introduce so called a reduced density matrix ρR(tR) defined by

ρR(tR) = trL|ψ(tL, tR)〉〈ψ(tL, tR)| (4.12)

where we trace over the left side Hilbert space. Then the entanglement entropy is defined

by the von Neumann definition

SR(tR) = −trRρR(tR) log ρR(tR) (4.13)

This is in general time independent since ρR(tR) is related to ρR(0) by U ρR(0)U† with a uni-

tary operator U = T exp
[
−i
∫ tR

0 dt′RHR(t′R)
]
. For the undeformed case with Hamiltonian

H0, one has U = e−
β
2
H0 , which leads to ρR = e−βH0/Z0. One gets the usual equilibrium

thermodynamic entropy out of the entanglement entropy, which is describing the maximal

entanglement of the left-right systems for a given temperature. The time-independence

of (4.13) reflects that the right system alone evolves unitarily. Thus fine-grained informa-

tion is fully preserved, which implies that the corresponding fine-grained (von Neumann)

entropy should be time independent. In the above, however, we find that the horizon area

grows. We interpret the corresponding horizon entropy as a coarse-grained entropy where

the coarse-graining may be done by ignoring higher-order stringy interactions. In other

words, there is a natural coarse-graining due to the gravity approximation that involves

the small G (or large c) limit where especially the nonperturbative degrees are completely

missing. These nonperturbative degrees include those of branes and various nonpertur-

bative objects in string theory. In quantum field theory on R × S1, one may prove that

there is a quantum Poincare recurrence theorem [12] saying that any initial vacuum expec-

tation value of any operator should return within a Poincare recurrence time scale. Our

gravity results violate the theorem, which is basically due to the above gravity approxi-

mation of large c limit. The fine-grained information is, of course, fully preserved and the

coarse-graining due to the approximation is responsible for the violation of the theorem.

An expectation value obtained by insertion of the operator O(t, ϕ) to the right side

boundary is given by

〈O(t, ϕ)〉 = 〈ψ(0, 0)|1⊗O(t, ϕ) |ψ(0, 0)〉 (4.14)

(Of course one may introduce a one-point function from the left boundary as well.) This

can be evaluated perturbatively as

〈O(t, ϕ)〉 = γ`

∫ β
2

−β
2

ds

∫ 2π

0
dϕ′g(s, ϕ′)

1

Z0
trO(t, ϕ)O(−i(s− π), ϕ′)e−βH0 +O(γ3) (4.15)
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where H0 is the undeformed CFT Hamiltonian. The two-point correlation function is

given by

1

Z0
trO(t, ϕ)O(t′, ϕ′)e−βH0

=
`d−1dΓ(∆+)

(√
2π
β

)2∆

8π
d+2
2 GΓ

(
∆− d

2

) ∞∑
m=−∞

1[
− cosh 2π

β (t− t′) + cosh 2π`
β (ϕ− ϕ′ + 2πm) + iε

]∆

(4.16)

in the AdS/CFT limit. Namely the expression is not exact but involves the large c gravity

approximation. See [8, 13] for the normalization factor.

For the current problem, we consider the perturbation where g(tE , ϕ) is independent

of ϕ with ∆ = 2. The one point function then becomes

〈O(t, ϕ)〉 =
γ`

8π2G

(
2π

β

)3 ∫ β
2

−β
2

ds

∫ ∞
0

dx g0(s)
1[

− cosh 2π
β (t+ is) + coshx

]2 +O(γ3)

(4.17)

where g(tE , ϕ) = g0(tE). We compare this with the gravity computation in (3.24). Thus

g0(s) can be determined by demanding∫ π

−π
du

∫ ∞
0

dx g0

(
βu

2π

)
1

[− cosh(v + iu) + coshx]2
=

π

cosh2 v
tanh v (4.18)

The function g0(z) is identified as

g0(z) = −i
[
δ

(
2πz

β
− π

2

)
− δ
(

2πz

β
+
π

2

)]
(4.19)

which leads to HL(t) = HR(t) = H0 that is the undeformed CFT Hamiltonian. In other

words, the Hamiltonians remain intact under the perturbation (4.19) which inserts the

operator precisely at tE = −β
4 . (There is, however, an example where the Lorentzian

Hamiltonians are deformed [8].) Thus the Lorentzian evolution of the thermofield states

simplifies as

|ψ(tL, tR)〉 = eiH0⊗1 tL−i1⊗H0 tR |ψ(0, 0)〉 (4.20)

On the other hand, the thermofield initial state |ψ(0, 0)〉 is deformed because the operator

U in (4.6) is modified to

U = e−
β
4
H0 eiγO200c e−

β
4
H0 = e−

β
4
H0
[
1 + iγO200c +O(γ2)

]
e−

β
4
H0 (4.21)

where O∆njc (j ≥ 0) and O∆njs (j ≥ 1) are defined by

O∆njc =
`β

2π

∫ 2π

0
dϕ cos jϕ

(
β

2π

∂

∂t

)n
O∆(t, ϕ)|t=0

O∆njs =
`β

2π

∫ 2π

0
dϕ sin jϕ

(
β

2π

∂

∂t

)n
O∆(t, ϕ)|t=0 (4.22)

Of course these kinds of definitions may be extended to arbitrary spin primary operators.
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It is clear that an operator insertion at tE = −β
4 creates a deformation of state without

deforming the left and the right Hamiltonians. In fact one may insert an arbitrary linear

combination of operators

V =
∑
I

CIOI (4.23)

where OI denote arbitrary linearly independent operators. Based on the operator state

correspondence, this leads to rather general deformation of states without deforming the

Hamiltonians of the system. In the next section we shall illustrate further gravity solutions

corresponding to such deformation of states described in the above.

5 Other examples of micro-geometries

Other perturbation can be generated in many ways. Here we are interested only in the case

where the boundary Hamiltonians are undeformed as in the previous section. One way to

generate such perturbation is to choose g(s, ϕ) = gn(s) with

gn(s) =

(
i
β

2π

d

ds

)n
g0(s) (5.1)

The corresponding expectation value can be given by

〈O(t, ϕ)〉n =

(
β

2π

∂

∂t

)n
〈O(t, ϕ)〉0 +O(γ3) (5.2)

which is derived from the formula (4.15). The scalar field solution can be generated simi-

larly by

hn(τ, µ) =

(
β

2π

∂

∂t

)n
h0(τ, µ) (5.3)

where the subscript 0 refers to our solution in section 3. This formula partly follows from

the fact that the linearized scalar equation in (3.6) involves only coefficients which are

independent of t when the equation is written in terms of coordinates (t, r, x). Thus partial

derivatives with respect to t generate new solutions of the linearized equation in (3.6). For

n = 1 case, one finds from the relation (3.1) that

h1(τ, µ) = γ cos2 µ sinµ(1− 3 sin2 τ) (5.4)

and

〈O(t, ϕ)〉1 = γ
c

12π

R2

`4
1

cosh2 tR
`2

[
−2 +

3

cosh2 tR
`2

]
(5.5)

The analysis of the corresponding back-reacted geometry is presented in appendix A. We

obtain the deformation of the Penrose diagram which is again elongated horizontally. All

the features of this solution are basically similar to those of the previous solution. In
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particular, this again describes the physics of thermalization though the detailed functional

form is different from that of the previous solution.

Let us now consider an arbitrary linear combination of h0 and h1. Namely the linear

combination

h(τ, µ) = α0 h0(τ, µ) + α1 h1(τ, µ) (5.6)

solves the linearized scalar field equation in (3.7) where α0 and α1 are real. From this

one may solve the linearized Einstein equations. Fortunately we do not have to solve the

problem from the beginning. One finds

a(τ, µ) = α2
0 a200(τ, µ) + α2

1 a210(τ, µ) + α0α1 a201(τ, µ)

b(τ, µ) = α2
0 b200(τ, µ) + α2

1 b210(τ, µ) + α0α1 b201(τ, µ) (5.7)

where we use the notation f∆n1n2(τ, µ). Here n2 = 0 denotes that the solution of linearized

Einstein equations is obtained with the scalar solution hn1(τ, µ). On the other hand, the

nonvanishing n2 implies

f∆n1n2(τ, µ) =

(
β

2π

∂

∂t

)n2

f∆n10(τ, µ) (5.8)

Thus the cross terms follow from a200 and b200 by simply taking a derivative β
2π

∂
∂t , which

one may verify directly by solving the full equations of motion and fixing the homogeneous

solutions. From the solution, again one can work out the field theory implications which are

straightforward. Here let us just mention the shape of Penrose diagram which is dictated

by µR0 (τ) and µL0 (τ) where µ is ranged over [−µL0 (τ), µR0 (τ)]. One finds that

µ
R/L
0 (τ) =

π

2κ(τ, π/2)
= 1 + γ2GR/L(τ) +O(γ4) (5.9)

with

GR/L(τ) =
α2

0

8

(
21

16
− 3

8
cos 2τ

)
+

3α2
1

1024
(74− 18 cos 2τ + cos 4τ)

±3α0α1

128

(
10 sin τ + sin 3τ

)
(5.10)

where ± are for R and L respectively. We draw these functions in figure 5 to show the

changes in the shape of the Penrose diagram. The shapes of the right boundary are

illustrated for various α0 and α1 with α0 = 1. The shape of the left side is given by the

relation GL(α0, α1) = GR(α0,−α1).

There are further linearly independent perturbations with m2 = 0. We choose the

function g(s) by

ḡ0(s) = δ

(
2πs

β
− π

2

)
+ δ

(
2πs

β
+
π

2

)
(5.11)

The corresponding scalar field reads

h̄0 =
2

π
cos2 µ

(
1− 1

2
log

(
1 + sin τ

1− sin τ

)
sin τ

)
(5.12)
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0
τ

0

0.2

0.4

0.6

0.8

G
R

(τ
)

-π/2 -π/4 π/4 π/2

α
1
/α

0
=1.0

α
1
/α

0
=0.5

α
1
/α

0
=−1.0

α
1
/α

0
=−0.5

α
1
/α

0
=0

Figure 5. We depict here the boundary shapes given by GR(α0, α1) of the Penrose diagram of the

spacetime with the linear combination of h0 and h1. We set α0 = 1 in the figure. The shape of the

left side is given by the relation GL(α0, α1) = GR(α0,−α1).

and the vev becomes

〈O(t, ϕ)〉 = γ
c

6π2

R2

`4
1

cosh2 tR
`2

[
1− tR

`2
tanh

tR

`2

]
(5.13)

One may get the back-reacted solution for the gravity part but we find it is too complicated

to present. The choice

g(s, ϕ) = ḡn(s) =

(
iβ

2π

d

ds

)n
ḡ0(s) (5.14)

will also give the scalar solution given by

h̄n(τ, µ) =

(
β

2π

∂

∂t

)n
h̄0(τ, µ) (5.15)

Finally we consider the case of massive scalar whose dual operator O∆ has a general

dimension ∆. The scalar equation (3.7) then has a simple solution in terms of Legendre

functions,

h = cos∆ µ (κ1P∆−1(sin τ) + κ2Q∆−1(sin τ)) (5.16)

Note that this reduces to (3.12) or (5.12) for massless case (∆ = 2). Here we consider only

the case with `2m2 = 3 (∆ = 3) and κ2 = 0 for which the explicit form of the solution is

given by

h = cos3 µ

(
−2

3
+ cos2 τ

)
(5.17)

We present the corresponding back-reacted geometry explicitly in appendix B.

Let us now clarify the general structure of the Hilbert space of the boundary field theory

and its realization in the gravity solution. For any Hermitian operator OI constructed from

some primary operator dual to the corresponding matter field in the gravity side, one may

construct a rather general state by the insertion

U = e−
β
4
H0
[
1 + γV +O(γ2)

]
e−

β
4
H0 (5.18)

– 17 –



J
H
E
P
0
6
(
2
0
1
7
)
0
7
9

with V =
∑

I CIOI where CI are arbitrary complex numbers. For instance, for the operator

O200, one can choose the linear combination

g(s, ϕ) = α0 g0(s) + ᾱ0 ḡ0(s) (5.19)

which leads to

V = (ᾱ0 + iα0)O200 = C200O200 (5.20)

where we take ᾱI to be real. It is clear that the full Hilbert space of the underlying CFT is

linearly realized by the inserted operator V . The realization of the leading order solution

of matter part is unconventional though it is still linear. Namely one has

h = α0 h0 + ᾱ0 h̄0 (5.21)

for the above example which does not realize the complex structure of the Hilbert space

properly. Further the back-reaction of the gravity part is essentially nonlinear as is clear

from the explicit solution (5.7). Hence we conclude that the AdS/CFT correspondence

is not a linear correspondence in the sense that the linear structure of Hilbert space of

the underlying CFT is realized nonlinearly in the gravity side. But we would like to

emphasize that the gravity solution reflects all those information of the Hilbert space of

the perturbative gravity description. As we discussed already, the gravity description

misses the nonperturbative degrees such as branes and other nonperturbative objects in

string theory.

6 Bulk dynamics

In this section, we shall discuss the behavior of the bulk field based on the above solutions.

For an illustration, let us focus on the case of m2 = 0 without the angular dependence on

ϕ with j = 0. The most general solution in the leading order is given by

h(τ, µ) =

∞∑
n=0

[
αn hn(τ, µ) + ᾱn h̄n(τ, µ)

]
(6.1)

In order to cover the entire Penrose diagram which is deformed by perturbations, it is

better to use the coordinates (ν, σ) ∈ [−π/2, π/2]2 that cover the entire Penrose diagram

as introduced in section 3.3. Namely

h(ν, σ) = he(ν, σ) + h̄o(ν, σ) (6.2)

with

he(ν, σ) =

∞∑
n=0

ᾱn h̄n(ν, σ) , ho(ν, σ) =

∞∑
n=0

αn hn(ν, σ) (6.3)

gives a solution fully covering the deformed Penrose diagram which is also valid to the

leading order since the correction due to geometry gives O(γ3) contributions. We shall

discuss properties of this solution. First of all, there is a symmetry

hn(−ν,−σ) = −hn(ν, σ)

h̄n(−ν,−σ) = h̄n(ν, σ) (6.4)
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which leads to the symmetry of the solution

ho(−ν,−σ) = −ho(ν, σ)

he(−ν,−σ) = he(ν, σ) (6.5)

This symmetry basically follows from the symmetry of the BTZ background and our choice

of the thermofield initial state. The perturbation satisfies the spatial boundary condition

h(ν,±π/2) = 0, which is our choice since there are examples [7, 8, 14] for which this

condition is relaxed. Now we shall give an initial condition at ν = 0 by

h(0, σ) = q1(σ)

∂νh(ν, σ)|ν=0 = q2(σ) (6.6)

We illustrate this bulk perturbative dynamics in figure 6, where the left and the right initial

perturbations can be independent from each other. Note that the set

{h2n+1(0, σ)/ cosσ, h̄2n(0, σ)/ cosσ | n = 0, 1, 2, · · · } (6.7)

forms a complete basis satisfying Dirichlet boundary condition for the interval σ ∈
[−π/2, π/2]. Hence q1(σ) = cosσf1(σ) where f1(σ) is an arbitrary real function satisfying

the Dirichlet boundary condition. The cos σ factor here follows from the fact that we are

considering the bulk field dual to the dimension two operator. Similarly q2(σ) = cosσf2(σ)

where f2(σ) is an arbitrary real function satisfying the Dirichlet boundary condition where

now the basis is given by

{∂νh2n(ν, σ)|ν=0/ cosσ, ∂ν h̄2n+1(ν, σ)|ν=0/ cosσ | n = 0, 1, 2, · · · } (6.8)

Thus we find that the initial configuration together with the velocity can be fully localized

in the bulk once it satisfies the boundary condition. In particular one can choose initial

conditions such that it can be fully localized behind the horizon. The subsequent ν devel-

opment is determined by the wave equation in (3.7) which is defined in the fully extended

BTZ spacetime. The time evolution is well defined except the divergence at the orbifold

singularities ν = ±π/2 where h̄n diverges. These are associated with the problems of the

singularities behind horizon, to which we have nothing to add in this note. (As will be

argued below, our gravity description fails near τ = ±π/2 where the singularity is located.)

Their features are not different from those of cosmological singularities in the sense that

the singularities are spacelike. Away from ν = ±π/2, its time evolution is ordinary. In

particular nothing special happens near horizon regions.

Now we would like to discuss the decoding of information in relation with the above

setup. We shall discuss the problem from the viewpoint of the observer of the right bound-

ary. The information we are interested in is contained in the coefficients (αn, ᾱn). There

is no subtlety in this bulk description since the simple wave equation governs this reduced

information content of the system. There are three levels of available descriptions. First is

the description in terms of the solution (6.2) of the wave equation (3.7). The second is the

full gravity description allowing back-reactions, which is coarse-grained from the viewpoint
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Figure 6. We illustrate here the bulk perturbative dynamics. The initial condition is given at

ν = 0. The left and the right initial perturbations can be independent from each other. The dotted

lines with an arrow represent possible bulk observer’s trajectories. All the information they can

gather lies in the right side of horizons that are colored in red.

of the full microscopic degrees as we discussed before. Finally there is the full microscopic

description by the boundary field theory. In particular ρR(tR) contains all those micro-

scopic information available from the viewpoint of an observer on the right boundary. This

will require the full string theory from the viewpoint of the bulk. As we demonstrated

already, the information contained in ρR does not change in time and hence all the initial

information is preserved in time. On the other hand, at the level of gravity description,

one finds the future horizon area grows which we also demonstrated already. Hence for

the bulk observer staying outside the future horizon, the less region of σ is available ob-

servationally. The observer is then able to determine less information on the coefficients

(αn, ᾱn) as the horizon area grows. Hence the information seems to disappear from the

bulk observer at this linearized level. The observer may jump into the black hole interior.

But he cannot cross the past horizon of the right side, which is the −45◦ red line in figure 6.

Hence one seems to find again less information available since the bigger region is excluded

from observation. The semiclassical treatment does not help either since the problem is

basically from the causality imposed by the horizon.

Note however that the effect is of order γ2 since missing information is mainly due

to the horizon change that is of order γ2. The higher order contributions including grav-

ity back-reaction help here which can contain the missing information. (If we know all

of (αn, ᾱn) for instance, the higher order contributions give completely redundant infor-

mation on (αn, ᾱn).) There are other ways to argue the recovery of information by the

higher order effects. One considers the coupling of the left-right boundary by the double

trace deformation [15]. Then this makes Penrose diagram contracted instead of elonga-

tion which leads to an effective reduction of the horizon area. Hence this way one may

recover the missing perturbative information at the level of wave equation. Therefore all

the information regarding the perturbative gravity fluctuation may be restored.

On the other hand, we have demonstrated that, within the gravity description, the ex-

pectation value of operator decays exponentially in time violating the Poincare recurrence

theorem. This in particular implies that the gravity description is not valid at t = ±∞ (or

τ = ±π/2) where we set out initial state at t = 0. Thus the missing information at the
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microscopic level should lie in the degrees that are responsible for the dynamics beyond

gravity approximation. These degrees are coarse-grained within the gravity description.

Their dynamics are nonperturbative in the sense that we do not have a well-defined geo-

metric description of micro-geometries.

This shows that the information loss cannot be resolved within the perturbative gravity

framework even if one includes its perturbative back-reactions. We do not know how the

missing information is stored in such nonperturbative degrees.

7 Conclusions

In this note we have considered the deformation of BTZ black holes in the context of

AdS/CFT correspondence. The geometry is dual to a deformation of thermofield initial

state while the boundary Hamiltonians remain intact. To deform initial states, we insert

a generic linear combination of operators to the mid-point of the Euclidean time evolution

which is used to construct the thermofield initial states. For each insertion, we can con-

struct the corresponding back-reacted geometries. The corresponding geometries encode

the information of the CFT side though their relation is highly nonlinear. The resulting ge-

ometries describe the exponential relaxation of any initial perturbation above the thermal

vacuum, which is the thermalization of any initial perturbation.

Our construction of the micro geometries has many potential applications. One may

compute for instance multi-point functions from our geometry. Especially evaluation of

the out-of-time-order 4-point function [16] that shows the quantum chaos behavior [17]

is rather straightforward. Here we expect one can compute the behavior of the 4-point

function that is valid for entire range of time without any further restriction. This 4-point

function involves an insertion of operators from the both boundaries at the same time. One

finds that the behind-horizon degrees are relevant in the evaluation of the 4-point function.

We will report the related study elsewhere.

Our construction of micro-thermofield geometries are different from the fuzzball pro-

posal [18] in many ways. First of all our construction is entirely based on the standard

AdS/CFT correspondence. Our micro geometries do not involve any particular bulk local

structures on which the fuzzball proposal is based on. Moreover, our deformation always

involves black hole horizon though it is not entirely clear whether the existence of horizon

is a necessary condition or not. Of course one still has a pure state description from the

viewpoint of the total system of the both boundaries. This is sharply contrasted with the

fuzzball proposal where the existence of any horizon in the bulk is disputed.
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A Other perturbation with m2 = 0

For n = 1 case, one has

h1 = γ cos2 µ sinµ(1− 3 sin2 τ) (A.1)

Following section 3, we can find the corresponding perturbation for the gravity part in

the form

A = cos2 µ

(
1 +

γ2

4
a

)
=

cos2 κµ

κ2

(
1 +

γ2

4
ā

)
= (µ− µ0)2 +O[(µ− µ0)3]

B =
cos2 µ

cos2 τ

(
1 +

γ2

4
b

)
=

cos2 λµ

λ2 cos2 τ

(
1 +

γ2

4
b̄

)
=

(µ− µ0)2

cos2 τ
+O[(µ− µ0)3] (A.2)

where

a = α0(µ) + α1(µ) cos 2τ + α2(µ) cos 4τ (A.3)

b = β0(µ) + β1(µ) cos 2τ + β2(µ) cos 4τ

with

α0 =
1

64
(111− 37 cos2 µ+ 126 cos4 µ− 120 cos6 µ) +

111

64
µ tanµ

α1 = − 3

64
(9 + 15 cos2 µ+ 44 cos4 µ− 36 cos6 µ)− 27

64
µ(1 + 2 cosµ2) tanµ

α2 =
1

128
(3 + 23 cos2 µ+ 150 cos4 µ− 144 cos6 µ) +

1

128
µ(3 + 24 cosµ2 − 72 cos4 µ) tanµ

β0 =
1

64
(111 + 23 cosµ2 + 94 cos4 µ− 60 cos6 µ) +

3

64
µ(37 + 20 cosµ2 − 4 cos4 µ) tanµ

β1 = − 1

64
(27 + 3 cosµ2 + 122 cos4 µ− 120 cos6 µ)− 3

64
µ(9 + 4 cosµ2 − 8 cos4 µ) tanµ

β2 =
1

128
(3− 13 cosµ2 + 234 cos4 µ− 240 cos6 µ) +

3

128
µ(1− 4 cosµ2) tanµ (A.4)

Also

κ = 1− 3

1024
γ2[74− 18(1 + 2 cos2 µ) cos 2τ + (1 + 8 cos2 µ− 24 cos4 µ) cos 4τ ] +O(γ4)

λ = 1− 3

1024
γ2[74 + 40 cos2 µ− 8 cos4 µ+ 2(−9− 4 cos2 µ+ 8 cos4 µ) cos 2τ

+ (1− 4 cos2 µ) cos 4τ ] +O(γ4) (A.5)

and

ā = ᾱ0(µ) + ᾱ1(µ) cos 2τ + ᾱ2(µ) cos 4τ (A.6)

b̄ = β̄0(µ) + β̄1(µ) cos 2τ + β̄2(µ) cos 4τ

– 22 –



J
H
E
P
0
6
(
2
0
1
7
)
0
7
9

with

ᾱ0 = − 1

64
cos2 µ(37− 126 cos2 µ+ 120 cos4 µ)

ᾱ1 =
3

64
cos2 µ(3− 44 cos2 µ+ 36 cos4 µ)

ᾱ2 = − 1

128
cos2 µ(1− 222 cos2 µ+ 144 cos4 µ)

β̄0 = − 1

64
cos2 µ(37− 106 cos2 µ+ 60 cos4 µ)

β̄1 =
1

64
cos2 µ(9− 146 cos2 µ+ 120 cos4 µ)

β̄2 = − 1

128
cos2 µ(1− 234 cos2 µ+ 240 cos4 µ) (A.7)

and

µ0(τ) =
π

2κ(π/2, τ)
=
π

2

(
1 +

3

1024
γ2(74− 18 cos 2τ + cos 4τ) +O(γ4)

)
(A.8)

The function µ0(τ) has the similar shape to figure 1. We draw the deformation of the

Penrose diagram in figure 7. As in section 3.2, the metric can be transformed to the

standard BTZ metric (3.29) by the coordinate transformation,

µ̄ = µ̃+
3πγ2

512
sin2 µ̃(9 cos 2τ̃ − 2 cos 4τ̃) + · · ·

τ = τ̃ +
3πγ2

1024
(9 sin 2µ̃− sin 4µ̃ cos 2τ̃) sin 2τ̃ + · · · (A.9)

Along the future horizon

µ = τ − π

2
+ µ0

(π
2

)
= τ + γ2 279π

2048
+O(γ4) (A.10)

the horizon length is a monotonically increasing function

A(τ) = 2πR

[
1 +

γ2

1024

(
− 279 + 93 cos2 τ − 782 cos4 τ + 3064 cos6 τ − 4272 cos8 τ

+ 1920 cos10 τ + 279

(
π

2
− τ
)

tan τ

)
+O(γ4)

]
(A.11)

Then A(π/2) = 2πR which is the BTZ value while A(0) is given by

A(0) = 2πR

[
1− γ2

4
+O(γ4)

]
(A.12)

A coordinate transformation

τ = ν − 3γ2

4096
[36 sin 2ν(cos 2σ + 2σ sin 2σ) + sin 4ν(cos 4σ + 4σ sin 4σ)]

µ = σ +
3γ2

1024
σ(74 + 18 cos 2ν cos 2σ + cos 4ν cos 4σ) (A.13)
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0

τ

µ
0
(τ

)

0

τ

µ
0
(τ

)

γ=0

γ=0.1

γ=0.2

γ=0.3

γ=0.4

γ=0.5

-π/2 -π/2π/2 π/2

1.08π/2

π/2π/2

1.08π/2

(a) m=0 (b) m≠0

Figure 7. Penrose diagrams of the perturbed BTZ black hole. (a) m = 0 with the perturba-

tion (A.1) (b) m =
√

3/` with the perturbation (B.1).

gives the metric of the form (3.35) with

aν =
1

128
[222− 74 cos2 σ + 252 cos4 σ − 240 cosσ6

+ 6 cos 2ν(−18 + 3 cos2 σ − 44 cos4 σ + 36 cos6 σ)

− cos 4ν(−6 + cos2 σ − 174 cos4 σ + 144 cos6 σ)]

aσ = − 1

128
cos2 σ[74− 252 cos2 σ + 240 cos4 σ

+ 6 cos 2ν(33 + 44 cos2 σ − 36 cos4 σ)

+ cos 4ν(−47 + 18 cos2 σ(−7 + 8 cos2 σ)]

bx =
1

512
[999− 8 cos2 σ(7− 97 cos2 σ + 60 cos4 σ)

− cos 2ν(330− 16 cos2 σ(15− 64 cos2 σ + 60 cos4 σ))

− cos 4ν(−15 + 76 cos2 σ − 960 cos4 σ + 960 cos6 σ)] (A.14)

B Other perturbation with m2 6= 0

Here we consider only the case with `2m2 = 3 (∆ = 3) and κ2 = 0 in (5.16) for which the

explicit form of the solution is given by

h = cos3 µ

(
−2

3
+ cos2 τ

)
(B.1)

The corresponding solution in the gravity part can be obtained in the form (A.2)

and (A.3) with

α0 =
1

192
(135− 45 cos2 µ− 18 cos4 µ+ 40 cos6 µ) +

45

64
µ tanµ

α1 = − 1

576
(165 + 275 cos2 µ− 132 cos4 µ+ 108 cos6 µ)− 55

192
µ(1 + 2 cosµ2) tanµ

α2 = − 1

1152
(15 + 115 cos2 µ− 402 cos4 µ− 144 cos6 µ)

− 5

384
µ(1 + 8 cosµ2 − 24 cos4 µ) tanµ
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β0 =
1

576
(405 + 165 cos2 µ− 94 cos4 µ+ 60 cos6 µ)

+
5

192
µ(27 + 20 cos2 µ+ 4 cos4 µ) tanµ

β1 = − 1

576
(165− 115 cos2 µ+ 118 cos4 µ+ 120 cos6 µ)

− 5

192
µ(11− 4 cos2 µ+ 8 cos4 µ) tanµ

β2 = − 1

1152
(15− 65 cosµ2 + 18 cos4 µ− 240 cos6 µ)− 5

384
µ(1− 4 cosµ2) tanµ (B.2)

Also

κ = 1− 5

3072
γ2[54− 22(1 + 2 cos2 µ) cos 2τ − (1 + 8 cos2 µ− 24 cos4 µ) cos 4τ ] +O(γ4)

λ = 1− 5

3072
γ2[54 + 40 cos2 µ+ 8 cos4 µ− (22− 8 cos2 µ+ 16 cos4 µ) cos 2τ

− (1− 4 cos2 µ) cos 4τ ] +O(γ4) (B.3)

and

ā = ᾱ0(µ) + ᾱ1(µ) cos 2τ + ᾱ2(µ) cos 4τ (B.4)

b̄ = β̄0(µ) + β̄1(µ) cos 2τ + β̄2(µ) cos 4τ

with

ᾱ0 = − 1

192
cos2 µ(45 + 18 cos2 µ− 40 cos4 µ)

ᾱ1 =
1

576
cos2 µ(55 + 132 cos2 µ− 108 cos4 µ)

ᾱ2 =
1

1152
cos2 µ(5 + 42 cos2 µ+ 144 cos4 µ)

β̄0 = − 1

576
cos2 µ(135 + 154 cos2 µ− 60 cos4 µ)

β̄1 =
1

576
cos2 µ(55 + 2 cos2 µ− 120 cos4 µ)

β̄2 =
1

1152
cos2 µ(5− 18 cos2 µ+ 240 cos4 µ) (B.5)

and

µ0(τ) =
π

2κ(π/2, τ)
=
π

2

(
1 +

5

3072
γ2(54− 22 cos 2τ − cos 4τ) +O(γ4)

)
(B.6)

We draw the shape of the Penrose diagram on the right side of figure 7. The metric can

again be transformed to the standard BTZ metric (3.29) by the coordinate transformation,

µ̄ = µ̃+
5πγ2

1536
sin2 µ̃(11 cos 2τ̃ + 2 cos 4τ̃) + · · ·

τ = τ̃ +
5πγ2

3072
(11 sin 2µ̃+ sin 4µ̃ cos 2τ̃) sin 2τ̃ + · · · (B.7)
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Along the future horizon

µ = τ − π

2
+ µ0

(π
2

)
= τ + γ2 125π

2048
+O(γ4) (B.8)

the horizon length becomes again a monotonically increasing function

A(τ) = 2πR

[
1 +

γ2

3072

(
− 375 + 125 cos2 τ + 50 cos4 τ − 264 cos6 τ + 848 cos8 τ

− 640 cos10 τ + 375

(
π

2
− τ
)

tan τ

)
+O(γ4)

]
(B.9)

Then A(π/2) = 2πR which is the BTZ value as before while A(0) is given by

A(0) = 2πR

[
1− γ2

12
+O(γ4)

]
(B.10)

A coordinate transformation

τ = ν − 5γ2

12288
[44 sin 2ν(cos 2σ + 2σ sin 2σ)− sin 4ν(cos 4σ + 4σ sin 4σ)]

µ = σ +
5γ2

3072
σ(54 + 22 cos 2ν cos 2σ − cos 4ν cos 4σ) (B.11)

gives the metric of the form (3.35) with

aν =
1

1152
[6(135− 45 cos2 σ − 18 cos4 σ + 40 cosσ6)

+ cos 2ν(−660 + 110 cos2 σ + 264 cos4 σ − 216 cos6 σ)

+ cos 4ν(−30 + 5 cos2 σ + 282 cos4 σ + 144 cos6 σ)]

aσ = − 1

1152
cos2 σ[6(45 + 18 cos2 σ − 40 cos4 σ)

+ 2 cos 2ν(605− 132 cos2 σ + 108 cos4 σ)

+ cos 4ν(235− 18 cos2 σ(29 + 8 cos2 σ)]

bx =
1

4608
[3885 + 120 cos2 σ − 872 cos4 σ + 480 cos6 σ

− 2 cos 2ν(975 + 8 cos2 σ(−125 + 44 cos2 σ + 60 cos4 σ))

− cos 4ν(75− 380 cos2 σ + 192 cos4 σ − 960 cos6 σ)] (B.12)
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[4] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

[5] Y. Takahasi and H. Umezawa, Thermo field dynamics, Collect. Phenom. 2 (1975) 55

[INSPIRE].

[6] J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP 04 (2003) 021

[hep-th/0106112] [INSPIRE].

[7] D. Bak, M. Gutperle and S. Hirano, Three dimensional Janus and time-dependent black

holes, JHEP 02 (2007) 068 [hep-th/0701108] [INSPIRE].

[8] D. Bak, M. Gutperle and A. Karch, Time dependent black holes and thermal equilibration,

JHEP 12 (2007) 034 [arXiv:0708.3691] [INSPIRE].

[9] D. Bak, M. Gutperle and S. Hirano, A dilatonic deformation of AdS5 and its field theory

dual, JHEP 05 (2003) 072 [hep-th/0304129] [INSPIRE].

[10] J. de Boer, Six-dimensional supergravity on S3 ×AdS3 and 2D conformal field theory, Nucl.

Phys. B 548 (1999) 139 [hep-th/9806104] [INSPIRE].

[11] K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002)

5849 [hep-th/0209067] [INSPIRE].

[12] L. Dyson, M. Kleban and L. Susskind, Disturbing implications of a cosmological constant,

JHEP 10 (2002) 011 [hep-th/0208013] [INSPIRE].

[13] D. Bak, Information metric and Euclidean Janus correspondence, Phys. Lett. B 756 (2016)

200 [arXiv:1512.04735] [INSPIRE].

[14] D. Bak, M. Gutperle and R.A. Janik, Janus black holes, JHEP 10 (2011) 056

[arXiv:1109.2736] [INSPIRE].

[15] P. Gao, D.L. Jafferis and A. Wall, Traversable wormholes via a double trace deformation,

arXiv:1608.05687 [INSPIRE].

[16] J. Maldacena, S.H. Shenker and D. Stanford, A bound on chaos, JHEP 08 (2016) 106

[arXiv:1503.01409] [INSPIRE].

[17] S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067

[arXiv:1306.0622] [INSPIRE].

[18] S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys. 53

(2005) 793 [hep-th/0502050] [INSPIRE].

[19] K. Goto and T. Takayanagi, CFT descriptions of bulk local states in the AdS black holes,

arXiv:1704.00053 [INSPIRE].

– 27 –

https://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1103/PhysRevLett.69.1849
https://arxiv.org/abs/hep-th/9204099
http://inspirehep.net/search?p=find+EPRINT+hep-th/9204099
http://inspirehep.net/search?p=find+J+CLPNA,2,55
http://dx.doi.org/10.1088/1126-6708/2003/04/021
https://arxiv.org/abs/hep-th/0106112
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106112
http://dx.doi.org/10.1088/1126-6708/2007/02/068
https://arxiv.org/abs/hep-th/0701108
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701108
http://dx.doi.org/10.1088/1126-6708/2007/12/034
https://arxiv.org/abs/0708.3691
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.3691
http://dx.doi.org/10.1088/1126-6708/2003/05/072
https://arxiv.org/abs/hep-th/0304129
http://inspirehep.net/search?p=find+EPRINT+hep-th/0304129
http://dx.doi.org/10.1016/S0550-3213(99)00160-1
http://dx.doi.org/10.1016/S0550-3213(99)00160-1
https://arxiv.org/abs/hep-th/9806104
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806104
http://dx.doi.org/10.1088/0264-9381/19/22/306
http://dx.doi.org/10.1088/0264-9381/19/22/306
https://arxiv.org/abs/hep-th/0209067
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209067
http://dx.doi.org/10.1088/1126-6708/2002/10/011
https://arxiv.org/abs/hep-th/0208013
http://inspirehep.net/search?p=find+EPRINT+hep-th/0208013
http://dx.doi.org/10.1016/j.physletb.2016.03.012
http://dx.doi.org/10.1016/j.physletb.2016.03.012
https://arxiv.org/abs/1512.04735
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.04735
http://dx.doi.org/10.1007/JHEP10(2011)056
https://arxiv.org/abs/1109.2736
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.2736
https://arxiv.org/abs/1608.05687
http://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05687
http://dx.doi.org/10.1007/JHEP08(2016)106
https://arxiv.org/abs/1503.01409
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01409
http://dx.doi.org/10.1007/JHEP03(2014)067
https://arxiv.org/abs/1306.0622
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0622
http://dx.doi.org/10.1002/prop.200410203
http://dx.doi.org/10.1002/prop.200410203
https://arxiv.org/abs/hep-th/0502050
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502050
https://arxiv.org/abs/1704.00053
http://inspirehep.net/search?p=find+EPRINT+arXiv:1704.00053

	Introduction
	Einstein scalar system
	Linearized perturbation
	Linearized solution including back reaction
	 Boundary stress tensor and horizon area
	Convenient form of coordinates

	Field theory construction
	Other examples of micro-geometries
	Bulk dynamics
	Conclusions
	Other perturbation with m**2=0
	Other perturbation with m**2 != 0

