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facts in the subject in a mathematically elegant setting, by exhibiting a set of BRST sym-

metries inherent in the construction. We show how these fundamental symmetries can be

made manifest by working in a superspace formalism. We argue that this rephrasing is

extremely efficacious in understanding low energy dynamics following the usual renormal-

ization group approach, for the BRST symmetries are robust under integrating out degrees

of freedom. In addition we discuss potential generalizations of the formalism that allow us

to compute out-of-time-order correlation functions that have been the focus of recent atten-

tion in the context of chaos and scrambling. We also outline a set of problems ranging from

stochastic dynamics, hydrodynamics, dynamics of entanglement in QFTs, and the physics

of black holes and cosmology, where we believe this framework could play a crucial role in
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1 Introduction

The study of quantum dynamics out of equilibrium and in open systems necessarily involves

working with mixed states. We appreciate that a crucial aspect of the quantum evolution

entails understanding the dynamical evolution, all the while keeping track of entanglement

between the system and the external environment. This is best done by writing down

a suitable density matrix for the system and studying its Hamiltonian evolution in the

presence of the external stimulus. Such a density matrix evolves via the usual Heisenberg

evolution so long as the entanglement between the system and environment is unchanging;

in the generic situation where entanglement may be modified it would undergo a form of

generalized Linblad type evolution.

While one may a-priori be concerned that the information about the environment is

hard to encode in the process, the monogamy of quantum entanglement comes to the res-

cue. We only need to consider a part of the environment that is at least as large as our

system; this suffices to encode the evolution of the system keeping track of the entangle-

ment. As long as the dynamics does not modify the entanglement between the system and

the environment, i.e., entanglement is treated as a scare resource, this gives a complete

characterization of the system’s evolution. In effect, all one needs to do is to double the

degrees of freedom, using a second copy of our system as the proxy for the environment.

This idea of doubling the degrees of freedom to describe mixed states of a quantum sys-

tem has been well understood for over five decades since the seminal works of Schwinger [2],
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Keldysh [3], and Feynman and Vernon [4]. This is a well studied subject with some very

good reviews written over the years [5–8]. Despite these we will argue that a reformulation

of the standard construction is necessitated, should one wish to focus, not on microscopic

degrees of freedom, but rather investigate properties of the low energy theory obtained by

integrating out irrelevant modes.

The primary aim of these notes is to provide a novel perspective on the Schwinger-

Keldysh formalism, emphasizing the symmetries that are inherent in the construction,

elaborating on our earlier discussion in [9]. Essentially we wish to argue that the standard

presentation of the Schwinger-Keldysh construction is a gauge-fixed formulation, which,

whilst useful for many questions, is imbued with some inherent limitations. As we are

familiar with in other areas of physics, a completely covariant construction with fully

manifest symmetries allows one to address question of greater generality, for it enables

separation of gauge artifacts from more fundamental issues. We will argue that the doubling

of Schwinger and Keldysh should be better understood in terms of a topological structure,

with a set of BRST charges that can be used to control the structure of the theory effectively.

Let us understand the rationale behind the Schwinger-Keldysh formalism, and its

attendant complications when we try to describe effective field theories. We will sketch

the physical picture here for open quantum systems where it is easy to keep track of the

system we are interested in and the environment that it interacts with. Much of what we

say can also be applied directly to closed quantum systems in mixed states which are also

interesting in their own right.

Suppose we are interested in analyzing the dynamical evolution of an open quantum

system, which we denote as Q. If we have access to the microscopic description of both this

system and the environment it interacts with, we have no real issue for we simply write

down a complete closed quantum system by considering the detailed coupling between the

two. To wit, denoting the environment by E, we would write down a standard path integral

for Q ∪ E, which would schematically look like

ZQ∪E =

∫
[DΦQ] [DΦE] exp

(
i

~

[
SQ + SE + Sent(Q↔ E)

])
. (1.1)

We can, of course, recognize such structures in various physical systems, which have been

studied all across physics. Some familiar examples of system-environment pairs to help

orient the reader are presented in table 1. As is clear from our examples we are happy to

view any form of coupling between the system and its environment, be it actual quantum

entanglement in the initial state wavefunction, or an explicit coupling which affects the

dynamics, as a form of interaction Sent.

The essential thesis of working with an open system is however that we are agnostic

of the environment’s dynamics, and would prefer to integrate it out, so as to focus on the

degrees of freedom of Q alone. This is a useful thing to do when there exists a whole class

of states and observeables where environment plays a universal role, so that within that

class one expects an effective autonomous description. We can imagine carrying out the

path integral over the environment variables in order to get to this description. However,

due to the interactions present in Sent(Q ↔ E) we recognize immediately that the state
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Open quantum systems and their environments

System Q Environment E Entanglement/Interaction

Single harmonic oscillator Quantum oscillator bath Harmonic couplings [10]

Subsystem HA Purifying complement HAc Entanglement structure

QFT modes with ω ≤ ΛUV High energy modes UV/IR interactions

Open strings on D-branes Ambient closed string theory Open-closed interactions

Quantum mechanical system Measurement apparatus Projections

Table 1. A few examples of familiar open quantum systems which we encounter frequently. These

are intended to orient the reader to the issues that we wish to emphasize in the bulk of our discussion.

of the system Q is necessarily mixed. While we oftentimes are interested in situations

where this mixing is relatively weak and can be ignored, we emphasize that generically

this is far from the case. For instance in the standard renormalization group picture, one

demonstrates that the irrelevant high energy modes are naturally suppressed when one

considers the low energy degrees of freedom — a statement that is sometimes referred

to as color transparency. This however relies on the underlying quantum dynamics being

suitably conventional, and is known to fail in systems where there is non-trivial mixing

between UV and IR modes, e.g., non-commutative field theories [11], hydrodynamics [9],

and gravity.

A natural consequence of integrating out the environment variables is that their role

in setting up the underlying entanglement pattern has to be recorded somewhere at the

end of the process. This is accomplished by two distinct elements in the path integral:

[2–4] realized that one first has to double the system variables ΦQ 7→ {ΦL
Q,Φ

R
Q}. This may

be best understood by noting that a density matrix of the system Q is an operator on the

Hilbert space and hence requires both a space of states (kets or the right Hilbert space)

HR
Q and a space of conjugate states (bras or the left Hilbert space) HL

Q for its definition.

Thus, to begin with, the discussion of mixed states of a QFT necessarily involves a

doubling. One writes down in lieu of the single-copy effective action for our system, the

Schwinger-Keldysh action

SSK = SR
Q − SL

Q . (1.2)

The relative sign can be easily understood by recalling that the Hamiltonian evolution of

states and their conjugates is accomplished by the unitary evolution operator and its con-

jugate respectively, leading to a relative sign in the action. This Schwinger-Keldysh action

suffices in circumstances where the role of the environment is to set up the correct entangle-

ment structure in the system Q, which then remains invariant in the subsequent evolution.

Strictly speaking, in our above example we should first set up the appropriate entangle-

ment between Q and E and evolve the joint system with factorized unitary UQ∪E = UQ UE

to ensure that the evolution doesn’t change this initial entanglement pattern.

Per se, the discussion could thus be simply applicable to impure states of a closed

quantum system. We emphasize that in such cases, given an initial density matrix, the

left-right factorized form (1.2) is true in the microscopic path integral description. This
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is sufficient for a path integral evolution of the system given appropriate initial and final

boundary conditions, and it forms the basic object in the Schwinger-Keldysh theory.

This doubling is however insufficient in accounting for the interactions engendered

into the Schwinger-Keldysh path integral. This point was the focus of [4], who argued that

the process of integrating out necessarily leads to new terms in addition to (1.2), which

they christened influence functionals. The precise statement is that the process of passing

from the microscopic variables to the macroscopic ones necessarily induces some interaction

between the two Schwinger-Keldysh copies of the system. To wit, the generating functional

for the system after tracing out the environment takes the generic form:

ZQ =

∫
[DΦL

Q] [DΦR
Q] exp

(
i

~

[
SR

Q − SL
Q + SIF(ΦR; ΦL)

])
. (1.3)

We emphasize that the Feynman-Vernon influence functionals, contained in SIF, present

new conceptual issues. Many of these issues are related to the fact that they are absent in

a UV description and arise in IR only after various irrelevant modes have been integrated

out for the class of states one is interested in. They are thus related to various phenomena

that are unique to IR physics such as entropy, dissipation, decoherence, long-range entan-

glement, state dependent observables etc. One might ask what is the general non-linear

structure of the influence functionals, the rules they should obey in any quantum system,

their renormalization and running. The answer to these questions is unknown at present.

As we will see in the sequel, the structure of Feynman-Vernon terms is closely related to

various fundamental questions about non-equilibrium systems and to the theory of open

quantum systems. The astute reader will also recognize that the questions are broadly

valid in discussions of gravity, either in cosmology or in studies of black holes, owing to the

fact that the causal structure of the semiclassical spacetime precludes full knowledge of the

degrees of freedom. Thus while the basic formalism of ascertaining the Schwinger-Keldysh

action is clear from a microscopic perspective, things are much more murky when we have

to deal with the low energy description.

While in the above we motivated the issues of interest using open quantum systems,

we also alluded to the fact that similar statements ought to apply when we consider mixed

states of a closed quantum system (or pure states which behave effectively as mixed states

for the relevant observables). For the latter we have in mind Gibbsian density matrices de-

scribing the thermal state of a system, which show up in the discussion of thermodynamics

and hydrodynamics. A useful way to demarcate the two situations is to realize that mixed

states of a closed system undergo canonical Heisenberg evolution. As a result the trans-

formation ρ(t) = Uρ(0)U †, with U = e−iH t, is a unitary evolution which does not change

the von Neumann entropy S(ρ(t)) = −Tr(ρ(t) log ρ(t)) = −Tr(ρ(0) log ρ(0)) = S(ρ(0)).1

We will refer to this as the invariance of the fine grained entropy of the system. On the

contrary for open systems, the fine grained entropy may change owing to the interaction

between Q and E. It is conceivable that one needs to impose some restrictions on the entan-

1A density matrix evolves oppositely to a Heisenberg picture operator O(t) = U†O(0)U by virtue of the

fact that the ordering is different. One can infer the transformations directly from ρ =
∑
α cα |ψα〉〈ψα |

and the fact that states undergo evolution via |ψ(t)〉 = e−iH t |ψ(0)〉.
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glement patterns thus generated if we want to employ the Schwinger-Keldysh formalism.

We do not address here the full range of possibilities for open systems, pausing just to note

that the discussion above applies, at the very least in circumstances where the environ-

ment can be treated classically. In such situations the interactions in Sent(Q ↔ E) can be

treated as classical sources for operators in Q with a probability distribution dictated by

the semi-classical approximation to SE.

Our motivation for getting intrigued by the problem of constructing effective

Schwinger-Keldysh theories was primarily to understand the general structure of such ef-

fective actions in the fluid dynamical regime and beyond [9, 12].2 These are qualitatively

similar to the classic problem of the Brownian oscillator which motivated [2], or linear

dissipative systems which inspired [4], albeit with a necessary upgrade to non-Gaussian in-

teractions. What the above discussion emphasizes is that one needs to gain control over the

unfactorized part contained in the influence functionals. We first encountered non-trivial

influence functionals in the process of constructing an effective action for anomaly induced

transport in hydrodynamics [18].3 While quantum anomalies are sufficiently constraining

and robust, and thus the influence functionals necessary to reproduce their effects are un-

der sufficient control, our early construction did not provide a hint of why these terms

were necessary.

In an attempt to understand influence functionals in hydrodynamics, we undertook a

detailed analysis of hydrodynamic transport, which culminated in an eightfold classification

of constitutive relations compatible with the phenomenological axioms of hydrodynam-

ics [12, 21]. The major surprise was that most hydrodynamic transport is adiabatic, which

by virtue of entropy non-production ought to admit a simple Lagrangian description (as for

any conservative system). Here we encountered a second puzzle: an attempt to eschew the

lessons of Schwinger-Keldysh effective actions only gives rise to actions encompassing two

of the seven adiabatic classes (the eighth class is the dissipative transport). Taking seri-

ously the lessons learnt from our explorations of anomalous transport, we were able to write

down a Schwinger-Keldysh effective action which reproduced our eightfold classification.

We noticed however that the construction necessitated influence functions generically.

By thinking about the microscopic structures in the Schwinger-Keldysh construction, we

argued that such terms can be controlled, should one posit the existence of an emergent

abelian gauge symmetry, which we called as U(1)T KMS gauge symmetry. The underlying

gauge invariance allowed us to forbid precisely those terms that were in tension with the

2There are other groups that have thought about this issue, see for example [13–16]. Closer in spirit to

our considerations is the recent work of [17], who take inspiration from the Schwinger-Keldysh formalism.

In non-thermal states they argue for a single BRST supercharge to encompass the constraints of microscopic

unitary. We will argue that there is a more natural structure involving two supercharges, which are CPT

conjugates of each other.
3Initial attempts to understand anomalous transport from an effective action were made in [19] who

were successful in obtaining a single copy effective action for abelian flavour anomalies in two dimensions.

Higher dimensions and non-abelian flavour symmetries necessarily involve doubling and influence function-

als. In [15] a hydrodynamic effective action was derived by exponentiating the classical equations of motion

along the lines of [20]. As discussed in [12] while this gives the general structure, it fails in general to

account for all the constraints arising from microscopic unitarity.
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hydrodynamic axiom that requires entropy to be produced (and not destroyed). Under-

standing the emergence of this gauge symmetry led us to revisiting the essentials of the

Schwinger-Keldysh formalism, which as we outlined in [9] are best viewed by extracting the

topological invariances inherent in the construction. This suffices to reproduce the effective

actions of [12, 21] for fluid dynamics as we recently explained in [22].4

Our goal here is to elaborate on the statements made in [9] and provide a perspective on

the Schwinger-Keldysh construction that transcends the application we initially intended

for it. We will therefore review the standard formalism from the viewpoint of computing

out-of-equilibrium real time correlation functions — we give a brief and heuristic overview in

section 2 and a detailed review of the important technical features in section 3. In section 4

we review in standard language the KMS condition and its consequences for the special case

of thermal dynamics. Some simple examples of Schwinger-Keldysh correlation functions

with vacuum and thermal initial conditions are given in section 5. This will conclude the

review part of this paper. We then proceed in section 6 to explain abstractly the symmetries

which are present in the doubled theory. This will lead to a reformulation of the standard

formalism in terms of BRST symmetries, which can be neatly encapsulated in a superspace

language. The extension of the formalism to include further BRST symmetries due to a

KMS condition will be given in section 7. After a technical interlude on discrete symmetries

in section 8, we proceed to a superspace analysis of Schwinger-Keldysh correlation functions

in section 9. We will demonstrate how the necessity of soaking up ghost zero modes leads to

a prescription for determining all ghost correlators, and we analyze the ambiguities in doing

so. We will finally outline in section 11 a series of questions (and further generalizations)

where we hope this viewpoint will be of use in demystifying various puzzles.

2 A lighting review of standard Schwinger-Keldysh formalism

We review some details of the Schwinger-Keldysh (SK) technique in general, thus setting the

stage for our reformulation to follow in the sequel. The idea here is to motivate an alternate

and more detailed rationale for considering the doubled system. We examine real-time

evolution in a relativistic QFT and remind the reader of salient facts in the computation of

real-time-ordered Green’s functions. This discussion complements the conceptual reasons

given in the Introduction section 1, which was primarily concerned with open quantum

systems. The discussion below largely follows the presentation in [5, 7, 8].

Let us consider computing in a QFT the two-point Green’s function for some (generi-

cally complex) Heisenberg operator Ô(x) in some pure state5

G(x, x′) = −i〈Ω| T
[
Ô(x) Ô†(x′)

]
|Ω〉 , (2.1)

4The paper [17] which appeared around the same time as ours, also constructs effective actions for

dissipative hydrodynamics. As indicated in footnote 2 they posit a single supercharge as arising from the

Schwinger-Keldysh construction, and argue for an emergent supercharge which enforces the KMS condition.

They implement the latter as a discrete Z2 transformation. Despite these seeming differences, it turns out

that there is a close connection between the superalgebras that constrain the low energy dynamics in the

two formalisms; we will explain this elsewhere.
5We are assuming without loss of generality that we can purify mixed states by reintroducing the

environment variables.
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where T will henceforth denote the standard time ordering. We use x to denote the space-

time coordinates and will differentiate the temporal and spatial coordinates as x = (t,x)

when necessary. For definiteness we will take |Ω〉 to be the ground state of the full interact-

ing theory. Usually one chooses to work perturbatively by separating the interaction part

from the full Hamiltonian, Ĥ = Ĥ0 + Ĥint; one thence switches to the interaction picture,

where the evolution operator

U(t0, t) = T exp

(
−i
∫ t

t0

dt′ Ĥint(t
′)

)
, (2.2)

defines temporal evolution of the interaction picture states. Using this expansion one then

finds an expression for the two-point Green’s function:

G(x, x′) = −i〈0|S† T
[
Ô(x) Ô†(x′)

]
S|0〉 = −i

〈0|T
[
S Ô(x) Ô†(x′)

]
|0〉

〈0|S|0〉
, (2.3)

where we introduced the S-matrix S ≡ U(−∞,∞) and the initial non-interacting ground

state of the Hamiltonian Ĥ0, denoted |0〉. The r.h.s. of (2.3) is the starting point for the

standard perturbation theory.

In writing the second equality we expressed the instantaneous late time ground state

in terms of the early time, assuming an adiabatic evolution of the system expressed as a

property of the S-matrix. Namely, the phase picked up by acting on the final state with

S† is the same as the one accumulated during the evolution, i.e., 〈0|S† = 〈0|eiα while

〈0|S|0〉 = eiα, for some phase α. One thus is assuming that the physical content of the

ground state remains unchanged during the evolution, up to a phase rotation. This fails

in non-equilibrium situations, where adiabatic evolution is not justified.

The Schwinger-Keldysh formalism deals with non-equilibrium dynamics by only ever

making reference to the initial state,6 which may be taken w.l.o.g. to be an equilibrium

configuration, the instantaneous vacuum state of Ĥ0 at t = −∞. We want to ensure now

that should we evolve the system, that we make no assumption about what it would end up

at late times. To this end, we should revert back after allowing the interactions to influence

the system, to the initial state. In a path integral this can be done by introducing a SK-

evolution operator, which evolves the system in a complex time contour. Let C be a contour

in the complex time plane, that starts out at t = −∞+ iε, follows the real axis, and then

retraces its trajectory back with a small imaginary displacement by −2iε, cf., figure 1. We

have chosen to orient the contour, so that the direction of traversal is clockwise (about the

origin say). We will also find it useful to label the forward leg of the contour, as the right

R part and the backward leg, the left L part.

Given such a contour, we can work with operators which live in this complexified

domain, and define the Schwinger-Keldysh S-matrix by working with contour-ordering

prescription, viz.,

UC ≡ TC exp

(
−i
∫
C
dt′ Ĥint(t

′)

)
. (2.4)

6This explains why Schwinger-Keldysh formalism is sometimes also referred to as in-in formalism.
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C OR

OL

+iε

−iε

Figure 1. Illustration of the generic Schwinger-Keldysh complex time contour. Every operator

Ô in the original theory has two representations in the Schwinger-Keldysh path integral, viz., OR

and OL, which can be thought of as the distinction as to what part of the contour the operator is

inserted on. Right operators are time-ordered, while left operators are anti-time ordered.

t0

C OR

OL

Figure 2. SK time contour in the case where the initial state at time t0 is known and the latest

operator insertion happens at time t. The indicated operator insertions correspond to a real-time

correlator G<(x, x′).

There is a sensible time-ordering prescription inherited from this contour ordering. It

is often however useful not to work with a single contour, but rather, work with fields

and operators labeled by which part of the contour they appear on. This makes it clear

that there needs to be a doubling of the degrees of freedom. We have left and right fields

indexed by their position on the Schwinger-Keldysh contour C. Furthermore, as illustrated,

the operators on the right/forward leg are time-ordered, those on the left/backward leg are

anti-time ordered, and the right operators precede those on the left leg of the contour.

It is useful at this juncture to note a few salient facts about the integration contours,

cf., [7]. Should we have complete knowledge of the density matrix of the full system at

some finite time t0, then we do not need to follow the contour all the way from t = −∞
to +∞ and back. It suffices to focus on the part of the contour from t0 to max(t, t′)

which corresponds to the future-most operator insertion before retracing back to the initial

configuration, cf., figure 2. Intuitively, all this is saying is that the knowledge of the density

matrix can be treated as initial conditions for the subsequent evolution and that for finite

time computations, details of how the system evolves to the future of all operator insertions

are inessential.

We are now in a position to define the Schwinger-Keldysh Green’s function. As an

example, let us consider a complex (bosonic) operator Ô. Following standard discussion,
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we have

GC(x, x
′) = −i〈Ω|TC

(
Ô(x) Ô†(x′)

)
|Ω〉 = −i〈0|TC

(
UC Ô(x) Ô†(x′)

)
|0〉 . (2.5)

We note that with the contour ordering we no longer have a normalizing denominator

anymore, for the Schwinger-Keldysh S-matrix doesn’t pick up a phase, UC |0〉 = |0〉. This

contour prescription is sufficient to obtain the various Green’s functions that one is usually

interested in. Let us determine a prescription for these using the left-right basis of fields

introduced above. Owing to the complexification of the contour, and doubling of the

degrees of freedom we immediately see that we should have a 2 × 2 matrix of real-time

Green’s functions, corresponding to the choice of operator insertions on either segment.

One thus defines:

G(x, x′) =

(
GRR GRL

GLR GLL

)
≡

(
GF G<

G> G
F̃

)
, (2.6)

where we indicate the various Green’s functions both by the contour positions of the op-

erator insertions and the more familiar notation. GF (x, x′) is the well known Feynman

propagator, GF̃ (x, x′) is an anti-Feynman propagator with reversed time ordering and we

have in addition two new cross-contour correlators. These all have familiar definitions:

GF (x, x′) = −i〈Ω|T
(
Ô(x)Ô†(x′)

)
|Ω〉 ,

G
F̃

(x, x′) = −i〈Ω|T̄
(
Ô(x)Ô†(x′)

)
|Ω〉 ,

G<(x, x′) = −i〈Ω|Ô†(x′)Ô(x)|Ω〉 ,

G>(x, x′) = −i〈Ω|Ô(x)Ô†(x′)|Ω〉 .

(2.7)

While it a-priori appears as though we have four non-trivial Green’s functions, it is a simple

matter to check the time-ordering prescriptions to note that they satisfy a simple linear

relation,

GF +G
F̃

= G> +G< . (2.8)

This is perhaps a lot more familiar if we adapt to a different basis and work with linear

combinations of above to get the familiar advanced, retarded and Keldysh functions, which

are as usual defined as:

Gret(x, x
′) ≡ −iΘ(t− t′) 〈Ω|

[
Ô(x), Ô†(x′)

]
|Ω〉 = GF −G< ,

Gadv(x, x′) ≡ iΘ(t′ − t) 〈Ω|
[
Ô(x), Ô†(x′)

]
|Ω〉 = GF −G> ,

GK(x, x′) ≡ −i〈Ω|
{

Ô(x), Ô†(x′)
}
|Ω〉 = GF +G

F̃
.

(2.9)

Note that the Wightman two-point functions can easily be recovered from this basis.

We can continue in this vein to discuss higher point functions. An n-point Schwinger-

Keldysh Green’s function can be defined from the contour ordering and decomposes into

2n component Green’s functions as above. Generalizing (2.6), we can simply write GI1I2···In

with Ii ∈ {L,R}. The construction then naturally allows one to derive an identity, which
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implies the vanishing of a certain correlation function for every n [5] (see also [23]). We will

see shortly that this statement, which is usually attributed to a normalization condition of

Θ functions, is better interpreted as arising from a field redefinition topological invariance

of the Schwinger-Keldysh construction.

Let us now try to rewrite the above discussion in terms of a path integral, introducing

sources, so that we can start talking directly about the generating functions of correlators.

Consider the Schwinger-Keldysh generating functional with suitable classical sources J (x)

along the contour:

ZSK[J (x)] ≡ 〈Ω|TC exp

(
i

∫
C
L[Φ(x)] + J (x)Φ(x)

)
|Ω〉

ZSK[JR(x),JL(x)] = 〈Ω|TC ei
∫ t=∞
t=−∞ L[ΦR(x)]−L[ΦL(x)]+JR(x)ΦR(x)−JL(x)ΦL(x)|Ω〉 .

(2.10)

We started here with a single complex contour and thence transformed into the represen-

tation involving left and right fields. The second line should be viewed as a single time

representation with the characteristic doubling of the sources and fields. The relative sign

in front of the part of the left Lagrangian and sources corresponding to the left part of the

contour makes explicit the fact that these terms should be integrated backwards in time.

Having the generating functional ZSK[JR(x),JL(x)] at hand, one may proceed to com-

puting correlation functions GI1I2···In
by functional differentiation

GI1I2···In
(x1, x2, · · · , xn) =

δnZ[JR(x),JL(x)]

δJI1 (x1) δJI2 (x2) · · · δJIn (xn)

∣∣∣∣
JL(x)=JR(x)=0

(2.11)

To pass to from the left-right basis of correlation functions to one directly amenable to

computing the time-ordered correlators as in (2.9) we can simply affect a basis change in

the path integral. Performing a field redefinition we pass onto the average-difference basis:(
Φav

Φ
dif

)
=

(
1
2(ΦR + ΦL)

ΦR − ΦL

)
,

(
Jav

Jdif

)
=

(
1
2(JR + JL)

JR − JL

)
. (2.12)

The generating functional then becomes

Z[Jav(x),Jdif(x)] = 〈Ω|TC ei
∫ t=∞
t=−∞ L[Φav+ 1

2
Φ

dif
]−L[Φav− 1

2
Φ

dif
]+Jav(x) Φ

dif
+Jdif (x) Φav |Ω〉 .

(2.13)

The main fact we wish to highlight is that the difference source Jdif(x) generates the

response as a functional of the physical average field Φav(x), while the average/common

source Jav(x) in turn does the same for the difference or fluctuation field Φ
dif

(x).

With future applications in mind, we briefly mention the special case of thermal initial

conditions. For systems starting their evolution in a thermal state with inverse temperature

β0 at time t0, the time contour can be illustrated as in figure 3. This presentation of the

contour, which is necessary to consistently take into account initial state correlations, is

sometimes referred to as Kadanoff-Baym contour. That is, the thermal state generated by

some Hamiltonian Ĥ0 is described by an un-normalized initial density matrix ρ̂T = e−β0Ĥ0 .

Such a state readily allows for a Euclidean description in terms of a partition function

ZT (β0) = Tr
(
e−β0Ĥ0

)
. (2.14)
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t0 + i(ε− β0)

t0

t0 + iε
C OR

OL

Figure 3. SK time contour in thermal physics, where the initial state is a thermal state with an

entanglement pattern encoded in a Euclidean partition function. The starting and end points of the

contour are identified. The associated Euclidean (imaginary time) periodicity is set by the inverse

temperature β0.

It is then clear that such a Euclidean path integral codifies the correlations (or the entan-

glement pattern) of the initial state, and it corresponds to a Euclidean segment of evolution

in the imaginary time direction as in figure 3. This special case is of significant interest if

we wish to use the Schwinger-Keldysh formalism for the study of near-thermal correlations

such as those underlying fluid dynamics. We will return to near-thermal physics in much

more detail in section 4.

We now have the essential features of the Schwinger-Keldysh construction in place. In

the following we will try to rephrase this discussion in more abstract terms and extract

some useful lessons about the symmetries inherent in the construction.

3 The basics of the Schwinger-Keldysh formalism

We begin with an overview of some notational conventions that we will use in the rest of

our discussion. Our task will then be to rewrite the discussion of section 2 in an operator

language that enables us to formulate an appropriate set of field redefinition BRST super-

charges that are present in the Schwinger-Keldysh formalism. We first focus on arbitrary

density matrices in a relativistic QFT and then subsequently discuss new features that

arise when we consider thermal (or near-thermal) density matrices.

3.1 Preliminaries: background and notation

Consider a quantum system with a Hilbert space of states H (the space of ‘kets’) and

its dual space H∗ (the space of ‘bras’). We will be agnostic for the present whether the

quantum system is open or closed; our primary concern is to write down the Schwinger-

Keldysh construction for dealing with density matrices ρ̂ in this system.

To begin with we construct the Schwinger-Keldysh system for our quantum system:

this is given by the tensor product Hilbert space HR ⊗H∗L, where we have chosen to label
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the components as R and L for convenience. Following our earlier discussion we imagine

that all the mixed states live in this extended space of states. The main caveat is that not

all elements of HR ⊗ H∗L can be normalized to give a mixed state whereas any non-zero

element of H can be normalized to a pure quantum state. Recall that density matrix ρ̂ of

an admissible mixed state should be

• Hermitian with non-negative eigenvalues, and

• should have non-zero but finite trace (which can then be normalized to unity).

We adapt a notation where we denote standard operators on H (which are automati-

cally elements of HR ⊗H∗L) by a hat. On the contrary there will be no hats on Schwinger-

Keldysh operators which act on the entire space HR ⊗ H∗L. Operators in the extended

system are sometimes referred to as superoperators.

Let Ô ∈ HR ⊗H∗L be an operator acting on the state space H: we can then construct

two corresponding superoperators acting on HR ⊗H∗L of the form

OR ≡ Ô⊗ I , OL ≡ I⊗ Ô . (3.1)

As described in section 2, often one performs a Keldysh rotation to instead work with the

difference and average operators defined via:

Odif ≡ OR − OL , Oav ≡
1

2
(OR + OL) . (3.2)

We note that, after Keldysh rotation the average sources are associated with difference

operators and the difference sources are associated with average operators. This a conse-

quence of the following relation relating right-left basis to Keldysh basis:

JR OR − JL OL = Jav Odif + Jdif Oav . (3.3)

One may view the statement as saying that the Schwinger-Keldysh contour imparts a

Lorentzian inner product between the left and right segments, and the passage to the

Keldysh basis is akin to choosing light-cone variables. In any event, varying the Schwinger-

Keldysh action with respect to average sources gives the correlators with difference opera-

tors and vice-versa.

We should note here that in much of the literature the Keldysh basis introduced in (3.2)

is called the ‘ra’ basis. The average operators are called the r−operators and the difference

operators are called a-operators. We find this terminology less intuitive. Moreover, when we

discuss thermal correlation functions, for ρ̂initial being a thermal Gibbs density matrix, we

will encounter the retarded-advanced basis (we use ret− adv to denote them). To forestall

any potential confusion, we propose to refer to the Keldysh basis as av − dif operators.

With these preliminaries in place let us define the Schwinger-Keldysh generating func-

tional ZSK which is defined by the trace over the tensor product Hilbert space HR ⊗H∗L:

ZSK[JR,JL] ≡ Tr
(
U [JR] ρ̂initial (U [JL])†

)
, (3.4)
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where ρ̂initial is the initial density matrix of the system, U denotes the unitary evolution

operator of the QFT, and U † is its adjoint. We have allowed ourselves to deform the

unitary evolution operators with a suitable sprinkling of both right and left sources JR

and JL respectively. These unitaries are defined in a standard way using time-ordered

exponentials of the evolution operator deformed by the sources, viz.,

U [J ] = T exp

(
−i
∫ t

ti

dtH[J ]

)
, (U [J ])† = T̄ exp

(
i

∫ t

ti

dtH[J ]

)
. (3.5)

We use the symbol T to denote time-ordering while T̄ denotes anti-time ordering. In

the absence of sources, the unitaries reduce to the standard Heisenberg operators for time

independent Hamiltonians, viz., U = e−iH t.

Then, via functional differentiation with respect to the left and right sources, we can

compute the Schwinger-Keldysh correlation functions, which are of the form:

Tr
(
ρ̂initial T̄

(
U †OLU

†OL . . .
)
T (UORUOR . . .)

)
. (3.6)

We note that left operators are ordered to the left of the right operators (thus justifying

the terminology). We will have more to say about the Schwinger-Keldysh time-ordering

prescription momentarily.

Note that the Schwinger-Keldysh description differs from the more familiar Feynman

path-integral, which takes the form

ZFeynman[J ] ≡ 〈Vaccumt=∞| U [J ] |Vaccumt=−∞〉 . (3.7)

This Feynman path integral only allows for the computation of time-ordered correlators of

the form

〈Vaccumt=∞| T
(
U ÔU Ô . . .

)
|Vaccumt=−∞〉 . (3.8)

As noted in section 2, in a non-equilibrium or open quantum system we have an lack of

knowledge of what the interacting final state of the system would be. The Schwinger-

Keldysh construction cleverly avoids this issue, by reverting back to the initial state. This

ensures that the entanglement built into the initial density matrix ρ̂initial, and the knowl-

edge of the sources that one has turned on, suffices to compute the desired time ordered

correlators.

3.2 Schwinger-Keldysh time ordering

We now introduce a notion of Schwinger-Keldysh time-ordering, which follows the contour

ordering prescription introduced in section 2. To allow a general statement, let us first

introduce the concept of mutual Grassmann parity of operators. To do so, we first introduce

the notion of a Grassmann number for an operator O, which is defined to be

(−1)GO =

{
+1 , O : Grassmann even

−1 , O : Grassmann odd
(3.9)
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In addition to the Grassmann number it is also useful to keep track on occasion of the

fermion number, which we denote (−1)FO . We define this as

(−1)FO =

{
+1 , O : bosonic

−1 , O : fermionic
(3.10)

On physical fields, FO and GO are the same. However, there is nevertheless an important

distinction between the two (especially if one introduces ghosts in the description of the

system, as we will do later on). The former cares about the statistics obeyed by the operator

irrespective of its Grassmann parity, while the latter only cares about the Grassmann

nature. In particular FO is taken to be zero not only for the usual bosonic degrees of

freedom one is used to, but also for Grassmann odd ghost particles; we will loosely refer

to all such fields as ‘bosonic’. Similarly, FO is unity for Grassmann odd particles, as well

as for Grassmann even ghosts, both of which we refer to as ‘fermionic’.

Given the Grassmann number operator we can proceed to define the mutual Grassmann

parity (−1)GAGB for two operators Â(x) and B̂(y) by multiplying the Grassmann numbers

GAGB, which gives a relative sign when both operators are Grassmann odd. We will use

this soon to define a generalized commutator that accounts for the Grassmann parity of

the fields in question and to give the correct boundary conditions for thermal physics.

As the system evolves away from the initial density matrix ρ̂initial prescribed at t = ti,

it generically is no more in equilibrium because of the external sources we turn on. In this

case, as independently argued by Schwinger [2] and Keldysh [3], we need to keep track of

two copies of all the observables: every operator Ô is replaced by a right operator OR giving

time-ordered (or Feynman) correlators and a left operator OL giving anti-time-ordered (or

anti-Feynman) correlators. Thus

〈 T
[
Ô(1)Ô(2) . . . Ô(p)

]
T
[
Ô(p+1)Ô(p+2) . . . Ô(p+q)

]
〉

≡ 〈 TSK O(1)
L O(2)

L . . .O(p)
L O(p+1)

R O(p+2)
R . . .O(p+q)

R 〉 ,
(3.11)

where the expectation value 〈. . .〉 can be taken with an arbitrary initial condition and is

just defined by the trace as in (3.6). The object TSK will henceforth be used to denote

Schwinger-Keldysh time ordering, deviating from the more conventional contour ordering

used earlier in section 2. It can be easily understood by the mnemonic: right operators are

time ordered, left operators are anti-time ordered and left operators are ordered after the

right operators.

To summarize, the nomenclature right vs left can be interpreted in various ways:

• The left operators are always ordered to the left of the right operators. Thus the

right-left correlators can be used to compute the un-ordered correlators.

• In the complex time plane, the right operators are placed on the time contour running

to the right (increasing time) vs the left operators which are placed on the time

contour running to the left (decreasing time), as in the contour ordering prescription

described in section 2.
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• For thermal equilibrium states studied using the AdS/CFT correspondence cf., [24],

the right operators are placed at the right boundary of the eternal black hole whereas

the left operators are placed at the left boundary.7

Returning back to our discussion of the Keldysh rotation, we note that we can trans-

form the correlation functions from the R − L basis to the Keldysh (av − dif) basis. The

prescription we seek is given for two-point functions (of mutually Grassmann even opera-

tors) quite simply to be

〈 TSK Aav(x) Bav(y) 〉 = 〈
{

Â(x), B̂(y)
}
±
〉 ,

〈 TSK Aav(x) Bdif(y) 〉 = ΘAB 〈
[
Â(x), B̂(y)

]
±
〉 ,

〈 TSK Adif(x) Bav(y) 〉 = −ΘBA 〈
[
Â(x), B̂(y)

]
±
〉 ,

〈 TSK {Aav(x) Bdif(y)− Adif(x) Bav(y)} 〉 = 〈
[
Â(x), B̂(y)

]
±
〉 ,

〈 TSK Adif(x) Bdif(y) 〉 = 0 .

(3.12)

In the process of writing (3.12) we encounter a few new pieces of notation. Firstly, the

graded commutator [ , ]± is introduced so as to avoid our having to write commutators

and anti-commutators in a case-by-case basis. Likewise it is also convenient to define a

graded anti-commutator { , }±. These objects are defined using the Grassmann number

operator GO introduced in (3.10):

[A,B]± = A B− (−)GAGB B A ,

{A,B}± =
1

2

(
A B + (−)GAGB B A

)
. (3.13)

These definitions clearly satisfy:

[A,B]± = −(−)GAGB [B,A]± , {A,B}± = (−)GAGB {B,A}± . (3.14)

One can also check that the graded commutators obey a graded Jacobi identity of the form

[
[A,B]± ,C

]
±

=
[
A, [B,C]±

]
±
− (−)GAGB

[
B, [A,C]±

]
±
, (3.15)

which will prove useful when we study higher point correlation functions. A good discussion

of these graded commutators and associated mathematical structures can be found in [25].8

We now turn to another notational aspect in (3.12), concerning the step functions.

7We will discuss in section 11 some rudimentary aspects of the Schwinger-Keldysh formalism applied

to gravitational systems, drawing a distinction between the more familiar thermofield double construction

which is employed in [24] and the Schwinger-Keldysh complex time contour.
8Since it becomes cumbersome to keep writing (−1)GAGB , we will often simplify this to (−1)AB. Hopefully,

it should be clear that the sign only cares about the mutual Grassmann parity of the operators in expressions.
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3.3 Step function conventions

The time ordering prescription comes as usual with a set of step functions, that appear when

we want to compute certain physical correlation functions. There are various conventions

used in the literature for these, so we will explain briefly our choice. We use ΘA>B = ΘAB

as a step function which is unity if the operator A lies in the causal future of the operator

B and is zero if A lies in the causal past of B. Similarly, ΘA<B = ΘBA is a step function

which is unity if the operator A lies in the causal past of B and is zero if A lies in the causal

future of B. These step functions satisfy the identity:9

ΘA>B + ΘB>A = 1 . (3.16)

It is usual to give a regularizing prescription for what happens when the causal order is

indeterminate. In addition it is natural to demand that whatever the prescription be, it

should continue to obey the identity above (3.16). Some of the commonly used regularizing

prescriptions when the causal order is indeterminate are

Itō : ΘA>B = 1, ΘA<B = 0.

(Fisk-) Stratonovich : ΘA>B =
1

2
, ΘA<B =

1

2
.

Hanggi-Klimentovich : ΘA>B = 0, ΘA<B = 1.

(3.17)

Since Stratanovich prescription is natural from the viewpoint of Fourier transforms and it is

a CPT invariant regulator, we will employ it in what follows. We then have ΘA>B = ΘA<B

everywhere, when the causal order is indeterminate. Each of the three definitions above

does respect the normalization condition (3.16).10

The discussion of the step functions generalizes clearly to multiple arguments, for we

can simply iterate the definition pairwise for each insertion. For instance we can write:

ΘA1>A2>···An ≡ ΘA1A2···An ,

= ΘA1>A2 ΘA2>A3 · · ·ΘAn−1>An = ΘA1A2 ΘA2A3 · · ·ΘAn−1An

(3.18)

In what follows we will always write the step functions with the explicit time ordering as

indicted in the first line. The analog of (3.16) is the generalized normalization condition:∑
permutations σ

ΘAσ(1)>Aσ(2)>···Aσ(n)
= 1 . (3.19)

9This normalization condition is what is usually invoked to argue that the two-point correlation function

in the R− L basis is exhausted by the advanced, retarded, and the Keldysh correlators.
10Sometimes for generalized Langevin theory in non-equilibrium physics and often in stochastic mathe-

matics (including mathematical finance) the Itō prescription is preferred. CPT exchanges Itō and Hanggi-

Klimentovich prescriptions and thus the CPT-violating nature of Itō has to then be compensated by CPT-

violating counter terms (as is usual with any symmetry violating regulator). The ghosts we will talk about

later in this text often decouple in the Itō prescription which is probably the reason it is preferred in fields

which do not want to deal with ghosts.
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3.4 Keldysh basis correlators

We now have all the machinery to give an explicit formula for the Keldysh basis correlators

following [5]. The simplest correlator is the one containing only difference operators and it

vanishes identically, viz.,

〈TSK

∏
k

O(k)
dif 〉 ≡ 〈TSK

∏
k

(
O(k)

R − O(k)
L

)
〉 = 0 . (3.20)

This is in fact easy to see directly from the definition of the generating function ZSK[JR,JL].

First one notes that the difference operators Odif are sourced by the average sources Jav .

This means that for computing (3.20) we can w.l.o.g. set JR = JL ≡ J in the generating

function before taking any functional derivatives. However, ZSK[J ,J ] = Tr(ρ̂initial), owing

to the cyclicity of the trace, cf., (3.4). Thus we learn that the functional derivative of this

result will vanish, simply asserting that the SK-path integral is unresponsive to a set of

average sources, for it collapses to a statement of initial conditions. This proves (3.20) and

we conclude that one out of 2n Schwinger-Keldysh n-point functions generically vanishes.

It must be emphasized that this fact holds independent of the dynamics, which after all,

is contained in the unitary evolution operator U . The universality of this statement, points

to a fundamental symmetry principle. We will argue later that the Schwinger-Keldysh path

integral behaves like a topological theory when restricted to this sector. In particular, the

difference operators will be shown to be BRST exact, with the symmetry being traceable

back to a set of field redefinitions inherent in the doubling from H to HR ⊗H∗L.

Since the correlation function with only difference operators vanishes, we can focus

our attention on the most general Keldysh correlator with p > 0 average operators and q

difference operators of the form

〈TSKO(1)
av O(2)

av . . .O
(p)
av O(p+1)

dif O(p+2)
dif . . .O(p+q)

dif 〉 . (3.21)

Depending on the relative time-ordering of the operators in question, this correlator evalu-

ates in general to a nested commutator or anti-commutator (depending on the statistics),

of the original operators {Ô(k)}. To give an explicit formula, we begin by introducing some

useful notation for the commutators/anti-commutators that occur in Schwinger-Keldysh

correlators. We introduce the Keldysh bracket ( · , · )SK which [5]

• takes a single copy (non-Schwinger-Keldysh) operator as its first entry,

• takes a Schwinger-Keldysh operator as the second entry, and

• gives a right or a left product of the single copy operators as the result.

More precisely, we have11

(Â ,BR)SK ≡ Â B̂ ,

(Â ,BL)SK ≡ (−)AB B̂ Â .
(3.22)

11We define the Keldysh bracket with an extra factor of half compared to [5]; this keeps the formulae

simple and saves us various powers of 2 later on.
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Here (−)AB is the extra relative sign that occurs when both Â and B̂ are Grassmann odd,

so we just keep track of the mutual Grassmann parity, cf., footnote 8.

In the Keldysh basis (3.2), the Keldysh bracket evaluates to graded commutators and

anti-commutators

(Â ,Bdif)SK ≡ Â B̂− (−)AB B̂ Â ≡
[
Â, B̂

]
±
,

(Â ,Bav)SK ≡
1

2

(
Â B̂ + (−)AB B̂ Â

)
≡
{

Â, B̂
}
±
.

(3.23)

In particular, if Î is the identity operator then we have

(̂I ,Adif)SK = 0 , (̂I ,Aav)SK = Â . (3.24)

We can now expand the most general Schwinger-Keldysh correlator by writing it as a

nested Keldysh bracket acting on identity operator and then applying Schwinger-Keldysh

time-ordering. At every stage the Schwinger-Keldysh time-ordering is a particular choice

of the step functions. One simply sums over all possible orderings of operators inside

the nested Keldysh brackets and dresses each of them with the appropriate causal step

function. For Schwinger-Keldysh operators O1,O2, · · ·Op we can therefore write

〈TSK O1O2 . . .Op〉

=
∑

time orderings

Θσ1σ2···σp 〈(· · · ((̂I ,Oσ1)SK ,Oσ2)SK · · · ,Oσp)SK〉 , (3.25)

where σ1σ2 · · ·σp is a permutation of the p indices. This expression be used to bring any

correlation function to a standard form involving commutators and anti-commutators.

Note that we do not need to specify whether the Schwinger-Keldysh operators are

averages or differences a-priori, since this is taken care of while evaluating the Keldysh

brackets. Indeed, (3.24) explicitly implements the largest time equation, which says that

the difference operator cannot be futuremost. We will discuss this in greater detail in

section 3.5. For now let us try to see how these rules work in practice for low order

correlation functions.

Two-point functions. As an easy example and illustration of this procedure, let us use

the above algorithm for all four two-point correlators. First, we have

〈TSKAavBav〉 = ΘAB 〈((̂I ,Aav)SK ,Bav)SK〉+ (−1)AB ΘBA 〈((̂I ,Bav)SK ,Aav)SK〉

= ΘAB 〈(Â ,Bav)SK〉+ (−1)AB ΘBA 〈(B̂ ,Aav)SK〉

= ΘAB 〈
1

2

(
Â B̂+(−1)AB B̂ Â

)
〉+(−1)AB ΘBA 〈

1

2

(
B̂ Â+(−1)AB Â B̂

)
〉

= 〈
{

Â, B̂
}
±
〉

(3.26)

where we used (3.25) and (3.24). This then gives the unordered Wightman two-point

function.
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Similarly, we may further deduce that

〈TSKAavBdif〉 = (−1)AB 〈TSKBdifAav〉

= ΘAB 〈((̂I ,Aav)SK ,Bdif)SK〉

= ΘAB 〈(Â ,Bdif)SK〉

= ΘAB 〈Â B̂− (−1)AB B̂ Â〉 = ΘAB 〈
[
Â, B̂

]
±
〉 ,

(3.27)

where we obtained the second line by noting that difference operators can never be in

the future of average operators. Swapping the operators and using the step-function iden-

tity (3.16), we find the useful identity

〈TSK (AavBdif − AdifBav)〉 = 〈
[
Â, B̂

]
±
〉 . (3.28)

In this language the last correlator, involving two difference operators, is identically zero,

〈TSKAdif Bdif〉 = 0 , (3.29)

owing to the first identity in (3.24).

Three-point functions:. We can similarly work out the three-point correlators explicitly

using the Keldysh brackets. For example, we have for all average operators a suitable time-

ordered permutation of the symmetrized correlation, viz.,

〈TSKAav Bav Cav〉 = ΘABC

〈{{
Â, B̂

}
±
, Ĉ

}
±

〉
+ (−)AB ΘBAC

〈{{
B̂, Â

}
±
, Ĉ

}
±

〉
+ (−)BC ΘACB

〈{{
Â, Ĉ

}
±
, B̂

}
±

〉
+ (−)(A+B)C ΘCAB

〈{{
Ĉ, Â

}
±
, B̂

}
±

〉
+ (−)A(B+C) ΘBCA

〈{{
B̂, Ĉ

}
±
, Â

}
±

〉
+ (−)AB+AC+BC ΘCBA

〈{{
Ĉ, B̂

}
±
, Â

}
±

〉
(3.30)

The correlators with difference operators give rise to commutators owing to (3.23). We

then have the response functions:

〈TSKAav Bav Cdif〉 = ΘABC

〈[{
Â, B̂

}
±
, Ĉ

]
±

〉
+ (−)BC ΘACB

〈{[
Â, Ĉ

]
±
, B̂

}
±

〉
+ (−)ABΘBAC

〈[{
B̂, Â

}
±
, Ĉ

]
±

〉
+ (−)AB+AC ΘBCA

〈{[
B̂, Ĉ

]
±
, Â

}
±

〉
〈TSKAav Bdif Cdif〉 = ΘABC

〈[[
Â, B̂

]
±
, Ĉ

]
±

〉
+ (−)BC ΘACB

〈[[
Â, Ĉ

]
±
, B̂

]
±

〉
〈TSKAdif Bdif Cdif〉 = 0

(3.31)
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One can similarly work out higher point functions following the basic rule of the Keldysh

bracket and its interplay with the Schwinger-Keldysh time-ordering.

3.5 SK causality

By inspection of the Keldysh bracket algorithm presented in the previous subsection, we

immediately note the following causality property: if the future-most operator in the

Schwinger-Keldysh correlator is a difference operator, then the correlator vanishes owing

to the fact noted in (3.24):

If tn > tk for all k = 1, . . . , n− 1, then: 〈TSK O(n)
dif

n−1∏
k=1

O(k)
Ik
〉 = 0 . (3.32)

for all choices Ik ∈ {av, dif}. We refer to this statement as the largest time equation fol-

lowing [26]. In that discussion the largest time equation refers to a statement about cutting

rules in computing Feynman amplitudes. As we explain in section 11 their discussion can

also be efficiently worded in the current language.

The relation (3.32) follows from the fact that for any operator Â we have the basic

statement (̂I ,Adif)SK = 0. Heuristically, the above ‘causality rule’ can be thought of as

the requirement that the state obtained by slicing the Schwinger-Keldysh contour at its

turn-around point is annihilated by the difference operators. The Schwinger-Keldysh con-

struction ensures this by requiring that the future-most state be the maximally entangled

(cat) state between the right and the left copies (see, e.g., [27]). As an aside, note that the

basic identity (3.20) is a special case of (3.32) when all insertions are difference operators

(i.e., Ik = dif for all k).

The vanishing of correlators whose future-most insertion is a difference operator,

eq. (3.32), can also easily be inferred from the defining Schwinger-Keldysh path inte-

gral (3.4). To see this, let us assume that all operator insertions of a given correlation

function lie in the time interval [ti, tf ] and also denote the time of the latest average op-

erator insertion by ttop (≤ tf ).We can always decompose the unitary implementing the

evolution as an ordered sequence, i.e.,

U [J ] = U [J , tf − ttop]U [J , ttop − ti] . (3.33)

Thus one may write the generating functional (3.4) with the unitary evolution split across

t = ttop as

ZSK[JR,JL] = Tr
(
U [JR, tf−ttop]U [JR, ttop−ti]ρ̂initial(U [JL, ttop − ti])†(U [JL, tf−ttop])†

)
,

(3.34)

By assumption there are no average operator insertions after time ttop. Therefore, for

the purpose of calculating the a correlation function with a difference operator inserted at

t > ttop we can simply align the sources JR = JL for times t > ttop. But in this alignment

limit, the two outermost evolution operators in (3.34) will cancel by cyclicity of the trace.

As a result all dependence on sources drops out for times t > ttop. Therefore any difference
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operator insertion for these late times (i.e., functional differentiation w.r.t. Jav for times

t > ttop) will lead to a vanishing correlator.

This causality rule can be remembered by the mnemonic:

Relative (i.e., difference) operators should be Retarded in time and Average

operators should be Advanced in time.

We remind the reader that the corresponding rule for sources is the opposite, owing to the

Lorentzian inner product in the R − L space. This leads to the following mnemonic for

the sources

Average sources should be Retarded in time and Relative sources should be

Advanced in time.

One immediate consequence of the above discussion is that for a n-point correlation

function with one average and (n− 1) difference operators, all of which are inserted to the

past of the average operator, i.e.,

〈TSK O(n)
av

n−1∏
k=1

O(k)
dif 〉 (3.35)

gives the advanced Green’s function.12 Using the Keldysh bracket rules one can work out

that this correlation function is a given by a sequence of nested commutators, see e.g.,

eqs. (3.27) and (3.31) for explicit expressions.

4 Thermal correlation functions in Schwinger-Keldysh formalism

Our discussion thus far has focused on an initial density matrix ρ̂initial which was arbitrary.

The initial state of the quantum system is mainly setting up for us an appropriate entan-

glement pattern for the degrees of freedom in H. With this information we can only go as

far as the discussion in section 3.

However, not all density matrices are created equal, with some being more special

than others. In what follows we will switch our focus on to thermal density matrices which

enjoy some nice properties. To understand these, let us start by considering a QFT at finite

temperature T . Should our theory contain some global symmetries we can also include some

chemical potentials. One thus is considering the state of the system to be a Gibbs density

matrix, which gives the probabilities to find states with a given energy and charge:

ρ̂T = e−β (Ĥ−µI Q̂I) (4.1)

Here Ĥ is the Hamiltonian for the quantum theory and Q̂ the flavour charge operator. We

have chosen not to normalize the density matrix; the trace over the states then gives us

the thermal partition function

ZT (β, µI ) = Tr(ρ̂T ) (4.2)

12This is the reason the difference operators are called advanced operators in the retarded-advanced (RA)

basis as we shall see in section 4.
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Usually one discusses thermal field theories in Minkowski spacetime Rd−1,1. One fur-

thermore, makes heavy use of the connection between thermal quantum field theories in

d-spacetime dimensions and classical statistical mechanics in (d−1) dimensions by realizing

the operator ρ̂T as performing Hamiltonian evolution in imaginary time tE by an amount

set by the inverse temperature β. The role of the chemical potential then is to twist the

charge fields by an amount set by the charge as they are taken around this imaginary

Euclidean time.13

With this information we are now ready to understand the thermal boundary condi-

tions implicit in ρ̂T . For any single-copy operator lying on the initial time slice ΣM we

require that the Kubo-Martin-Schwinger (KMS) periodicity condition [28, 29], be satis-

fied.14 The KMS condition says that bosonic operators are periodic under traversal of the

thermal circle while fermionic operators are anti-periodic. We will now try to capture this

information in a covariant form that will be useful in the sequel.

4.1 Thermal equilibrium in stationary curved spacetimes

Insofar as thermal equilibrium is concerned, all one requires is that the system be stationary

— one does not require a globally constant temperature or chemical potentials. To allow

for local temperature and chemical potential variations one can consider the system not on

the flat Minkowski background, but rather on a curved spacetime, equipped with a timelike

Killing vector field. Likewise the chemical potentials may be chosen to vary across space

by turning on a background electromagnetic field. This idea of exploring thermal dynamics

by turning on time-independent background sources has a rich history (see eg., [31]), but

a systematic analysis of the subject has been undertaken recently in [32, 33].15

To explore this more general situation, it is efficacious to consider our quantum system

residing on a background Md with a non-trivial classical background metric and gauge

field sources. Given the timelike Killing vector field Kµ, we can adapt coordinates to it by

choosing

Kµ =

(
∂

∂t

)µ
(4.3)

so that the background geometry can be brought to the Kaluza-Klein form:

ds2 = −e2σ(xm)
(
dt+ ai(x

m) dxi
)2

+ γij(x
m) dxi dxj , A = A0(xm) dt+Ai(x

m) dxi .

(4.4)

We have allowed the Killing field to not be hypersurface-orthogonal, as is the case with

ai 6= 0, but will demand that it be timelike globally (i.e., require that the background be

free of ergosurfaces).

13In classical statistical mechanics, the operator ρ̂T serves to determine the transfer matrix and the only

information necessary to determine it are the Boltzmann weights, which give the relative probabilities for

the occurrence of various energy levels.
14This condition was first discussed independently in papers by Kubo [28] and by Martin-Schwinger [29].

However, the name was coined a bit afterward by Haag et al., [30] who applied this idea in the context of

defining equilibrium configurations in axiomatic QFT.
15See also [34–39] for an application of these ideas to understand anomaly induced effects in thermal

physics.
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For the connection with the classical statistical mechanics, we can still exploit the ana-

lytic continuation to imaginary Euclidean time. To construct the corresponding manifold,

we identify every point p ∈ Md with a point p′ in its future, separated from it by a unit

affine distance along the vector Kµ. In other words points p and p′ get identified if there

exists a curve xµ(τ) parameterized by τ such that

xµ(τ = 0) = pµ , xµ(τ = 1) = p′µ ,
dxµ

dτ
= Kµ . (4.5)

What this does is to construct from our original Lorentzian manifold Md, a corresponding

Euclidean spacetime ME which is endowed with a fibre bundle structure. The fibres are

the Euclidean time circle, parameterized by tE = i t which is fibered over a spacelike base

ΣM. While we have discussed the construction for the geometry, a similar statement

can be made for the flavour bundle, by identifying the fibres at p and p′ up to a gauge

transformation ΛK .

Given this bundle structure in the Euclidean spacetime relevant for thermal equilib-

rium, it pays to work covariantly and characterize the thermal Gibbs density matrix, not

by a temperature and a chemical potential, but rather by a timelike inverse temperature

vector βµ and a flavour gauge parameter Λβ. For the thermal equilibrium configurations

that we have in mind here, these parameters can be identified with {βµ,Λβ} = {Kµ,ΛK},
as constructed above. Following [21] we refer to these quantities as the thermal vector and

thermal twist respectively. The thermal vector sets up both the local inertial frame for the

equilibrium configuration and the period of the local thermal (Euclidean time) circle. The

thermal twist provides the correct boundary conditions for charged particles, ensuring that

they pick up the right monodromy as they go around the thermal circle.

4.2 The KMS condition

We now have the necessary background to set up the KMS condition, which talks about the

periodicity properties of operators (and thus their correlators) around the thermal circle in

general. We will first discuss the KMS condition for a single copy theory and thence pass

onto the doubled Schwinger-Keldysh formalism.

The KMS condition asserts that the thermal equilibrium correlation functions are

periodic in Euclidean time. As such these are non-local conditions on thermal Schwinger-

Keldysh correlators which ensure that they are related to Euclidean correlators by analytic

continuation. The scale of non-locality is simply the thermal scale, for we are essentially

comparing operators that are related by a Euclidean time translation. While physically

the periodicity in imaginary time is the essential content, it is useful to take a formal

perspective, see e.g., [30, 40].

Formally, the KMS conditions encode a certain analyticity property of Euclidean cor-

relation functions. Usually they are stated as the requirement that the Green’s functions

obtained in the Euclidean theory are analytic in a strip in the complex time plane. Define

tC = t+ i tE to be a complex time coordinate, which one may view as the coordinate in the

complex plane on which the Schwinger-Keldysh contour is defined. The KMS condition

requires that the Green’s functions are analytic in the strip {tC ∈ C : 0 < =(tC) < β}. This
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then requires that the two-point functions of Heisenberg operators Â(t) and B̂(t) which are

elements of the algebra of observables obey the periodicity condition

Tr
(
ρ̂T Â(t− i β) B̂(0)

)
= Tr

(
ρ̂T B̂(0) Â(t)

)
, (4.6)

for bosonic operators Â and B̂ (below, we will also generalize to fermionic operators). We

used here conjugation of Â by the density matrix operator ρ̂T , viz.,

Â(t− iβ) = ρ̂−1
T

Â(t) ρ̂T (4.7)

and cyclicity of the trace. Motivated by this observation we will now define a notion of KMS

conjugate of an operator which will allow us to move the operator around the thermal circle.

These formal set of statements are often used to define the notion of a KMS state from

an algebraic QFT viewpoint. For a recent discussion see [41]; these authors go on to discuss

the notion of a local KMS state which meshes well with some of our earlier discussion of

local equilibrium and hydrodynamics in [9]. Another useful reference discussing the KMS

condition and discrete symmetries which we found useful is [42]; we will comment on the

relations with their definition of the KMS transformation in section 7.1.

For simplicity, consider the case of thermal physics in Rd−1,1, where we can relate

the thermal shift along the Euclidean time circle as Hamiltonian evolution. One can then

re-express (4.7) using the explicit form of the density matrix:

Ô(t− iβ) = eβ (Ĥ−µI Q̂I) Ô(t) e−β (Ĥ−µI Q̂I) . (4.8)

We will find it convenient to think about this evolution as being achieved by a classical

differential operator carrying out the time translation, viz., β d
dt , so that we can write

e−iβ
d
dt Ô(t) ≡ Ô(t− iβ) . (4.9)

We have chosen here to invert the order of conjugation to conform with the contour ordering

we introduced earlier. The transformation above is appropriate for Schwinger-Keldysh left

fields while the earlier definition is more natural for the right operators (see below).

This admits an easy generalization to the general situation of curved manifolds with

timelike Killing field, as discussed in section 4.1. We introduce a thermal time translation

operator δ
β

whose task is to take any operator in the quantum system and translate it

around the Euclidean circle. While we have indicated operators as Ô without any deco-

rations to indicate the Lorentz transformation properties, it should be clear that we need

to keep track of the latter appropriately on curved spacetimes. To this end, δ
β

should Lie

drag any quantum operator Ô around the thermal circle, for such an action would be ap-

propriately Lorentz covariant. We therefore declare δ
β

be the Lie-derivative corresponding

to the diffeomorphism and flavor transformation generated by {βµ,Λβ}, so that

e−iδβ Ô(t) ≡ eβ (Ĥ−µI Q̂I) Ô(t) e−β (Ĥ−µI Q̂I) , (4.10)

continues to hold on curved backgrounds in global thermal equilibrium. Whilst as we have

defined it, δ
β

is a classical differential operator, we should alert the reader not to view it
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simply as a random diffeomorphism in the Euclidean time direction. It is a specific one that

is solely determined by the boundary conditions given in the thermal density matrix ρ̂T .

Being thus a feature of the Gibbs density matrix, it is best thought of as a state-dependent

(thermal) time translation.16

Now that we know how to relate operators around the Euclidean thermal circle, we

can write down the KMS condition as the following statement:

(−1)FOe−iδβ Ô (t = ti) −→ Ô (t = ti) , (4.11)

where we now also account for the fermion number (−1)FO of the operator Ô introduced

in (3.10). Note that this replacement rule holds inside correlation functions since ti is the

initial time. As explained in the discussion above, e−iδβ time translates the operator in

the negative imaginary time by βµ and then gives a flavor twist Λβ. Hence at an operator

level the KMS condition is simply saying that operators that are related by appropriate

amount of Lie drag around the thermal circle are equivalent. This operator identity then

asserts the thermal periodicity of the correlation functions envisaged in [28, 29].

It is convenient to further define a derivative operator

i∆
β
≡ 1− (−1)Fe−iδβ , (4.12)

which measures the deviation from the KMS condition. We can then write the KMS

condition as a differential statement, viz.,

∆
β
Ô −→ 0 , (4.13)

which, again, holds for initial time operator insertions in correlation functions.

Let us further define a Grassmann-even thermal translation operator LKMS via[
LKMS , Ô

]
±

= ∆
β
Ô . (4.14)

At present this formally defines an operator LKMS which acts on the operator algebra as

defined above. We will later find that this operator naturally fits into a larger algebraic

structure as we shall unearth in due course.

As explained in section 3.2 the operator (−1)FO appearing in the KMS condition,

eq. (4.11) imposes the periodic or the anti-periodic boundary condition depending on

whether the observable is bosonic or fermionic. By spin-statistics relation, the fermion

parity (−1)FO is same as the Grassmann parity (−1)GO for the physical fields. Below we

will also work with ghost fields whose fermion parity (−1)FO is opposite to their Grassmann

parity (−1)GO . This corresponds to the familiar fact that the thermal boundary conditions

for ghosts are determined by the physical operators they are related to, irrespective of

their Grassmann parity. BRST ghosts of QCD, for example, are given periodic boundary

conditions.

16One necessary consequence of this fact is that the Noether charge associated with this thermal time

translation is not the energy, but rather the entropy, cf., [12] and comments in [9, 22].
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4.3 Thermal sum rules from KMS

Having understood the KMS conditions for a single copy theory, let us examine how KMS

conditions appear in the Schwinger-Keldysh correlators. If we take the initial state to be

a Gibbs density matrix ρi = ρ̂T , we can introduce a set of KMS conjugate operators

ÕL ≡ (−1)FOe−iδβ OL , (4.15)

which are thermal time-translates of the operator in question. We could likewise also

introduce in a similar fashion the analytically continued sources,

J̃L ≡ (−1)FJ e−iδβJL , (4.16)

and similarly define analogous conjugations for the Grassmann odd counterparts. In equi-

librium the KMS condition guarantees us that we can replace {OL,JL} → {ÕL, J̃L} and

the physical correlation functions remain invariant.

The KMS conditions translate into a set of sum rules for the Schwinger-Keldysh

theory [23]:

〈TSK

n∏
k=1

(
O(k)

R − Õ(k)
L

)
〉 = 0 . (4.17)

This says that correlation function of differences of right operators OR and the KMS con-

jugate of left operators OL (denoted ÕL) vanish. One can check that this statement is

compatible with our earlier statement phrased in terms of two-point functions (4.6). The

general statement may of course be derived directly from there, but the cleanest statement

is worded in terms of thermal sum rules.

Similarly, we have the analogue of the causality condition (3.32): a correlation function

vanishes if the past-most insertion is a ‘time-twisted’ difference operator OR − ÕL. This

follows from the fact that OR − ÕL annihilates the thermal density matrix.

4.4 The retarded-advanced basis

One consequence of the KMS condition which relates operators related by a thermal trans-

lation, is that one expects the set of identities (4.17) hold in correlation functions. These

sum rules which have been derived for example in [23] can be succinctly stated by working

in yet another basis of operators. This new basis is called the retarded-advanced basis,

which is sometimes also referred to as the RA basis.17 It is defined by the linear combina-

tion of the Schwinger-Keldysh operators, OR,OL and their KMS shifted counterparts ÕL.

Without loss of generality we make the choice:

Oadv ≡ OR − OL , Oret ≡
1

1− (−1)FOe−iδβ

(
OR − (−1)FOe−iδβ OL

)
. (4.18)

17As noted after eq. (3.3), the Keldysh basis itself in some circles is referred to as the ra basis. We

understand that this nomenclature originates from some historical confusion about the connections between

the two bases. We will avoid this confusion altogether by sticking to the usage of ‘retarded-advanced’ basis.
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Note that the retarded operator Oret is defined with an inverse of ∆
β
, so it should actually

be thought of as a solution to the differential equation

i∆
β
Oret = OR − (−1)FOe−iδβ OL . (4.19)

which is solved with some initial condition. We will choose our initial conditions to be

Oret(t = ti) = OR(t = ti) = OL(t = ti) = Ô(t = ti) ,

Oadv(t = ti) = OR(t = ti)− OL(t = ti) = 0 .
(4.20)

It is a common practice to explicitly include the statistics of the operator in question in

the definition. Recall that, for thermal correlation functions we should include the correct

distribution function for bosons or fermions (which follows in turn from the periodicity

conditions). This may be done by introducing another differential operator corresponding

to Bose-Einstein or Fermi-Dirac distribution

f
β
≡ 1

eiδβ − (−1)F
. (4.21)

In terms of f
β

we can then write:

Oadv ≡ OR − OL ,

Oret ≡
(
1 + (−1)FO f

β

)
OR − (−1)FO f

β
OL

= Oav +

(
1

2
+ (−1)FOf

β

)
Odif .

(4.22)

These definitions can be then inverted to give right and left operators in terms of the

retarded-advanced basis to be

OR = Oret − (−1)FOf
β
Oadv ,

OL = Oret −
(
1 + (−1)FOf

β

)
Oadv .

(4.23)

Now that we have the explicit mapping, we can show that the Lorentzian inner product

between the source and operator in the Schwinger-Keldysh construction still goes over into

a non-diagonal (light-cone like) inner product between the Oret and Oadv. A simple algebra

leads to∫
JR OR − JL OL =

∫
Jadv Oret + Jret Oadv + boundary contribution (4.24)

up to some boundary contributions at the initial and final time slice. The extra contribution

can be shown to take the form

boundary contribution =

∫ (
(−1)Fe−iδβ

1− (−1)Fe−iδβ
Jadv

)(
(−1)Fe−iδβ

1− (−1)Fe−iδβ
Oadv

)

−
∫ (

1

1− (−1)Fe−iδβ
Jadv

)(
1

1− (−1)Fe−iδβ
Oadv

)
,

(4.25)
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which is zero by a change of variables up to contributions from the initial and the final

time slice. Unfortunately, as far as we are aware, the physical import of these boundary

contributions (involving ∆−1
β

acting on advanced fields) has not yet been studied much in

the literature. We will ignore these boundary terms in what follows, but the reader should

be alert to this fact. Modulo this subtlety, as promised, in the retarded-advanced basis,

the retarded source couples to the advanced operator and vice versa.

4.5 Retarded-advanced correlators

Using the definition (4.18), we can now compute correlation functions in the retarded-

advanced basis by simply reverting back to our previous results in the average-difference

basis, cf., section 3.4. For example, we find for two-point correlators the following relations:

〈TSK Aret Bret〉 =
〈{

Â, B̂
}
±

〉
+ ΘAB

〈[
Â,

(
1

2
+ (−1)FBf

β

)
B̂

]
±

〉
+ (−)AB ΘBA

〈[
B̂,

(
1

2
+ (−1)FAf

β

)
Â

]
±

〉
,

〈TSK Aadv Bret〉 = (−)AB ΘBA

〈 [
B̂, Â

]
±

〉
,

〈TSK Aret Badv〉 = ΘAB

〈 [
Â, B̂

]
±

〉
,

〈TSK Aadv Badv〉 = 0 ,

(4.26)

where we use the fact that the Keldysh bracket (3.23) acts on f
β
Odif in the same way as

on Odif :

(Â , f
β
Bdif)SK =

[
Â, f

β
B̂
]
±
. (4.27)

It is useful to write the expression for the fully retarded two-point correlator in terms of a

thermally deformed anti-commutator. Let

{A,B}β± ≡ {A,B}± + ΘAB

[
A,

(
1

2
+(−1)FB f

β

)
B

]
±

+ (−)ABΘBA

[
B,

(
1

2
+ (−1)FA f

β

)
A

]
±

,

(4.28)

which continues to satisfy {A,B}β± = (−)AB {B,A}β±. Then we can write the first expression

in (4.26) as

〈TSK Aret Bret〉 =
〈{

Â, B̂
}β
±

〉
. (4.29)

that is, it takes the same form as 〈TSK Aret Bret〉, with a simple replacement of commutators:

{ · , · } → { · , · }β . The presence of the thermal anti-commutator implies that only the

fluctuations over and above the thermal state are monitored by the above correlation

function.18

This pattern continues: all the higher adv − ret correlation functions can be ob-

tained from dif − av correlators by replacing graded anti-commutators by graded ther-

mal anti-commutators. For example, one can check that the three-point functions in-

volving advanced operators take the same form as (3.30) and (3.31) with this particular

18It is easy to check for a harmonic oscillator:
{
a, a†

}β
±

= a† a− fβ .
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replacement rule:

〈TSKAretBretCret〉 = ΘABC

〈{{
Â, B̂

}β
±
, Ĉ

}β
±

〉
+ (−)AB ΘBAC

〈{{
B̂, Â

}β
±
, Ĉ

}β
±

〉
+ (−)BC ΘACB

〈{{
Â, Ĉ

}β
±
, B̂

}β
±

〉
+ (−)(A+B)C ΘCAB

〈{{
Ĉ, Â

}β
±
, B̂

}β
±

〉
+ (−)A(B+C) ΘBCA

〈{{
B̂, Ĉ

}β
±
, Â

}β
±

〉
+ (−)AB+AC+BC ΘCBA

〈{{
Ĉ, B̂

}β
±
, Â

}β
±

〉
〈TSK AretBretCadv〉 = ΘABC

〈[{
Â, B̂

}β
±
, Ĉ

]
±

〉
+ (−)BC ΘACB

〈{[
Â, Ĉ

]
±
, B̂

}β
±

〉
+ (−)ABΘBAC

〈[{
B̂, Â

}β
±
, Ĉ

]
±

〉
+(−)A(B+C)ΘBCA

〈{[
B̂, Ĉ

]
±
, Â

}β
±

〉
〈TSKAretBadvCadv〉 = ΘABC

〈[[
Â, B̂

]
±
, Ĉ

]
±

〉
+ (−)BC ΘACB

〈[[
Â, Ĉ

]
±
, B̂

]
±

〉
,

〈TSK AadvBadvCadv〉 = 0 . (4.30)

4.6 The thermofield double

The astute reader will note that we have so far refrained from discussing another commonly

used framework for studying thermal correlation functions, viz., the thermofield double.

As in the general Schwinger-Keldysh framework we use the fact that the thermal density

matrix can be expressed as a pure entangled state in the HR ⊗ H∗L space. In particular,

the thermofield double state, or the Hartle-Hawking state as it is known in some circles,

has a very simple expression in the energy eigenbasis of the system. If we let {| ra〉} and

{| la〉} to be an energy eigenbasis of HR and HL respectively, then we have the state being

given as19

|Ψβ〉 =
1√

ZT (β)

∑
a

e−
β
2
Ea |ra la〉 . (4.31)

Tracing out the left degrees of freedom leads to the desired thermal density matrix for the

right fields as can be easily verified.

The fact that we have a relative Boltzmann weighting of the states by the energy

e−
β
2
Ea in (4.31) can be taken to literally mean that the left and right fields are separated

by an evolution in imaginary time by an amount β
2 . This would for instance be easily

achieved by the Schwinger-Keldysh contour shown in figure 3. In operator language we can

accommodate this shift by writing the following expression for the generating functional:

ZTFD [JR,JL] = Tr
(

(ρ̂T )
1
2 U [JR] (ρ̂T )

1
2 U †[JL]

)
. (4.32)

19We are schematically writing the state here with a notation that suggests a discrete spectrum of energy

levels. The generalization to a continuum spectrum is straightforward.
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The key difference from the earlier Schwinger-Keldysh construction described in (3.4) is

that we have exploited the structure of the thermal density matrix as a Euclidean time

evolution, and chosen to distribute this evolution into two independent parts. In the

stationary global equilibrium state this is a consequence of the analytic structure of the

thermal Gibbs density matrix.

The separation of the unitary evolution operators U [JR] and U †[JL] with an insertion

of the square root of the density matrix in (4.32) has drastic consequences for causality

properties. Now with equal sources for the L and R fields, one no longer immediately

discerns that the path integral reduces to a statement about the thermal partition function.

Indeed, upon aligning JR = JL = J one ends up with

ZTFD [J ] = Tr
(

(ρ̂T )
1
2 U [J ] (ρ̂T )

1
2 U †[J ]

)
?
= Tr(ρ̂T ) . (4.33)

On the other hand, the Schwinger-Keldysh path integral ZSK[JR,JL] was engineered to

precisely reproduce the equilibrium answer Tr(ρ̂T ) when the sources were set equal (cf.,

the discussion at the beginning of section 3.4).

The thermofield double partition function does give the correct answer for equal

sources, but to see this one has to invoke the analytic properties of the thermofield double

construction. At an operator level, to pass from ZSK to ZTFD we have to use the fact that the

unitary operator conjugates back to itself under a thermal evolution by half a period, i.e.,

U [J ] = (ρ̂T )−
1
2 U [J ] (ρ̂T )

1
2 . (4.34)

This is a consequence of the KMS condition since ρ̂T implements Hamiltonian evolution

along the Euclidean time circle by half a thermal period.

The thermofield double treats the left and right degrees of freedom of the Schwinger-

Keldysh construction symmetrically, but it does so at the price of obscuring the physical

properties of the correlation functions. These get buried into the detailed analytic proper-

ties. It should be clear that such a description would only be useful to compute equilibrium

correlation functions by turning on well-behaved (suitably analytic) sources. If we are will-

ing to accept the analyticity requirement, then we note that a-priori the only feature that

singles out the thermofield double path integral (4.32) is this L↔ R symmetry. One could

choose to consider a more general one-parameter family of generating functions Zα−TFD by

redistributing the Euclidean evolutions asymmetrically:

Zα−TFD [JR,JL] = Tr
(

(ρ̂T )α U [JR] (ρ̂T )1−α U †[JL]
)
. (4.35)

The Schwinger-Keldysh path integral is obtained in the formal limit α→ 0.

In a genuine non-equilibrium scenario one does not expect to see the sources being

controllable to ensure the requisite analyticity. Therefore for the most part we will eschew

the usage of the thermofield double construction. We will however return to it when

we discuss aspects of the Schwinger-Keldysh formalism for holographic field theories in

section 11.4.
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5 Examples

Thus far we have been discussing abstract quantum systems and have focused on generic

operators therein. While this has the advantage of setting up the formalism in one swoop

for any quantum system, it is also useful to record some of the salient properties in some

simple examples.

To this end we now describe the basic results for three simple theories to get a taste

for the formalism. We will discuss free scalars, fermions, and vectors in d dimensions to

exemplify the basic aspects.

Having fixed the theory, we still have the choice of the initial state to pick. Since

arbitrary density matrices are still complicated, we will focus on two simple cases:

• Computing real time correlation functions in the vacuum state ρ̂initial = |0〉〈0 |

• Correlations in thermal density matrices

These situations have been well studied in the literature and we will mostly review the

salient results.

When we discuss the situation where fields are at finite temperature, β will as usual

denote the inverse temperature. For scalars and fermions we will also make provision for an

abelian U(1) flavour symmetry, thus allowing the freedom to turn on a chemical potential

µ. We will take the fields to have charge q under this symmetry and turn on the chemical

potential by a background gauge field coupling.

5.1 Free scalar field

We wish to write down the vacuum and thermal correlation functions for a complex scalar

field with charge q under an Abelian flavour symmetry. The Schwinger-Keldysh construc-

tion instructs us to consider the scalar action:

− Sscalar =

∫
ddx
√
−g

[
1

2
∂µφ

†
R ∂

µφR −
1

2
∂µφ

†
L ∂

µφL

]
. (5.1)

To write various formulae compactly it is best to pass onto Fourier space. We find it

convenient to introduce the Lorentz-invariant momentum space integral∫
p
I ≡

∫
1

(2Ep)

dd−1p

(2π)d−1
I , eip.x ≡ ei(~p·~x−Ep t) . (5.2)

with Ep =
√
~p · ~p as appropriate for a massless scalar. In the context of thermal correlators,

we will have occasion to use the Bose-Einstein distribution function (4.21) which for the

problem of interest takes the form

fBq ≡
1

eβ(Ep−q µ) − 1
. (5.3)

We have chosen to display the charge dependence explicitly since it helps simplify the

presentation of the answers.
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Vacuum correlation functions. The zero temperature real-time vacuum correlators

can be explicitly written down in momentum space for the free boson:

〈 TSK φR(x) φ†R(y) 〉 =

∫
p

{
Θxy e

ip.(x−y) + Θyx e
−ip.(x−y)

}
〈 TSK φR(x) φ†L(y) 〉 =

∫
p
e−ip.(x−y)

〈 TSK φL(x) φ†R(y) 〉 =

∫
p
eip.(x−y)

〈 TSK φL(x) φ†L(y) 〉 =

∫
p

{
Θyx e

ip.(x−y) + Θxy e
−ip.(x−y)

}
.

(5.4)

One can readily see that these four two-point correlators are not independent, for a linear

combination of them vanishes. This feature becomes manifest if we switch to the average-

difference basis. In order to get the physical two-point correlation functions, we perform

the Keldysh rotation which leads to the expressions in the average-difference basis

〈 TSK φav(x) φ†av(y) 〉 =
1

2

∫
p

[
eip.(x−y) + e−ip.(x−y)

]
,

〈 TSK φav(x) φ†dif(y) 〉 = Θxy

∫
p

[
eip.(x−y) − e−ip.(x−y)

]
,

〈 TSK φdif(x) φ†av(y) 〉 = Θyx

∫
p

[
−eip.(x−y) + e−ip.(x−y)

]
,

〈 TSK φdif(x) φ†dif(y) 〉 = 0 ,

(5.5)

and we note in particular the combination

〈 TSK

{
φav(x) φ†dif(y) − φdif(x) φ†av(y)

}
〉 =

∫
p

[
eip.(x−y) − e−ip.(x−y)

]
. (5.6)

Thermal correlation functions. The thermal correlation functions are similarly easy

to obtain. Now the fact that we have populated the modes of the scalar with a thermal

distribution results in terms involving the Bose-Einstein distribution function fBq defined

in (5.3). The Schwinger-Keldysh propagators can be shown to take the Mills form [5]:

〈 TSK φR(x) φ†R(y) 〉 =

∫
p

{[
fB+q + Θxy

]
eip.(x−y) +

[
fB−q + Θyx

]
e−ip.(x−y)

}
,

〈 TSK φR(x) φ†L(y) 〉 =

∫
p

[
fB+qe

ip.(x−y) +
(
fB−q + 1

)
e−ip.(x−y)

]
,

〈 TSK φL(x) φ†R(y) 〉 =

∫
p

[(
fB+q + 1

)
eip.(x−y) + fB−qe

−ip.(x−y)
]
,

〈 TSK φL(x) φ†L(y) 〉 =

∫
p

{[
fB+q + Θyx

]
eip.(x−y) +

[
fB−q + Θxy

]
e−ip.(x−y)

}
.

(5.7)

We observe that these correlators reduce to the vacuum correlators (5.4) in the event of zero

occupation number, fB+q = fB−q = 0. Further, the correlators (5.7) simplify after Keldysh
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rotation; one can check that the expressions for the thermal correlators are essentially given

by the expressions in (5.5) with the one exception

〈 TSK φav(x) φ†av(y) 〉 =

∫
p

[(
fB+q +

1

2

)
eip.(x−y) +

(
fB−q +

1

2

)
e−ip.(x−y)

]
. (5.8)

5.2 Free fermion field

As a second example, we consider now the Schwinger-Keldysh doubled theory of a free,

massive fermion in four dimensions:

− Sfermion =

∫
d4x
√
−g

[
ψ̄R (i/∂ −m)ψR − ψ̄L(i/∂ −m)ψL

]
. (5.9)

We now give the vacuum and thermal correlators in analogy to the scalar case, see for

instance [43] for details. Since we work in mostly positive signature our conventions for

spin-1
2 fields are similar to those of [44].

Vacuum correlation functions. The zero temperature real-time vacuum correlators

take a form that is very similar to the case of free scalars:

〈 TSK ψR(x) ψ̄R(y) 〉 =

∫
p

{
Θxy e

ip.(x−y) (−/p+m) + Θyx e
−ip.(x−y) (/p+m)

}
,

〈 TSK ψR(x) ψ̄L(y) 〉 =

∫
p
e−ip.(x−y) (/p+m) ,

〈 TSK ψL(x) ψ̄R(y) 〉 =

∫
p
eip.(x−y) (−/p+m) ,

〈 TSK ψL(x) ψ̄L(y) 〉 =

∫
p

{
Θyx e

ip.(x−y) (−/p+m) + Θxy e
−ip.(x−y) (/p+m)

}
.

(5.10)

As one can immediately confirm these can be obtained by acting with the operator i/∂+m

on the corresponding scalar result.

In analogy to the discussion of the scalar field, we can read off the correlation functions

in Keldysh basis:

〈 TSK ψav(x) ψ̄av(y) 〉 =
1

2

∫
p

[
eip.(x−y) (−/p+m) + e−ip.(x−y) (/p+m)

]
,

〈 TSK ψav(x) ψ̄dif(y) 〉 = Θxy

∫
p

[
eip.(x−y) (−/p+m)− e−ip.(x−y) (/p+m)

]
,

〈 TSK ψdif(x) ψ̄av(y) 〉 = Θyx

∫
p

[
−eip.(x−y) (−/p+m) + e−ip.(x−y) (/p+m)

]
,

〈 TSK ψdif(x) ψ̄dif(y) 〉 = 0 .

(5.11)

We note in passing that the condensed matter literature prefers a different convention

originating from [45] for the average and difference operators for the Dirac conjugates ψ̄

(see for instance [43]). Their definition involves declaring ψ̄R−ψ̄L to be the average operator

as opposed to the difference operator as we would have it. We find this extremely counter-

intuitive especially in working out the constraints from the largest time equation. So we

will adopt a homogeneous definition as in (3.2) for both ψ and ψ̄.
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Thermal correlation functions. The thermal correlation functions for the free fermion

can similarly be computed. To write this down we need the Fermi-Dirac distribution

function

fFq ≡
1

eβ(Ep−q µ) + 1
. (5.12)

With this in hand one can check that the correlation functions take the following form:

〈TSKψR(x)ψ̄R(y)〉 =

∫
p

{[
−fF+q+Θxy

]
eip.(x−y)(−/p+m)+

[
−fF−q+Θyx

]
e−ip.(x−y)(/p+m)

}
,

〈TSKψR(x)ψ̄L(y)〉 =

∫
p

[
−fF+qeip.(x−y)(−/p+m) +

(
1− fF−q

)
e−ip.(x−y)(/p+m)

]
,

〈TSKψL(x)ψ̄R(y)〉 =

∫
p

[(
1− fF+q

)
eip.(x−y)(−/p+m)− fF−qe

−ip.(x−y)(/p+m)
]
,

〈TSKψL(x)ψ̄L(y)〉 =

∫
p

{[
−fF+q+Θyx

]
eip.(x−y)(−/p+m)+

[
−fF−q+Θxy

]
e−ip.(x−y)(/p+m)

}
,

(5.13)

The correlators in the Keldysh basis are the same as the vacuum correlators (5.11), with

one exception:

〈TSKψav(x) ψ̄av(y)〉 =

∫
p

[(
−fF+q+

1

2

)
eip.(x−y)(−/p+m)+

(
−fF−q+

1

2

)
e−ip.(x−y)(/p+m)

]
.

(5.14)

5.3 Vector field

Consider the doubled theory of a photon in the Feynman gauge:

Sphoton =

∫
d4x
√
−g

[(
−1

4
(Fµν)R F

µν
R − 1

2
(∂µA

µ
R)2

)
−
(
−1

4
(Fµν)L F

µν
L − 1

2
(∂µA

µ
L)2

)]
.

(5.15)

Correlators in this gauge have the advantage of being proportional to Klein-Gordon prop-

agators; so one can immediately write down from the scalar result the answers for the

photon correlation functions.

Vacuum correlation functions. The zero temperature real-time vacuum correlators

take a form that is very similar to the case of free scalars:

〈 TSKA
µ
R(x) AνR(y) 〉 = gµν

∫
p

{
Θxy e

ip.(x−y) + Θyx e
−ip.(x−y)

}
〈 TSKA

µ
R(x) AνL(y) 〉 = gµν

∫
p
e−ip.(x−y)

〈 TSKA
µ
L(x) AνR(y) 〉 = gµν

∫
p
eip.(x−y)

〈 TSKA
µ
L(x) AνL(y) 〉 = gµν

∫
p

{
Θyx e

ip.(x−y) + Θxy e
−ip.(x−y)

}
.

(5.16)

One can obtain the results in the Keldysh basis by a quite easily from here.
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We will not at the moment write down the thermal correlation functions. These

expressions are a bit more involved in Feynman gauge since the Faddeev-Popov ghosts do

not decouple quite so simply, as they do for the vacuum correlators. This should hopefully

be clear following our discussion in section 6.

6 BRST symmetries and ghosts

Thus far we have confined our discussion to the standard presentation of the Schwinger-

Keldysh construction whereby we double the degrees of freedom in the quantum system

by taking two copies of the same. While sufficient for most purposes of computing time

ordered correlation functions, we wish now to argue that this framework naturally admits

some additional structure in the form of a BRST symmetry.

6.1 Field redefinition BRST symmetries

To motivate the statement of Schwinger-Keldysh BRST symmetry, let us first consider

consequences of field redefinitions in a standard single-copy path integral. Let ϕi be the

physical dynamical fields. Since the field values themselves are not important, we can freely

redefine them by the replacement ϕi → ϕi(ξj , ϑa). We have chosen here not only to have

new fields ξj which coincide in number with the original set of fields, but also to introduce

some more redundancy with the fields ϑa. The fact that we do not need to preserve the total

number of fields is obvious for we can always trivially integrate out non-interacting modes.

It should help here to consider an explicit example. We can for instance consider as

our system two decoupled free scalar fields ϕ1, ϕ2. For the redefinition we take these two

to be functions of three new bosonic degrees of freedom, viz., ϕ1(χ, ξ, ϑ) and ϕ2(χ, ξ, ϑ).

Explicitly, we could map the non-interacting scalar theory to some complicated interacting

theory involving the extra variables thus introduced. For example let us imagine the

transformation:

L[ϕ1, ϕ2] =
1

2

2∑
i=1

∂µϕi ∂
µϕi

−→ L[χ, ξ, ϑ] =
1

2
∂µ
(
χ+ F(χ, ξ,∇2)

)
∂µ
(
χ+ F(χ, ξ,∇2)

)
+

1

2
∂µ (ξ + ϑ) ∂µ (ξ + ϑ) .

(6.1)

Clearly the second line is obtained from the first by a complicated redefinition involving

some function F of the fields and their derivatives, which obscures the simplicity of the

theory. However, the physical observables one would compute in the two cases would agree.

And they must, for all we have done is introduce redundant variables. We expect that

there should be some constraints inherent in the path integral, which manifest themselves

as operator identities. The simplest diagnostic of such statements is to work out the general

Ward identities of the theory.

These statements are all very familiar in the context of gauge invariance. We are

simply generalizing consideration from that case to situations where the redefinition is not

– 35 –



J
H
E
P
0
6
(
2
0
1
7
)
0
6
9

in some symmetry direction. In particular, the Lagrangian by itself is not required to be

invariant under the general class of transformations envisioned above. But a key element

from the context of gauge symmetry still plays a useful role: we can associate with the field

redefinition freedom a BRST invariance [46, 47]. The derivation proceeds analogously to

the standard discussion of BRST symmetries in gauge theories; we examine the constraints

in the redundant description, introduce auxiliary variables and transformation laws etc. . .

We can be rather explicit here and can work out, for example, the story for the simpler

case when the transformations in (6.1) have F = 0. Then χ = ϕ1 which we henceforth

ignore and concentrate on the shift ϕ2 = ξ+ϑ. The redundant transformations are simply

δξ = λ and δϑ = −λ. One would naturally want to gauge fix ϑ = 0. What we expect is

indeed to recover the original Lagrangian with some relabeled fields. But this is no longer

the unique choice; other gauge choices are equally possible. To retain covariance, what we

should do is to introduce Faddeev-Popov ghost fields enlarging the symmetry to include

the ghosts and the Lagrange multiplier fields. Letting c, c̄ be the ghost fields and b the

(bosonic) Nakanishi-Lautrup field, the transformations for the free field are

δξ = c , δϑ = −c , δc = 0 , δc̄ = −i b , δb = 0 (6.2)

We can obtain this by the standard Faddeev-Popov procedure by using the gauge fixing

condition ϑ = 0 which has a unit determinant. The action gauge fixed this way, then reads

(ignoring the field ϕ1 = χ):

− S =

∫
ddx

{
1

2
∂µ(ξ + ϑ) ∂µ(ξ + ϑ)− c̄ c+ i b ϑ

}
+

∫
ddx

1

2
∂µχ∂

µχ . (6.3)

A moment’s thought should convince the reader that we can integrate out the b and ϑ

fields, leaving behind the free ξ field with a decoupled ghost sector. One can readily get

rid of the latter as well, but lets say that we choose to retain it for the present.

In the enlarged system, the presence of the BRST symmetry (6.2) allows us to infer a

Ward identity

〈δG(ξ)

δξ
+ iG(ξ)

δS(ξ)

δξ
〉 = 0 , (6.4)

where G(ξ) is an arbitrary function. This statement is easily verified for the free field, but

what is useful is that the Ward identity will hold even if ξ had self-interactions. It is then

often referred to as the statement of general Schwinger-Dyson equations [46, 47]. We can

consider the replacement ϕ2 7→ ξ+ϑ in any interacting scalar theory; the arguments above

can be paralleled with ease.

None of the above statements should come as a surprise. There are much simpler

ways to arrive at these results. We have chosen here to perversely display some trivial

consequences of introducing redundancy into a free field theory. While clearly an overkill

for this simple problem, the phrasing of the field redefinition freedom as a BRST symmetry

is the main lesson we want to extract. Once we have this basic statement we can extend our

considerations to other examples of interest. This perspective has some useful implications

in the Schwinger-Keldysh construction, as we now describe.
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6.2 The topological sector of Schwinger-Keldysh

Let us attempt to draw parallels between the Schwinger-Keldysh construction and the

field redefinition story described in the preceding subsection. Recall that by definition

the Schwinger-Keldysh path integral computes the generating functional ZSK[JR,JL] in-

troduced in eq. (3.4). To define this object we have doubled the degrees of freedom by

introducing a second copy of the physical Hilbert space. Doing so necessarily introduces

some redundancy whose effects we would now like to understand.

One may in fact view (3.20) (i.e., the statement that the correlation functions of differ-

ence operators vanish) as a consequence of the redundancy thus introduced. Indeed, what

we have is a Ward identity, which is independent of the dynamics of the theory. Irrespective

of the unitary operator that evolves the system, we are finding that the Schwinger-Keldysh

construction demands that a set of correlation functions vanish. As indicated earlier, turn-

ing on equal sources for the right and left degrees of freedom results in the theory localizing

to the initial conditions built into ρ̂initial.

It is rather remarkable to have a general vanishing theorem for correlation functions in

a quantum system. The one context where such a statement is natural is when we have a

system with an underlying BRST symmetry. In such a situation the symmetry guarantees

that correlators are trivial for BRST exact operators.

The lesson we wish to draw is that the difference operators Odif are BRST exact for the

field redefinition BRST invariance which comes hand in hand with the Schwinger-Keldysh

doubling. Then the vanishing result (3.20) would follow naturally as a consequence of the

symmetries. Since the Schwinger-Keldysh Lagrangian is given by L[ΦR]−L[ΦL], the change

of variables in question is schematically of the form ΦR 7→ ΦR + Ψ and ΦL 7→ ΦL + Ψ, i.e.,

a correlated shift of the two sets of degrees of freedom. Closely following the discussion

in section 6.1 we can construct the BRST charges according to the usual rules. We will

leave this construction as an exercise for the reader and jump immediately to a set of

algebraic statements about the operators in a generic Schwinger-Keldysh doubled theory.

For a simple example illustrating this algebra, we refer the reader to section 6.4.

A useful way to think about the BRST symmetry in the Schwinger-Keldysh context

is to view the standard construction involving left and right degrees of freedom as a gauge

fixed version. While there is nothing wrong with this, in certain contexts the gauge fixing

condition may prevent one from clearly seeing some of the underlying structure. Often

one likes to work with a covariant presentation of the theory to avoid such issues. The

Schwinger-Keldysh BRST construction we are about to give should be viewed in this light.

The process of covariantizing involves perhaps working with a larger set of variables, but

the price paid is worthwhile since all the symmetries are manifest.

Lets first see how this works in the Schwinger-Keldysh formalism. Since there are going

to be ghost degrees of freedom associated with the BRST symmetries, let us introduce

them at the outset. Given an operator Ô in the single copy theory, the Schwinger-Keldysh

formalism demands to introduce a pair of left and right degrees of freedom. Furthermore,

we have as a consequence of the BRST field redefinition symmetry a pair of ghosts denoted

by O
G

and OG . The assignment of quantum numbers to these fields is inherited from Ô with
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one crucial difference: O
G

and OG have opposite Grassmann parity to Ô. They however

have the same fermionic parity (and hence the same thermal boundary conditions). One

consequence of this assignment is the violation of the spin-statistics relation by O
G

and OG

following from their ghostly nature.

Thus, every operator Ô in the single copy theory is replaced in the Schwinger-Keldysh

theory by a quadruplet {OL,OG
,OG ,OR} which we will collectively refer to as the SK

multiplet associated with Ô. We will now explore the consequences of this quadrupling,

fleshing out in the process the BRST symmetries we seek to explore.

6.3 SK supercharges

We have upgraded the Schwinger-Keldysh formalism to a quadruplet of fields

{OL,OG
,OG ,OR} which form a basic multiplet in the construction. We will soon intro-

duce a convenient way to package them, but for now let us work out how these should

transform into each other under the aforementioned BRST symmetry. We will refer to the

field redefinition BRST symmetry as the Schwinger-Keldysh symmetry and correspondingly

introduce a pair of Schwinger-Keldysh (SK) supercharges QSK and QSK which implement

the transformations. These supercharges are Grassmann odd BRST operators with zero

fermion number. Without further ado, the considerations of section 6.1 and section 6.2

lead us to the action of these charges defined by the following graded commutators:

[QSK ,OL]± = [QSK ,OR]± = OG , [QSK ,OG ]± = 0,
[
QSK ,OG

]
±

= − (OR − OL) ,[
QSK ,OL

]
±

=
[
QSK ,OR

]
±

= O
G
,
[
QSK ,OG

]
±

= 0,
[
QSK ,OG

]
±

= (OR − OL) .
(6.5)

In what follows it will be useful to keep track of ghost number for various operators.

The physical operators Ô and their Schwinger-Keldysh counterparts have zero ghost num-

ber. We will choose to assign ghost number ±1 to OG and O
G

respectively. Ghost number

conservation then demands a compatible assignment to the supercharges; we make the

following choice:

gh(OG) = gh(QSK) = +1 , gh(O
G

) = gh(QSK) = −1 . (6.6)

The action of the supercharges can be usefully captured in a diagrammatic form, viz.,

OR,OL

OG O
G

OR − OL

Q
SK Q

SK

Q
SK

−Q
SK

(6.7)

with the understanding that QSK and QSK maps should be interpreted as commutator

actions on the Hilbert space.

– 38 –



J
H
E
P
0
6
(
2
0
1
7
)
0
6
9

The one peculiarity of our ghost number assignment is that it increases right to left

on this diagram. While we have denoted both OL and OR on the top row, it is clear that

writing both of them is slightly redundant, and we could equivalently resort to the Keldysh

basis of av − dif operators. In the Keldysh basis, the action of the supercharges can be

checked to take the form

[QSK ,Oav]± = OG , [QSK ,OG ]± = 0,
[
QSK ,OG

]
±

= −Odif , [QSK ,Odif ]± = 0 ,[
QSK ,Oav

]
±

= O
G
,
[
QSK ,OG

]
±

= 0,
[
QSK ,OG

]
±

= Odif ,
[
QSK ,Odif

]
±

= 0 ,
(6.8)

or equivalently

Oav

OG O
G

Odif

Q
SK Q

SK

Q
SK

−Q
SK

(6.9)

The commutation relations make it clear in either case that Odif is both QSK and QSK

exact, thus assuring that their correlation functions vanish. In either presentation, it is

easy to check that

Q2
SK

= Q2

SK
=
[
QSK ,QSK

]
±

= 0 . (6.10)

We note that the ghost operators O
G

and OG occur naturally as the ghosts corresponding

to the right-left symmetric shift generated by the Schwinger-Keldysh supercharges.

It is worthwhile comparing the discussion above with the more familiar discussion of

BRST symmetries in gauge theories. In that case we introduce the ghosts by upgrading the

gauge transformation parameters. One usually defines a single BRST charge Q by requiring

that it perform a gauge transformation of the physical fields along the ghost. With the

ghost number assignment as in (6.6) we have an alignment in the charge assignment of the

BRST operator and the ghost field. The partner anti-ghost field comes with an opposite

ghost charge, to ensure that we have a net vanishing of ghost number for terms that

appear in the action. Equivalently, when we exponentiate the Jacobian arising from the

gauge fixing condition, we have a pair of ghosts with equal and opposite ghost number; only

one of them is chosen to be obtained by gauge transforming the physical fields. Clearly

there is an analogous construction where we should invoke a BRST transformation in the

anti-ghost direction, Q̄. The two pairs of BRST charges are individually nilpotent and

should anti-commute among themselves. In either case the Lagrange multiplier or the

Nakanishi-Lautrup field, which enters through the gauge fixing condition, is BRST exact

— it is obtained as the Q action on the anti-ghost or the Q̄ action on the ghost.
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This is exactly the structure present in (6.5) or (6.7). The BRST charges QSK and

QSK perform field redefinitions of the Schwinger-Keldysh fields in the ghost and anti-ghost

directions respectively. The difference operator Odif is the Nakanishi-Lautrup field of this

redefinition redundancy.20

It will also be convenient for us to consider the definition of the SK-supercharges in

the advanced-retarded basis. This will prove useful in the sequel when we wish to specify

to thermal correlation functions. The transformation into this basis is defined in (4.18)

and it involves the operator that implements thermal time translations δ
β
. However, the

thermal translations commute with any field redefinition we perform in the Schwinger-

Keldysh basis. With this understanding it is then clear that in the advanced-retarded

basis the SK-supercharges act as

[QSK ,Oret]± = OG , [QSK ,OG ]± = 0,
[
QSK ,OG

]
±

= −Oadv, [QSK ,Oadv]± = 0 ,[
QSK ,Oret

]
±

= O
G
,
[
QSK ,OG

]
±

= 0,
[
QSK ,OG

]
±

= Oadv,
[
QSK ,Oadv

]
±

= 0.
(6.11)

6.4 Example: free scalar field

Let us flesh out this abstract discussion with an example. Consider the free scalar field

described in section 5.1:

−Sscalar =

∫
ddx
√
−g

(
1

2
∂µφ

†
R ∂

µφR −
1

2
∂µφ

†
L ∂

µφL

)
=

∫
ddx
√
−g

(
1

2
∂µφ

†
av
∂µφ

dif
+

1

2
∂µφ

†
dif
∂µφav

)
.

(6.12)

We have the Schwinger-Keldysh fields φR and φL whose correlation functions in a thermal

state have been described hitherto (see (5.7)). We claim that this Schwinger-Keldysh

doubled theory has a hidden field redefinition invariance of the form {φR → φR + χ,

φL → φL + χ}, or equivalently in the Keldysh basis {φav → φav + χ, φ
dif
→ φ

dif
}.

In order to make this symmetry manifest, we now have to include the Schwinger-

Keldysh ghost fields, which fill out the quartet of fields. According to our discussion in

section 6.1 we expect that adding a decoupled ghost sector will make the field redefinition

Schwinger-Keldysh BRST symmetry manifest. Introduce Schwinger-Keldysh ghosts c and

c̄ which are scalar fields with odd Grassmann parity. The fields {φav , c, c̄, φdif
} then form the

Schwinger-Keldysh multiplet for this theory. We take the ghost charge assignments to be

gh(φL) = gh(φR) = 0 , gh(c) = +1 , gh(c̄) = −1 . (6.13)

20As noted, it has been suggested in [17] that the Schwinger-Keldysh construction can implement the

Ward identity (3.20) by the presence of a single BRST supercharge. The field redefinition arguments, as

well as the known constructions for path integrals to compute partition sums as opposed to indices (see [48]

for a clear physical discussion), suggest to us however that the correct formalism involves having both

supercharges made manifest, as we have chosen to do. Indeed in our applications of this formalism to

construct hydrodynamic effective actions [22], we have found no obstructions to making both supercharges

manifest. This lends support to the general structure proposed above, and for the rest of the discussion we

will simply work out the consequences of two Schwinger-Keldysh supercharges, without further qualifiers.
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The Schwinger-Keldysh supercharge action may be inferred from the diagram:

φav

c c̄

φ
dif

Q
SK Q

SK

Q
SK

−Q
SK

(6.14)

where we pass onto the Keldysh basis for convenience.

Adding the ghosts, the manifestly BRST invariant Schwinger-Keldysh Lagrangian for

the scalar and the ghosts takes the form:

−Sscalar+ghosts =

∫
ddx
√
−g
(

1

2
∂µφ

†
av
∂µφ

dif
+

1

2
∂µφ

†
dif
∂µφav + c†∇2c̄− c̄†∇2c

)
. (6.15)

The ghosts form a decoupled sector in this theory owing to the absence of interactions. It

is easy to check that QSK and QSK are symmetries of this action. In fact, the nilpotency

of the supercharges allows us to make the symmetry manifest by writing the action in a

BRST exact form:

− Sscalar+ghosts =

[
QSK ,

[
QSK ,

∫
ddx
√
−g

(
1

2
∂µφ

†
av
∂µφav

)]
±

]
±

. (6.16)

The correlation functions of the various fields can be chosen to be:

〈 TSK c(x) c†(y) 〉 = 〈 TSK c̄(y) c̄†(y) 〉 = 0

〈 TSK c(x) c̄†(y) 〉 = −〈 TSK c(x) c̄†(y) 〉?

= 〈 TSK φav(x)φ†
dif

(y)− φ
dif

(y)φ†
av

(x) 〉

=

∫
p

[
eip.(x−y) − e−ip.(x−y)

] (6.17)

The correlation functions in the second line are written down for a particular choice of the

boundary conditions. As we explain in some detail in section 9, there is a certain amount

of ambiguity in the ghost correlation functions owing to the choice of boundary conditions

we can impose on the superspace path integral. The result above is for a particular choice

which is simple and incorporates the results for the average difference correlation functions

from (5.5).

6.5 The Schwinger-Keldysh superfields

The interpretation of the Schwinger-Keldysh construction in terms of the quartet of fields

including the ghosts can be succinctly summarized using a superfield language. This allows

for a relative ease in constructing effective actions which admit a correct action of the QSK

and QSK charges.

To describe the superfields, we start by upgrading the background geometry where our

quantum system resides to admit a supermanifold structure. To the coordinates xµ of the
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geometry, we add two Grassmann valued super-coordinates θ and θ̄ which parameterize

the superfield directions. We will take these super-coordinates to carry non-trivial ghost

number, with the assignment:

gh(θ) = +1 , gh(θ̄) = −1 . (6.18)

We can now view the quartet {OR,OL,OG ,OG
} as a single superfield O̊ with a superspace

Taylor expansion. For the superfield we will make different choices depending on whether

we discuss real-time vacuum correlation functions or thermal correlators. Define

O̊ ≡

{
Oav + θ O

G
+ θ̄ OG + θ̄θ Odif , ρ̂initial =|0〉〈0 | ,

Oret + θ O
G

+ θ̄ OG + θ̄θ Oadv , ρ̂initial = ρ̂T .
(6.19)

The choice is made such that the bottom component corresponds to the physical aver-

age/retarded field Oav or Oret and the top component to the Nakanishi-Lautrup difference

operator Odif (equivalently Oadv). We use the notation introduced in [22] to denote the

Schwinger-Keldysh superfield corresponding to an operator Ô, by simply affixing an accent

“˚” above it.

The expression for the superfield can be written equivalently in the other basis of

operators introduced hitherto in a straightforward manner

O̊ ≡
(
1 + (−1)FOf

β
+ θ̄θ

)
OR −

(
(−1)FOf

β
+ θ̄θ

)
OL + θ O

G
+ θ̄ OG

≡ Oav +

(
1

2
+ (−1)FOf

β
+ θ̄θ

)
Odif + θ O

G
+ θ̄ OG .

(6.20)

From the superfield we can always recover the operator in question by projection — we

simply set θ = θ̄ = 0. We will denote this operation by “|”, viz.,

O̊| ≡ O̊
∣∣
θ=θ̄=0

= O . (6.21)

The advantage of working with superfields is that the operations of QSK and QSK can

be equivalently understood in terms of super-derivations. We now give two equivalent ways

of thinking about the action of {QSK ,QSK} on superfields. The first point of view simply

takes the supercoordinates to anti-commute with the Schwinger-Keldysh supercharges:

[QSK , θ]± =
[
QSK , θ̄

]
±

=
[
QSK , θ

]
±

=
[
QSK , θ

]
±

= 0 (6.22)

With this understanding, {QSK ,QSK} simply act on superfields componentwise (picking up

signs when they pass through θ or θ̄). This yields:[
QSK , O̊

]
±

= [QSK ,O]± − θ
[
QSK ,OG

]
±
− θ̄ [QSK ,OG ]± + θ̄θ [QSK ,Odif ]±

= OG + θOdif ,
(6.23)

and similarly for QSK . This encodes the action of the SK supercharges componentwise.

Alternately, there is a more straightforward way to obtain the same result. Namely,

we simply take {QSK ,QSK} to act as translation generators {∂θ̄, ∂θ} in the Grassmann-odd

directions: [
QSK , O̊

]
±

=
∂O̊

∂θ̄
,

[
QSK , O̊

]
±

=
∂O̊
∂θ

. (6.24)
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This expression makes it patently clear that the superspace geometrises the Schwinger-

Keldysh differentials {QSK ,QSK}.
These expressions are indeed the ones we would write based on the construction of the

basic Schwinger-Keldysh multiplet. To see this explicitly let us instead work this out using

QSK ,QSK . One finds using (6.24) that the bottom component transforms as

[QSK ,Oret]± =
∂O̊

∂θ̄

∣∣∣∣ = (OG + θ Oadv) | = OG ,[
QSK ,Oret

]
±

=
∂O̊
∂θ

∣∣∣∣ =
(
O
G
− θ̄ Oadv

)
| = O

G
.

(6.25)

In ascertaining this we are using the fact that the supercharges themselves do not have a

non-trivial dependence on the supercoordinates. To compute the action on the superpart-

ners of Oret such as OG ,OG
,Oadv etc., we have to first construct superfields whose bottom

component is the object of interest. For example,[
QSK ,OG

]
±

=

[
QSK ,

∂O̊
∂θ

∣∣∣∣
]
±

=
∂

∂θ̄

(
∂O̊
∂θ

)∣∣∣∣ = −Oadv , (6.26)

where the sign originates from the order of the superderivations performed. Working with

these expressions one can check that (6.11) (or equivalently (6.8)) are satisfied.

To summarize, we have just argued for the following elegant statement: by simply

upgrading the single-copy QFT to a theory in superspace {xµ, θ, θ̄} automatically gives a

Schwinger-Keldysh theory with a ghost sector that guarantees the universal symmetries

inherent in the doubling structure of Schwinger-Keldysh formalism. Let us briefly reconsider

a simple example for illustration.

Free scalar in superspace. Another advantage of introducing the superfields is that

the action can be written compactly in terms of a superspace integral. For example the

scalar field theory discussed in section 6.4 can be written in terms of the superfield

φ̊ = φav + θ̄ c+ θ c̄+ θ̄θ φ
dif
. (6.27)

The action (6.16) in superspace is simply

− Sscalar+ghosts =

∫
ddx
√
−g

∫
dθ dθ̄

(
1

2
∂µφ̊

† ∂µφ̊

)
, (6.28)

up to a total derivative. The integration over superspace is then just the statement that

the action is QSK and QSK exact. This way, working in superspace automatically ensures

a formalism that is manifestly Schwinger-Keldysh field redefinition invariant.

7 Thermal BRST symmetries and SK-KMS superalgebra

Our discussion of the BRST symmetries has thus far focused on generic density matrices.

We have already seen in section 4 that there are special features of thermal density matrices

that imply an additional structure. The primary new ingredient is the interpretation of

the thermal density matrix in terms of a Euclidean evolution and the associated KMS

condition. In this section we focus on the case of thermal density matrices and derive an

additional BRST structure associated with the KMS condition.
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7.1 The KMS supercharges

To implement the KMS condition efficiently, we introduced in (4.15) the KMS conjugate

of an operator and the corresponding source J̃ . The KMS condition is embodied in the

sum rule eq. (4.17). One consequence of this observation is that we can now repeat our

arguments in section 6.3 with say JL replaced by J̃L and OL replaced by ÕL.21 One then

should encounter an entirely new set of topological charges that involve the KMS conjugates

of our operators.

To be precise, let us invoke a second set of mutually anti-commuting, nilpotent, Grass-

mann odd operators which we will call the KMS supercharges QKMS and QKMS . They

should induce an algebra completely analogous to the universal Schwinger-Keldysh field

redefinitions (6.5), but now implementing the fact that in a thermal state we additionally

have field redefinitions whose Nakanishi-Lautrup field is OR− ÕL. The latter ‘KMS shifted’

difference operators should hence be the BRST and anti-BRST exact objects in the KMS

symmetry algebra. Furthermore, this second algebra associated with the KMS condition

should not introduce new ghost fields, since the involved Grassmann neutral fields are just

the original OR and OL and their thermal time translations. This motivates us to define the

QKMS and QKMS action on the Schwinger-Keldysh quadruplet {OL,OG
,OG ,OR} introduced

in section 6.2 as follows:

[QKMS ,OL]± = iOG , [QKMS ,OR]± = i(−1)FOe−iδβ OG ,

[QKMS ,OG ]± = 0,
[
QKMS ,OG

]
±

= −i
(
OR − ÕL

)
≡ −i

(
OR−(−1)FOe−iδβ OL

)
,[

QKMS ,OL

]
±

= −iO
G
,
[
QKMS ,OR

]
±

= −i(−1)FOe−iδβ O
G
,[

QKMS ,OG

]
±

= 0,
[
QKMS ,OG

]
±

= −i
(
OR − ÕL

)
≡ −i

(
OR−(−1)FOe−iδβ OL

)
. (7.1)

One may write this in a diagrammatic notation making explicit the similarity to eq. (6.7) as:

OL

iOG −iO
G

OR − ÕL

Q
KMS Q

KMS

Q
KMS

−Q
KMS

(7.2)

Basically all we have done is to rewrite the field redefinition supercharges by working

with the physical operators and realizing that the KMS invariance implies that OR − ÕL

should belong to the topological sector of the theory, for it has vanishing self-correlations

as in (4.17). This explains how the algebra (7.1) can be derived: one starts by writing

down the descendants of OL, using the same ghosts as in the universal Schwinger-Keldysh

field redefinition algebra and the Nakanishi-Lautrup field OR − ÕL to describe the KMS

condition. Then, the descendants of OR are immediately fixed by consistency (in particular

21We find this analogy useful to motivate the charges below, but we do not claim that this replacement

is a symmetry of the correlation functions.
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by demanding that OR− ÕL be closed under QKMS and QKMS). In defining the KMS super-

charges in (7.2), we have chosen to sneak in a few factors of i, which is purely a choice of

convention. This differs from the definition given in [9], but turns out to be more natural.22

The KMS supercharges thus defined are nilpotent Q2
KMS

= Q2

KMS
= 0. This follows

once we realize that the supercharges commute with the thermal translation generator ∆
β
.

One can make similar statements by choosing to replace OR by its KMS conjugate

instead. However, to respect the time ordering prescription the right operators should be

conjugated slightly differently. One can for instance check that ÕR ≡ (−1)FOeiδβ OR has the

same diagram as (7.2), by noting that the Schwinger-Keldysh contour should be traversed

in the opposite orientation to go from L → R. The nicer way to circumvent this subtlety

is by simply passing to a more convenient basis; as we will see below, the transformation

properties are expressed most compactly in the adv − ret basis (as was the case for the

action of Schwinger-Keldysh supercharges).23

It is interesting to contrast this discussion with other implementations of the KMS

condition. For instance, in [42] the authors define a transformation Kβ which acts to

map OR(t) 7→ OL(t − iβ2 ) and OL(t) 7→ OR(t + iβ2 ), motivated by the thermofield double

construction. This acts as a Z2 transformation on the Schwinger-Keldysh fields, and modulo

an overall parity and time-reversal corresponds to the dynamical KMS symmetry of [17].

Supplementing this with an addition iβ2 time translation, we would see that the net effect

is to replace OR 7→ ÕL and OL 7→ OR, whence (4.17) would follow from the basic identity of

Schwinger-Keldysh (3.20) (modulo at best an irrelevant overall sign). We are implementing

the transformation somewhat differently at this stage, but it has the same intended effect

on the correlation functions.

The action of the KMS supercharges in the other bases can be also readily ascertained.

For instance in Keldysh basis, we have

[QKMS ,Oav]± = −
(
i+

1

2
∆

β

)
OG ,

[
QKMS ,OG

]
±

= −∆
β
Oav +

(
i+

1

2
∆

β

)
Odif ,

[QKMS ,OG ]± = 0, [QKMS ,Odif ]± = −∆
β
OG ,[

QKMS ,Oav

]
±

=

(
i+

1

2
∆

β

)
O
G
,

[
QKMS ,OG

]
±

= 0,

[
QKMS ,OG

]
±

= ∆
β
Oav −

(
i+

1

2
∆

β

)
Odif ,

[
QKMS ,Odif

]
±

= ∆
β
O
G
. (7.4)

On the other hand in the retarded-advanced basis, we obtain the most compact version of

22The choice made here is natural from the superspace perspective. We have effectively chosen to do a

ghost number rotation on the KMS supercharges relative to the choice made in [9]:

[QKMS ]here = i[QKMS ][9] , [Q
KMS

]here = −i[Q
KMS

][9] , [Q0
KMS

]here = i[Q0][9] , (7.3)

where Q0
KMS

will be defined below, cf., (7.10). It also transpires that this choice corresponds to an anti-

Hermitian representation for certain gauge fields in superspace which will prove useful in interpreting these

structures from an equivariant cohomology perspective in [1].
23There are subtleties associated with the conjugation of OR owing to issues relating to convergence in

the Euclidean domain.
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the KMS algebra:

[QKMS ,Oret]± = 0,
[
QKMS ,OG

]
±

= ∆
β
Oret ,

[QKMS ,OG ]± = 0, [QKMS ,Oadv]± = ∆
β
OG ,[

QKMS ,Oret

]
±

= 0,
[
QKMS ,OG

]
±

= 0 ,[
QKMS ,OG

]
±

= ∆
β
Oret,

[
QKMS ,Oadv

]
±

= −∆
β
O
G
. (7.5)

In obtaining these expression we used the fact that QKMS and QKMS commute with the

Hamiltonian Ĥ. This once again follows from the KMS invariance and can be viewed

as a consequence of the field redefinition symmetry in the Schwinger-Keldysh construction

combined with the Euclidean periodicity imposed by the KMS condition for thermal density

matrices. In diagrammatic form, we find simply

Oadv

∆
β
OG −∆

β
O
G

∆
β
∆

β
Oret

Q
KMS Q

KMS

Q
KMS

−Q
KMS

(7.6)

While formally similar to our discussion of the Schwinger-Keldysh supercharges, there

is a very crucial distinction in the KMS algebra described above. Since QKMS and QKMS

involve thermal translations e−iδβ by a finite amount involving the inverse temperature,

they relate fields which are physically separated along the Euclidean thermal circle. This

implies that these charges are necessarily non-local. In global thermal equilibrium one

can work with the Fourier modes of fields along the Euclidean time direction, viz., the

Matsubara decomposition, and define the operators rather precisely. Beyond this special

case however one expects that the strict definition of these supercharges comes with various

associated subtleties. We will remark on these issues when we discuss the analog for generic

density matrices later on.

7.2 The quadruplet of thermal translations

We have derived the existence of Grassmann-odd supercharges {QSK ,QSK}, which encode

the field redefinition symmetry inherent in the Schwinger-Keldysh construction, and have

argued that the KMS condition leads to BRST supercharges {QKMS ,QKMS} in the same

vein. We now motivate the introduction of a new operator Q0
KMS

, which together with the

KMS charges, and the thermal translation operator LKMS (which we recall acts as ∆
β
)

forms a quartet of super-KMS transformations.

Firstly, realize that by construction {QKMS ,QKMS} provide two Grassmann-odd gener-

ators of thermal translations, with gh(QKMS) = +1 and gh(QKMS) = −1 respectively. We

furthermore have a Grassmann-even thermal translation operator LKMS defined in (4.14)

which measures deviations from the KMS condition. Its action on the entire Schwinger-

Keldysh multiplet which we reproduce here for convenience is simply

[LKMS ,O]± = ∆
β
O , O ∈ {OR,OL,OG ,OG

} (7.7)
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which follows by virtue of gh(LKMS) = 0. It is easy to check by explicit evaluation that the

operations introduced so far satisfy[
QSK ,QKMS

]
±

=
[
QSK ,QKMS

]
±

= LKMS , (7.8)

with all other graded commutators vanishing. In particular note that LKMS has vanishing

commutators with {QSK ,QSK ,QKMS ,QKMS}.
But we now encounter a problem — the three KMS operators fail to generate a super-

multiplet of actions. Based on the superfield construction in section 6.5 we might expect

to find a fourth generator that completes them into a multiplet of super-transformations,

on which QSK and QSK act naturally as super-derivations along the lines of (6.24). This

prompts us to ascertain a new Grassmann-even generator, Q0
KMS

, which completes the KMS

operations into a multiplet.

The easiest way to proceed is to intuit that Q0
KMS

action should only involve the

KMS deviation differential operator ∆
β

and it should suitably intertwine with the other

generators. Given that there is no passage from QSK to QKMS using LKMS or likewise for

their partners (the only ghost number conserving possibilities), we can ask if there is an

operator Q0
KMS

that intertwines with QSK to produce QKMS . One simple way to proceed is

to require that the quartet of KMS operations fits into a diagram of the form (6.7), viz.,

Q0
KMS

QKMS −QKMS

LKMS

Q
SK Q

SK

Q
SK

−Q
SK

(7.9)

where arrows indicate as before action via graded commutator, e.g.,
[
QSK ,Q0

KMS

]
±

= QKMS

etc. . . In a sense Q0
KMS

is the basic (‘top component’) thermal translation, with the other

three generators appearing as its descendants in the Schwinger-Keldysh cohomology.

With this motivation in mind, it is now easy to write down the generator Q0
KMS

, which

has all the desired properties. It acts on the Schwinger-Keldysh quartet {OR,OL,OG ,OG
} as

[
Q0

KMS
,OL

]
±

=
i

1−(−1)FOe−iδβ0

(
OR−ÕL

)
,
[
Q0

KMS
,OR

]
±

=
i (−1)FOe−iδβ0

1−(−1)FOe−iδβ0

(
OR−ÕL

)
,[

Q0
KMS

,OG

]
±

= 0 ,
[
Q0

KMS
,O

G

]
±

= 0 . (7.10)

Translating to the thermally adapted advanced-retarded basis we can simplify this action,

for using our earlier definitions we find:[
Q0

KMS
,Oret

]
±

=
[
Q0

KMS
,OG

]
±

=
[
Q0

KMS
,O

G

]
±

= 0 ,
[
Q0

KMS
,Oadv

]
±

= ∆
β
Oret . (7.11)

These definitions are fixed by demanding the diagram (7.9) up to overall normalization.24

Our conventions are chosen to be natural from a superspace point of view as will become

24The operator Q0
KMS

was called iQ0 in [9]. As with the KMS supercharges, this change is motivated by

naturalness in superspace, cf., footnote 22.
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clear when we give a complete explanation of this structure from an equivariant cohomology

point of view in [1].

Let us take stock of the various operators that we have defined on the Schwinger-

Keldysh multiplet of fields O̊. We have a total of six operators: the Schwinger-Keldysh

supercharges {QSK ,QSK}, the KMS supercharges {QKMS ,QKMS} and Grassmann-even gen-

erators {LKMS ,Q0
KMS
}. Given the commutation relations in section 6.3, section 7.1 and

section 7.2 it is a simple matter to check that these supercharges give rise to a closed

algebra, which is very reminiscent of supersymmetric structures:

Q2
SK

= Q2

SK
= Q2

KMS
= Q2

KMS
= 0 ,

[QSK ,QKMS ]± =
[
QSK ,QKMS

]
±

=
[
QSK ,QSK

]
±

=
[
QKMS ,QKMS

]
±

= 0 ,[
QSK ,QKMS

]
±

=
[
QSK ,QKMS

]
±

= LKMS , (7.12)[
QKMS ,Q

0
KMS

]
±

=
[
QKMS ,Q

0
KMS

]
±

= 0 ,[
QSK ,Q

0
KMS

]
±

= QKMS ,
[
QSK ,Q

0
KMS

]
±

= −QKMS .

All of these relations follow from the definitions given, as can be verified in short order. We

will refer to this structure as the SK-KMS superalgebra. We now turn to its more compact

and efficient description in superspace.

7.3 SK-KMS superalgebra in superspace

The superspace representation of {QSK QSK} was given in section 6.5. As we saw there, it

is very natural to think about the these operations as being represented on superspace as

translation generators:

QSK ' ∂θ̄ , QSK ' ∂θ , (7.13)

which act genuinely as derivations on superspace, see also eq. (6.24). By the symbol “'”

we mean equality of operators with the understanding that {QSK ,QSK} act component-

wise, while the right hand sides act as super-derivations. We now wish to give a similar

representation of the KMS supercharges {QKMS ,QKMS ,LKMS ,Q0
KMS
}.

In order to find the right superspace representation of the KMS supercharges, we

recollect the following observation: the four KMS supercharges form a supermultiplet as in

the diagram (7.9). Taking the action of {QSK ,QSK} as Grassmann-odd derivatives seriously,

we would thus like to define operator valued superfields of thermal translations whose

derivatives give the correct multiplet structure. This is easily achieved by the following

linear combinations:

I̊KMS
0 ≡ Q0

KMS
+ θ̄QKMS − θQKMS + θ̄θLKMS ,

I̊KMS ≡ QKMS + θLKMS ,

I̊KMS ≡ QKMS + θ̄LKMS ,

L̊KMS ≡ LKMS .

(7.14)

Upon restriction to ordinary space (θ = 0 = θ̄), these operators reduce to the quadruplet

of thermal translations. Hence they sensibly generalize the latter to superspace.
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Our notation is chosen such as to suggest that L̊KMS acts as a super-Lie derivative

operation, while {I̊KMS
0 , I̊KMS, I̊KMS} act as interior contractions. These operations should

be familiar to readers from differential geometry, where given various differential forms on

a manifold, we can Lie drag them along some vector field, or contract their indices against

the same. We clearly do not have a manifold structure, but rather an operator super-

algebra that acts on an enlarged Schwinger-Keldysh Hilbert space. The above notions of

Lie derivation and interior contraction play a natural role in certain algebraic construc-

tions of cohomology, which go by the moniker of equivariant cohomology. The notion of

equivariance in this context refers to the set of algebraic structures that are compatible

with (i.e., commute across) a group action. We will shortly unveil the group action we have

for the SK-KMS algebra; it will turn out to non-trivially involve the KMS transformation.

Intuitively one can think of the mathematical framework as a means to build covariant

structures under this group action, as we do in gauge theories. A detailed review and

exploration of equivariant cohomology and its relevance for the problem at hand is given

in our companion paper [1].

For the present purposes, let us record some basic facts and continue with the algebra at

hand. We have extended the six generator of the SK-KMS algebra to have natural actions

on superspace. One salient feature of the combinations defined in (7.14) is that they help

build covariant objects. We require the interior contraction operations to annihilate any

super-operator that transforms covariantly:

I̊KMS
0 O̊ = I̊KMS O̊ = I̊KMS

O̊ = 0 . (7.15)

While it appears that we could a-priori have made other choices compatible with the

basic ghost number assignments, this choices enables direct contact with the language of

equivariant cohomology.

Let us recast the SK-KMS algebra in terms of the super-operations I̊KMS
0 , I̊KMS, I̊KMS

,

L̊KMS. We already know that the BRST charges act as super-derivations QSK ' ∂θ̄ and

QSK ' ∂θ. It is then easy to infer their action on (7.14) and see that the structure (7.9) is

reproduced directly:

I̊KMS
0

I̊KMS −I̊KMS

L̊KMS

∂θ̄ ∂θ

∂θ −∂θ̄

(7.16)

An equivalent way to encode this multiplet structure is by the super-commutation rules:

[QSK , I]± = ∂θ̄I ,
[
QSK , I

]
±

= ∂θI ,
[
I, I′
]
±

= 0 , (7.17)

for any superoperators I, I′ ∈ {I̊KMS
0 , I̊KMS, I̊KMS

, L̊KMS}.
While (7.17) is the most compact and elegant writing of the SK-KMS superalgebra,

let us for sake of clarity expand out the relations encoded therein to write a superspace
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analog of eq. (7.12):

∂2
θ̄ = ∂2

θ = (I̊KMS)2 = (̊IKMS
)2 = 0 ,[

QSK , I̊
KMS

]
±

=
[
QSK , I̊

KMS
]
±

=
[
QSK ,QSK

]
±

=
[
I̊KMS, I̊KMS

]
±

= 0 ,[
QSK , I̊

KMS
]
±

=
[
QSK , I̊

KMS

]
±

= L̊KMS , (7.18)[
L̊KMS, I̊KMS

0

]
±

=
[
I̊KMS

, I̊KMS
0

]
±

= 0 ,[
QSK , I̊

KMS
0

]
±

= I̊KMS ,
[
QSK , I̊

KMS
0

]
±

= −I̊KMS
.

In the following we give a brief discussion of this algebra which we argue is a particular

case of well-known construction in algebraic topology.

7.4 Thermal equivariant cohomology

The SK-KMS algebra represented as abstract operators (7.12) or in terms of super-

derivations (7.18) can be understood as an extended equivariant cohomology algebra. As

explained briefly above, these constructions are relevant when there is a action of a group

on some algebraic structure, and we seek to define objects invariant under the group action.

The SK-KMS algebra was uncovered in our earlier work [9] where we argued that it has

been encountered before in the string theory literature. In particular, the six SK-KMS

operators generate a so-called NT = 2 extended equivariant cohomology algebra. The nota-

tion following [49] is meant to suggest that we have two topological (BRST) supercharges;

here they are just QSK and QSK , which are CPT conjugates of each other. We will explain

the details of equivariant cohomology in the companion paper [1]. The key point to note

is that such topological/cohomological structures naturally appear in the study of gauge

theories, where one studies objects compatible with the action of a gauge group. This is

the main idea embodied in the term ‘equivariance’.

Let us try to physically motivate this structure, in particular, the hitherto unexplained

aspect of the mysterious gauge transformations that result in this equivariance. We can get

a hint by examining the Lie derivative operator, for the action of a gauge transformation

on configurations is through a Lie drag along a group generator. Thus the Lie derivation

can be viewed as the generator of infinitesimal gauge transformations. In the present case,

the Lie derivative acts on an SK super-operator O̊ as a KMS deviation, viz.,

L̊KMSO̊ ≡
[
LKMS , O̊

]
±

= ∆
β
O̊ . (7.19)

Let us try to unpack this. We started out by looking at the KMS condition as a discrete

transformation around the thermal circle. The basic assertion was that in equilibrium

an operator and its KMS conjugate are equivalent within correlation functions. As we

have remarked in section 4.2, the operator ∆
β

and its infinitesimal avatar δ
β

are best

thought of state-dependent thermal translations along a thermal vector βa. We were there

primarily concerned with a transformation that took us once around a thermal period:

LKMS only acts to map O(t) 7→ O(t − iβ). However, if we open up the imaginary time
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direction and view the Euclidean time direction as being latticized S1
β = R/Z, then we can

extend our consideration to operators located at various lattice points. For instance we

can consider O(t − imβ) with m ∈ Z as being arbitrary KMS translates of the operator

O(t). This structure would suffice for global equilibrium on Minkowski spacetime, but more

generally when discussing thermal field theory on curved spacetime backgrounds following

the arguments in section 4, we would be led to upgrading m 7→ m(x) an integer valued

function on the background geometry.

Allowing arbitrary thermal translations has two important consequences. Firstly, this

implies that we can grade the KMS charges by another integer, which tells us how many

thermal periods we have traversed. Secondly, once we consider thermal translations by

periods that depend on the spacetime location, we have to face up to the non-trivial

fact that two successive thermal translations do not commute once we introduce inho-

mogeneities. This can be immediately inferred by noting that LKMS for instance acts

by Lie dragging the operator around the thermal circle, so two Lie drags by m(x)βµ(x)

and n(x)βµ(x) will have a non-trivial commutator. We can check that the resulting be-

haviour of the commutator of two such transformations is along the ‘thermal commutator’

(m(x), n(x))β = m(x)£β n(x)− n(x) £βm(x).

While it would be interesting to understand the full algebra of discrete thermal trans-

lations, we found it easier to make progress in the continuum limit. Let us argue for this

not just in equilibrium, but also extend considerations to near-equilibrium settings such

as those relevant for low energy hydrodynamic effective field theories. The low energy

description is valid on scale large compared to the thermal length scale, so ω T � 1 and

k T � 1. In this limit, we can effectively think of the thermal circle as being infinitesimally

small for β →∞.

Under these circumstances we may view the thermal circle as being fibered over the en-

tire spacetime manifold (the background of our quantum field theory), and consider uplift-

ing discrete thermal translations to local (i.e., spacetime dependent) continuous spacetime

thermal translations.

Picking a gauge parameter Λ(x) we consider infinitesimal gauge transformations of

the form

O̊ 7→ O̊ + Λ ∆
β
O̊ (7.20)

for an operator O̊ in the fundamental representation of the gauge symmetry. The algebra

generated by these transformations is the gauge algebra we seek. Computing successive

gauge transformations and taking a commutator, we obtain a gauge transformation along

the commutator involving a thermal Lie bracket

(Λ1,Λ2)β = Λ1∆
β
Λ2 − Λ2∆

β
Λ1 . (7.21)

More generally, we can lift this discussion to superspace and take the gauge parameter to be

an adjoint superfield itself, call it Λ̊. This leads us to postulate super-gauge transformations

as in (7.20) with superfield gauge parameter Λ̊. Note that O̊ in (7.20) was fundamental

with respect to the symmetry. For fundamental fields, we can thus define the super-gauge
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transformation with the following thermal bracket:

O̊ 7→ O̊ + (Λ̊, O̊)β ≡ O̊ + Λ̊∆
β
O̊ . (7.22)

More generally, we could have, for example, adjoint fields F̊. An example for an adjoint field

would be the gauge parameter Λ̊ itself. Its gauge transformation should be schematically as

in (7.21). That is, a super-gauge transformation of a generic adjoint superfield F̊ would read

F̊ 7→ F̊ + (Λ̊, F̊)β ≡ F̊ +
{

Λ̊∆
β
F̊− F̊∆

β
Λ̊
}
. (7.23)

For explicit examples of this, we refer the reader to the companion paper [1] (see also [22]).

The group of transformations inherits various features from diffeomorphisms along a

circle, and appears to be a particular deformation of Diff(S1). Since it originates from the

KMS condition and involves infinitesimal diffeomorphisms around the thermal circle, we

refer to this gauge group as the U(1)T KMS gauge symmetry.

We first encountered this U(1)T symmetry of gauged thermal translation in the context

of hydrodynamics. Our initial postulate for this symmetry was motivated on phenomeno-

logical grounds as the missing ingredient in the construction of effective actions for adiabatic

transport [12, 21]. In [22] it has been made more precise how to intertwine U(1)T thermal

diffeomorphisms with the supersymmetric structure of Schwinger-Keldysh theories. Earlier

analyses of Lorentz anomalies in thermal field theory, also revealed a strong hint of such a

symmetry operation [37]. While we refer to the symmetry as U(1)T since it is a deforma-

tion of a circle diffeomorphism, the resulting group has non-abelian characteristics (as is

easy enough to check by computing commutators). In fact it bears a strong resemblance

to non-commutative gauge theories obtained via deformation quantization.

In [1] we study this structure in much more detail and explain how to understand this

in the standard language of equivariant cohomology. There, we construct this gauge theory

of thermal translations in detail, starting from the above algebraic structures. A detailed

analysis then reveals that the continuum version of the discrete symmetries introduced via

KMS supertranslations can indeed be consistently described by a group action of thermal

diffeomorphisms as sketched above.

7.5 Physical origins of the supercharges

Let us pause for a moment to reflect on the algebraic structures derived so far from a

physical point of view. For a Schwinger-Keldysh path-integral with an arbitrary initial

state, we have OR − OL = 0 at the initial time. We assume w.l.o.g. that the initial state

is prepared in some fashion; either by slicing open a Euclidean path integral or simply

by giving appropriate data to pick out a desired density matrix. Further, the Schwinger-

Keldysh boundary condition enforces OR − OL = 0 at the final time. This shows that the

Schwinger-Keldysh boundary conditions do not activate the difference operator. Further,

the evolution of the system as defined by (3.4) only probes these operator in conjunction

with the average operators. The upshot of these statements is that Schwinger-Keldysh

construction has an invariance which respects the triviality (in a cohomological sense) of
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the difference operators. This we have rephrased in terms of an invariance under the

supercharges {QSK ,QSK} for an arbitrary initial state.

If we choose the Schwinger-Keldysh action and measure to be QSK-closed, then there

naturally is a nice {QSK ,QSK} -cohomological structure to the Schwinger-Keldysh correla-

tors. This is a universal cohomological structure for an arbitrary Schwinger-Keldysh path

integral, which as we motivate in section 6.1 is inherited from the field redefinition sym-

metries of the construction. The rationale for this structure, in particular the requirement

that the Schwinger-Keldysh action and measure be closed under {QSK ,QSK} ensures some

fundamental identities of time-ordered correlators.25

The primary motivation for our construction is to arrive at the vanishing of difference

correlation functions (3.20) which we view to be a remarkable and important statement. It

holds for all operators and is absolutely agnostic to actual dynamics of the theory. Physi-

cally such a statement ought to follow from some underlying invariance, which should be

a powerful one, since the statement holds for arbitrary operator insertions. More perti-

nently it is independent of the insertion points and thus of the background on which the

field theory is defined. The canonical manner in which this is achieved in known exam-

ples is the existence of a cohomological structure. We are simply observing that such an

interpretation suffices to extract all the physical consequences of the Schwinger-Keldysh

construction in arbitrary initial states. Closure of the action and invariance of the mea-

sure under {QSK ,QSK} simply serve to enforce these in a dynamics agnostic fashion. We

refer the reader to section 9 for further discussion on the measure and implications for

super-correlation functions.

It is also worth clarifying the origin of two BRST charges: the charges {QSK ,QSK}
are a BRST anti-BRST pair, which is the standard structure in any cohomological setting.

For instance in the geometric context of de Rham cohomology the supercharges may be

viewed to be simply the exterior derivative d and its adjoint d†, which are both nilpotent.

In the physical context, consider gauge theories where we can employ standard arguments

to motivate the BRST symmetry [50, 51]. While usual discussions of BRST invariance only

focus on a single topological charge, the Faddeev-Popov construction implies the existence

of a pair of supercharges, cf., [52]. The anti-BRST charge in gauge theories usually does

not lend a great deal of fundamental insight, but one may view its presence as restoring

symmetry between the ghost and anti-ghost and thus maintains CPT invariance. Basically

if we view the Nakanishi-Lautrup field as the top component in the superfield language,

there should be two directions of descent down from the physical field. In one direction we

increase the ghost number and in the other we decrease the ghost number — the operators

implementing this are the two BRST charges.

The presence of the two SK-supercharges, whilst implying the basic relations we expect

for the Schwinger-Keldysh path integral, does not suffice to constrain the theory sufficiently.

We will discuss how this might be alleviated in section 11.3 where we consider potential use

of the modular Hamiltonian. For now however, we restrict attention to the case of thermal

25As explained later in section 8 the two charges are related by CPT and thus their presence is natural

in a CPT invariant theory. We will also see an explicit implementation of CPT with these two charges in

section 9.
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(or near-thermal) density matrices ρ̂T whence we have some mileage to extract from the

KMS condition. Since the latter asserts that thermally translated operators are equivalent

to the original ones, we have a second set of vanishing correlation functions (4.17). In

section 7.1 we have seen that running the arguments of Schwinger-Keldysh field redefini-

tions once again with operators replaced by their KMS conjugates we are led to a second

set of topological BRST symmetries {QKMS ,QKMS}.
The combined structure of the four BRST charges turns out to be quite powerful in

constraining the structure of thermal Schwinger-Keldysh theory. Now, while the statements

made above are but a rephrasing of known facts of the Schwinger-Keldysh construction, we

want to argue that their presence can be put to good use in the construction of low energy

Wilsonian dynamics in the Schwinger-Keldysh formalism. Microscopically, given a presen-

tation of the Schwinger-Keldysh theory and the initial conditions, we can compute all the

relevant correlation functions without ever making much mileage of the BRST structures.

However, in trying to constrain the low energy theory without running into tension with

microscopic unitarity, we will find the underlying topological structure extremely helpful.

It is very important to realize that our interest is in understanding the physical theory;

the topological symmetries are but a helpful crutch in achieving this goal. The infra-red

effective field theories we care about are most certainly not topological. The underlying

SK-KMS topological symmetries serve to constrain terms in the low energy dynamics.

One should always be sensitive to the fact that the effective field theories might involve

dynamical degrees of freedom which are not manifestly present in the microscopic theory,

but rather are emergent in the infra-red. A-priori this makes constructing the dynamics in

mixed states complicated. As indicated in section 1 an important issue involves figuring

out how the influence functionals are constrained.

The primary thesis of our discussion thus far is that the Schwinger-Keldysh construc-

tion has enough structure to help us in fixing the influence functionals to be consistent with

requirements of microscopic unitarity. In near-thermal field theories such as hydrodynam-

ics, the topological symmetries are not only sufficient to constrain these explicitly, but we

also end up with low energy dynamics which is perfectly in synchrony with sensible phys-

ical expectations encoded in phenomenological formulations. As explained briefly in [22]

(see also [17]) one ends up deriving the phenomenological theory of dissipative hydrody-

namics which justifies the reformulation of the Schwinger-Keldysh formalism in terms of

the BRST symmetries. Our hope with the current discussion is that one may employ the

general principles outlined herein to address questions in other physical contexts. A list of

situations which would be fascinating from our perspective are discussed in section 11.

8 CPT symmetries

Let us now turn to examine the CPT properties of Schwinger-Keldysh path integrals. This

discussion is not only useful to see how the discrete symmetries operate, but as we indicate

below, they are also important in understanding the emergence of dissipation and arrow

of time in the low energy theory.
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We will first begin by lifting the usual notion of CPT from single copy field theory into

Schwinger-Keldysh and study its implications. As we will describe below, this crucially

involves CPT conjugating the initial state. We will then describe an alternate way of

implementing CPT which exploits the fact that the two contours of Schwinger-Keldysh

path integrals are time-reversed copies of each other to implement time-reversal.

Let us start with the initial state ρ̂initial and define ρ̂
CPT

initial to be the CPT conjugated

initial state. Existence of such a state is guaranteed in a local quantum field theory by the

CPT theorem. Let us illustrate this point with a simple example from low energy dynamics.

We consider a quantum field theory in d-dimensions in near-thermal equilibrium, where the

dynamics is well approximated by a hydrodynamic effective field theory. Configurations in

the latter can be thought of as fluid dynamical states characterized by a small number of

intensive variables.

Consider then the example of a fluid state in flat spacetime specified by a velocity field

uσ = (1,vi)√
1−v2

, temperature field T and chemical potential field(s) µ. Its CPT conjugate

state is given by {uσ, T, µ}CPT
with

(uσ)
CPT

(x0, x1, y) ≡ (1, v1(−x0,−x1, y),−vy(−x0,−x1, y))√
1− v2

1(−x0,−x1, y)− v2
y(−x0,−x1, y)

,

T
CPT

(x0, x1, y) ≡ T (−x0,−x1, y) ,

µ
CPT

(x0, x1, y) ≡ −µ(−x0,−x1, y) .

(8.1)

Here {x1, y} are spatial Cartesian coordinates and x0 denotes the time coordinate. Thus,

we reverse all of the chemical potentials, all but one velocities along with a reversal of

the flow in time and a reflection about one spatial direction. Note that both parity and

time-reversal flip the overall sign of the velocity v1, thus CPT does not flip its overall sign.

In addition, time-reversal flips the overall sign of the velocities vy and charge conjugation

flips the overall sign of the chemical potentials thus leading to the signs above.

Sometimes, it is more convenient to add in a rotation which also flips all the y directions

(in even spacetime dimensions) or one that flips all the y directions as well as the x1

direction (in odd spacetime dimensions). We get

(uσ)
CPT

(x0, x1, y) ≡ (1, (−)dv1(−x0, (−)d−1x1,−y), vy(−x0, (−)d−1x1,−y))√
1− v2

1(−x0, (−)d−1x1,−y)− v2
y(−x0, (−)d−1x1,−y)

,

T
CPT

(x0, x1, y) ≡ T (−x0, (−)d−1x1,−y) ,

µ
CPT

(x0, x1, y) ≡ −µ(−x0, (−)d−1x1,−y) .

(8.2)

In d = 4, for example, this is the commonly used definition of CPT.

Whichever definition one may prefer, the basic principles of QFT ensure that the above

state is an admissible initial state in the underlying quantum field theory. However, we

note a well-known subtlety: the macroscopic fluid equations do not seem to have any such

symmetry. This in turn means that while there is nothing problematic about perform-

ing the above transformation for the initial state, one is not allowed to perform such a
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transformation on a whole fluid solution over a period of time. This can also be seen by

the fact that the above transformations naively turn a dissipative configuration into an

anti-dissipative configuration (and hence an admissible solution seems to be taken to an

inadmissible solution). This is a well-known feature of dissipation crucial to the conceptual

foundations of statistical mechanics: dissipative systems should be thought of as systems

where microscopic CPT is spontaneously broken. This spontaneous breaking leads to var-

ious interesting consequences, including fluctuation relations [53]. With this subtlety in

mind, we will assume for now that we can always CPT conjugate any given initial state.

As we will see later, there is an alternate and a more convenient notion of CPT present in

Schwinger-Keldysh formalism which sidesteps this subtlety.

In order to work out the CPT conjugate of the Schwinger-Keldysh path integral defined

in (3.4), viz.,

ZSK[JR,JL] ≡ Tr
(
U [JR] ρ̂initial (U [JL])†

)
, (8.3)

we will also need to CPT conjugate the left and the right sources {JR,JL}. This can be

done by defining26

J CPT

R (x0, x1, y) ≡ σCPT

JR
J ∗R (−x0,−x1, y),

J CPT

L (x0, x1, y) ≡ σCPT

JL
J ∗L (−x0,−x1, y).

(8.4)

where σ
CPT

JR
and σ

CPT

JL
are the appropriate intrinsic CPT parity operators and ∗ denotes the

appropriate conjugation. In addition, for the CPT transformation to be anti-linear we also

take i→ (−i) after conjugation.

If we denote by ρ̂
CPT

initial the CPT conjugate state to the initial state, we then obtain the

CPT conjugate SK path integral as

(ZSK[JR,JL])
CPT

≡ Tr
(
U [J CPT

R ] ρ̂
CPT

initial (U [J CPT

L ])†
)
, (8.5)

where we have left the anti-linear transformation implicit. The CPT-invariance of the

underlying microscopic theory is the assertion that

ZSK[JR,JL] = (ZSK[JR,JL])
CPT

. (8.6)

If ρ̂initial is thermal and without chemical potentials or charges, we can then write ρ̂
CPT

initial =ρ∗

and impose the above equation as a symmetry of Schwinger-Keldysh path integral. This is

then the direct Schwinger-Keldysh counterpart of CPT in the usual path integrals which is

however difficult to implement in an effective field theory because of the CPT conjugation

on the initial state.

In Schwinger-Keldysh path-integrals, there is however an alternate way to implement

CPT by exploiting the fact that the two contours of Schwinger-Keldysh path integrals are

time-reversed copies of each other. So, one could intertwine usual CPT with an exchange of

contours in order to get a new CPT transformation. We remind the reader that, in general,

26For a clear discussion of time reversal in Schwinger-Keldysh formalism, we refer the reader to [42]. We

discuss the connection to our implementation at the end of this section.
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when a theory has some global and gauge symmetries, CPT can be defined as any one of the

various anti-unitary symmetries of the path integral. Different choices of CPT then merely

differ by global and gauge symmetries of the theory and are all equally valid. Thus, our

aim would be to find the simplest anti-unitary symmetry of the Schwinger-Keldysh path

integral. To this end consider the complex conjugate of Schwinger-Keldysh path integral:

ZSK[JR,JL]∗ = Tr
(
U [JR] ρ̂initial (U [JL])†

)∗
= Tr

(
U [J ∗L ] ρ̂†initial U

†[J ∗R ]
)

= Tr
(
U [J ∗L ] ρ̂initial U

†[J ∗R ]
)
,

= ZSK[J ∗L ,J ∗R ] .

(8.7)

Thus, the Schwinger-Keldysh path integral obeys the following reality condition: it

is equal to its complex conjugate with right and left sources exchanged. Since complex

conjugation is explicitly an anti-unitary transformation, we then have a simple candidate

for implementing CPT conjugation. This also allows us to sidestep the issue of CPT-

conjugating the initial state. Note that, in the version of Schwinger-Keldysh that occurs

in the context of cutting rules a la Veltman [26]; this is exactly the CPT action on the

S-matrix which exchanges ingoing and outgoing states.

We will now turn to how this CPT conjugation is implemented at the level of Schwinger-

Keldysh superspace. Note that under the exchange of right and left theory, the average

operators map to themselves whereas the difference operators map to minus of themselves:

(Oav)
CPT

= Oav , (Odif)
CPT

= −Odif . (8.8)

This implies that for the superfield to be covariant under CPT, we should have

(θ̄θ)
CPT

= −θ̄θ. If we also demand that CPT exchanges the ghosts and the anti-ghosts,

(OG)
CPT

= O
G
, (O

G
)

CPT
= OG , (8.9)

this implies

θ̄
CPT

= θ , θ
CPT

= θ̄ , (8.10)

i.e., CPT is implemented as an R parity on the superspace. From here on, we will use this

definition of CPT and insist that the Schwinger-Keldysh path integrals be invariant under

an anti-linear symmetry which exchanges right and left fields and exchanges θ̄ and θ. We

will exemplify this explicitly in the next section where we give a superspace version of the

Keldysh rules.

Finally, let us see how our implementation relates to standard discussion of the discrete

symmetries in the Schwinger-Keldysh formalism. As mentioned in footnote 26 a good

discussion can be found in [42] section V.B. In particular, in eq. (41) of [42], the authors

define the time reversal operation (called T′ there) which reverses the time argument, and

acts anti-linearly, whilst keeping the contour ordering intact. However, they also introduce

a linear operation T defined in eq. (40) of [42], which exchanges the left and right contours,
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with T′ above. To be specific:

Linear T :

(
OR(t)

OL(t)

)
7→
(

O∗L(−t)
O∗R(−t)

)
Anti-linear T′ :

(
OR(t)

OL(t)

)
7→

(
OR(−t)
OL(−t)

)

Anti-linear TT′ :

(
OR(t)

OL(t)

)
7→

(
O∗L(t)

O∗R(t)

) (8.11)

In our implementation of CPT, we invoke the anti-linear operation TT′ as corresponding

to the time-reversal.

9 Superspace Keldysh rules

Given the elegance of the Schwinger-Keldysh superspace formalism, it is desirable to under-

stand better how the time ordering prescription of Schwinger-Keldysh contours is compat-

ible with it. Ideally we would like to derive from the superfields the Keldysh bracket rules

that give us an algorithm to convert the Schwinger-Keldysh two-sided correlation func-

tions into the single-copy correlation functions. Along the way we should also determine

all correlation functions involving the ghost fields we introduced to complete the Schwinger-

Keldysh multiplet. All told we expect there should be a natural superspace prescription

for determining all ghost correlators in terms of the physical single-copy correlators (nested

commutators and anti-commutators). We now describe in some detail how this works.

9.1 Correlation functions in Schwinger-Keldysh superspace

Let us study a superspace n-point function with a super-SK time ordering T̊SK which we

need to determine. We use the following notation for such super-correlators:

〈T̊SK Å1 Å2 · · · Ån〉 = 〈T̊SK

n∏
k=1

(
Akav + θk Ak

G
+ θ̄k Ak

G
+ θ̄k θk Akdif

)
〉 . (9.1)

We can expand the left hand side in the Grassmann odd coordinates, such that each com-

ponent will then involve various combination of the physical fields and the ghost partners.

To keep the equations readable we will make some notational simplifications by writing:

ai ≡ Aiav , ḡi ≡ Ai
G
, gi ≡ Ai

G
, di ≡ Aidif (9.2)

The above correlation functions should satisfy some basic requirements. For instance,

the fact that the Schwinger-Keldysh path integral is invariant under QSK and QSK implies

that the correlation functions have supertranslational invariance in the Grassmann-odd

directions. Recall here that the BRST operators act as derivations ∂θ and ∂θ̄ in superspace.

However, this statement will only give non-trivial answers for observables once we determine

an appropriate measure for the path integral.
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As is well known in topological field theories, the integration over the Grassmann-odd

directions often involves zero modes for the ghost fields. If we do not soak up these ghost

zero modes we will end up with a trivial correlation function. Before getting into the

details, let us motivate a concern: the naive superspace correlation function (9.1) will end

up being trivial unless we determine the correct measure. This in particular entails that

we ascertain the correct set of admissible boundary conditions.

Firstly, let us note that the rationale for introducing the Schwinger-Keldysh super-

charges QSK and QSK was to ensure that difference operators Odif are BRST exact. This

guarantees that the correlation functions of only difference operators vanish as noted ear-

lier. The correlation functions should also ensure another important fact visible in the

Schwinger-Keldysh construction, the largest time equation (3.32), viz., that difference op-

erators cannot be future-most, see section 3.5.

While these statements in terms of difference operators are manifest for the purposes of

the Schwinger-Keldysh path integral, in superspace we need to decide whether the future-

most state is annihilated by QSK or by QSK . Demanding supertranslational invariance with

respect to both of these charges is tantamount to requiring that the future-most state is an-

nihilated by both. We remind the reader that the Schwinger-Keldysh construction projects

the left-right evolution onto the maximally entangled state at the future-most point.

These are the only requirements that we need to impose on any superspace rules. We

must not demand any specific action on the initial state, since we are free to pick any

initial density matrix ρ̂initial, which may have a-priori exhibit any pattern of entanglement

between the left and right fields. In particular, we should not be asking for the difference

operators to have any particular action on the initial state generically.

It turns out that one is unable to give a consistent prescription that determines all

the superspace correlation functions subject to the requirements detailed above, without

soaking up some ghost zero modes. In other words we have to decide how to treat the ghosts

vis a vis the initial and final states. Demanding that the final maximally entangled state

be annihilated by both the ghost and the anti-ghost will turn out to be too constraining,

unless we source background ghost zero modes from the initial state. We will demonstrate

this explicitly below without derivation.

For now based on the above discussion let us postulate that the superspace correlation

function should allow for the insertion of at least one ghost zero mode.27 Let Å0 be a

reference background superfield of zero modes which we take to be of the form:

Å0 = 1 + θ0 ḡ0 + θ̄0 g0 + θ̄0θ0 d0 . (9.3)

We now proceed to demonstrate that the supercorrelation functions are given by demanding

θ̄ and θ translational invariance of the defining object:

Tr
(
ρ̂initial Å1 Å2 · · · Ån

)
≡ 〈T̊SK Å1 Å2 · · · ÅnÅ0〉 . (9.4)

The superspace expansion of such a correlator will lead to various terms involving the

Grassmann coordinates θ̄i and θj . Imposing supertranslation invariance will then lead to

27An inspiration for this proposal is the manner in which world-sheet vertex operators in string pertur-

bation theory require ghost zero mode dressing.

– 59 –



J
H
E
P
0
6
(
2
0
1
7
)
0
6
9

relations between these components of the correlator. It is clear is that any such relation

can only involve terms with the same number of θ̄iθj pairs. Another physical consequence

of supertranslation invariance is that only correlation functions of operators with total

ghost number charge zero can be non-vanishing. This gives a nice superselection rule for

our correlators. In particular, note that a non-vanishing correlator not only should be

balanced in the occurrence of ghost, anti-ghost fields, but should also respect the rule

that a pair of ghost-anti-ghost fields can be traded for an average-difference pair of fields

(essentially by QSK or QSK actions).

These observations imply that any relation we obtain between components in the

superspace expansion of (9.4) will be at a given number of θ̄iθj pairs. As a result we

will break up any given supercorrelation function into levels based on the number of these

pairs. We refer to the superspace expansion of the n-point correlation function that has

nd pairs of θ̄iθj as the level nd correlator of n fields. We further denote the set of n-

point functions at level nd as nLnd . It is clear that a correlator of type nLnd contains at

most nd difference fields; in fact the ghost-free correlator in this family has precisely nd
difference and na ≡ n − nd average fields. As noted above a pair of ghosts, giḡj , can be

counted equivalently as an average-difference pair, diaj , justifying our classification. We

now demonstrate how this works in practice with some low point correlation functions

explicitly, before giving the general result.

9.2 Two-point functions

A generic superfield two-point function reads

Tr
(
ρ̂initialÅ1Å2

)
≡ 〈T̊SKÅ1Å2Å0〉 ,

= 〈T̊SK

(
a1 + θ1ḡ1 + θ̄1g1 + θ̄1θ1d1

) (
a2 + θ2ḡ2 + θ̄2g2 + θ̄2θ2d2

)
×
(
1 + θ0ḡ0 + θ̄0g0 + θ̄0θ0d0

)
〉 .

(9.5)

By superspace translation invariance, it is immediately clear that all correlators with non-

zero net ghost number have to vanish. We can thus proceed to expand out the r.h.s. and

collect the non-trivial terms of vanishing ghost number at various levels:

2L0 : 〈T̊SK a1 a2〉
2L1 : − 〈T̊SK θ̄1 θ2 g1 ḡ2〉 − 〈T̊SK θ̄2 θ1 g2 ḡ1〉 − 〈T̊SK θ̄1 θ0 g1 ḡ0〉 − 〈T̊SK θ̄2 θ0 g2 ḡ0〉

− 〈T̊SK θ̄0 θ1 ḡ1 g0〉 − 〈T̊SK θ̄0 θ2 ḡ2 g0〉+ 〈T̊SK θ̄0 θ0 a1 a2 d0〉

+ 〈T̊SK θ̄1 θ1 a2 d1〉+ 〈T̊SK θ̄2 θ2 a1 d2〉
2L2 : − 〈T̊SK θ̄1θ̄2 θ0 θ1 g2 ḡ0 d1〉+ 〈T̊SK θ̄1θ̄2 θ0 θ2 g1 ḡ0 d2〉

− 〈T̊SK θ̄0θ̄1 θ1 θ2 g0 ḡ2 d1〉+ 〈T̊SK θ̄0θ̄2 θ1 θ2 g0 ḡ1 d2〉

− 〈T̊SK θ̄0θ̄1 θ0 θ1 d0 d1〉 − 〈T̊SK θ̄0θ̄2 θ0 θ2 d0 d2〉

+ 〈T̊SK θ̄0θ̄1 θ0 θ2 d0 g1 ḡ2〉+ 〈T̊SK θ̄0θ̄2 θ0 θ1 d0 ḡ1 g2〉

− 〈T̊SK θ̄1θ̄2 θ1 θ2 d1 d2〉

(9.6)
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We now can analyze each level in turn and learn what the consequences of requiring

supertranslational invariance is.

• 2L0: at level 0, there are no θ̄s or θs, so we do not obtain any constraints from

supertranslation invariance. This is as it should be as the correlation function of

all average operators is a symmetrized function. We therefore can write the general

expression for a two point function of superspace average opeators (with i1, i2 ∈ {1, 2}
and i1 6= i2)

〈T̊SK ai1 ai2〉 = 〈TSK ai1 ai2〉 = 〈
{

Âi1 , Âi2
}
±
〉 . (9.7)

• 2L1: things are lot more interesting at level 1. Here we have to impose invariance with

respect to shifts of θ̄s and θs respectively. This way we find six relations, which can

be written succintly as two relations up to index permutations and ghost, anti-ghost

exchange:

〈TSK gi2 ḡ0 ai1〉+ 〈TSK gi2 ḡi1〉 − 〈TSK ai1 di2〉 = 0 ,

〈TSK g0 ḡi2 ai1〉+ 〈TSK gi1 ḡi2〉 − 〈TSK ai1 di2〉 = 0 ,

〈TSK gi1 ḡ0 ai2〉+ 〈TSK gi2 ḡ0 ai1〉 − 〈TSK d0 ai1 ai2〉 = 0 ,

〈TSK g0 ḡi1 ai2〉+ 〈TSK g0 ḡi2 ai1〉 − 〈TSK d0 ai1 ai2〉 = 0 .

(9.8)

The equations as written are pairwise CPT conjugate of each other; CPT exchanges a

ghost for an anti-ghost. Explicitly writing these out with choices of i1, i2 ∈ {1, 2} the

two equations gives four relations, while the second pair gives rise to two relations.

We can solve this system of equations to determine the ghost anti-ghost correlation

functions in terms of the physical average-difference correlators. However, it turns

out that the solution is not unique: there exists a one-parameter ambiguity, which

we will parameterize by an arbitrary constant α(2,1)

1 . The superscript refers to the

level and the subscript indexes the ambiguity.

This example illustrates the need for the ghost zero mode insertion into the corre-

lation function. If we set Å0 7→ 1, then we would be led to a contradiction. The

ghost anti-ghost correlations 〈TSK gi2 ḡi1〉 from the first equation together with its

CPT conjugate would demand that we set 〈TSK ai1 di2〉 = 〈TSK ai2 di1〉. We how-

ever know that the difference operator cannot be future-most; each of the above is

non-vanishing for a complementary temporal ordering. We would then be forced to

conclude that we need to set both of these correlators to zero. This however is un-

physical and suggests that we have not accounted for the ghost charges of the initial

state correctly.
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We then learn that the set of correlators are determined to be

〈TSK gi1 ḡi2〉 = α(2,1)

1 (−〈TSK ai1 di2〉+ 〈TSK di1 ai2〉)

= −α(2,1)

1 〈
[
Âi1 , Âi2

]
±
〉 ,

〈TSK gi1 ḡ0 ai2〉 = 〈TSK ai2 di1〉+ α(2,1)

1 (〈TSK ai1 di2〉 − 〈TSK ai2 di1〉)

= ΘAi2Ai1
〈
[
Âi2 , Âi1

]
±
〉+ α(2,1)

1 〈
[
Âi1 , Âi2

]
±
〉 ,

〈TSK ḡi1 g0 ai2〉 = −〈TSK ai2 di1〉+ α(2,1)

1 (〈TSK ai1 di2〉 − 〈TSK ai2 di1〉)

= −ΘAi2Ai1
〈
[
Âi2 , Âi1

]
±
〉+ α(2,1)

1 〈
[
Âi1 , Âi2

]
±
〉 ,

〈TSK d0 ai1 ai2〉 = 〈TSK ai1 di2〉+ 〈TSK ai2 di1〉

=
(

ΘAi1Ai2
−ΘAi2Ai1

)
〈
[
Âi1 , Âi2

]
±
〉 .

(9.9)

Note that for the canonical choice α(2,1)

1 = 0, the solution is very simple. The

Schwinger-Keldysh partner ghost anti-ghost correlator vanishes, and we are only left

with correlators involving the background ghosts.

• 2L2: for two-point functions level two is the highest achievable level, despite the

background ghost superfield Å0 insertion. It is a simple matter to learn that super-

translational invariance demands the expected answer:

〈TSK di1 di2〉 = 〈TSK gi1 ḡ0 di2〉 = 〈TSK ḡi1 g0 di2〉 = 0 . (9.10)

Having explicitly solved the two-point function relations from supertranslation invari-

ance by hand, let us now give a more general perspective for generating the solutions. We

have seen that levels 0 and 2 are trivial, so they do not give much information. However,

we can package the solution for level 1 in a very compact fashion by writing down the most

general supertranslational invariant ansatz. Since we want to express the final result in

terms of the average-difference correlators which are correctly time-ordered, consider then

the ansatz:

2Φ1 =

2∑
i,j=1

[
θ̄0jθ0j +

1

2
α(2,1)

1

(
θ̄0iθ0j + θ̄0jθ0i

)]
Θij 〈ai dj〉 . (9.11)

Here, we use the supertranslation invariant combinations

θ̄ij ≡ θ̄i − θ̄j , θij ≡ θi − θj . (9.12)

It is a simple matter to check that expanding out 2Φ1 and matching it with the supercorre-

lator (9.5) yields precisely the solutions to the various ghost correlators which we enlisted

above. The secret reason for this is that we constructed the solution (9.11) as the most

general linear combination of 〈ai dj〉 correlators, which satisfies the following necessary

conditions:

1. Supertranslation invariance: Grassmann coordinates can only occur in the translation

invariant combinations (9.12).
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2. A-priori there are n + 1 allowed combinations θ̄ij , but only n of them are linearly

independent (similarly for θij). Without loss of generality, we can hence assume that

ghost zero-modes are part of each translation invariant combination, i.e., the only

allowed Grassmann-odd factors are θ̄0i and θ0j .

3. Net ghost number should be zero: that is, Grassmann coordinates can only occur in

the product form θ̄0iθ0j .

4. CPT invariance: this requires that to any combination θ̄0i1θ0j1 · · · θ̄0irθ0jr , we need

to add its CPT conjugate θ̄0j1θ0i1 · · · θ̄0jrθ0ir . For instance, this explains the form of

the bracketed ambiguity term in (9.11).

With these rules one can check that the ansatz (9.11) exhausts all possibilities. The

crucial thing to keep in mind for the future analysis is that we will isolate the contributions

of the form θ̄0j θ0j and deem the correlator to be primarily determined by this combina-

tion. The remaining combinations like the coefficient of the α(2,1)

1 will be referred to as

ambiguities.

We will henceforth use the notation nΦnd to denote an expression analogous to (9.11)

that encodes the solutions and ambiguities in the ghost correlators for an n-point function

at level nd. To complete the two-point function discussion, we note that

2Φ0 = 〈TSK ai1 ai2〉 , 2Φ2 = 0 , (9.13)

encode the obvious solutions at lowest and highest level, as described above.

9.3 Three-point functions

There are many relations at the three point function level which have to be unpacked.

• 3L0: as in the two-point function case this is simple. We get a correlation function of

three average operators, 〈T̊SK ai1 ai2 ai3〉 which is unconstrained and fully symmetric,

and was determined in (3.30). Equivalently we can simply write:

3Φ0 = 〈TSK ai1 ai2 ai3〉 . (9.14)

• 3L1: it is useful to perform a count of the possible operators. We have 3 correlators

which are of the form 〈TSK ai1 ai2 di3〉. There are likewise 6 correlators with a single ḡ0

or g0, viz., 〈TSK gi1 ḡ0 ai2 ai3〉 and their CPT conjugates 〈TSK ḡi1 g0 ai2 ai3〉. However,

now there are many more ghost anti-ghost correlation functions. With the choice

of two positions to fill with a ghost or an anti-ghost, we find 6 correlators of the

form 〈TSK gi1 ḡi2 ai3〉 and 1 correlator 〈TSK d0 ai1 ai2 ai3〉. This yields a total of 16

correlators, only the first 3 of which are physical (viz., do not contain any ghosts).

There are however 4 θ̄ and 4 θ translations at our disposal, so we only obtain 8 rela-

tions. These 8 relations allow us to determine the 13 correlators involving ghosts in
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terms of the average-difference correlators. The relations we find from supertransla-

tion invariance modulo index permutations and CPT conjugation are:

〈TSK gi3 ḡi1 ai2〉+ 〈TSK gi3 ḡi2 ai1〉+ 〈TSK gi3 ḡ0 ai1 ai2〉 − 〈TSK di3 ai1 ai2〉 = 0 ,

〈TSK gi1 ḡi3 ai2〉+ 〈TSK gi2 ḡi3 ai1〉+ 〈TSK g0 ḡi3 ai1 ai2〉 − 〈TSK di3 ai1 ai2〉 = 0 ,

〈TSK g0 ḡi1 ai2 ai3〉+ 〈TSK g0 ḡi2 ai1 ai3〉+ 〈TSK g0 ḡi3 ai1 ai2〉 − 〈TSK d0 ai1 ai2 ai3〉 = 0 ,

〈TSK gi1 ḡ0 ai2 ai3〉+ 〈TSK gi2 ḡ0 ai1 ai3〉+ 〈TSK gi3 ḡ0 ai1 ai2〉 − 〈TSK d0 ai1 ai2 ai3〉 = 0 .

(9.15)

These relations can again be solved for the ghost correlators in terms of the average-

difference ones. The general solution in this case is parameterized by 6 ambiguities

α(3,1)

k with k = 1, . . . , 6.

Instead of writing all these solutions explicitly, we use the more abstract construction

from the end of the previous subsection. The principles enumerated there lead us to

construct the following ansatz which encodes all three-point functions at level 1:

3Φ1 =
3∑

i1,i2,j1=1

{[
θ̄0j1θ0j1 + α(3,1)

1

(
θ̄0j1θ0i1 + θ̄0i1θ0j1

)
+ α(3,1)

2

(
θ̄0j1θ0i2 + θ̄0i2θ0j1

)
+ α(3,1)

3

(
θ̄0i1θ0i2 + θ̄0i2θ0i1

) ]
Θi1j1i2

+
[
θ̄0j1θ0j1 + α(3,1)

4

(
θ̄0j1θ0i1 + θ̄0i1θ0j1

)
+ α(3,1)

5

(
θ̄0j1θ0i2 + θ̄0i2θ0j1

)
+ α(3,1)

6

(
θ̄0i1θ0i2 + θ̄0i2θ0i1

) ]
Θi1i2j1

}
〈ai1 ai2 dj1〉 . (9.16)

This expression deserves some explanation. First, note that there are two possible

time orderings, corresponding to the allowed positions of the difference operator dj1
subject to the requirement that it cannot be the future-most insertion. For each

such time ordering there exists one basic solution which as advertised earlier we

take to be given by the combination of θ̄0jθ0j ; its normalization is fixed to unity by

matching with eq. (9.1)). In addition we have a 3-parameter family of ghost correlator

ambiguities for each time ordering which have been parameterized by the arbitrary

coefficients {α(3,1)

k }k=1,2,3 and {α(3,1)

k }k=4,5,6, respectively.

By matching the superspace expansions of the generic three-point correlator, eq. (9.1)

with n = 3, with 3Φ1, all ghost correlators are determined. For sake of completeness,

we list them in appendix A, including all ambiguities. Here, for brevity we only note

the basic solution for the canonical case where all ambiguities α(3,1)

k are set to zero:

〈TSK gi1 ḡi2 ai3〉 = 0 ,

〈TSK gj ḡ0 ai1 ai2〉 = 〈TSK g0 ḡj ai1 ai2〉 = 〈TSK dj ai1 ai2〉 ,
〈TSK d0 ai1 ai2 ai3〉 = 〈TSK di1 ai2 ai3〉+ 〈TSK ai1 di2 ai3〉+ 〈TSK ai1 ai2 di3〉 ,

(9.17)

where explicit expressions for average-difference correlators on the right hand sides

can be found in section 3.4.
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• 3L2: the situation here is similar to the level 2 result of the two-point functions,

despite an increase in number of potential terms. Now there are 3 correlation func-

tions of the form 〈TSK ai1 di2 di3〉. There are however 6 correlators of the type

〈TSK gi1 ḡi2 di3〉. Finally, with background field insertions we have 6 of the form

〈TSK gi1 ḡ0 ai2di3〉, another 6 of the form 〈TSK g0 ḡi1 ai2di3〉, and similarly 3 of the

form 〈TSK gi1 gi2 ḡ0 ḡi3〉 and 3 as 〈TSK ḡi1 ḡi2 g0 gi3〉. Finally, there are 6 correlators

with two background ghosts, namely 3 of the form 〈TSK d0 ai1 ai2 di3〉 and 3 of type

〈TSK d0 gi1 ḡi2 ai3〉. This yields a total of 27 three-point functions of level 2.

We find 54 relations among them, not all of which are independent; these can be solved

to determine the ghost correlations as before. We find that there exists again a unique

fundamental solution along with a 2-parameter family of ambiguities {α(3,2)

k }k=1,2.

Doing this exercise brute force obviously becomes increasingly tedious. However,

there is still a very compact way of communicating the full solution, including the two

ambiguities, by writing the solution superspace expression as we did before. It should

now involve only one time ordering, since two out of three operator insertions will be

difference operators, which can never be future-most. Indeed, we find the following

expression by following the principles outlined at the end of the previous subsection:

3Φ2 =

3∑
i1,j1,j2=1

{
θ̄0j1θ0j1 θ̄0j2θ0j2 + α(3,2)

1

(
θ̄0j1θ0j1 θ̄0j2θ0i1 + θ̄0j1θ0j1 θ̄0i1θ0j2

)
+ α(3,2)

2

(
θ̄0j2θ0j2 θ̄0j1θ0i1 + θ̄0j2θ0j2 θ̄0i1θ0j1

)}
Θi1j1j2 〈TSK ai1 dj1 dj2〉 .

(9.18)

Again, this compact expression encodes the full solution of ghost correlators with

ambiguities. For sake of completeness we present all of them in appendix A, and list

here simply the solution where ambiguities are chosen to vanish:

〈TSK dj1 ḡj2gj3〉 = 〈TSK ḡ0gj1gj2 ḡj3〉 = 〈TSK g0ḡj1 ḡj2gj3〉 = 0 ,

〈TSK g0dj1 ḡj2ai〉 = 〈TSK dj1gj2aiḡ0〉 = 〈TSK d0gj1 ḡj2ai〉 = 〈TSK dj1dj2ai〉 ,
〈TSK d0djai1ai2〉 = 〈TSK djdi1ai2〉+ 〈TSK djai1di2〉 .

(9.19)

• 3L3: this is the highest level for three-point functions and the only consistent solution

for the correlators at this level is:

0 = 〈TSK dj1 dj2 dj3〉 = 〈TSK gj1 ḡ0 dj2 dj3〉 = 〈TSK ḡj1 g0 dj2 dj3〉
= 〈TSK d0 aj1dj2 dj3〉 = 〈TSK d0 gj1 ḡj2 dj3〉 .

(9.20)

In terms of the superfield solution ansatz, this can be stated as 3Φ3 = 0.

9.4 n-point functions

The complexity grows rapidly owing to increased set of permutations. Before ascertaining

the number of ambiguities in the solution nΦnd , let us write the general expression for the

basic solution whose normalization is fixed:

nΦnd =
n∑

i1,...,ina=1
j1,...,jnd=1

(
nd∏
k=1

θ̄0jkθ0jk

)(
Θi1...inaj1...jnd

+perms.
)
〈TSKai1 · · · ainadj1 · · · djnd 〉, (9.21)
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where na ≡ n − nd. The indicated permutations refer to all permutations of labels which

are such that

• no j-index is ever future-most and

• we do not consider permutations of i-type (or j-type) indices among each other, i.e.,

we preserve the order of i-type indices and the order of j-type indices.

This constitutes the minimal solution to all the constraints on n-point functions at level nd.

Its normalization is fixed by matching with (9.1). In principle this solution suffices for our

purposes. According to the principles we have identified so far, all further ambiguities can

be chosen freely, and hence we can always make the minimal choice of setting them to zero.

For sake of full generality, however, let us now turn to a counting of ambiguity terms

that one is allowed to add to this basic solution. We denote the number of ambiguities in
nΦnd as

A[n, nd] ≡ number of ambiguities in fixing ghost correlators of type nLnd .

Two trivial observations are that in general we have

nΦ0 = 〈TSK a1 · · · an〉 and nΦn = 0 , (9.22)

and therefore A[n, 0] = A[n, n] = 0.

For values 0 < nd < n, the counting of solutions is less trivial. Let us start by

counting the number of different allowed time orderings occurring in nΦnd . We split this

into two stages. In the first instance note that there are
(
n−1
nd

)
choices for inserting the

difference operators, as no difference operator can be inserted in the future-most position.

This exhausts all potential temporal permutations; we conclude that there are
(
n−1
nd

)
time

orderings in nΦnd (up to permutations of labels).

We now turn to the counting of ambiguities for any given time ordering. Note that

each ambiguity is characterized by a CPT invariant combination

θ̄0x1θ0y1 · · · θ̄0xnd
θ0ynd

+ θ̄0y1θ0x1 · · · θ̄0ynd
θ0xnd

(9.23)

for some allowed choice of xi, yi ∈ {i1, . . . , ina , j1, . . . , jnd}. We obviously need xi 6= xj
and yi 6= yj for any i 6= j, since the term would be zero otherwise. For simplicity, let us

for the moment ignore the fact that difference operator insertions cannot be future-most.

Most other constraints are then already manifestly upheld by the way we formulated the

counting problem. The only thing remaining, which we need to be careful about, is the

fact that we should not choose the entire set of {x1, . . . , xnd} to be the same as the set

of {y1, . . . , ynd}. This unique special choice would correspond to the basic solution (9.21)

which we should not count as an ambiguity. Other than that the choices of xi and yi are

unconstrained, and hence there are

F (n, nd) ≡
1

2

(
n

nd

)[(
n

nd

)
− 1

]
=

(( n
nd

)
2

)
(9.24)
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nd 0 1 2 3 4 5 6

A[1, nd] 0 0

A[2, nd] 0 1 0

A[3, nd] 0 6 2 0

A[4, nd] 0 18 36 3 0

A[5, nd] 0 40 234 120 4 0

A[6, nd] 0 75 950 1450 300 5 0

Table 2. The number of ambiguities in the consistent solution of ghost correlators in 1- to 6-point

functions. The level nd refers to the number of difference operator insertions (any ghost-anti-ghost

insertion counts as an average-difference pair for this purpose).

choices for the two unequal lists of indices {x1, . . . , xnd} and {y1, . . . , ynd}.28 The factor
1
2 in the above expression comes from the fact that we double count everything due to

the CPT symmetrization in (9.22), i.e., for every choice of indices there is an inequivalent

choice which actually leads to the same superspace expression after CPT symmetrization.

In the above counting, we disregarded the fact that difference operators can never be

inserted at the future-most time. A difference operator dj will be present if the superspace

expression (9.22) contains the pair θ̄0jθ0j . Making sure that such a term never carries the

i-type index of the futuremost average operator (call it if ) is tantamount to requiring that

this particular index if cannot appear in both lists {x1, . . . , xnd} and {y1, . . . , ynd} at the

same time. In the counting of the previous paragraph, we did count such configurations,

so for a correct result we should subtract them now. Fortunately, these configurations are

easy to count: they can be described as those terms where the first pair θ̄0x1θ0y1 = θ̄0if θ0if

and all the remaining indices {x2, . . . , xnd , y2, . . . , ynd} are chosen freely as described above.

The number of such terms can then be counted the same way and is given by F (n, nd− 1).

We conclude that the number of ambiguities in the general solution nΦnd is given by

the difference F (n, nd)− F (n, nd − 1) multiplied by the number of distinct time orderings

as counted above:

A[n, nd] =

(
n−1

nd

)(
F (n, nd)− F (n, nd − 1)

)
=

(
n−1

nd

)[(( n
nd

)
2

)
−
(( n

nd−1

)
2

)]
. (9.25)

Up to six-point functions, the numbers of ambiguities A[n, nd] are explicilty enumerated

in table 2.

This then concludes the explicit enumeration of the ambiguities at level nd for n point

functions. The total ambiguity is rather large, so it quickly becomes formidable to param-

eterize them. We have explicitly checked the results up to four point functions for all level

and some of the non-trivial levels of the five point function, confirming the data presented

in table 2.

28The right hand side of eq. (9.24) denotes a double Binomial coefficient. It should be read as: “There

are
(
n
nd

)
distinct lists of nd indices. Out of the set of all such lists, we choose two: one for {x1, . . . , xnd}

and one for {y1, . . . , ynd}”.
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It is actually an interesting exercise to try to match these ambiguities to superspace

analysis of effective actions directly; we will comment upon these briefly in section 11.5,

but will leave a detailed analysis for future investigation.

10 Timefolds and out-of-time-order observables

We now turn to an interesting extension of the Schwinger-Keldysh formalism to more com-

plicated contours. For the most part we will focus on the generalities of this construction

and draw out an observation of larger BRST algebras that are present in these construc-

tions. The physical motivation for the extension as we first explain arises from out-of-time

order observables that have been considered in recent discussions of scrambling and chaos.

Our preliminary analysis is aimed at highlighting the general principles which promises to

open up new insights into non-equilibrium quantum dynamics.

10.1 k-OTO contours: physical motivation

A very interesting class of observables that has recently come to prominence are the so-

called out-of-time-order correlation functions in a QFT. The interest in this set of ob-

servables arose from holographic considerations of trying to engineer situations where the

entanglement between two (sub)systems can be disrupted in a suitable manner. The canon-

ical example of such observables are correlation functions of the form 〈
[
Â(t), B̂(0)

]2
〉, i.e,

squares of commutators of local Heisenberg picture operators. Expanding out the commu-

tator we find contributions of the form 〈Â(t)B̂(0)Â(t)B̂(0)〉 where the operator insertions are

clearly out-of-time order (OTO). Such observables were first explored in [45] and interest

in them was revived by recent work of Kitaev [55].

To explain their significance, in the first instance [56] studied the behaviour of such

observables as a diagnostic of quantum chaos. The initial explorations were in the context

of black hole physics and holography, aimed at understanding how black holes scramble

information. These analyses then inspired an interesting bound on the Lyapunov exponent,

which is defined by examining the intermediate time behaviour of the commutator. More

recently, [57] argued for a fundamental bound on quantum processing leading to an upper

bound on the Lyapunov exponent λL ≤ 2π β, when evaluated in an initial thermal state

(inverse temperature β). This bound is saturated by holographic field theories dual to

Einstein gravity and also by an interesting quantum mechanical model of free fermions

which has come to be known as the Sachdev-Ye-Kitaev (SYK) model [55, 58] — we refer

the reader to [59] for a comprehensive discussion of the model and its solution.

Recent explorations of this model [60, 61] have unveiled an interesting structure of the

infra-red physics in this SYK model. While the theory has a large ground state degeneracy,

the low energy dynamics is dominated by a single mode which remains gapless. Its dynamics

is governed by an emergent SL(2) symmetry, which in turn, leads to the bound on the

out-of-time-order correlation function. It has been pointed out in the aforementioned

references that the effective action for this low energy mode is qualitatively similar to that of

hydrodynamic effective actions (to be specific, [60] has argued that the effective action can

be brought by a field redefinition to the Landau-Ginzburg Class L effective action of [12]).
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We would like to argue that this may not be entirely coincidental, and that the class

of effective actions of interest in hydrodynamics might have some close connection with

those of the SYK model with an emergent (nearly broken) conformal symmetry in the

infra-red. Let us argue for this from our Schwinger-Keldysh contour, or generalizations

thereof. Realize first of all that we cannot compute expectation values of commutators-

squared using the standard Schwinger-Keldysh construction; by definition the latter is

meant to give us a handle on computing time-ordered multi-point functions, which all

can be written as sums of nested commutators and anti-commutators with suitable time-

ordering. At no point in our explicit analysis did we encounter products of commutators.

To attain the latter, we need a generalization of the Schwinger-Keldysh contour to include

two more horizontal legs, i.e., we need a path integral contour in complex time domain

which has two forward and two backward legs. Such contours have come to be known

as timefolds; see [62] where the authors motivate the construction as a generalization of

Schwinger-Keldysh.29 Similar contours also appear in the computation of Rényi entropies

using the replica trick in Lorentzian spacetime [64].

10.2 OTO contours

With the above motivation, let us define the out-of-time-order generating functions. Based

on the discussion above, to compute such observables, we need to introduce timefolds into

the path integral, necessarily involving a sequence of forward/backward evolution. Every

forward segment will involve a unitary operator U with some source deformations, while

each backward segment will be represented by conjugate U † also with sources. Given such

a timefolded contour we can compute out-of-time-order correlation functions.

In particular, for computing squares of commutators etc., the generating function we

need involves two timefolds. The generating function may be written down explicitly with

the time-evolution implementing unitaries as

Z2−oto[JoR,JiR;JoL,JiL] = Tr
(

(U [JoL])†U [JiR] ρ̂initial (U [JiL])†U [JoR]
)
. (10.1)

Pictorially we can represent this contour with a series of switchbacks as in figure 4. We

will refer to this class of generating functions as the 2-OTO generating function, since it

allows us to compute a two-fold out-of-time-order correlation function.

One can similarly extend this to defining k-OTO generating functions whose generating

function can be expressed in the form

Zk−oto[JαR,JαL] = Tr
(
· · ·U [J3R](U [J2L])†U [J1R] ρ̂initial (U [J1L])†U [J2R](U [J3L])† · · ·

)
.

(10.2)

with α ∈ {1, 2, · · · , k}. Pictorially these would be represented as in figure 5. Our nomen-

clature is meant to suggest that the 0-OTO is computed by the standard Feynman path

integral, while 1-OTO corresponds to the Schwinger-Keldysh contour, etc. . .

Let us record some general features of these contours at the outset. Clearly the compu-

tation of an n-point function from the k-OTO generating function results in (2k)n potential

29As this paper was in preparation we became aware of the recent work [63] who explore generalizations

of the Schwinger-Keldysh contour to compute OTO correlators.
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t0

C

C

OoL OiR

OiL OoR

Figure 4. The 2-OTO contour computing the correlation functions with operators inserted out

of the conventional Schwinger-Keldysh time-ordering, cf. eq. (10.1). As usual the initial state is

prepared at time t0 and the latest operator insertion happens at time t. The indicated operator

insertions correspond to the correlation function 〈OiR(t1)OoL(t2)OoR(t3)OoL(t4)〉.

t0

Figure 5. The k-OTO contour computing the out-of-time-ordered correlation functions encoded

in the generating functional (10.2).

possibilities. By switching off or aligning some of the sources, we can collapse some of the

timefolds. One should anticipate that the k-OTO generating functional would collapse in

an alignment limit of sources to a j-OTO with j ≤ k. Furthermore, in an n-point func-

tion, 〈Ô(t1)Ô(t2) · · · Ô(tn)〉, all possible time orderings are attained by restricting attention

to
[
n+1

2

]
-OTO contours.30 This observation simply follows by viewing the operators as

Heisenberg operators and drawing the time-evolution contours that compute the Wight-

man correlator. Conversely, k-OTO contours with k > [n+1
2 ] give no new information for

n-point functions: 1-point functions are computed by the Feynman path integral, 2-point

30[x] denotes the integer part of x.
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functions are computed by Schwinger-Keldysh contours, while it is only 3- and 4-point

functions, where we encounter some data which requires 2-OTO contours. 3-OTO con-

tours become relevant for 5- and 6- point functions, and so on.

10.3 Unitarity and localization in 2-OTO contours

To get a feeling for the k-OTO correlation functions, let us examine the case k = 2. We

have four independent legs of the contour in figure 4. On each leg we can insert operators,

so we naively expect there to be 4n n-point correlation functions for any given set of n

operators. Clearly, based on our experience with the Schwinger-Keldysh contour, we do

not expect these correlators to be independent; the question is what is the useful way to

encode the relations imposed by unitarity.

To address this issue, let us introduce a set of 2-OTO difference operators:

Aiid = AiR − AiL ,

Aood = AoR − AoL ,

Aoid = AoR − AiL ,

Aiod = AiR − AoL .

(10.3)

The four operators are not independent but rather satisfy a linear relation

Aiid + Aood = Aoid + Aiod . (10.4)

In terms of these we can write down the relations we get upon alignment of the various

background sources directly from the generating functional (10.1). We have two different

topological limits, where the 2-OTO contour collapses to the initial state:

• Aligning JoL = JoR and JiL = JiR collapses the 2-OTO generating functional to the

initial state:

Z2−oto[JoL = JoR,JiL = JiR] = Tr(ρ̂initial) . (10.5)

We will encode this relation as asserting that n-point correlation functions of inner

(i) difference operators and outer (o) difference operators vanish as a consequence of

unitarity. For example, at the level of two-point functions we have:

〈T
(2)

Aood Bood 〉 = 〈T
(2)

Aiid Biid 〉 = 〈T
(2)

Aood Biid 〉 = 〈T
(2)

Aiid Bood 〉 = 0 , (10.6)

where T
(2)

denotes time ordering along the 2-OTO contour of figure 4. This straight-

forwardly generalizes to a set of n2 vanishing n-point functions of the same type.

• Setting JoL =JiR and JiL =JoR leads to a second localization to the initial state. Now

the operators with vanishing correlation functions are those involving a different set

of difference operators, viz., Aiod and Aoid . At the two-point function level, this leads to:

〈T
(2)

Aiod Biod 〉 = 〈T
(2)

Aoid Boid 〉 = 〈T
(2)

Aiod Boid 〉 = 〈T
(2)

Aoid Biod 〉 = 0 . (10.7)

Again, there are n2 relations of this type at the level of n-point functions.
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We will refer to these limits as full localization. Similarly, there are limits of 1-OTO

localization, where the 2-OTO contour does not quite collapse to the initial state, but

instead to a 1-OTO Schwinger-Keldysh contour. The partial localizations can be described

as follows:

• There are three different limits where we align sources such that the 2-OTO generat-

ing functional collapses to a standard Schwinger-Keldysh theory. They take the form:

Z2−oto[JoR = JoL,JiR,JiL] = Z1−oto[JiR,JiL] ,

Z2−oto[JoR = JiL,JoL,JiR] = Z1−oto[JiR,JoL] ,

Z2−oto[JoL = JiR,JiL,JoR] = Z1−oto[JoR,JiL] .

(10.8)

It is clear that any partial localization can be extended into one of the two full localization

limits by aligning the remaining pair of sources in each case.

Finally, there are limits which are similar to partial localization, but have further

interesting features. We refer to these as timefolded 1-OTO localization :

• Let us consider correlation functions such as 〈T
(2)

AiR BoR〉, 〈T(2)
AiL BoL〉, or

〈T
(2)

AoR BoL〉. These correlators can be computed without loss of generality in the

limits JiL = JoL = 0, JiR = JoR = 0, and JiR = JiL = 0, respectively. A quick

inspection of the generating function should convince the reader that while a pair of

sources are set to zero, the non-zero sources are separated from the initial density

matrix. For instance:

〈T
(2)

AiL BoL〉 =
δ2

δJoL,B δJiL,A
Tr
(

(U [JoL,B])† U [0] ρ̂initial (U [JiL,A])† U [0]
)

≡ δ2

δJoL,B δJiL,A
Tr
(
Ũ [JoL,B] ρ̂initial (U [JiL,A])†

) (10.9)

where we have tried to reduce the computation to the form of a Schwinger-Keldysh,

or 1-OTO observable, by redefining the source. Our definition for the composite

evolution operator Ũ can be read off to be

Ũ [J ] ≡ U [0]U [J ]† U [0] ≡ U [J (←↩)] , (10.10)

where U [0] is the standard Hamiltonian evolution in the absence of any external

sources. This definition clearly satisfies Ũ [0] = U [0]. One can equivalently imagine

that the action of Ũ [J ] can be understood as a new source deformation by formally

writing the expression as U [J (←↩)]. Of course, obtaining a precise expression for J (←↩)

involves explicitly evaluating the sequence of evolutions in the given time-order.31 We

can summarize these three limits as follows:

Z2−oto[JiL = JoL = 0,JiR,JoR] = Z1−oto[JiR,J (←↩)
oR ] ,

Z2−oto[JiR = JoR = 0,JiL,JoL] = Z1−oto[J (←↩)
oL ,JiL] , (10.11)

Z2−oto[JiR = JiL = 0,JoR,JoL] = Z1−oto[J (←↩)
oL ,J (←↩)

oR ] .

31It is instructive to draw the contour for the above evolution to see how insertion of the operator coupling

to J (←↩) can be viewed as a forward temporal evolution interrupted by a time-reversed evolution to insert

an operator at an earlier time. This is the reason for interpreting these correlation functions as precursor

or timefolded correlators.
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These correlators have been described as precursor/postcursor correlators in literature,

owing to the fact that the action of the sources is to insert operators at an earlier/later

time to achieve a particular effect at a particular moment of interest.32

The observations made above make it clear that there are non-trivial relations to be

obtained between the various observables. Per se, this is not surprising, since the definition

of the 2-OTO contour naturally comes with further redundancy. The question we face is

one of understanding how to encode all of these redundancies succinctly, taking on board

the lessons learnt from the Schwinger-Keldysh construction. As the reader might anticipate

we are aiming to argue for a generalization of the Schwinger-Keldysh BRST symmetries

which would implement the various localizations of the OTO contours.

Let us try to address the various relations systematically and obtain the set of in-

dependent correlation functions. Rather than working out the story for general n-point

functions, we focus on the case of 2-point functions for simplicity to build up intuition.

While we know that the set of arbitrary 2-point functions can be computed from 1-OTO

or Schwinger-Keldysh path integrals, it is instructive to go through the exercise in some

detail to see how things work. This will suffice to make the point we wish to convey in the

present discussion.

2-OTO two-point functions. Naively there are 42 = 16 two-point functions obtained

by inserting operators OoR, OiR, OoL, and OiL respectively. By examining the structure of

Z2−oto we can make the sequence of inferences described below. We are essentially going

to group the set of 16 correlators into sets, depending on whether they involve a Feynman

contour, a Schwinger-Keldysh contour, and more specifically in the latter case whether the

operators are usual Heisenberg operators or precursors. In each case we will also relate the

answer to a well-understood combination of Schwinger-Keldysh two-point functions that

we have discussed hitherto.33

1. There are two time-ordered correlation functions which are obtained when Z2−oto
collapses onto the usual Feynman contour for a single copy. This is attained in the

alignment limit JoL = JiL = 0 with either JoR = 0 or JiR = 0. The standard 0-OTO

correlator obtained this way is simply the usual time-ordered correlation function.

One can thus write the identity:

〈T Â B̂〉 = 〈T
(2)

AiRBiR〉 = 〈T
(2)

AoRBoR〉 , (10.13)

where T denotes usual (Feynman) time ordering.

32Note that the generating functionals also suggest that we could consider a further generalization

of (10.10) where instead of switching off the source we consider aligned non-vanishing sources; this would

lead Ũ [JJc ] = U [Jc]U [J ]† U [Jc] where Jc is the common source which is aligned.
33While we choose a convenient basis of Schwinger-Keldysh correlators below, the reader can verify that

all 16 two-point functions can be expressed in terms of retarded, advanced and Keldysh correlators as defined

in section 2, if the operators are the same. For instance, note that for a real bosonic operator Â, we have

〈T Â(x)Â(x′)〉 =
i

2

(
GK(x, x′) +Gret(x, x

′) +Gadv(x, x′)
)
,

〈T Â(x)Â(x′)〉 =
i

2

(
GK(x, x′)−Gret(x, x

′)−Gadv(x, x′)
)
,

〈
[
Â(x), Â(x′)

]
〉 = i

(
Gret(x, x

′)−Gadv(x, x′)
)
.

(10.12)
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2. Similarly, the alignment limits where JoR = JiR = 0 with either JoL = 0 or JiL = 0

gives correlation functions of left operators, which are simply anti-time ordered:

〈T Â B̂〉 = 〈T
(2)

AiLBiL〉 = 〈T
(2)

AoLBoL〉 , (10.14)

where T denotes usual anti-time ordering.

3. There are three different limits where the 2-OTO generating functional collapses to

a usual Schwinger-Keldysh contour. These three limits correspond to JoL = JoR,

JoL = JiR, and JiL = JoR. This reduction of the 2-OTO generating function to

the 1-OTO generating function fixes the following three combinations of two-point

functions:

〈
[
Â, B̂

]
〉 = 〈T

(2)
AiLBiR〉 − 〈T(2)

AiRBiL〉 = 〈T
(2)

AiLBoR〉 − 〈T(2)
AoRBiL〉

= 〈T
(2)

AoLBiR〉 − 〈T(2)
AiRBoL〉 .

(10.15)

These are the three separate instances of the Schwinger-Keldysh identity (3.28), cor-

responding to the three 1-OTO reductions.

4. In a similar fashion one can establish that six other correlation functions get related

to the linear combination of time-ordered and anti-time-ordered Schwinger-Keldysh

correlators:

〈T Â B̂〉+ 〈T Â B̂〉 = 〈T
(2)

AiRBiL〉+ 〈T
(2)

AiLBiR〉 = 〈T
(2)

AoRBiL〉+ 〈T
(2)

AiLBoR〉

= 〈T
(2)

AiRBoL〉+ 〈T
(2)

AoLBiR〉 = 〈T
(2)

AoRBoL〉+ 〈T
(2)

AoLBoR〉

= 〈T
(2)

AoRBiR〉+ 〈T
(2)

AoLBiL〉 = 〈T
(2)

AiRBoR〉+ 〈T
(2)

AiLBoL〉 .
(10.16)

5. The above relations account for 13 of the 16 2-OTO correlators which we have seen

reduce to well known combination usual Schwinger-Keldysh observables. The new

element in Z2−oto are the precursor or timefolded correlation functions. We find it

convenient to pick the following linear combinations as the representatives of these

observables:

〈
[
Â, B̂

]
〉 = 〈T

(2)
AiLBoL〉 − 〈T(2)

AiRBoR〉

= 〈T
(2)

AoRBiR〉 − 〈T(2)
AoLBiL〉

= 〈T
(2)

AoRBoL〉 − 〈T(2)
AoLBoR〉

(10.17)

In writing the expression for the timefolded correlators in terms of the standard

single-copy correlation functions, we have also invoked the largest time equation

which prevents difference operators from being futuremost. While the combinations

in the r.h.s. (10.17) reduce to (10.13) we present them independently to emphasize

the precursor nature of the operators.
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We note for completeness that in order to see genuine 2-OTO correlators (i.e., ones which

cannot be expressed as combinations of Schwinger-Keldysh correlation functions), we need

to consider at least 3-point functions. As an example, consider 〈
{{

Â(tA), B̂(tB)
}

±
, Ĉ(tC)

}
±

〉,

which for arbitrary time orderings is manifestly not a combination of Schwinger-Keldysh

three-point functions. We leave a full exploration of higher point 2-OTO correlators to the

future, and content ourselves with the following general remarks.

BRST symmetries of 2-OTO contours. The analysis for 2-point functions should

make it amply clear that the general structure of the 2-OTO generating function will

involve new field redefinition BRST symmetries which enforce the various relations obtained

above. If we view the construction of Z2−oto as a nested sequence of Schwinger-Keldysh

constructions, it becomes clear that we can upgrade the operator algebra to an extended

operator superalgebra to make manifest the structure. One can speculate that34 a quartet

of BRST charges {Qo
SK
,Qo

SK
,Qi

SK
,Qi

SK
} arising from the set of outer and inner contours

respectively. We will refer to this structure as the NT = 4 superstructure following [49].

An efficient way to encode the operation of these BRST charges is work in superspace.

Having four BRST charges implies that we need two sets of Grassmann variables, so the

superspace will be generated by {θi, θ̄i, θo, θ̄o}. The charges act effectively as translation

generators along these Grassmann-odd directions. Thus we should embed every operator Ô

into an extended super-operator
˚̊O which will be an NT = 4 superfield with 16 components.

The components comprise of linear combinations of {OoR,OoL,OiR,OiL} together with the

NT = 4 ghost partners.

While we can naively write down a suitable expression (for instance by working with

a sequence of nested NT = 2) superfields, it is helpful to a-priori understand the action

of discrete symmetries such as CPT in building a useful representation. We defer this

construction for a separate discussion. Nevertheless, it should be clear that the structure

will capture all the relations we obtain in the various alignment limits. A related question

is to understand the interplay of these generators with the KMS generators in the context

of a thermal initial density operator. The Grassmann-even KMS translation operator

LKMS will pick up 15 superpartners to form a 16-component KMS-superoperator. The full

algebra including the KMS charges may provide a realization of NT = 4 thermal equivariant

cohomology algebra, which we believe should shed light on the chaos bound obtained in [57].

BRST symmetries of k-OTO contours. Finally, while we have extensively discussed

the case of 2-OTO, the general structure should now be clear. The k-OTO generating

function will have 2k field redefinition BRST symmetries, which we speculate are naturally

realized by an action on an NT = 2k superspace. These charges constrain the alignment lim-

its or localizations of external sources, relating k-OTO correlation functions to j-OTO and

timefolded j-OTO correlators with j < k. In the context of thermal field theory, the story

is certainly a lot richer with potentially a large NT = 2k thermal equivariant cohomology

algebra constraining various correlators. We hope to report on these structures and impli-

cations for various physical questions involving scrambling and chaos in the near future.

34We would like to thank Michael Geracie and David Ramirez for discussions on the precise number of

BRST symmetries that are necessary for the full set of localizations of the OTO contours.

– 75 –



J
H
E
P
0
6
(
2
0
1
7
)
0
6
9

11 Applications to physical problems

We have given a detailed explanation of the BRST supersymmetry inherent in the

Schwinger-Keldysh formalism. It is useful to take stock of these symmetries as applied

to various physical problems. In the current section we give a brief overview of various

areas of physics where this symmetries can help elucidate the basic physical ideas.

11.1 Stochastic dynamics

It is well known that stochastic dynamics admits a BRST-supersymmetric formulation.

The prototype example of interest in this context is Langevin dynamics of a Brownian

particle, which thanks to the Martin, Siggia, Rose (MSR) [20] construction is known to

be obtained from an effective action with the BRST symmetries. A general connection

between stochastic time evolution and supersymmetry was spelt out by Parisi and Sourlas

in [65]. These developments are well reviewed in classic references on topological field

theories [66] and critical phenomena [67].

The basic starting point in all this discussion is to note that the natural way to write an

action whose equations of motion are the stochastic differential equation is to enlarge the

variables to a quartet of fields. Given a random variable φ(t) which satisfies the stochastic

equation of motion say E(φ) = 0, the trick involves using a Lagrange multiplier field φ̃

to exponentiate it. The idea is to essentially treat E(φ) = 0 as a gauge fixing condition,

which is imposed as a delta-functional constraint on the configuration space parameterized

by the φ field. One then uses the standard Faddeev-Popov trick to exponentiate the delta

function and introduce Grassmann partners φψ and φψ̄ to account for the measure. Note

that the latter involves the Jacobi functional δE(φ)
δφ , which forms the kinetic term for the

Grassmann partners.

It should be clear from the enumeration of the fields involved that the natural language

for writing the action of the stochastic differential equation requires a quartet of fields. A

quick check of the symmetries, especially the ghost number makes it clear that we are

talking about an NT = 2 multiplet as discussed in the text. The occurrence of this topo-

logical symmetry algebra has been noted in the literature [68, 69]. These references were

interested in providing a path integral formulation of classical mechanics as a counterpart

to the operator formalism developed by Koopman and von Neumann [70, 71].

However, this standard discussion eschews the full power of the NT = 2 symmetries.

They manifestly work with the so-called Cartan charges as symmetry generators. As we

elaborate on in [1], we can decompose those into the fundamental Weil charges and interior

contraction operations making the algebraic structure manifest. It is easy to check that

the general structure we have described in the main part of the text continues to apply

in this case. We have given a preliminary treatment for the case of Langevin dynamics

in the appendix of [9]; the reader can find further details in [1]. In particular, we show

there how to embed the standard construction into a gauged worldline theory for a point

(super)-particle. Whilst simple it provides insight into the workings of more complicated

theories such as hydrodynamics which is our next point of contact.
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11.2 Hydrodynamics

As we described in the introduction section 1, the primary motivation for our foray into a

discussion of equivariant cohomology was to better understand the construction of hydrody-

namic effective field theories, and in particular to argue for constraints on the class of influ-

ence functionals that are admissible in the low energy theory. Much of this discussion treats

the hydrodynamic system of interest as a field theory in an approximately Gibbs state. The

intensive parameters of this density matrix are allowed to vary on macroscopic length scales,

and one is interested in the low energy dynamics of the collective degrees of freedom.

It is well known that the phenomenological axioms of hydrodynamics require that the

low energy theory capture only the dynamics of conserved currents subject to the require-

ment of non-negative definite entropy production. The dynamical part of the theory is

intuitive: in systems that relax back to thermal equilibrium, the short lived high-energy

modes relax exponentially fast. The only perturbations that survive to late time and

long distances are the conserved currents, which persist owing to their local conservation.

In [12, 21] we have given a complete classification of all solution to the phenomenological

axioms. Our eightfold classification in particular constrains extensively the form of influ-

ence functionals that could arise in any effective field theory of dissipative hydrodynamics.

Inspired by the prospect of confronting potential effective actions with the eightfold

classification, we have embarked on the construction of topological sigma models for dis-

sipative hydrodynamics [22]. The philosophy we followed was espoused in [9] and involves

certain crucial ingredients gleaned from our classification scheme. In a nutshell, we had

learnt that there is a U(1)T KMS gauge symmetry which couples to the entropy current

and that an effective action for the non-dissipative, adiabatic sector, of hydrodynamics

involves a doubling of degrees of freedom. The key observation of our analysis was to

note a structural similarity between the adiabatic effective action and the construction of

MSR [20] (which was also used by [15]).

The main new ingredient is to upgrade the MSR construction to a gauged version to

account for the U(1)T symmetry. The manner in which we initially inferred this symmetry

was driven by phenomenology, but in the end it was rather satisfying to see its microscopic

origins in the Schwinger-Keldysh formalism and the KMS condition. In [12] we argued that

the adiabatic sector of hydrodynamics, must satisfy an important first law type constraint,

dubbed adiabaticity equation, owing to the lack of entropy production. We showed that

this constraint naturally follows as a consequence of the U(1)T gauge symmetry. In other

words the entropy current is the Noether current for the U(1)T symmetry. A further

striking feature of the way the symmetry acted on the physical hydrodynamic fields was

that it naturally explained the construction in [39] who in fact were the first to exploit it to

construct equilibrium partition functions for field theories with mixed flavour/gravitational

anomalies.

Thus far our construction in [22] only confronts three of the eight classes of admissible

transport. We show there that the formalism of the NT = 2 topological symmetry enables

us to write down an effective action that captures precisely the dissipative part of transport

in addition to the adiabatic classes corresponding to Landau-Ginzburg functionals (which
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comprises of both equilibrium partition function data and non-equilibrium hydrodynamic

terms). The construction of an effective action that encompasses all eight classes is still

underway. The structural similarity of the topological sigma model construction with the

adiabatic action lends us confidence that the eightfold classes (and no more) will be attained

by exploiting the topological symmetries. Nevertheless the true test of our formalism is to

make this explicit.

Crucially, the construction captures not just the dissipative terms that help revert the

system back to equilibrium, but it also simultaneously fixes the fluctuation terms that are

missing in classical formulations of hydrodynamics. This point has also been appreciated

in the parallel development of [17] who have encountered similar structures as us, but do

not explicitly make use of the NT = 2 algebra. Instead they work with a single BRST

charge associated with the field redefinition symmetry. A second charge is argued to arise

in the low energy, near thermal dynamical sector; together with a Z2 action of the KMS

condition, they construct an effective action for dissipative fluids. As noted in section 1

despite various differences, the symmetries they invoke to constrain the hydrodynamic

effective action bear close resemblance (in the high temperature limit) with our proposal.

A detailed connection between the formalisms will be made elsewhere.

A natural corollary of the topological symmetries is a useful derivation of the second

law of thermodynamics. We see from our analysis that a BRST symmetry Ward identity for

spontaneous CPT breaking, leads to a fundamental identity: the Jarzynski relation [72, 73]

and its reformulation as the Crooks relation [74]. These identities form the generalized

fluctuation-dissipation relations that are valid in out-of-equilibrium settings. We have

argued in [22] that they follow from our topological sigma model. This is indeed what

one should expect, since we have a gauge symmetry for the entropy current. The detailed

balance statement following the Jarzynski relation leads to a statement of the second law

of thermodynamics for the dissipative sector.

11.3 Entanglement and the modular superalgebra

Let us now return to general density matrices; we have seen in that the Schwinger-Keldysh

BRST charges, as in any topological field theory constrain the BRST exact operators to be

trivial. In the Schwinger-Keldysh construction, we have demonstrated that the difference

operators belong to this class. The supercharges ensure that the Ward identities (3.20) are

satisfied explicitly, independent of the microscopic dynamics of the quantum system under

consideration.

The most useful physical lesson one can extract from these considerations is that the

Schwinger-Keldysh ghost operators and the associated BRST symmetries ensure micro-

scopic unitarity of the theory. One can intuit this, given the close similarity of our discus-

sion of field redefinition BRST charges with the well-known Faddeev-Popov ghosts of gauge

theories. As long as the BRST symmetries are non-anomalous in the quantum theory, we

would have reason to believe that the ghosts are doing the correct job in ensuring that the

physical Hilbert space only comprises of positive norm states.

There is one further consequence of the topological structure of the Schwinger-Keldysh

path integral, which bears detailed scrutiny. Let us focus on the topological sector of the
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theory: as noted when the sources for the left and right degrees of freedom are aligned

in the Schwinger-Keldysh path integral JL = JR, we have from (3.4), a collapse of the

generating function onto the theory of initial conditions, viz.,

ZSK[JR = JL] = Tr(ρ̂initial) . (11.1)

One usually tends to normalize the initial density matrix. This is equivalent to sub-

tracting out the topological contributions, since these are all that survives when we turn on

identical sources as in (11.1). Often however it is convenient to not normalize ρ̂initial, but

rather let the trace Tr(ρ̂initial) capture the entanglement inherent in the initial state. A sim-

ple example to keep in mind is the thermal density matrix ρ̂T , which, if left unnormalized,

computes for us the thermal partition function ZT (β) of the theory.

Let us try to extract the entanglement built into ρ̂initial, by computing the von Neu-

mann entropy of this initial state, which is given by

Sinitial = −Tr(ρ̂initial log ρ̂initial) (11.2)

It is useful however, to think in terms of the modular Hamiltonian [75]

K̂initial = − log ρ̂initial . (11.3)

which is a state-dependent non-linear operator in the theory. It depends on the chosen

state as it actively involves taking the logarithm of the density matrix operator. With its

introduction we can write the Schwinger-Keldysh path integral with equal left-right sources

as a modular free energy:

ZSK[JR = JL] = Tr
(
e−K̂initial

)
. (11.4)

The analogy with thermal partition functions is apparent and suggests that the density

matrix trace is obtained by modular evolution, i.e., evolution by the operator K̂initial for a

unit distance in an imaginary direction.

To obtain the entanglement inherent in the density matrix, let us introduce the notion

of Rényi entropies, which are obtained from the moments of the density matrix:

S(q)(ρ̂initial) =
1

1− q
log Tr((ρ̂initial)

q) =
1

1− q
log Tr

(
e−q K̂initial

)
, (11.5)

where the standard prefactor of (1 − q)−1 is introduced for convenience in defining the

entanglement entropy. The latter is defined as the von Neumann entropy of the initial

state, viz.,

S(ρ̂initial) = −Tr(ρ̂initial log ρ̂initial) = Tr
(
K̂initial e

−K̂initial

)
. (11.6)

Knowledge of the quantities S(q), which resemble usual thermal partition functions for

the ‘Hamiltonian’ K̂initial at inverse temperature q, up to an inconsequential rescaling by

(1− q)−1, determines S(ρ̂initial) via

S(ρ̂initial) = lim
q→1

S(q)(ρ̂initial) . (11.7)
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Another useful quantity which appears to be more natural in holography or gravity is the

modular entropy, [76], which is defined as the derivative the Rényi entropy with respect to

its index

S̃(q)(ρ̂initial) = −q2 ∂

∂q

(
1

q
log Tr

(
e−q K̂initial

))
. (11.8)

Comparing with thermodynamic formulae, one can be convinced that S̃(q)(ρ̂initial) is really

the entropy associated with the modular evolution at inverse temperature q.

The modular evolution by the operator K̂initial for an imaginary time can be viewed as

determining moments of the density matrix. This is strictly in analogy with the thermal

density matrices where evolution in Euclidean time direction gives us the partition function

as a function of the temperature (which is determined by the size of the thermal circle).

The main difference from the usual story for thermal density matrices is that the modular

Hamiltonian is intrinsically tied to the state of the system ρ̂initial and is generically a non-

local (state-dependent) operator. There are however certain situations where it is well

behaved operator acting on the entire Hilbert space. For instance for a QFT on Rindler

space, obtained by decomposing Rd−1,1 = Rindler × Rd−3,1, the reduced density matrix

in a single Rindler wedge has as its modular Hamiltonian the boost generator [77, 78].

Likewise the reduced density matrix obtained by confining the vacuum state of a CFT into

a spherical domain leads to a local modular Hamiltonian [79].

For both modular evolution of generic density matrices and the thermal evolution of

Gibbs states, the traces are computed by evolution in an imaginary time direction. One

can thus in principle imagine setting up an appropriate Euclidean path integral which

computes ZT (β) or ZSK(ρ̂initial) for us. In both cases it is clear that only the information

in the initial state is necessary to determine the corresponding partition function. Thus

ZSK[JR = JL] readily admits a Euclidean path integral representation.

Furthermore, it is tempting to argue that we should involve a set of modular charges

which implement the Euclidean periodicity of modular evolution. It is not clear to us

at present whether these charges, which would be intrinsically non-local be of practical

use in understanding the evolution of general density matrix. It however, does appear

to be the case, that these modular charges together with the Schwinger-Keldysh charges

would generate an NT = 2 extended equivariant cohomology algebra, along the lines of

our thermal density matrix discussion. It appears naively that the discrete version of the

modular gauge symmetry, as opposed to the analog of the continuum U(1)T discussed

in the thermal case, should play some role. We think it would be extremely intriguing

to see how this construction plays out, and whether it has any lessons to impart for the

entaglement/geometry correspondence in holography.

Should this structure pertain, one can use it to argue that the Schwinger-Keldysh

path integral localizes onto an appropriate modular partition function at the initial time

when the state is prepared. One may infer from this requirement that the topological

sector of the Schwinger-Keldysh theory encodes the relevant entanglement structure for the

mixed states. We use the phrase ‘localize’ in a precise technical sense used in topological

field theories.
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This interpretation allows one to have a clear strategy of defining effective field the-

ories of Schwinger-Keldysh path integrals in the Wilsonian sense. Firstly, one constructs

what might be termed as the topological backbone, viz., a theory that captures appropriate

correlations/entanglement of the initial mixed state under study. Once this is achieved,

we may deform away from the JR = JL limit and study the class of mixed states which

are continuous deformations of our chosen initial state. These mixed states have similar

entanglement structure to ρ̂initial and evolve into each other under unitary evolution. The

Schwinger-Keldysh topological field theory helps setting up this entanglement pattern. Its

efficacy in understanding effective field theories is apparent, for the rigidity of the topolog-

ical invariance ensures that it is robust against renormalization.

From a modern quantum information theoretic perspective, one may even go so far

as to note that the Schwinger-Keldysh construction employs a topological symmetry to

initially set-up a sector of the quantum system which is robust against non-topological

perturbations. This topological skeleton may be viewed as the abstract, continuum analog

of a tensor network for the initial state ρ̂initial. Splitting the discussion of open quantum

systems into a topological theory of initial conditions and dynamics has many advantages.

As dynamics is implemented by unitary transformations, it leaves the entanglement struc-

ture intact, thus allowing one to decouple the physical consequences of evolution from the

manner in which the open system is unitarized in the first instance.

11.4 Gravitational systems

One of our primary interests behind investigating this reformulation of Schwinger-Keldysh

formalism, is to understand the lessons it holds for gravitational dynamics, especially in

spacetimes with horizons. There are many gravitational questions that naturally fall under

the class of questions we have been discussing, having to do with the physics of black hole

formation and evaporation, cosmological evolution, etc., which involve systems driven out

of equilibrium.

Hydrodynamics is an ideal point of contact, since the fluid/gravity correspon-

dence [80, 81] naturally maps the dynamics of (large) black holes in asymptotically AdS

spacetimes to fluid dynamics. We have previously outlined in [9] elements of our philosophy

relating to how the a gravity dual of the dissipative hydrodynamic effective actions could

potentially help us understand long-standing issues in black hole physics.

For instance, one natural conjecture is to relate the interior of the black hole with a

gauged topological sigma model for dissipative hydrodynamics (dubbed U(1)T open string

theory in the aforementioned reference). Relatedly, the importance of the ghost degrees

of freedom, whose condensation can be seen as the origin of dissipation at low energies,

we feel holds a crucial clue for understanding how the interior of the black hole should

be reconstructed from the dual field theory. As of this writing we do not offer a precise

implementation of these ideas. Nevertheless, recent developments in the study of gravity

duals of fast scrambling systems (see section 10), appear extremely promising in that they

appear to embody some of the basic principles we have explored in this paper, directly in

the gravitational realm.
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11.5 Cutting rules and amplitudes

Our discussion so far has focused on the Schwinger-Keldysh formalism aimed at computing

time-ordered correlation functions. It is interesting to note that the basic ideas we have

described actually apply rather directly to the study of causality constraints on S-matrices.

To explain the context, we recall a basic notion of causality formulated by Bogoliubov in

the 1950s [82] (see also [83]).

Consider a scattering process where we imaging having a spacetime dependent in-

teraction term that we can switch on and off at will. Given that the quantum fields

undergo a continuous evolution from the initial state defined on past timelike infinity (I−)

of Minkowski space to a state on future timelike infinity (I+), we demand a causality

restriction, that the interaction only influences the scattering matrix to its future. The

condition is usually written as a variational statement of the S-matrix, with respect to

such spacetime dependent coupling functions. Pragmatically, we can intuit this statement

in terms of energy flow in the process: if p is to the causal future of q, then the Feynman

diagrams which involve particles propagating between q and p are such that only those

with positive energy flow from q → p are allowed. One can write this symbolically as:

δ2S

δg(q)δg(p)
S† +

δS

δg(q)

δS†

δg(p)
= 0 , p0 > q0 , (11.9)

where g(x) is our spacetime dependent coupling.

We are used to an equivalent version of this statement in terms of operators (which

are required to commute at spacelike separation), but now we want a direct encoding in

terms of the S-matrix, rather than Green’s functions. It was realized by Veltman that a

pragmatic way to interpret this statement, is to split up Feynman diagrams that describe a

process with particles propagating from q to p in terms of their energy characteristics. As

beautifully reviewed in [26], we can take a given Feynman diagram and decide to monitor

energy flow through the legs. The simplest way to do this is to examine a propagator that

connects two vertices and pick the right Green’s function according to the causal ordering.

In order to implement this, the idea of circled and uncircled vertices is introduced into

Feynman diagrammatics [26]. Every vertex of a Feynman diagram is doubled, with it being

either circled, or uncircled. Each propagator gets replaced by one of the four choices:

• propagators linking two uncircled vertices are usual Feynman propagators

• propagators linking two circled vertices are anti-Feynman propagators

• propagator from circled to uncircled is given by the positive frequency part of the

Feynman propagator (retarded Green’s function)

• propagator from uncircled to circled is given by the negative frequency part of the

Feynman propagator (advanced Green’s function)

The reader will immediately recognize these are really the standard Schwinger-Keldysh

rules of time ordering!
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Based on these rules, a series of Cutkosky cutting rules are derived which encode the

causality constraint explicitly. They can be abstractly summarized as the statement that

the sum of a single diagram over all possible circlings vanishes. This is exactly equivalent

to the one constraint of the vanishing of the difference operator correlation functions.

Convolving this expression against source functions leads to a single Feynman diagram

version of Bogoliubov’s condition (11.9). In particular, one also finds that the largest time

equation is upheld. This asserts the circled vertex cannot be future most.

At a conceptual level the similarity between the implementing causality and unitarity

via cutting rules and using the Schwinger-Keldysh formalism to keep track of time-ordering

is not surprising. However, given our BRST symmetries it is interesting to ask whether we

can employ the superspace techniques developed here to give a complementary picture of

causality. Such a development might not only be interesting to do for QFTs but also for

string theory, see e.g., [84]. Work in this direction is in progress and we hope to report on

these applications in the not too distant future.
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A Complete list of three-point functions

This appendix complements section 9.3, where we wrote down compact expressions which

determine all three-point ghost correlators in terms of average-difference expectation values.

Here, we expand out the solutions explicitly and write down the relations thus obtained.

Level 0. The lowest level 3L0 does not allow for any ghosts, so there are no new correlators

to fix. Here, we only have the obvious

3Φ0 = 〈TSK a1 a2 a3〉 (A.1)

and its explicit form was given in (3.30).
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Level 1. At level 1 3L1, the ghost correlators are solved as follows (with a 6-parameter

family of ambiguities):

〈TSK g1ḡ2a3〉 =
[
α(3,1)

1 Θ213 + α(3,1)

2 Θ312 + α(3,1)

4 Θ231 + α(3,1)

5 Θ321

]
〈TSK d1a2a3〉

+
[
α(3,1)

1 Θ123 + α(3,1)

2 Θ321 + α(3,1)

4 Θ132 + α(3,1)

5 Θ312

]
〈TSK a1d2a3〉

+
[
α(3,1)

3 (Θ132 + Θ231) + α(3,1)

6 (Θ123 + Θ213)
]
〈TSK a1a2d3〉

(A.2)

〈TSK ḡ0g1a2a3〉 = 〈TSK ḡ1g0a2a3〉 =

=
[ (
α(3,1)

1 + α(3,1)

2 − 1
)

(Θ213 + Θ312)

+
(
α(3,1)

4 + α(3,1)

5 − 1
)

(Θ231 + Θ321)
]
〈TSK d1a2a3〉

+
[ (
α(3,1)

1 + α(3,1)

3

)
Θ123 +

(
α(3,1)

2 + α(3,1)

3

)
Θ321

+
(
α(3,1)

4 + α(3,1)

6

)
Θ132 +

(
α(3,1)

5 + α(3,1)

6

)
Θ312

]
〈TSK a1d2a3〉

+
[ (
α(3,1)

1 + α(3,1)

3

)
Θ132 +

(
α(3,1)

2 + α(3,1)

3

)
Θ231

+
(
α(3,1)

4 + α(3,1)

6

)
Θ123 +

(
α(3,1)

5 + α(3,1)

6

)
Θ213

]
〈TSK a1a2d3〉

(A.3)

〈TSK d0a1a2a3〉 =
[ (

1− 2α(3,1)

1 − 2α(3,1)

2 − 2α(3,1)

3

)
(Θ213 + Θ312)

+
(
1− 2α(3,1)

4 − 2α(3,1)

5 − 2α(3,1)

6

)
(Θ231 + Θ321)

]
〈TSK d1a2a3〉

+
[ (

1− 2α(3,1)

1 − 2α(3,1)

2 − 2α(3,1)

3

)
(Θ123 + Θ321)

+
(
1− 2α(3,1)

4 − 2α(3,1)

5 − 2α(3,1)

6

)
(Θ132 + Θ312)

]
〈TSK a1d2a3〉

+
[ (

1− 2α(3,1)

1 − 2α(3,1)

2 − 2α(3,1)

3

)
(Θ132 + Θ231)

+
(
1− 2α(3,1)

4 − 2α(3,1)

5 − 2α(3,1)

6

)
(Θ123 + Θ213)

]
〈TSK a1a2d3〉

(A.4)

Level 2. At level 2, there are the following three-point functions found by expanding the

solution (9.18):

〈TSKd1ḡ2g3〉 =
(
α(3,2)

1 Θ312 + α(3,2)

2 Θ321

)
〈TSKd1d2a3〉

+
(
α(3,2)

1 Θ213 + α(3,2)

2 Θ231

)
〈TSKd1a2d3〉

(A.5)

〈TSKḡ0g1g2ḡ3〉=〈TSKg0ḡ1ḡ2g3〉 =
(
α(3,2)

1 − α(3,2)

2

)
(Θ312 −Θ321) 〈TSKd1d2a3〉

+
(
α(3,2)

1 Θ213 + α(3,2)

2 Θ231

)
〈TSKd1a2d3〉

−
(
α(3,2)

1 Θ123 + α(3,2)

2 Θ132

)
〈TSKa1d2d3〉

(A.6)

〈TSKd1g2a3ḡ0〉=〈TSKg0d1ḡ2a3〉 =
(
α(3,2)

1 Θ213+α(3,2)

2 Θ231

)
〈TSKd1a2d3〉

+
[(

1+α(3,2)

1

)
Θ312+

(
1+α(3,2)

2

)
Θ321

]
〈TSKd1d2a3〉

(A.7)

〈TSKd0d1a2a3〉 =
[(

1+2α(3,2)

1

)
Θ312+

(
1+2α(3,2)

2

)
Θ321

]
〈TSKd1d2a3〉

+
[(

1+2α(3,2)

1

)
Θ213+

(
1+2α(3,2)

2

)
Θ231

]
〈TSKd1a2d3〉

(A.8)

〈TSKd0g1ḡ2a3〉 =
(
1 + α(3,2)

1 + α(3,2)

2

)
(Θ312 + Θ321) 〈TSKd1d2a3〉

+
(
α(3,2)

1 − α(3,2)

2

)
(Θ123 −Θ132) 〈TSKa1d2d3〉

+
(
α(3,2)

1 − α(3,2)

2

)
(Θ213 −Θ231) 〈TSKd1a2d3〉

(A.9)

Level 3. The highest level, 3L3 contains a number of ghost correlators, but the only

consistent solution is to set them all to zero:

0 = 〈TSK d1 d2 d3〉 = 〈TSK g1 ḡ0 d2 d3〉 = 〈TSK ḡ1 g0 d2 d3〉
= 〈TSK d0 a1d2 d3〉 = 〈TSK d0 g1ḡ2 d3〉 .

(A.10)
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