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Abstract: We compute perturbative QCD corrections to B → D form factors at leading

power in Λ/mb, at large hadronic recoil, from the light-cone sum rules (LCSR) with B-

meson distribution amplitudes in HQET. QCD factorization for the vacuum-to-B-meson

correlation function with an interpolating current for the D-meson is demonstrated ex-

plicitly at one loop with the power counting scheme mc ∼ O
(√

Λmb

)
. The jet functions

encoding information of the hard-collinear dynamics in the above-mentioned correlation

function are complicated by the appearance of an additional hard-collinear scale mc, com-

pared to the counterparts entering the factorization formula of the vacuum-to-B-meson

correction function for the construction of B → π from factors. Inspecting the next-to-

leading-logarithmic sum rules for the form factors of B → D`ν indicates that perturbative

corrections to the hard-collinear functions are more profound than that for the hard func-

tions, with the default theory inputs, in the physical kinematic region. We further compute

the subleading power correction induced by the three-particle quark-gluon distribution am-

plitudes of the B-meson at tree level employing the background gluon field approach. The

LCSR predictions for the semileptonic B → D`ν form factors are then extrapolated to

the entire kinematic region with the z-series parametrization. Phenomenological implica-

tions of our determinations for the form factors f+,0
BD(q2) are explored by investigating the

(differential) branching fractions and the R(D) ratio of B → D`ν and by determining the

CKM matrix element |Vcb| from the total decay rate of B → Dµνµ.
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1 Introduction

Precision calculations of the semileptonic heavy-to-heavy B → D`ν decays are indispens-

able for a stringent test of the CKM matrix element |Vcb| exclusively and for a deep un-

derstanding of the strong interaction mechanism in the heavy-quark system from both

QCD and heavy-particle effective field theories. The long-standing tension between the

exclusive and inclusive determinations of |Vcb| [1] as well as the topical R(D) ≡ BR(B →
Dτντ )/BR(B → D`ν) anomaly [2] necessitates further QCD calculations of B → D form

factors with an increasing accuracy. Employing the heavy-quark expansion (HQE) tech-

nique, systematic studies of B → D form factors near zero recoil were performed including
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both perturbative QCD corrections and subleading power contributions (see [3] for a re-

view). Very recently, the unquenched lattice-QCD calculations of B → D`ν form factors

near zero recoil were reported by the FNAL/MILC Collaboration [4] using the asqtad-

improved fermions for the light valence quarks and the improved Wilson (“clover”) fermions

for the heavy valence quarks and by the HPQCD Collaboration [5] independently applying

the NRQCD action for bottom and the highly improved staggered quark action for charm

quarks together with Nf = 2 + 1 MILC gauge configurations. However, extrapolating

the HQE and lattice calculations of B → D form factors to the entire physical kinematic

range can be only achieved with certain parametrizations for the momentum dependence

of form factors, which introduce an additional source of theoretical uncertainties for the

determination of |Vcb|. A direct QCD computation of the form factors of B → D`ν at large

recoil is therefore highly in demand to provide complementary information on the hadronic

dynamics for a better understanding of the form-factor shapes. The major objective of

this paper is to carry out perturbative QCD corrections to the two-particle contributions

to B → D form factors at large recoil from the light-cone sum rules (LCSR) with B-meson

distribution amplitudes (DA) following the techniques developed in [6–9], in an attempt to

extend the leading-order calculation of the corresponding vacuum-to-B-meson correlation

function performed in [10].

Applying the light-cone operator-product expansion (OPE) and parton-hadron duality,

the LCSR approaches have been proven their usefulness in computing both the local and

non-local hadronic matrix elements for the theory description of hadronic processes with

large momentum transfer. Demonstrating QCD factorization for the vacuum-to-B-meson

correlation function at leading power in Λ/mb is evidently the first step in the construc-

tion of sum rules for B → D`ν form factors. To this end, we need to establish the power

counting scheme for the distinct momentum scales involved in the correlation function

under consideration. In contrast to the correlation function for the heavy-to-light form

factors, the appearance of an additional energy scale (the charm-quark mass) further com-

plicates perturbative QCD factorization for the vacuum-to-B-meson correlation function

with an interpolating current for the D-meson. Motivated by the mass hierarchy between

the bottom and charm quarks numerically, we will adopt a novel power counting scheme

mc ∼ O
(√

Λmb

)
, as implemented in the analysis of the inclusive semileptonic B → Xc`ν

decays [11, 12] with shape functions of the B-meson, instead of the popular counting scheme

mc ∼ O(mb) widely used in the heavy-quark physics (see, for instance [13, 14]). It is then

apparent that the on-shell bottom-quark field, the charm-quark field appeared in the in-

terpolating current for the D-meson and the external light-quark field can be identified as

hard, hard-collinear and soft modes in QCD following the convention of [15]. Despite the

fact that implementing the light-cone OPE of the above-mentioned correlation function

with three distinct momentum scales can be readily formulated in the framework of soft-

collinear effective theory (SCET) including a missive hard-collinear quark [16, 17], we will

employ an alternative strategy, namely the method of regions [18], to compute the short-

distance functions entering the QCD factorization formulae for the considered correlation

function, following closely [15, 19, 20].
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With the specified power counting scheme for the charm-quark field, the hard functions

from integrating out the dynamical fluctuations at the O(mb) scale can be easily shown to

be identical to the perturbative matching coefficients of the QCD weak current q̄ γµ (1 −
γ5) b in SCET. However, the jet functions involved in the factorization formulae for the

vacuum-to-B-meson correlation function develop a non-trivial dependence on the charm-

quark mass, yielding an interesting source of the large-energy symmetry breaking effects

for the vector and scalar B → D form factors. We will further verify explicitly at one loop

that the jet functions for the vacuum-to-B-meson correlation function with an interpolating

current for the D-meson, in the mc → 0 limit, can be reduced to the corresponding hard-

collinear functions for the counterpart correlation function used in the construction of

the sum rules for B → π form factors. QCD resummation for the parametrically large

logarithms involved in the hard functions is achieved at next-to-leading-logarithmic (NLL)

accuracy with the standard renormalization-group (RG) approach. In addition, we will

evaluate the subleading power correction to the vacuum-to-B-meson correlation function

from the three-particle B-meson DA at leading order in αs, employing the light-cone OPE

in the background field approach.

An alternative approach to compute the form factors of B → D`ν from QCD sum rules

was adopted in [21, 22] with the non-perturbative strong interaction dynamics encoded in

the D-meson DA on the light cone. However, both calculations for the vacuum-to-D-meson

correlation function with an interpolating current for the B-meson presented in [21, 22] were

carried out at tree level without specifying the power counting scheme for the charm-quark

field and without implementing the perturbative QCD constraints for the D-meson DA.

Yet another QCD-based approach to evaluate B → D form factors in the framework of

transverse-momentum-dependent (TMD) factorization was proposed in [23, 24] with the

power counting mb � mc � Λ, which was further updated in [25] recently. Albeit with

the technical progresses on the computations of perturbative matching coefficients [26–29],

TMD factorization for hard exclusive processes is still not well established conceptually due

to the lack of a definite power counting scheme for the intrinsic transverse momentum [30]

and the Wilson-line structure of TMD wave functions needs to be constructed appropriately

to avoid both the rapidity and pinch singularities in the infrared subtraction [31].

This paper is structured as follows. In section 2 we will introduce the vacuum-to-B-

meson correlation function for constructing the sum rules of B → D form factors and estab-

lish the power counting scheme for the external momenta in Λ/mb. The essential ingredients

to compute the semileptonic B → D`ν form factors from the LCSR with B-meson DA, in-

cluding QCD factorization for the considered correlation function and the hadronic disper-

sion relation, will be also presented by working out the tree-level sum rules at leading power

in HQE. We will turn to demonstrate QCD factorization for the two-particle contributions

to the vacuum-to-B-meson correlation function at O(αs) in section 3, where the hard coeffi-

cients and the jet functions appeared in the factorization formulae for the above-mentioned

correlation function are computed manifestly at one loop. The (partial) NLL resummation

improved sum rules for the two-particle contributions to B → D form factors will be also

derived here and they constitute the main new results of this paper. In section 4 we further

calculate the three-particle contributions to the LCSR of B → D`ν form factors at tree
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level, which will be shown to contribute only at subleading power in Λ/mb with the power

counting scheme adopted here. Phenomenological implications of the newly derived sum

rules for the decay form factors of B → D`ν will be explored in section 5 with different mod-

els for B-meson DA, including determinations of the shape parameters for the vector and

scalar B → D form factors with both the z-series expansion [32] and the Caprini-Lellouch-

Neubert (CLN) parametrization [33], the differential branching fractions of B → D`ν and

R(D) defined in the above, as well as the extraction of the CKM matrix element |Vcb|.
We will conclude in section 6 with a summary of main observations and a perspective on

the future refinements. We collect some useful results of loop integrals for evaluating the

vacuum-to-B-meson correlation function at one loop, present the spectral representations

for the convolution integrals essential to construct the (partial) NLL LCSR of B → D form

factors and display the lengthy coefficient functions entering the “effective” B-meson DA,

absorbing the hard-collinear corrections at one loop, in appendices A, B and C, respectively.

2 The framework

We briefly review the LCSR approach to compute B → D form factors with B-meson

DA following the strategy presented in [15]. The vacuum-to-B-meson correlation function

adopted to construct the sum rules for the form factors f+
BD(q2) and f0

BD(q2) is defined as

Πµ(n · p, n̄ · p) = i

∫
d4x eip·x〈0|T {q̄(x)/n γ5 c(x), c̄(0) γµ b(0)} |B̄(pB)〉 , (2.1)

where pB ≡ mB v indicates the four-momentum of the B-meson and p refers to the four-

momentum carried by the interpolating current of the D-meson. We will work in the rest

frame of the B-meson and introduce two light-cone vectors nµ and n̄µ satisfying n · v =

n̄ · v = 1 and n · n̄ = 2. We will further employ the following power counting scheme

n · p =
m2
B +m2

D − q2

mB
∼ O(mB) , |n̄ · p| ∼ O(Λ) , mc ∼ O

(√
Λmb

)
, (2.2)

at large hadronic recoil, where q = pB − p is the transfer momentum and Λ is a hadronic

scale of order ΛQCD. For the space-like interpolating momentum p, the leading power

contribution to the correlation function (2.1) at tree level can be achieved by evaluating

the diagram in figure 1 with the light-cone OPE and we obtain

Πµ, 2P(n · p, n̄ · p) = −i f̃B(µ)mB n̄µ

∫ ∞
0

dω
φ−B(ω, µ)

n̄ · p− ω − ωc + i 0
+O(αs)

= −i f̃B(µ)mB n̄µ

∫ ∞
ωc

dω′
φ−B(ω′ − ωc, µ)

n̄ · p− ω′ + i 0
+O(αs) , (2.3)

where ωc = m2
c/n · p and the convolution integral in the second step corresponds to the

spectral representation of the considered correlation function. It is apparent that (2.3)

reproduces precisely the result for the corresponding correlation function defined with a

pion interpolating current in the mc → 0 limit.
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q̄

q
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Figure 1. Diagrammatical representation of the two-particle contributions to the vacuum-to-B-

meson correlation function Πµ(n · p, n̄ · p) defined in (2.1) at tree level.

The light-cone DA of the B-meson in the coordinate space are defined as follows [34, 35]:

〈0| (q̄ Ys)β (t n̄)
(
Y †s bv

)
α

(0)|B̄(v)〉

= − if̃B(µ)mB

4

{
1 + /v

2

[
2 φ̃+

B(t, µ) +
(
φ̃−B(t, µ)− φ̃+

B(t, µ)
)
/n
]
γ5

}
αβ

, (2.4)

where bv indicates the effective bottom-quark field in heavy-quark effective theory (HQET),

the soft gauge link is given by

Ys(t n̄) = P

{
Exp

[
i gs

∫ t

−∞
dx n̄ ·As(x n̄)

]}
, (2.5)

and φ±B(ω, µ) are obtained from the Fourier transformation of φ̃±B(t, µ). The static B-meson

decay constant f̃B(µ) can be further expressed in terms of the QCD decay constant

f̃B(µ) =

{
1− αs(µ)CF

4π

[
3 ln

µ

mb
+ 2

]}−1

fB . (2.6)

Employing the standard definitions for the decay constant of the D-meson and for

B → D transition form factors

〈D(p)|c̄γµb|B̄(pB)〉 = f+
BD(q2)

[
2 pµ +

(
1−

m2
B −m2

D

q2

)
qµ

]
+ f0

BD(q2)
m2
B −m2

D

q2
qµ ,

〈0|q̄/n γ5 u|D(p)〉 = i n · p fD , (2.7)

it is straightforward to write down the hadronic dispersion relation for the correlation

function

Πµ(n · p, n̄ · p) =
i fDmB

2 (m2
D/n · p− n̄ · p)

{
n̄µ

[
n · p
mB

f+
BD(q2) + f0

BD(q2)

]
(2.8)

+nµ
mB

n · p−mB

[
n · p
mB

f+
BD(q2)− f0

BD(q2)

]}
+

∫ +∞

ωs

dω′
1

ω′ − n̄ · p− i0

[
ρh(ω′, n · p)nµ + ρ̃h(ω′, n · p) n̄µ

]
,
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at leading power in Λ/mb, where ωs is the effective threshold parameter for the D-meson

channel. Applying the parton-hadron duality approximation for the hadronic dispersion

integral and performing the Borel transformation with respect to the variable n̄ · p lead to

the LCSR for the two B → D form factors at tree level

f+
BD, 2P(q2) =

f̃B(µ)mB

fD n · p
Exp

[
m2
D −m2

c

n · p ωM

] ∫ ωs−ωc

0
dω′ Exp

(
− ω′

ωM

)
φ−B(ω′) +O(αs) ,

f0
BD, 2P(q2) =

n · p
mB

f+
BD, 2P(q2) +O(αs) , (2.9)

where the upper limit of the ω′-integration is consistent with ω0(q2, sD0 ) derived in [10] at

leading power in Λ/mb keeping in mind the replacement rule sD → n · pωs. In contrast to

the sum rules for B → π form factors, the power counting rules of ωc, ωs and ωM now read

ωc ∼ ωs ∼ O (Λ) , ωs − ωc ∼ O
(

Λ3/2/m
1/2
b

)
, ωM ∼ O

(
Λ3/2/m

1/2
b

)
. (2.10)

Based upon the canonical behaviour for the B-meson DA φ−B(ω′), one can readily deduce

the power counting of f+
BD(q2) at large hadronic recoil as O

(
(Λ/mb)

3/2
)

from the tree-

level sum rules (2.9), different from the scaling law f+
BD(q2) ∼ O(1) [14] obtained with the

counting scheme mc ∼ mb. In addition, the two form factors f+,0
BD(q2) obtained in the above

respect the large-energy symmetry relation as discussed in [35] and the symmetry breaking

effects can arise from both perturbative QCD corrections to the short-distance coefficient

functions and the subleading power contributions from the higher-twist DA of the B-meson.

3 Two-particle contributions to the LCSR at O(αs)

The purpose of this section is to demonstrate QCD factorization for the two-particle con-

tribution to the vacuum-to-B-meson correlation function (2.1)

Πµ, 2P(n · p, n̄ · p) = −i f̃B(µ)mB

∑
i=±

∫ ∞
0

dω

n̄ · p− ω − ωc + i0
(3.1)

×
[
Ci,n(n · p) Ji,n(n̄ · p, ω)nµ + Ci,n̄(n · p) Ji,n̄(n̄ · p, ω) n̄µ

]
φiB(ω) ,

at leading power in HQE. We will compute the hard matching coefficients Ci,k (i = ±, k =

n or n̄) and the jet functions Ji,k at next-to-leading order (NLO) in αs manifestly and

perform QCD resummation for the large logarithms in the hard functions at NLL accuracy

with the RG evolution in momentum space. Since the perturbative matching coefficients

must be independent of the external partonic states in the OPE calculation, we will choose

the initial state to be of the minimal quark and gluon degrees of freedom |b(pb) q̄(k)〉 for

the convenience.

3.1 Perturbative matching functions at NLO

The NLO hard and jet functions entering the factorization formula (3.1) can be extracted

by computing the leading power contributions of the one-loop QCD diagrams displayed in

– 6 –
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(a) (b) (c) (d)

Figure 2. Diagrammatical representation of the two-particle contribution to the vacuum-to-B-

meson correlation function Πµ(n · p, n̄ · p) defined in (2.1) at O(αs).

figure 2 from the hard and hard-collinear regions. It is evident that the soft contributions

to the above-mentioned QCD diagrams at leading power in Λ/mb will be cancelled out

precisely by the infrared subtraction terms following the presentation [15] and we will

mainly focus on the hard and hard-collinear contributions of the one-loop diagrams in

figure 2 in the following.

3.1.1 Weak vertex diagram

We are now ready to compute the one-loop correction to the weak vertex diagram displayed

in figure 2 (a)

Π
(1)
µ,weak=

ig2
s CF

(p−k)2−m2
c+i0

∫
dD l

(2π)D
1

[(p−k+l)2−m2
c+i0][(mbv+l)2−m2

b+i0][l2+i0]

×q̄(k)/n γ5(/p− /k +mc) γρ (/p− /k + /l +mc) γµ (mb/v + /l +mb) γ
ρ b(v) , (3.2)

where the external bottom and light quarks are taken to be on the mass-sell with the

momenta mb v and k (with k2 = 0). Employing the power counting scheme for the external

momenta

n · p ∼ O(mb) n̄ · p ∼ O(Λ) k ∼ O(Λ) , (3.3)

it is straightforward to identify that the leading power contributions to the scalar integral

I1 =

∫
dD l

(2π)D
1

[(p− k + l)2 −m2
c + i0][(mbv + l)2 −m2

b + i0][l2 + i0]
(3.4)

come from the hard, hard-collinear and soft regions of the loop momentum. Evaluating

the hard contribution from the weak vertex diagram yields

Π
(1), h
µ,weak = − 1

n̄ · p− n̄ · k − ωc

[
n̄µ C

(weak)
h,n̄ (n · p) + nµ C

(weak)
h,n (n · p)

]
q̄(k)/n γ5 b(v) , (3.5)

where the two hard functions are given by

C
(weak)
h,n̄ (n · p) = −αsCF

4π

[
1

ε2
+

1

ε

(
2 ln

µ

n · p
+ 1

)
+ 2 ln2 µ

n · p
+ 2 ln

µ

mb

−2 Li2

(
1− 1

r

)
− ln2 r +

2− r
r − 1

ln r +
π2

12
+ 3

]
,

C
(weak)
h,n (n · p) = −αsCF

4π

[
1

r − 1

(
1 +

r

1− r
ln r

)]
, (3.6)

– 7 –
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with r = n · p/mb.

The hard-collinear contribution to the weak vertex diagram can be further computed

by expanding (3.2), in the hard-collinear region, at leading power in Λ/mb

Π
(1), hc
µ,weak =

i g2
s CF

n̄ · p−n̄ · k−ωc

∫
dD l

(2π)D
2n · (p+l) n̄µ

[n · (p+l) n̄ · (p−k+l)+l2⊥−m2
c+i0][n · l+i0][l2+i0]

×d̄(k)/n γ5 b(v)

= − 1

n̄ · p− n̄ · k − ωc

[
n̄µ J

(weak)
−,n̄ (n̄ · p)

]
q̄(k)/n γ5 b(v) . (3.7)

Applying the results of loop integrals presented in appendix A leads to

J
(weak)
−,n̄ (n̄ · p)=

αsCF
4π

{
2

ε2
+

2

ε

[
ln

µ2

n · p (ω − n̄ · p)
− ln (1 + r1) + 1

]
+ ln2 µ2

n · p (ω − n̄ · p)

+ 2 ln
µ2

n · p (ω − n̄ · p)
− 2 ln(1 + r1)

[
ln

µ2

n · p (ω − n̄ · p)
+ 1

]
+ ln2(1 + r1)

+ 2 r1 ln

(
r1

1 + r1

)
− 2 Li2

(
1

1 + r1

)
+
π2

6
+ 4

}
, (3.8)

with r1 = m2
c/ [n · p n̄ · (k − p)] and ω ≡ n̄ · k. It is apparent that our result of J

(weak)
−,n̄

reproduces the hard-collinear contribution to the weak vertex diagram, displayed in (29)

of [15], for constructing the sum rules of B → π form factors in the mc → 0 (i.e., r1 → 0)

limit.

Proceeding in a similar manner, we can extract the soft contribution to the weak vertex

diagram by expanding (3.2) in the soft region

Π
(1), s
µ,weak =

i g2
s CF

n̄ · p− n̄ · k − ωc

∫
dD l

(2π)D
n̄µ

[n̄ · (p− k + l)− ωc + i0][v · l + i0][l2 + i0]

×q̄(k)/n γ5 b(v) , (3.9)

which is precisely the same as the soft subtraction term defined by the convolution integral

of the partonic DA of the B-meson at NLO in αs, calculable from the Wilson-line Feynman

rules, and the tree-level short-distance function (see [15] for more discussion). We are then

led to conclude that the soft QCD dynamics of the weak vertex diagram is indeed charac-

terized by the B-meson DA at leading power in Λ/mb, independent of the renormalization

scheme.

3.1.2 D-meson vertex diagram

We turn to compute the one-loop QCD correction to the D-meson vertex diagram displayed

in figure 2(b)

Π
(1)
µ,D = − i g2

s CF
n · p (n̄ · p− ω − ωc)

∫
dD l

(2π)D
1

[(p− l)2 −m2
c + i0][(l − k)2 + i0][l2 + i0]

×q̄(k) γρ /l /n γ5 (/p− /l +mc) γ
ρ (/p− /k +mc) γµ b(v) . (3.10)

Inspecting the scalar integral and the Dirac algebra of (3.10) with the power counting

scheme (3.3), one can verify that the leading power contributions to the D-meson vertex

– 8 –
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diagram only arise from the hard-collinear and soft regions of the loop momentum. As

already discussed in [15], it turns out to be more apparent to compute the loop integrals

directly and then to expand the obtained expression up to the leading power in Λ/mb,

instead of applying the strategy of regions. Employing the results of loop integrals collected

in appendix A and the light-cone projector of the B-meson in momentum space derived

in [35, 36] yields

Π
(1)
µ,D = Π

(1), hc
µ,D = − i f̃B(µ)mB

n̄ · p− ω − ωc

{
n̄µ φ

−
B(ω) J

(D)
−,n̄(n̄ · p) + nµ φ

+
B(ω) J

(D)
+,n(n̄ · p) (3.11)

− mc

n̄ · p
φ+
B(ω) n̄µ J

(D)
+,n̄(n̄ · p)− 2m2

c

p2

[
n̄µ φ

−
B(ω) + nµ φ

+
B(ω)

]
δJ (D)(n̄ · p)

}
,

where we have introduced the following jet functions

J
(D)
−,n̄(n̄ · p)=

αsCF
4π

{[
2(1 + r2)

r3
ln

(
1 + r2 + r3

1 + r2

)
− 1

] [
1

ε
+ ln

(
−µ

2

p2

)]
−2(1 + r2)

r3

[
Li2

(
1

1 + r2

)
− Li2

(
1 + r3

1 + r2 + r3

)]
+ ln (1 + r2)

−1 + r2

r3
ln

(
1 + r2 + r3

1 + r2

) [
ln

(
1 + r2 + r3

1 + r2

)
− 2(2 + r3)(1 + r2 + r3)

(1 + r2)(1 + r3)

+2 ln (1+r2)

]
+
r2 [r2(1+r3)−2]

1 + r3
ln

(
1+r2

r2

)
−(4+r2)

}
, (3.12)

J
(D)
+,n(n̄ · p)=

αsCF
4π

{
(1+r3)2−r2

2

r3(1 + r3)
ln

(
1+r2+r3

1 + r2

)
+
r2

2(2+r3)

1 + r3
ln

(
1+r2

r2

)
−r2

}
, (3.13)

J
(D)
+,n̄(n̄ · p)=

αsCF
4π

{
(1 + r2 + r3)2

r3(1 + r3)2
ln

(
1 + r2 + r3

1 + r2

)
+

r2

1 + r3

−r2 [2(1 + r3) + r2(2 + r3)]

(1 + r3)2
ln

(
1 + r2

r2

)}
, (3.14)

δJ (D)(n̄ · p)=
αsCF

4π

{
1+r2+r3

r3(1+r3)
ln (1+r2+r3)− 1+r2

r3
ln (1+r2)+

r2

1+r3
ln r2

}
, (3.15)

with

r2 = −m
2
c

p2
, r3 = − n̄ · k

n̄ · p
. (3.16)

Here, we have taken advantage of the fact that the soft contribution to the D-meson vertex

diagram vanishes in dimensional regularization (a similar observation already made in [15]).

Several remarks on the resulting expressions for the QCD correction to the D-meson

vertex diagram presented in (3.11) are in order.

• It is evident that the linear term in the charm-quark mass corresponds to the power

enhanced effect compared to the remaining contributions due to the power counting

scheme mc ∼ O
(√

Λmb

)
and n̄ · p ∼ O(Λ). This observation can be readily un-

derstood from the fact that the strange-quark mass effect in B → K form factors

is suppressed by ms/Λ, but not power of ms/mb, compared to the leading power

contribution in HQE [17], and the charm-quark mass effect would naturally gener-

ate corrections to B → D form factors with a scaling factor of mc/Λ ∼ O(
√
mb/Λ)
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in light of our power counting scheme. (This clearly does not imply an expansion

of mc/Λ in the QCD calculation of the correlation function (2.1).) To develop a

better understanding of such power-enhancement mechanism, we inspect the linear

charm-quark mass term in (3.10) before performing the loop integration

Π
(1),mc
µ,D = − i g2

s CF
n̄ · p− ω − ωc

mc

n · p
n̄µ q̄(k) /̄n γ5 b(v)

×
∫

dD l

(2π)D
(D − 2) (n · l)2

[(p− l)2 −m2
c + i0][(l − k)2 + i0][l2 + i0]

. (3.17)

As the loop integral in the hard-collinear region induces a power-enhanced factor

O (mb/Λ), one can then identify the scaling behaviour of the charm-quark mass

term as O(
√
mb/Λ) with respect to the tree-level contribution. Furthermore, one

can investigate the charm-quark mass effect directly in the context of B → D form

factors applying the QCD factorization approach. A straightforward calculation of

the spectator interaction diagram with a hard-collinear gluon exchange between the

energetic charm quark and the light spectator quark yields

〈D(p)|c̄ γµ b|B̄(pB)〉HSI ∝ αsCF
Nc

mc

n · p
n̄µ

∫ 1

0
du

φD(u)

ū

∫ ∞
0

dω
φ+
B(ω)

ω2
+ . . . , (3.18)

where φD(u) is the twist-2 DA of the D-meson on the light cone. It is evident that the

second convolution integral in (3.18) suffers from the end-point divergence and the

above-mentioned charm-quark mass effect should be identified as the non-factorizable

contribution to B → D form factors.

• Since there is no power enhanced contribution proportional to the charm-quark mass

at tree level, the NLO jet function J
(D)
+,n̄(n̄ · p) must be infrared finite to validate the

factorization formula (3.1) for the considered correlation function.

• Setting mc → 0 (namely r2 → 0), our results of J
(D)
−,n̄(n̄ · p) and J

(D)
+,n(n̄ · p) will

be reduced to the corresponding hard-collinear contributions from the pion vertex

diagram as displayed in (38) of [15].

• Applying the Wilson-line Feynman rules, one can easily verify that the soft contri-

bution to the D-meson vertex diagram, at leading power in Λ/mb, is cancelled out

precisely by the corresponding soft subtraction term.

3.1.3 Wave function renormalization

We proceed to compute the self-energy correction to the intermediate charm-quark propa-

gator shown in figure 2(c). With the expressions of loop integrals collected in appendix A,

we obtain

Π
(1)
µ,wfc = − 1

n̄ · p− n̄ · k − ωc

[
n̄µ J

(wfc)
−,n̄ (n̄ · p)

]
q̄(k)/n γ5 b(v) , (3.19)
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which is apparently free of soft and collinear divergences. The resulting jet function reads

J
(wfc)
−,n̄ (n̄ · p)=

αsCF
4π

[
J

(wfc, 1)
−,n̄ (n̄ · p)− 2 r1

1 + r1
J

(wfc, 2)
−,n̄ (n̄ · p)

]
, (3.20)

J
(wfc, 1)
−,n̄ (n̄ · p)=−

{
1

ε
+ln

(
− µ2

(p−k)2

)
+r2

1 ln

(
1+r1

r1

)
−ln (1+r1)+1−r1

}
, (3.21)

J
(wfc, 2)
−,n̄ (n̄ · p)=

3

ε
+3 ln

(
− µ2

(p−k)2

)
−r1(r1+4) ln

(
1+r1

r1

)
−3 ln (1+r1)+r1+5 , (3.22)

where the ultraviolet divergence of J
(wfc, 2)
−,n̄ will be subtracted after the charm-quark mass

renormalization dependent on the subtraction scheme. We will employ the MS renormal-

ization scheme for the charm-loop mass, which is appropriate for a Lagrange parameter

entering the short-distance matching function in the OPE calculation, and more discussion

on the renormalization schemes of the charm-quark mass can be found in [12].

It is straightforward to compute the matching coefficients from the wave function

renormalization of the external quarks

Π
(1)
µ, bwf−Φ

(1)
bq̄,bwf ⊗ T

(0)
µ =− 1

n̄ · p−n̄ · k−ωc

[
n̄µ C

(bwf)
−,n̄ (n · p)

]
q̄(k)/n γ5 b(v) , (3.23)

Π
(1)
µ, qwf−Φ

(1)
bq̄,qwf ⊗ T

(0)
µ = 0 , (3.24)

where Φbq̄ indicates the partonic DA of the B-meson defined in (12) of [15], the tree-level

hard kernel T
(0)
µ can be readily deduced from (2.3) and the explicit expression of C

(bwf)
−,n̄ is

given by

C
(bwf)
−,n̄ (n · p) = −αsCF

8π

[
3

ε
+ 3 ln

µ2

m2
b

+ 4

]
. (3.25)

3.1.4 Box diagram

The one-loop QCD correction to the box diagram displayed in figure 2(d) can be further

computed as

Π
(1)
µ, box=−ig2

sCF

∫
dD l

(2π)D
1

[(pb+l)2−m2
b+i0][(p−k+l)2−m2

c+i0][(k−l)2+i0][l2+i0]

×q̄(k) γρ (/k − /l)/n γ5 (/p− /k + /l +mc) γµ (/pb + /l +mb) γ
ρ b(v) . (3.26)

Taking advantage of the power counting scheme (3.3), one can identify that the leading

power contributions to the box diagram come from the hard-collinear and soft regions of

the loop momentum. Expanding the QCD expression of the box diagram (3.26) in the

hard-collinear region to the leading power in Λ/mb yields

Π
(1), hc
µ, box = − i g

2
s CF
mb

∫
dD l

(2π)D
q̄(k) [(D − 2)n · l /̄n− 2mb /n] γ5 b(v) (3.27)

× n · (p+ l) n̄µ
[n · (p+ l) n̄ · (p− k + l) + l2⊥ −m2

c + i0][n · l n̄(l − k) + l2⊥ + i0][l2 + i0]
.
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Employing the results of loop integrals collected in appendix A and the momentum-space

projector of the B-meson leads to

Π
(1),hc
µ, box = − i f̃B(µ)mB

n̄ · p− ω − ωc
n̄µ

{
φ−B(ω) J

(box)
−,n̄ (n̄ · p) + φ+

B(ω) J
(box)
+,n̄ (n̄ · p)

}
, (3.28)

J
(box)
−,n̄ =

αsCF
2π

(1 + r1)(1 + r3)

r3

{
ln

(
1− r4

1 + r1

)[
1

ε
+ ln

(
µ2

n · p (ω − n̄ · p)

)
−1

2
ln

(
1− r4

1 + r1

)
− ln (1 + r1) + 1 +

r1

1− r4

]
+ Li2

(
1− r1

1 + r1 − r4

)
−Li2

(
1

1 + r1

)
− r1r4

1− r4
ln

(
r1

1 + r1

)}
, (3.29)

J
(box)
+,n̄ =

αsCF
4π

(1 + r1)(1 + r3)

r3
r

{(
r2

1

(1− r4)2
− 1

)
ln (1− r4 + r1)− r1 r4

1− r4

+ (1− r2
1) ln (1 + r1)− r2

1 r4 (2− r4)

(1− r4)2
ln r1

}
, (3.30)

where r4 = r3/(1 + r3) with r3 defined in (3.16). One can readily verify that the resulting

jet functions J
(box)
−,n̄ and J

(box)
+,n̄ reproduce the hard-collinear contribution to the one-loop box

diagram for the vacuum-to-B-meson correlation function with a pion interpolating current

as presented in (52) of [15], in the mc → 0 limit.

The soft contribution to the one-loop box diagram at leading power in Λ/mb can be

further extracted from (3.26) as follows

Π
(1), s
µ, box = −g

2
s CF
2

∫
dD l

(2π)D
1

[v · l + i0][n̄ · (p− k + l)− ωc + i0][(k − l)2 + i0][l2 + i0]

×q̄(k) /v (/k − /l) /n γ5 /̄n γµ b(v) , (3.31)

which is precisely the same as the soft subtraction term Φ
(1)
bq̄,box ⊗ T

(0)
µ computed with the

Wilson-line Feynman rules. We then conclude that the soft dynamics of the vacuum-to-B-

meson correlation function under discussion is indeed parameterized by the light-cone DA

of the B-meson in HQET.

3.1.5 The NLL hard and jet functions

Now we are in a position to present the one-loop hard and jet functions entering the factor-

ization formula (3.1) with resummation of the large logarithms by solving the corresponding

RG equations in momentum space. Putting different pieces together, we first derive the

renormalized hard coefficients including the O(αs) corrections

C+,n = C+,n̄ = 1 , C−,n = C
(weak)
h,n = −αsCF

4π

[
1

r − 1

(
1 +

r

1− r
ln r

)]
,

C−,n̄ = 1 + C
(weak)
h,n̄ +

[
Π

(1)
µ, bwf − Φ

(1)
bq̄,bwf ⊗ T

(0)
µ

]
= 1− αsCF

4π

[
2 ln2 µ

n · p
+ 5 ln

µ

mb
− 2 Li2

(
1− 1

r

)
− ln2 r +

2− r
r − 1

ln r

+
π2

12
+ 5

]
, (3.32)
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and the renormalized jet functions at one-loop accuracy are given by

J+,n = J
(D)
+,n−

2m2
c

p2
δJ (D)

=
αsCF

4π

{
(1+r2+r3)2

r3(1+r3)
ln

(
1+r2+r3

1+r2

)
+

r2

1+r3

[
r2r3 ln

(
1+r2

r2

)
−r3−1

]}
, (3.33)

J+,n̄ = −mc

n̄·p
J

(D)
+,n̄+J

(box)
+,n̄

=
αsCF

4π

{
− mc

n̄·p

[
(1+r2+r3)2

r3(1+r3)2
ln

(
1+r2+r3

1+r2

)
+

r2

1+r3

−r2 [2(1+r3)+r2(2+r3)]

(1+r3)2
ln

(
1+r2

r2

)]
+
r (1+r2+r3)

(1+r3)2

×
[

(1+r3)2−r2
2

r3
ln

(
1+r2+r3

1+r2

)
+r2

2(r3+2) ln

(
1+r2

r2

)
−r2(1+r3)

]}
, (3.34)

J−,n = 1 , (3.35)

J−,n̄ = 1+

[
J

(weak)
−,n̄ +J

(D)
−,n̄−

2m2
c

p2
δJ (D)+J

(wfc)
−,n̄ +J

(box)
−,n̄

]
= 1+

αsCF
4π

{
ln2

(
µ2

n·p (ω−n̄·p)

)
−2

[
ln

(
(1+r2+r3)2

(1+r2)(1+r3)

)
+

3r2

1+r2+r3

]
× ln

(
µ2

n·p (ω−n̄·p)

)
+2 ln2 (1+r2+r3)−4 ln (1+r2+r3) ln (1+r3)

+ ln2 (1+r3)+

[
2(1+r2)

r3
+
r2 (r2+2(1+r3))

(1+r3)2
−1

]
ln (1+r2+r3)

+2

[
ln (1+r2)− 3r2

1+r2+r3

]
ln (1+r3)+

(1+r2)(r3(1+r2)−2)

r3
ln (1+r2)

− ln2 (1+r2)+r2

[
6

1+r2+r3
− r2

(1+r3)2
− 2

1+r3
−r2−2

]
ln r2+

π2

6
−1

−4 Li2

(
1+r3

1+r2+r3

)
+2 Li2

(
1

1+r2

)
−r2

[
8

1+r2+r3
+

1

1+r3
+1

]}
. (3.36)

It is apparent that the hard functions C−,n and C−,n̄ are identical to the perturbative

matching coefficients of the weak current q̄ γµ (1 − γ5) b from QCD onto SCET, as dis-

cussed in [15], due to the power counting rule of the charm-quark mass displayed in (2.2).

However, the hard-collinear functions entering the factorization formula (3.1) turn out to

be significantly more involved, due to the massive charm-quark effect, than the counterpart

jet functions for the massless hard-collinear quark.

To verify the factorization-scale independence of the correlation function Πµ at O(αs),

we make use of the RG evolution equation of the charm-quark mass [37, 38]

d lnmc(µ)

d lnµ
= −

∑
n=0

(
αs(µ)

4π

)n+1

γ(n)
m , γ(0)

m = 6CF , (3.37)
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it is then straightforward to write down

d

d lnµ
Πµ, 2P(n · p, n̄ · p) = −i f̃B(µ)mB

αsCF
4π

∫ ∞
0

dω
φ−B(ω, µ)

n̄ · p− ω − ωc − i0
(3.38)

×
{

12 r2

1 + r2 + r3
+ 4

[
ln

(
µ2

n · p (ω − n̄ · p)

)
− ln

(
(1 + r2 + r3)2

(1 + r2)(1 + r3)

)
− 3r2

1 + r2 + r3

]
−
[
4 ln

(
µ

n · p

)
+ 5

]}
− imB

∫ ∞
0

dω

n̄ · p− ω − ωc − i0
d

d lnµ

[
f̃B(µ)φ−B(ω, µ)

]
,

where the three terms in the bracket arise from the RG running of the charm-quark mass,

the jet function J−,n̄ and the hard function C−,n̄, respectively. Applying the one-loop

evolution equation of the B-meson DA φ−B(ω, µ) in the absence of the light-quark mass effect

d

d lnµ

[
f̃B(µ)φ−B(ω, µ)

]
= −αsCF

4π

∫ ∞
0

dω′H(1)
− (ω, ω′, µ)

[
f̃B(µ)φ−B(ω′, µ)

]
, (3.39)

where the renormalization kernel H(1)
− (ω, ω′, µ) can be found in [39, 40], we can readily

compute the last term of (3.38) as

−imB

∫ ∞
0

dω

n̄ · p− ω − ωc − i0
d

d lnµ

[
f̃B(µ)φ−B(ω, µ)

]
(3.40)

= i f̃B(µ)mB
αsCF

4π

∫ ∞
0
dω

φ−B(ω, µ)

n̄ · p− ω − ωc − i0

[
4 ln

(µ
ω

)
−4 ln

(
(1 + r2 + r3)2

(1 + r2)r3

)
−5

]
.

Substituting (3.40) into (3.38) immediately leads to

d

d lnµ
Πµ, 2P(n · p, n̄ · p) = O(α2

s) , (3.41)

indicating that the correlation function computed from the factorization formula (3.1) is

indeed independent of the renormalization scale to the one-loop accuracy.

We will proceed to perform the summation of parametrically large logarithms in the

perturbative expansion of the hard matching coefficients at NLL by applying the corre-

sponding RG equations in momentum space. Following the arguments of [41], we will not

aim at summing over logarithms of µ/µ0, with µ0 being a hadonic scale of O(Λ), from

the RG evolution of the B-meson DA φ−B(ω, µ), since we will take the factorization scale

µ as a hard-collinear scale µhc ∼ O
(√

Λmb

)
which is quite close to the hadronic scale µ0

numerically. Employing the RG equations for the hard coefficient C−,n̄(n · p, µ) and the

static B-meson decay constant f̃B(µ)

dC−,n̄(n · p, µ)

d lnµ
=

[
−Γcusp(αs) ln

µ

n · p
+ γ(αs)

]
C−,n̄(n · p, µ) ,

df̃B(µ)

d lnµ
= γ̃(αs) f̃B(µ) , (3.42)

where the various anomalous dimensions can be inferred from [41]. To achieve the re-

summation improved factorization formula for the considered correlation function at NLL
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accuracy, the cusp anomalous dimension Γcusp(αs) needs to be expanded at the three-loop

accuracy, while the soft anomalous dimensions γ(αs) and γ̃(αs) need to be expanded up

to two loops. The NLL resummation improved expressions for C−,n̄ and f̃B can be further

computed as

C−,n̄(n · p, µ) = U1(n · p, µh1, µ)C−,n̄(n · p, µh1) ,

f̃B(µ) = U2(n · p, µh2, µ) f̃B(µh2) , (3.43)

where the explicit expressions of the evolution functions U1 and U2 can be found in [20].

It is then a straightforward task to deduce the (partial) NLL resummation improved fac-

torization formula for the correlation function Πµ

Πµ, 2P(n·p, n̄·p) = −i
[
U2(n·p, µh2, µ) f̃B(µh2)

]
mB

∫ ∞
0

dω

n̄·p−ω−ωc+i0

×
{[
C+,n(n·p, µ) J+,n(n̄·p, ω, µ)nµ+C+,n̄(n·p, µ) J+,n̄(n̄·p, ω, µ) n̄µ

]
φ+
B(ω, µ)

+

[
C−,n(n·p, µ) J−,n(n̄·p, ω, µ)nµ+U1(n·p, µh1, µ)C−,n̄(n·p, µh1) J−,n̄(n̄·p, ω, µ) n̄µ

]
×φ−B(ω, µ)

}
, (3.44)

where µh1 and µh2 are the hard scales of O(mb) and the factorization scale µ needs to be

taken at a hard-collinear scale O(
√
mb Λ).

3.2 The NLL LCSR for B → D form factors

We are now ready to derive the (partial) NLL resummation improved sum rules for the

vector and scalar B → D form factors. To this end, it is mandatory to work out the

spectral representation of the factorization formula for Πµ obtained in the above, which

turns out to be a nontrivial task compared to the construction of the B-meson LCSR for

B → π form factors [15]. Applying the dispersion representations of convolution integrals

collected in appendix B yields

Πµ, 2P(n · p, n̄ · p) = −i
[
U2(n · p, µh2, µ) f̃B(µh2)

]
mB

∫ ∞
0

dω′

ω′ − n̄ · p− i0
(3.45)

×
{
C+,n(n · p, µ) Φeff

+,n(ω′, µ)nµ + C+,n̄(n · p, µ) Φeff
+,n̄(ω′, µ) n̄µ

+C−,n(n · p, µ) Φeff
−,n(ω′, µ)nµ + U1(n · p, µh1, µ)C−,n̄(n · p, µh1) Φeff

−,n̄(ω′, µ) n̄µ

}
,

where we have introduced the “effective” DA Φeff
i,k(ω

′, µ) (i = ±, k = n or n̄) absorbing the

hard-collinear QCD corrections to the correlation function

Φeff
+,n(ω′, µ) =

αsCF
4π

{
ωc
ω′

[
ω′ − ωc
ω′

ln

∣∣∣∣ωc − ω′ωc

∣∣∣∣− 1

]
φ+
B(ω′ − ωc) θ(ω′ − ωc)

−
[
ωc ln

∣∣∣∣ωc − ω′ωc

∣∣∣∣ δ′(ω′)− δ(ω′)] ∫ ∞
0

dω
ωc

ω + ωc
φ+
B(ω)
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+ θ(ω′ − ωc)
∫ ∞

0
dω

[
ω ωc

(ω + ωc)2

(
P 1

ω′ − ω − ωc
− 1

ω′

)
+
ωc
ω

1

ω′

+
ω2
c

ω + ωc

1

ω′2
− θ(ω + ωc − ω′)

ω
+
ωc
ω

θ(ω′ − ω − ωc)
ω − ω′

]
φ+
B(ω)

}
, (3.46)

Φeff
+,n̄(ω′, µ) =

αsCF
4π

{
mc

[(
1

ω′−ωc
− 1

ω′
−ωc−ω

′

ω′2
ln

∣∣∣∣ωc−ω′ωc

∣∣∣∣) φ+
B(ω′−ωc) θ(ω′−ωc)

+
ωc
ω′
θ(ω′ − ωc)

∫ ∞
0

dω
d

dω

φ+
B(ω)

ω
−
(
δ(ω′)− ωc ln

∣∣∣∣ωc − ω′ωc

∣∣∣∣ δ′(ω′))
×
∫ ∞

0
dω

ωc
ω(ω + ωc)

φ+
B(ω)−

∫ ∞
0

dω
θ(ω′ − ω − ωc)

ω′ − ω

(
1 + ωc

d

dω

)
φ+
B(ω)

ω

+ θ(ω′ − ωc)
∫ ∞

0
dω

(
ω

(ω + ωc)2
P 1

ω′ − ω − ωc
+
ωc(2ω + ωc)

ω(ω + ωc)2

1

ω′

− ω2
c

ω(ω + ωc)

1

ω′2

)
φ+
B(ω)

]
+ r

[
θ(ω′ − ωc)

ω2
c

ω′2

∫ ∞
0

dω

(
1− ω′ d

dω

)
φ+
B(ω)

ω

−θ(ω′ − ωc)
∫ ∞

0
dω θ(ω + ωc − ω′)

(
1− ωc

d

dω

)
φ+
B(ω)

ω

+

∫ ∞
0

dω θ(ω′ − ω − ωc)
ω2
c

ω′ − ω
d

dω

φ+
B(ω)

ω

+ωc

(
δ(ω′)− ωc ln

∣∣∣∣ωc − ω′ωc

∣∣∣∣ δ′(ω′)) ∫ ∞
0

dω
φ+
B(ω)

ω

]}
, (3.47)

Φeff
−,n(ω′, µ) = −φ−B(ω′ − ωc) θ(ω′ − ωc) , (3.48)

Φeff
−,n̄(ω′, µ) = −φ−B(ω′ − ωc) θ(ω′ − ωc) +

αsCF
4π

{
φ−B(ω′ − ωc) θ(ω′ − ωc) ρ(1)

−,n̄(ω′)

+

[
d

dω′
φ−B(ω′ − ωc)

]
θ(ω′ − ωc) ρ(2)

−,n̄(ω′) + φ−B(ω′) ρ
(3)
−,n̄(ω′) + φ−B(0) ρ

(4)
−,n̄(ω′)

+

∫ ∞
0

dω φ−B(ω) ρ
(5)
−,n̄(ω, ω′) +

∫ ∞
0

dω

[
d

dω
φ−B(ω)

]
ρ

(6)
−,n̄(ω, ω′)

}
+

∫ ∞
0

dω

[
d

dω

φ−B(ω)

ω

]
ρ

(7)
−,n̄(ω, ω′)

}
, (3.49)

with P indicating the principle-value prescription. The tedious expressions of the coefficient

functions ρ
(i)
−,n̄ in (3.49) are collected in appendix C. Applying the standard strategy to con-

struct the sum rules for hadronic transition form factors by matching (3.45) and (2.8) with

the aid of the parton-hadron duality approximation and the Borel transformation leads to

fD Exp

[
−

m2
D

n · p ωM

] {
n · p
mB

f+
BD, 2P(q2) , f0

BD, 2P(q2)

}
(3.50)

= −
[
U2(n · p, µh2, µ) f̃B(µh2)

] ∫ ωs

0
dω′ Exp

[
− ω′

ωM

]
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Figure 3. Diagrammatical representation of the three-particle contributions to the vacuum-to-B-

meson correlation function Πµ(n · p, n̄ · p) defined in (2.1) at tree level.

×
{
C+,n̄(n · p, µ) Φeff

+,n̄(ω′, µ) + U1(n · p, µh1, µ)C−,n̄(n · p, µh1) Φeff
−,n̄(ω′, µ)

±n · p−mB

mB

[
C+,n(n · p, µ) Φeff

+,n(ω′, µ) + C−,n(n · p, µ) Φeff
−,n(ω′, µ)

]}
,

which serves as the master formula for the two-particle contributions to B → D form fac-

tors obtained in this paper. It is evident that the symmetry-breaking corrections to the

form-factor relation (2.9) arise from both hard and hard-collinear fluctuations as displayed

in the last line of (3.50), and the power enhanced contribution due to the charm-quark mass

effect preserves the large-recoil symmetry relation. The symmetry relations of B → D form

factors at large hadronic recoil could be also obtained in SCET with massive collinear quark

fields by generalizing the discussion for heavy-to-light form factors [42–45] and we leave a

systematic investigation of the SCET formulation of B → D form factors for future work.

4 Three-particle contributions to the LCSR at tree level

The objective of this section is to compute the tree-level contribution to the sum rules of

B → D form factors from the three-particle B-meson DA. To this end, we first need to

demonstrate QCD factorization for the three-particle contributions to the correlation func-

tion (2.1) with space-like interpolating momentum, which can be achieved by evaluating

the diagram displayed in figure 3 with the aid of the light-cone OPE.

Employing the massive quark propagator near the light cone from the background

gluon field method [46–48]

S(x, 0,mc) = 〈0|T {c̄(x), c(0)}|0〉 (4.1)

⊃ i

∫ ∞
0

d4k

(2π)4
e−i k·x

∫ 1

0
du

[
uxµ γν
k2 −m2

c

− (/k +mc)σµν
2 (k2 −m2

c)
2

]
Gµν(ux) ,
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with Gµν = gs T
aGaµν , it is then straightforward to derive the factorization formula

Πµ, 3P(n · p, n̄ · p) = − i f̃B(µ)mB

n · p

∫ ∞
0

dω

∫ ∞
0

dξ

∫ 1

0
du

{
ρ̃2,n(u, ω, ξ)

(n̄ · p− ω − u ξ − ωc)2
nµ

+

[
ρ̃2,n̄(u, ω, ξ)

(n̄ · p− ω − u ξ − ωc)2
+

ρ̃3,n̄(u, ω, ξ)

(n̄ · p− ω − u ξ − ωc)3

]
n̄µ

}
, (4.2)

where the coefficient functions ρ̃i,k(u, ω, ξ) are given by

ρ̃2,n(u, ω, ξ) = 2 (u− 1) [ψV (ω, ξ) + ψA(ω, ξ)] ,

ρ̃2,n̄(u, ω, ξ) = −ψV (ω, ξ) + (2u− 1)ψA(ω, ξ) ,

ρ̃3,n̄(u, ω, ξ) = 2 (2u− 1)
[
X̄A(ω, ξ)− 2 ȲA(ω, ξ)

]
. (4.3)

The appeared three-particle DA of the B-meson can be defined by the position-space matrix

element on the light cone [49, 50]

〈0|q̄α(x) Gλ ρ(ux) bvβ(0)|B̄(v)〉
∣∣
x2=0

=
f̃B(µ)mB

4

∫ ∞
0
dω

∫ ∞
0
dξ e−i(ω+u ξ) v·x

[
(1 + /v)

{
(vλ γρ − vρ γλ) [ΨA(ω, ξ)−ΨV (ω, ξ)]

−i σλρ ΨV (ω, ξ)− xλvρ − xρvλ
v · x

XA(ω, ξ) +
xλγρ − xργλ

v · x
YA(ω, ξ)

}
γ5

]
βα

, (4.4)

where we have neglected the soft Wilson lines to maintain the gauge invariance of the string

operator on the left-hand side. The following conventions

X̄A(ω, ξ) =

∫ ω

0
dη XA(η, ξ) , ȲA(ω, ξ) =

∫ ω

0
dη YA(η, ξ) , (4.5)

are further introduced in (4.3) for convenience. Our current understanding of the model

independent properties of the three-particle quark-gluon B-meson DA is limited to the

twist-3 DA Φ3(ω, ξ) ≡ ΨA(ω, ξ) − ΨV (ω, ξ) which was shown to be completely integrable

in the large Nc limit and to be solvable exactly at one loop [51]. Investigating perturbative

QCD constraints on the higher-twist B-meson DA from the OPE analysis in the partonic

picture and from the renormalization evolution equations in momentum (or “dual”) space,

along the lines of [52, 53], would be interesting for future work.

Expressing the factorization formula for the three-particle contributions to the correla-

tion function Πµ, 3P in a dispersion form with respect to the variable n̄ ·p and implementing

the continuum subtraction with the aid of the parton-hadron duality relation as well as

the Borel transformation lead to the following sum rules

fD Exp

[
−

m2
D

n · p ωM

] {
n · p
mB

f+
BD, 3P(q2) , f0

BD, 3P(q2)

}
= − f̃B(µ)

n · p

[
F3P,n̄(ωs, ωM ) ∓ mB − n · p

mB
F3P,n(ωs, ωM )

]
, (4.6)
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where the explicit expressions of the coefficient functions F3P,n̄ and F3P,n are

F3P,n̄(ωs, ωM ) =

∫ ωs−ωc

0
dω

∫ ∞
ωs−ωc−ω

dξ

ξ
Exp

(
− ωs
ωM

)
(4.7)

×
[
ρ̃2,n̄(u, ω, ξ)− 1

2

(
d

dω
+

1

ωM

)
ρ̃3,n̄(u, ω, ξ)

] ∣∣∣∣
u=ωs−ωc−ω

ξ

+

∫ ωs

ωc

dω′
∫ ω′−ωc

0
dω

∫ ∞
ω′−ωc−ω

dξ

ξ

1

ωM
Exp

(
− ω′

ωM

)
×
[
ρ̃2,n̄(u, ω, ξ)− 1

2ωM
ρ̃3,n̄(u, ω, ξ)

] ∣∣∣∣
u=ω′−ωc−ω

ξ

,

F3P,n(ωs, ωM ) =

∫ ωs−ωc

0
dω

∫ ∞
ωs−ωc−ω

dξ

ξ
Exp

(
− ωs
ωM

)
ρ̃2,n(u, ω, ξ)

∣∣∣∣
u=ωs−ωc−ω

ξ

(4.8)

+

∫ ωs

ωc

dω′
∫ ω′−ωc

0
dω

∫ ∞
ω′−ωc−ω

dξ

ξ

1

ωM
Exp

(
− ω′

ωM

)
ρ̃2,n(u, ω, ξ)

∣∣∣∣
u=ω′−ωc−ω

ξ

.

It is evident from (4.6) that the large-recoil symmetry breaking effect between the vector

and scalar B → D form factors can be induced by the higher-twist contributions from the

three-particle B-meson DA, already at tree level.

We are now ready to derive the power counting behaviour of the three-particle cor-

rection to B → D form factors at tree level. Applying the canonical behaviour of the

three-particle B-meson DA in the end-point region [7]

ΨV (ω, ξ) ∼ ΨA(ω, ξ) ∼ ξ2 , XA(ω, ξ) ∼ ξ(2ω − ξ) , YA(ω, ξ) ∼ ξ , (4.9)

we can verify that the three-particle contribution to the sum rules of B → D form fac-

tors (4.6) is counted as O
(
(Λ/mb)

5/2
)

in the heavy quark limit and is indeed suppressed

by a factor of Λ/mb compared to the two-particle contribution at tree level as presented

in (2.9). However, it needs to point out that higher twist effects from the three-particle

gluon-quark DA can give rise to the leading power contributions to B → D form factors

at O(αs) on account of the reasonings of [42, 54] and a transparent demonstration of this

observation by computing the three-particle contribution to the sum rules at NLO in αs
directly is in high demand on both conceptual and phenomenological aspects.

The final expressions for the form factors of B → D`ν can be obtained by adding up

the two-particle and the three-particle contributions together

f+
BD(q2) = f+

BD, 2P(q2) + f+
BD, 3P(q2) , f0

BD(q2) = f0
BD, 2P(q2) + f0

BD, 3P(q2) , (4.10)

where the detailed expressions of f+,0
BD, 2P(q2) and f+,0

BD, 3P(q2) are presented in (3.50)

and (4.6), respectively.

5 Numerical analysis

Having at our disposal the resummation improved sum rules for B → D form factors, we

are in a position to explore the phenomenological consequences of perturbative corrections
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to the two-particle contributions and higher-twist effects from the three-particle quark-

gluon B-meson DA at tree level. Employing the obtained theory predictions for B → D

form factors, we will further present our results for the semileptonic B → D`ν (` = µ, τ)

decay observables, including the invariant-mass distributions of the lepton pair, the topical

R(D) ratio, and the CKM matrix element |Vcb|.

5.1 Theory input parameters

We will first specify the theory inputs entering the LCSR for B → D form factors shown

in (3.50) and (4.6). The fundamental nonperturbative quantities describing the soft strong

interaction dynamics encoded in the correlation function (2.1) are the B-meson light-cone

DA defined in (2.4) and (4.4). A detailed account of the current understanding towards

perturbative and nonperturbative aspects of the two-particle B-meson DA was already

presented in [15], following which we will consider two models of the leading twist DA

φ+
B(ω, µ0) proposed in [34, 55]

φ+
B,I(ω, µ0) =

ω

ω2
0

e−ω/ω0 , (5.1)

φ+
B,II(ω, µ0) =

1

4π ω0

k

k2 + 1

[
1

k2 + 1
− 2(σ1(µ0)− 1)

π2
ln k

]
, k =

ω

1 GeV
, (5.2)

where the shape parameter ω0 can be converted to the inverse moment of the leading-twist

B-meson DA λB(µ0). The renormalization scale evolution of λB(µ) at one loop can be

derived from the Lange-Neubert equation of φ+
B(ω, µ) [56]

λB(µ0)

λB(µ)
= 1 +

αs(µ0)CF
4π

ln
µ

µ0

[
2− 2 ln

µ

µ0
− 4σ1(µ0)

]
+O(α2

s) . (5.3)

The inverse-logarithmic moment at a hadronic scale µ0 = 1 GeV will be taken as σ1(µ0) =

1.4 ± 0.4, determined from a QCD sum rule analysis [55]. The higher-twist two-particle

DA of the B-meson φ−B(ω, µ0) will be determined from the QCD equations of motion in

the heavy quark limit [49]

ω φ−B(ω)−
∫ ω

0
dη
[
φ−B(η)− φ+

B(η)
]

= 2

∫ ω

0
dη

∫ ∞
ω−η

dξ

ξ

∂

∂ξ
[ΨA(η, ξ)−ΨV (η, ξ)] , (5.4)

which was also demonstrated to be valid from a non-relativistic toy model manifestly at

NLO in the strong coupling constant [39]. With regarding to the three-particle quark-gluon

DA of the B-meson, we will employ the exponential model inspired from the canonical

behaviour predicted by the HQET sum rules at tree level [7]

ΨV (ω, ξ, µ0) = ΨA(ω, ξ, µ0) =
λ2
E

6ω4
0

ξ2 e−(ω+ξ)/ω0 ,

XA(ω, ξ, µ0) =
λ2
E

6ω4
0

ξ (2ω − ξ) e−(ω+ξ)/ω0 ,

YA(ω, ξ, µ0) = −
λ2
E

24ω4
0

ξ (7ω0 − 13ω + 3 ξ) e−(ω+ξ)/ω0 , (5.5)

– 20 –



J
H
E
P
0
6
(
2
0
1
7
)
0
6
2

where the normalization constant defined by the matrix element of the chromoelectric

operator was estimated as λ2
E(µ0) = (0.03± 0.02) GeV2 [57], from the two-point QCD sum

rules including higher-order perturbative and nonperturbative corrections. We already

implemented the approximation λE = λH in the above expressions, following [7], which is

supported by the nonperturbative QCD calculations numerically [34, 57].

With the matching relation (2.6) the static B-meson decay constant f̃B(µ) can be

traded into the QCD decay constant fB, whose values will be taken from lattice QCD

simulations fB = (192.0 ± 4.3) MeV [58] with Nf = 2 + 1. Likewise, we will adopt the

intervals for the D-meson decay constant in QCD from lattice simulations fD = (209.2 ±
3.3) MeV [58] with Nf = 2 + 1. In addition, we will employ the MS bottom quark mass

mb(mb) = (4.193+0.022
−0.035) GeV [59] from non-relativistic sum rules and the MS charm quark

mass mc(mc) = (1.288± 0.020) GeV [60] from relativistic sum rules, employing the quark

vector correlation function computed at O(α3
s). Following [15, 41], the hard scales µh1 and

µh2 are taken to be equal and will be varied in the interval [mb/2 , 2mb] around the default

value mb, and the factorization scale is chosen as 1.0 GeV ≤ µ ≤ 2.0 GeV with the default

value µ = 1.5 GeV.

The determination of the sum rule parameters ωM and ωs can be achieved by imple-

menting the standard procedure described in [15] and applying the same strategies leads to

M2 ≡ n · p ωM = (4.5± 1.0) GeV2 , s0 ≡ n · p ωs = (6.0± 0.5) GeV2 , (5.6)

which are in agreement with the intervals adopted in [10, 61].

5.2 Predictions for B → D form factors

We will turn to discuss the choice of the inverse moment λB(1 GeV) which serves as an

important source for theory uncertainties, prior to presenting the sum rule predictions for

the form factors of B → D`ν. Albeit with the intensive investigations of determining λB
theoretically, the current constraints on λB are still far from satisfactory, due to the emerged

tension between the NLO sum rule predictions and the implications of hadronic B-meson

decay data from QCD factorization. In particular, the subleading power contributions

in HQE can give rise to sizeable impact on the determination of λB numerically. This

has been demonstrated explicitly by extracting λB from the partial branching fractions of

B → γ`ν with the power suppressed effects estimated from the dispersion approach [20, 62].

Following the above argument, it is very plausible that the unaccounted subleading power

contributions to the LCSR for B → π form factors can yield significant corrections to the

fitted values of λB(µ0) [15] in addition to the systematic uncertainty induced by the parton-

hadron duality approximation. In order to be insensitive to the unconsidered effects in the

sum rule determinations [15], we will perform an independent determination of λB(µ0)

by matching the B-meson LCSR of the vector B → D form factor at q2 = 0 to the

lattice-QCD calculation with an extrapolation to the large recoil region using the z-series

parametrization.1 Taking f+
BD(0) = 0.672 ± 0.027 [4] as an input and implementing the

1Our major objective is to predict the q2 shapes of B → D form factors from the LCSR with the B-meson

DA, with the normalization f+
BD(0) taken as an input. We have verified numerically that the form-factor

shapes at large recoil are insensitive to the actual value of ω0(1 GeV) within a “reasonable” interval.
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Figure 4. Top: dependence of the vector form factor f+BD(0) on the Borel mass M2 (left panel) and

on the duality-threshold parameter s0 (right panel) at λB(µ0) = 570 MeV. The solid, dashed and

dot-dashed curves are predicted from the LCSR (4.10) with s0 = 6.0 GeV2, 6.5 GeV2 and 5.5 GeV2

(left panel), and with M2 = 4.5 GeV2, 5.5 GeV2 and 3.5 GeV2 (right panel). Bottom: breakdown

of the form factor f+BD(0) from the two-particle and from the three-particle contributions. The

two-particle contribution to f+BD(0) indicated by the dashed curve is almost indistinguishable from

the total result represented by the solid curve, due to the negligible effect from the three-particle

B-meson DA as shown by the dot-dashed curve.

above-mentioned matching procedure lead to

ω0(1 GeV) = 570+38
−35 MeV , (Model− I)

ω0(1 GeV) = 555+24
−20 MeV , (Model− II) (5.7)

which differ from the intervals of λB(µ0) obtained from matching two different versions of

sum rules for the vector B → π form factor [15], however, are comparable to the values

determined with distinct QCD approaches [55, 63]. In the following we will take φ+
B,I(ω, µ0)

as our default model for the illustration purpose and the systematic uncertainty induced

by the model dependence of φ+
B(ω, µ0) will be taken into account in the final predictions

for the form factors of B → D`ν.
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Figure 5. Left: factorization scale dependence of the two-particle contributions to the form factor

f+BD(0) computed from the sum rules (3.50). The curves labelled with “LL”, “NLO” and “NLL”

are obtained from the resulting predictions at leading-logarithmic (LL), NLO and (partial) NLL

accuracy. Right: breakdown of the two-particle contributions to f+BD(0) from the LL effect, from

the NLL hard correction (“Hard”) and from the NLO hard-collinear correction (“Jet”).

Now we are ready to explore the numerical features of the LCSR predictions for B → D

form factors including the (partial) NLL resummation for the two-particle contributions

and the subleading power corrections from the three-particle quark-gluon DA. To demon-

strate the reliability of the sum rule calculations, we first display the dependence of f+
BD(0)

on the sum rule parameters M2 and s0 in figure 4. It is apparent that the variations of

the Borel parameter and the effective threshold within the intervals (5.6) only bring about

negligible influence on the sum rule predictions for the vector form factor of B → D`ν.

We further present the separate contributions to f+
BD(0) from the two-particle and the

three-particle contributions in figure 4 in an attempt to understand the subleading power

corrections from the higher Fock states. It can be readily observed that the tree-level

contributions from the three-particle B-meson DA turn out to be of minor importance

numerically, approximately O(1%), compared to the two-particle contributions. However,

it is worthwhile to mention that the smallness of the three-particle contribution at lead-

ing order (LO) in perturbative expansion does not imply the insignificant impact of the

subleading power contributions in the B → D`ν decay amplitude in general, due to the

yet unaccounted power suppressed effects induced by the off light-cone corrections to the

nonlocal matrix element defining the two-particle B-meson DA, by the subleading power

corrections to the perturbative coefficient functions entering the factorization formula (3.1)

and by the additional contributions generated by new momentum regions (or equivalently,

new field modes in the language of SCET) when applying the method of regions to the

evaluation of loop integrals involved in perturbative corrections to the QCD amplitude.

We proceed to investigate the impact of perturbative corrections to the short-distance

functions and resummation effects for the parametrically large logarithms on predicting

the form factors of B → D`ν. It is evident from figure 5 that NLO QCD corrections to
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Figure 6. Left: the q2 dependence of the ratio [f+BD,2P (q2)]NLL/[f
+
BD,2P (q2)]LL with uncertainties

from the variations of both the hard and hard-collinear scales. Right: dependence of the two-particle

contributions to f+BD(q2 = 0), at LL, NLO and (partial) NLL accuracy, on the inverse moment of

the leading twist B-meson DA λB(µ0).

the perturbative matching coefficients can reduce the tree-level prediction for f+
BD(0) by

approximately 10% at µ = 1.5 GeV and the (partial) NLL resummmation effect can en-

hance the NLO QCD calculation by an amount of 3% numerically at the same value of µ.

Both the NLO and NLL predictions exhibit weaker dependencies on the factorization scale

when compared to the LO result. Inspecting the different origins of perturbative QCD

corrections displayed in figure 5 shows that the one-loop hard-collinear correction turns

out to be more pronounced than the corresponding hard correction, with the inverse mo-

ment λB(µ0) = 570 MeV, at q2 ≥ 0, highlighting the significance of computing the NLO jet

functions accomplished in this paper. We further plot the theory predictions for the ratio

[f+
BD,2P (q2)]NLL/[f

+
BD,2P (q2)]LL in figure 6 with uncertainties from the variations of both

the hard and hard-collinear scales within the intervals given above. To develop a better

understanding of the sensitivity of B → D form factors on the inverse moment λB, we also

present the LO, NLO and (partial) NLL sum rule predictions for the leading power con-

tributions to f+
BD(q2), in figure 6, in a wide range 300 MeV ≤ λB(µ0) ≤ 700 MeV. We can

readily observe that the sum rule predictions for f+
BD(q2) increase steadily with the reduc-

tion of λB, in analogy to the observation for the radiative leptonic B → γ`ν decay in [20].

As already explained in [10], the light-cone OPE for the vacuum-to-B-meson correla-

tion function (2.1) can be only justified near the maximal recoil to fulfill the power counting

rules n · p � mc � Λ and mc ∼ O(
√
n · pΛ). In addition, QCD factorization for the cor-

relation function (2.1) is fully applicable at space-like momentum transfer on the basis of

the power counting analysis. It is then distinctly that the B-meson LCSR for the form

factors of B → D`ν derived in (4.10) can be trusted at q2
min ≤ q2 ≤ q2

max = 2 GeV2, where

a moderate value q2
min = −3 GeV2 will be employed (see also [61]) in the following analysis

for the sake of adopting the same intervals of the sum rules parameters shown in (5.6). In

order to access the information of B → D form factors in the whole kinematic region, we
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need to extrapolate the LCSR predictions obtained above toward large momentum transfer

with a certain parametrization for the form factors. Following the arguments of [32, 61], we

will take advantage of the z-series parametrization, in line with the analytical properties

and perturbative QCD scaling behaviours of B → D form factors, which can be readily in-

troduced by mapping the cut complex q2-plane onto the unit disk |z(q2, t0) ≤ 1| according

to the conformal transformation [64]

z(q2, t0) =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

. (5.8)

Here, the parameter t+ = (mB + mD)2 is determined by the onset of the branching cut

in the |BD〉 channel, and t0 < t+ is an auxiliary parameter determining the value of q2

mapped to the origin in the z-plane. An optimal choice of t0 = (mB − mD)2 will be

implemented in the numerical computation to achieve a narrow interval of |z|.
Taking into account the near-threshold behaviour from angular momentum conserva-

tion leads to the suggested parametrization [32, 61]

f+
BD(q2) =

f+
BD(0)

1− q2/m2
B∗c

{
1 +

N−1∑
k=1

bk

(
z(q2, t0)k − z(0, t0)k

− (−1)N−k
k

N

[
z(q2, t0)N − z(0, t0)N

])}
(5.9)

for the vector form factor, where mB∗c = (6.330± 0.009) GeV [65], and the z-series expan-

sion will be truncated at N = 2 in the practical matching procedure. Along the same vein,

we will employ the following parametrization

f0
BD(q2) =

f0
BD(0)

1− q2/m2

B
(0)
c

{
1 +

N∑
k=1

b̃k

(
z(q2, t0)k − z(0, t0)k

)}
(5.10)

for the scalar form factor, where m
B

(0)
c

= (6.420± 0.009) GeV [5], and we will only keep

the terms up to O(z) in the z-expansion. An alternative parametrization of B → D form

factors proposed in [66] (see also [67] for a recent discussion) including the outer function

and the Blaschke factor will not be considered here following the reasonings of [32].

It is now a straightforward task to implement the matching procedure described above

with the aid of the LCSR predictions at q2
min ≤ q2 ≤ q2

max and the z-series parametriza-

tion for the determination of the momentum-transfer dependence in the entire kinematic

region. To achieve a better accuracy for the resulting shape parameters b1 and b̃1, we will

further employ the synthetic data points for the form factors f+,0
BD(q2) at q2 = 8.47 GeV2,

10.05 GeV2 and 11.63 GeV2 from the FNAL/MILC Collaboration [4] in the numerical fit-

ting. We present the yielding predictions for the q2 dependence of f+,0
BD(q2) in the physical

kinematic range 0 ≤ q2 ≤ (mB −mD)2 with theory uncertainties in figure 7 where recent

determinations from the lattice QCD simulation combined with a similar z-parametrization

by the HPQCD Collaboration [5] and from a joint fit of the BaBar and Belle data combined

with the lattice calculations [68] are also shown for a comparison. It is apparent that our
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Figure 7. The transfer momentum dependence of the form factor f+BD(q2) (left panel) and of

the form factor f0BD(q2) (right panel) predicted from the LCSR calculations, including the two-

particle contributions at (partial) NLL accuracy and the tree-level three-particle contributions,

with an extrapolation toward large q2 applying the z-series parametrization. The pink, blue and

green curves correspond to theory predictions from this work, from the lattice QCD calculations

by the HPQCD Collaboration [5], and from a combined fit of the BarBar and Belle data as well as

the HPQCD and FNAL/MILC calculations [68]. Theory uncertainties for all the calculations are

indicated by the shaded regions.

predictions for the B → D`ν form factors are in good agreement with those displayed in [5,

68] within the theory uncertainties. We further collect the obtained results for the shape

parameters, with numerically important uncertainties, entering the z-series expansion in

table 1, where the predictions for form factors at q2 = 0 are also presented for completeness.

It turns out that the dominant theory uncertainties for the shape parameters arise from

the variations of the hard scales µh1(2) and from the errors in the determination of ω0. The

relatively more precise predictions for the form factors of B → D`ν at high q2 are mainly

due to the high precision lattice date points from the FNAL/MILC Collaboration [4], whose

accuracy is even significantly better than that computed by the HPQCD Collaboration [5].

Moreover, the LCSR predictions for f+,0
BD(q2) appear to grow faster with the increase of the

momentum transfer squared compared to those obtained from the lattice calculations [5].

Another popular parametrization for the form factors of B → D`ν taking into account

the constraints from the heavy quark symmetry, proposed in [33], was also extensively

employed in the phenomenological applications. Including the subleading power corrections

to the heavy-quark relations and implementing the dispersive analysis yield the following

one-parameter representations for the vector and scalar form factors [33, 67]

f+
BD(z) = f+

BD(0)
[
1− 8 ρ2 z + (51 ρ2 − 10) z2 − (252 ρ2 − 84) z3

]
, (5.11)

f0
BD(z)

f+
BD(z)

=

(
2
√
r

1 + r

)2
1 + ω

2
1.0036

[
1 + 0.0068 ω̄ + 0.0017 ω̄2 + 0.0013 ω̄3

]
, (5.12)
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Parameter Central value ω0 σ1 µ µh1(2) M2 s0 φ±B(ω)

f+
BD(0) 0.673 −0.027

+0.026
−0.01
+0.01

+0.015
−0.031

+0.058
−0.035

−0.003
+0.005

+0.015
−0.019 -

b1 −4.20 −0.80
+0.74

−0.31
+0.30

+0.19
−0.14

+1.51
−1.02

−0.06
+0.14

+0.44
−0.56

+0.11
−0.00

b̃1 −0.18 −0.66
+0.60

−0.26
+0.25

+0.17
−0.14

+1.23
−0.84

−0.05
+0.10

+0.36
−0.46

+0.10
−0.00

Table 1. Summary of the predicted shape parameters and the normalization constant entering the

z-series parametrizations (5.9) and (5.10) for the B → D`ν form factors with dominant uncertainties

from the variations of theory inputs.

where we have introduced the following conventions

z =

√
1 + ω −

√
2

√
1 + ω +

√
2
, ω =

m2
B +m2

D − q2

2mBmD
, ω̄ = 1− ω , r = mD/mB . (5.13)

Apparently, this z parameter is equivalent to z(q2, t0), defined by (5.8), with t0 = (mB −
mD)2. It needs to point out that the ratio f0

BD(z)/f+
BD(z) is fully determined in HQET

including both perturbative corrections to the leading Wilson coefficients and subleading

power contributions computed from QCD sum rules. Matching the LCSR calculations for

the form factors of B → D`ν at q2
min ≤ q2 ≤ q2

max onto the CLN parametrization (5.12)

leads to

f+
BD(z = 0) = 1.22± 0.02 , ρ = 1.07+0.08

−0.11 , (5.14)

which are well consistent with the fitted values obtained in [5], albeit with the comparably

large theory uncertainties for the slop parameter ρ.

5.3 Phenomenological implications

Having in our hands the theory predictions of the two form factors f+,0
BD(q2), we are ready

to explore their phenomenological implications on the semileptonic B → D`ν decays. The

differential decay rate of B → D`ν in the rest frame of the B-meson can be computed as

dΓ(B → D`ν)

dq2
=
η2

EW G2
F |Vcb|2

24π3m2
B

(
1−

m2
l

q2

)2

|~pD|
[(

1 +
m2
l

2 q2

)
m2
B |~pD|2

∣∣f+
BD(q2)

∣∣2
+

3m2
l

8 q2
(m2

B −m2
D)2

∣∣f0
BD(q2)

∣∣2 ] , (5.15)

where |~pD| =
√
λ
(
m2
B,m

2
D, q

2
)
/(2mB) with λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc is

the magnitude of the three-momentum of the D-meson and

ηEW = 1 +
αem

π
ln

(
mZ

mB

)
' 1.0066 (5.16)

originates from the short-distance QED corrections to the four-fermion operator responsible

for the B → D`ν decays [69, 70].
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Figure 8. The differential decay rates for B → Dµνµ (pink band) and B → Dτντ (blue band) as a

function of the momentum transfer squared q2, where the experimental data points for B → Dµνµ
(purple squares) from the Belle Collaboration [71] are also presented for a comparison.

[t1, t2] ∆Γµ(t1, t2) (10−12 GeV) [t1, t2] ∆Γµ(t1, t2) (10−12 GeV)

(
GeV2

)
this work Belle [71]

(
GeV2

)
this work Belle [71]

[0.00, 0.98] 1.00+0.28
−0.21 1.01± 0.05 [5.71, 6.90] 0.57+0.08

−0.06 0.53± 0.03

[0.98, 2.16] 1.09+0.27
−0.21 1.06± 0.06 [6.90, 8.08] 0.43+0.05

−0.04 0.41± 0.03

[2.16, 3.34] 0.97+0.21
−0.16 0.99± 0.05 [8.08, 9.26] 0.28+0.02

−0.02 0.27± 0.02

[3.34, 4.53] 0.85+0.16
−0.13 0.85± 0.05 [9.26, 10.45] 0.14+0.01

−0.01 0.14± 0.01

[4.53, 5.71] 0.72+0.11
−0.09 0.70± 0.04 [10.45, 11.63] 0.03+0.00

−0.00 0.02± 0.01

Table 2. Theory predictions for the partial decay rates of B → Dµνµ compared with the Belle

measurements from [71].
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The differential q2 distributions for B → D`ν obtained with the form factors f+,0
BD(q2)

displayed in table 1 are plotted in figure 8, including also the recent experimental mea-

surements for the combination of B+ → D̄0e+νe, B
0 → D−e+νe, B

+ → D̄0µ+νµ and

B0 → D−µ+νµ from the Belle Collaboration [71]. It is evident that our predictions for the

q2 shape of B → Dµνµ are in excellent agreement with the experimental data bins. Further-

more, we collect the numerical results for the (normalized) partial decay rates of B → D`ν

∆Γ`(t1, t2) =

∫ t2

t1

dq2 dΓ(B → D`ν)

dq2

1

|Vcb|2
(5.17)

in tables 2 and 3 with selections of the q2 bins identical to that from the Belle and BaBar

measurements [71, 72].

In particular, our predictions for the total decay width of B → Dµνµ in units of 1/|Vcb|2

can be obtained straightforwardly

∆Γµ(0, 11.63 GeV2) =
(
6.06+1.18

−0.92

)
× 10−12 GeV , (5.18)

with all separate uncertainties from variations of the theory inputs added in quadrature,

from which the exclusive determinations of |Vcb| are achieved

|Vcb| =


(

39.2+3.4
−3.3

∣∣
th
± 1.0

∣∣
exp

)
× 10−3 , [BaBar 2010](

40.6+3.5
−3.5

∣∣
th
± 1.0

∣∣
exp

)
× 10−3 , [Belle 2016]

(5.19)

with the recent experimental measurements of the total branching fraction from the

Belle [71] and BaBar [73] Collaborations.2 The resulting determinations of |Vcb| suffer from

a sizeable uncertainty, approximately O(10%), due to the LCSR calculations of B → D

form factors at large hadronic recoil. Our results are consistent with the more precise

determinations from FNAL/MILC [4], HPQCD [5] and from a joint fit [67] of the available

experimental data and the lattice calculations including the updated unitarity bounds.

Finally, we turn to compute the differential distributions of the celebrated ratio

∆R(t1, t2) =

∫ t2
t1
dq2 dΓ(B → Dτντ )/dq2∫ t2

t1
dq2 dΓ(B → Dµνµ)/dq2

, (5.20)

where most of the hadronic uncertainties from the B → D`ν form factors are cancelled out.

Inspecting the obtained results in table 3 indeed implies an incredibly precise one-percent

accuracy of ∆R(t1, t2), albeit with the implementation of much less accurate predictions for

the hadronic form factors shown in table 1. Our predictions for the binned distributions of

∆R(t1, t2) are also compatible with the recent determinations reported in [74], employing

the B → D`ν form factors extracted from a joint fit of the experimental data and two

2The previous measurements from ALEPH, CLEO, Belle and BaBar summarized by the Heavy Flavor

Averaging Group (HFAG) [2] are not considered here. We leave a dedicated study of the |Vcb| determination

including all the available experimental data and the correlation of theory predictions for the B → D`ν

form factors at different q2 for future work.
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[t1, t2] ∆Γτ (t1, t2) (10−12 GeV) ∆R(t1, t2)

(
GeV2

)
this work this work [74]

[4.00, 4.53] 0.073+0.014
−0.011 0.199+0.002

−0.002 0.199± 0.001

[4.53, 5.07] 0.11+0.02
−0.02 0.331+0.003

−0.003 0.330± 0.001

[5.07, 5.60] 0.14+0.02
−0.02 0.458+0.004

−0.004 0.455± 0.001

[5.60, 6.13] 0.16+0.02
−0.02 0.575+0.006

−0.005 0.571± 0.002

[6.13, 6.67] 0.18+0.02
−0.02 0.687+0.007

−0.006 0.680± 0.002

[6.67, 7.20] 0.18+0.02
−0.02 0.796+0.008

−0.007 0.786± 0.003

[7.20, 7.73] 0.17+0.02
−0.02 0.905+0.009

−0.007 0.892± 0.003

[7.73, 8.27] 0.17+0.02
−0.01 1.024+0.009

−0.008 1.006± 0.004

[8.27, 8.80] 0.15+0.01
−0.01 1.161+0.010

−0.009 1.135± 0.005

[8.80, 9.33] 0.14+0.01
−0.01 1.329+0.011

−0.009 1.294± 0.006

[9.33, 9.86] 0.12+0.01
−0.01 1.561+0.011

−0.010 1.513± 0.007

[9.86, 10.40] 0.099+0.006
−0.005 1.934+0.012

−0.010 1.86± 0.01

[10.40, 11.63] 0.12+0.01
−0.01 3.364+0.008

−0.008 −

Table 3. Theory predictions for the partial decay rates of B → Dτντ and for the binned distribu-

tions of ∆R(t1, t2) defined in (5.20). The semileptonic B → D form factors obtained by fitting the

experimental data with the Boyd-Grinstein-Lebed parametrization [66] are employed for the recent

calculations presented in [74].
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recent lattice calculations [67]. We further present our predictions for the ratio of the total

branching fractions of two semileptonic decay channels

R(D) ≡ BR(B → Dτντ )

BR(B → Dµνµ)
= 0.305+0.022

−0.025 , (5.21)

which coincides with the previous determinations [4, 5, 67, 74–77] in the Standard Model

(SM) at the 1 σ level and needs to be compared with the HFAG average value R(D)
∣∣
HFAG

=

0.403±0.040±0.024 [2]. We mention in passing that the relatively high theory uncertainty

of R(D) in (5.21), approximately 8%, can be traced back to the uncancelled hadronic

uncertainties for determining the partial branching fraction of B → Dµνµ in the phase-

space region 0 ≤ q2 ≤ m2
τ .

6 Concluding discussion

In this paper we have presented perturbative QCD corrections to the semileptonic B → D`ν

form factors with the power counting scheme mc ∼ O
(√

Λmb

)
, at leading power in

Λ/mb, employing the LCSR with the two-particle B-meson DA. QCD factorization for

the vacuum-to-B-meson correlation function (2.1) was demonstrated explicitly at one loop

applying the diagrammatic factorization approach. Due to the appearance of a new hard-

collinear scale mc, the resulting jet functions turn out to be more complex than the counter-

parts in the evaluation of the correlation function for constructing the sum rules of B → π

for factors. Taking advantage of the evolution equation of the B-meson DA φ−B(ω, µ),

factorization-scale independence of the correlation function (2.1) was verified at O(αs)

with the obtained hard and hard-collinear functions. The (partial) NLL resummation im-

proved sum rules for B → D form factors (3.50) derived with the dispersion representations

in appendix B constitute the main new ingredients of this paper. The subleading power

contributions from the three-particle quark-gluon B-meson DA were also computed from

the same LCSR method at tree level. In the light of the canonical behavious of the three-

particle DA of the B-meson from the QCD sum rule analysis [7], the power suppressed

three-particle corrections were demonstrated to invalidate the large-recoil symmetry rela-

tion between the vector and scalar B → D form factors.

We proceeded to explore the phenomenological implications of the resulting sum rules

for the B → D`ν form factors applying two nonperturbative models for the B-meson DA

φ+
B(ω, µ0) inspired from the QCD sum rule calculations [34, 55]. The perturbative QCD

corrections from the two-particle DA were found to generate an approximately O(10%)

shift to the LL predictions for f+
BD(q2) with the default theory inputs, and the one-loop

hard-collinear corrections appear to have a more profound influence at q2 ≥ 0 numerically

when compared with the corresponding hard corrections. Moreover, the subleading power

effects from the three-particle B-meson DA were shown to be insignificant numerically. The

z-series expansion fulfilling the analytical properties of B → D form factors was further

employed to extrapolate the (partial) NLL LCSR predictions toward the low recoil region.

In addition, we presented theory predictions for the binned distributions of the B → D`ν

decay rates and of the ratio ∆R(t1, t2) by applying our determinations of the form factors

f+,0
BD(q2). Matching the predicted results for the normalized decay width of B → Dµνµ and
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the recent experimental measurements from Belle [71] and BaBar [73] led to the extracted

values of |Vcb| at O(10%) accuracy as displayed in (5.19). Our predictions for the B → D

form factors also gave rise to the determinations of R(D) presented in (5.21), confronted

with the HFAG average value in [2].

Further developments of the B-meson LCSR approach for computing the form factors

of B → D`ν can be pushed forward in distinct directions. First, perturbative QCD cor-

rections to the LCSR (4.6) from the three-particle B-meson DA can be carried out for a

complete understanding of the leading power contributions in the heavy quark limit. In

doing so, the one-loop evolution equations for the remaining high-twist three-particle DA of

the B-meson in (4.4) are in demand and they have been recently worked out in [78]. Second,

computing yet higher-order QCD corrections to the two-particle contributions (3.50) are of

both conceptual and phenomenological interest for exploring the renormalization proper-

ties of the B-meson DA φ±B(ω, µ) at two loops (e.g., the eigenfunctions and the analytical

structures of renormalization kernels) and for bringing down the still sizeable perturbative

uncertainties of the theory predictions displayed in table 1. Third, the present strategies

can be readily applied to calculate QCD corrections to the semileptonic B → D∗`ν form

factors based upon the LCSR with the B-meson DA (with additional attention to the renor-

malization prescription of γ5 in dimensional regularization), allowing for a comprehensive

analysis of the full angular distributions B → D∗(→ DX) τ(→ Y ντ ) ν̄τ with X = (π, γ)

and Y = (` ν, π) as discussed in [79]. To conclude, precision QCD calculations of semilep-

tonic B-meson form factors with analytical QCD approaches will continually provide us

with a deeper insight into the strong interaction dynamics of heavy quark decays and into

the general properties of effective field theories.
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A Loop integrals

Here we collect some useful results for the loop integrals used in the calculations of the

vacuum-to-B-meson correlation function (2.1) at O(αs).

Ihc1 =

∫
[d l]

n · (p+ l)

[n · (p+ l) n̄ · (p− k + l) + l2⊥ −m2
c + i0][n · l + i0][l2 + i0]
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=
1

2

{
2

ε2
+

2

ε

[
ln

µ2

n · p (ω − n̄ · p)
− ln (1 + r1) + 1

]
+ ln2 µ2

n · p (ω − n̄ · p)

+ 2 ln
µ2

n · p (ω − n̄ · p)
− 2 ln(1 + r1)

[
ln

µ2

n · p (ω − n̄ · p)
+ 1

]
+ ln2(1 + r1)

+ 2 r1 ln

(
r1

1 + r1

)
− 2 Li2

(
1

1 + r1

)
+
π2

6
+ 4

}
. (A.1)

I2,αβ =

∫
[d l]

lα (p− l)β
[l2 + i0][(p− l)2 −m2

c + i0][(l − k)2 + i0]

≡ −
gαβ
2
I2,a −

1

p2
[kα kβ I2,b − pα pβ I2,c − kα pβ I2,d + pα kβ I2,e] , (A.2)

where the loop functions I2,j (j = a, . . . , e) are given by

I2,a =
1

2

[
1

ε
+ ln

(
−µ

2

p2

)
− (1 + r2 + r3)2

r3(1 + r3)
ln (1 + r2 + r3) +

(1 + r2)2

r3
ln(1 + r2)

− r2
2

1 + r3
ln r2 + 3

]
, (A.3)

I2,b =
1

2r3
3

[
(2 + 2r2 − r3) r3 − 2(1 + r2)2 ln

(
1 + r2 + r3

1 + r2

)]
×
[

1

ε
+ ln

(
−µ

2

p2

)
− ln (1 + r2 + r3) + 3

]
−(1 + r2)2

r3
3

[
Li2

(
1 + r3

1 + r2 + r3

)
− Li2

(
1

1 + r2

)]
− (1 + r2)2

2 r3
3

ln2

(
1 + r2 + r3

1 + r2

)
+
r2 [3 r2r3 + 2 (1 + r2 + r3)]

2 r2
3 (1 + r3)2

ln

(
1 + r2 + r3

r2

)
− 1− r2 + r3

2 r3 (1 + r3)
, (A.4)

I2,c =
(1 + r3)2 − r2

2

2 r3 (1 + r3)2
ln

(
1 + r2 + r3

1 + r2

)
+
r2

2 (2 + r3)

2 (1 + r3)2
ln

(
1 + r2

r2

)
− r2

2 (1 + r3)
, (A.5)

I2,d =
1

r2
3

[
(1 + r2) ln

(
1 + r2 + r3

1 + r2

)
− r3

] [
1

ε
+ ln

(
−µ

2

p2

)
− ln (1 + r2 + r3) +

5

2

]
+

1 + r2

r2
3

[
Li2

(
1 + r3

1 + r2 + r3

)
− Li2

(
1

1 + r2

)]
+

1 + r2

2 r2
3

ln2

(
1 + r2 + r3

1 + r2

)
+
r2(1− r2

3 + r2 + 2 r2r3)

2 r2
3(1 + r3)2

ln

(
1 + r2 + r3

1 + r2

)
− r2 [2 + r3(2 + r2)]

2 r3(1 + r3)2
ln

(
1 + r2

r2

)
− r2

2 r3 (1 + r3)
, (A.6)

I2,e = −(1 + r2 + r3) (1 + r2 + r3 + 2 r2r3)

2 r2
3(1 + r3)2

ln

(
1 + r2 + r3

1 + r2

)
+

1 + r2 + r3

2 r3(1 + r3)

+
r2

2

2 (1 + r3)2
ln

(
1 + r2

r2

)
. (A.7)

I3 =

∫
[d l]

(n · l)2

[l2 + i0][(p− l)2 −m2
c + i0][(l − k)2 + i0]
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=
(n · p)2

2 p2

{
(1+r2+r3)2

r3(1 + r3)2
ln

(
1+r2+r3

1 + r2

)
− r2 [2 (1+r3)+r2 (2+r3)]

(1 + r3)2
ln

(
1+r2

r2

)
+

r2

1 + r3

}
. (A.8)

I4,α =

∫
[d l]

lα
[l2 + i0][(p− l)2 −m2

c + i0][(l − k)2 + i0]
=

1

p2
[kα I4,a + pα I4,b] , (A.9)

with

I4,a =

[
1 + r2

r2
3

ln

(
1 + r2 + r3

1 + r2

)
− 1

r3

] [
1

ε
+ ln

(
−µ

2

p2

)
− ln [(1 + r2)(1 + r2 + r3)] + 2

]
+

1 + r2

r2
3

[
Li2

(
1 + r3

1 + r2 + r3

)
− Li2

(
1

1 + r2

)]
− 1

r3
ln (1 + r2)

+
1 + r2

2 r2
3

[
ln2 (1 + r2 + r3)− ln2 (1 + r2)

]
+

r2

r3 (1 + r3)
ln

(
r2

1 + r2 + r3

)
, (A.10)

I4,b =
1 + r2 + r3

r3(1 + r3)
ln (1 + r2 + r3)− 1 + r2

r3
ln (1 + r2) +

r2

1 + r3
ln r2 . (A.11)

I5 =

∫
[d l]

(2−D)(/p− /k + /l) +Dmc

[(p− k + l)2 −m2
c + i0][l2 + i0]

= I5,a (/p− /k) + I5,bmc , (A.12)

where the loop functions I5,j (j = a, b) read

I5,a = −
{

1

ε
+ln

(
− µ2

(p−k)2

)
+r2

1 ln

(
1+r1

r1

)
−ln (1+r1)+1−r1

}
, (A.13)

I5,b = 4

{
1

ε
+ln

(
− µ2

(p−k)2

)
−r1 ln

(
1+r1

r1

)
−ln (1+r1)+

3

2

}
. (A.14)

I6,a =

∫
[d l]

n·(p+l)

[n·(p+l) n̄·(p−k+l)+l2⊥−m2
c+i0][n·l n̄(l−k)+l2⊥+i0][l2+i0]

= − 1

ω

{
ln

(
1− r4

1+r1

)[
1

ε
+ln

(
µ2

n·p (ω−n̄·p)

)
− 1

2
ln

(
1− r4

1+r1

)
−ln (1+r1)

+ 1+
r1

1−r4

]
+Li2

(
1− r1

1+r1−r4

)
−Li2

(
1

1+r1

)
− r1r4

1−r4
ln

(
r1

1+r1

)}
. (A.15)

I6,b =

∫
[d l]

n·l n·(p+l)

[n·(p+l) n̄·(p−k+l)+l2⊥−m2
c+i0][n·l n̄(l−k)+l2⊥+i0][l2+i0]

=
n·p
2ω

{(
r2

1

(1−r4)2
−1

)
ln (1−r4+r1)+ (1−r2

1) ln (1+r1)− r
2
1 r4 (2−r4)

(1−r4)2
ln r1

− r1 r4

1−r4

}
. (A.16)

Here, D = 4− 2 ε, the integration measure is defined as follows

[d l] ≡ (4π)2

i

(
µ2 eγE

4π

)ε
dD l

(2π)D
, (A.17)
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and we also introduce the conventions

r1 =
m2
c

n · p n̄ · (k − p)
, r2 = −m

2
c

p2
, r3 = − n̄ · k

n̄ · p
, r4 =

n̄ · k
n̄ · (k − p)

. (A.18)

B Spectral representations

We collect the dispersion representations of various convolution integrals entering the (par-

tial) NLL resummation improved factorization formula (3.44), for the sake of constructing

the sum rules of B → D form factors given by (3.50). It needs to point out that we have val-

idated each spectral function by verifying the corresponding dispersion integral numerically.

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
(1+r2+r3)2

r3(1+r3)
ln

(
1+r2+r3

1+r2

)
φ+
B(ω)

= −ωc
ω′

ln

∣∣∣∣ ωc
ω′−ωc

∣∣∣∣ φ+
B(ω′)−

∫ ∞
ω′−ωc

dω

ω

[
P ωc
ω−ω′

+1

]
θ(ω′−ωc)φ+

B(ω) . (B.1)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2

2 r3

1+r3
ln

(
1+r2

r2

)
φ+
B(ω)

=

∫ ∞
0

dω θ(ω′−ωc)
{

ω ωc
(ω+ωc)2

[
P 1

ω′−ω−ωc
− 1

ω′

]
+
ωc
ω

[
P 1

ω−ω′
+

1

ω′

]
+

ω2
c

ω+ωc

1

ω′2

}
φ+
B(ω)−ln

∣∣∣∣ωc−ω′ωc

∣∣∣∣ {− (ω′−ωc)ωc
ω′2

φ+
B(ω′−ωc) θ(ω′−ωc)

+
ωc
ω′
φ+
B(ω′)+δ′(ω′)

∫ ∞
0

dω
ω2
c

ω+ωc
φ+
B(ω)

}
. (B.2)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2 (r3−r2)

1+r3
ln r2 φ

+
B(ω)

=

∫ ∞
0

dω θ(ω′)

[
ω−ωc
ω+ωc

P 1

ω′−ω−ωc
−ω−ωc

ω
P 1

ω′−ω

]
φ+
B(ω)

+ ln
(ωc
ω′

) [2ωc−ω′

ω′
φ+
B(ω′−ωc) θ(ω′−ωc)+

ω′−ωc
ω′

φ+
B(ω′)

]
−
∫ ∞

0
dω

ωc (ω−ωc)
ω(ω+ωc)

φ+
B(ω)

d

dω′

[
ln
(ωc
ω′

)
θ(ω′)

]
. (B.3)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2 φ

+
B(ω)

=
ωc
ω′
θ(ω′−ωc)φ+

B(ω′−ωc)−δ(ω′)
∫ ∞

0
dω

ωc
ω+ωc

φ+
B(ω) . (B.4)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
1

ω′
(1+r2+r3)2

r3(1+r3)2
ln

1+r2+r3

1+r2
φ+
B(ω)

= −
∫ ∞
ω′−ωc

dω θ(ω′−ωc)P
1

ω′−ω

(
1+ωc

d

dω

)
φ+
B(ω)

ω

+ ln

∣∣∣∣ ωc
ω′−ωc

∣∣∣∣ (1+ωc
d

dω′

)
φ+
B(ω′)

ω′
+
φ+
B(ω′)

ω′
θ(ω′)−

φ+
B(ω′−ωc)
ω′−ωc

θ(ω′−ωc) . (B.5)
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1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
1

ω′
r2 [2 (1+r3)+r2 (2+r3)]

(1+r3)2
ln

(
1+r2

r2

)
φ+
B(ω)

=

∫ ∞
0

dω θ(ω′−ωc)
[

ω

(ω+ωc)2
P 1

ω′−ω−ωc
+

1

ω
P 1

ω−ω′
+
ωc(2ω+ωc)

ω (ω+ωc)2

1

ω′

− ω2
c

ω(ω+ωc)

1

ω′2

]
φ+
B(ω)−

∫ ∞
0

dω θ(ω′−ωc)P
ωc

ω′−ω
d

dω

φ+
B(ω)

ω

− ln

∣∣∣∣ωc−ω′ωc

∣∣∣∣ [ωc−ω′ω′2
φ+
B(ω′−ωc) θ(ω′−ωc)+

φ+
B(ω′)

ω′

]
− θ(ω′−ωc)

ωc
ω′

lim
ω→0

φ+
B(ω)

ω
−ωc ln

∣∣∣∣ωc−ω′ωc

∣∣∣∣ d

dω′
φ+
B(ω′)

ω′

+ δ′(ω′) ln

∣∣∣∣ωc−ω′ωc

∣∣∣∣ ∫ ∞
0

dω
ω2
c

ω(ω+ωc)
φ+
B(ω) . (B.6)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
1

ω′
r2

1+r3
φ+
B(ω)

=
1

ω′

[
φ+
B(ω′−ωc) θ(ω′−ωc)−φ+

B(ω′) θ(ω′)

]
+δ(ω′)

∫ ∞
0

dω
ωc

ω (ω+ωc)
φ+
B(ω) . (B.7)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2 (1+r2+r3)

r3(1+r3)
ln(1+r2+r3)φ+

B(ω)

=

∫ ∞
0

dω θ(ωc+ω−ω′) θ(ω′)
ωc
ω
P 1

ω′−ω
φ+
B(ω)−ωc

ω′
ln
(ωc
ω′

)
φ+
B(ω′) θ(ω′) . (B.8)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2 (1+r2)

r3
ln(1+r2)φ+

B(ω)

= θ(ω′) θ(ωc−ω′)
∫ ∞

0
dω

ωc
ω+ωc

φ+
B(ω)

ω′−ω−ωc
−ωc
ω′

ln

∣∣∣∣ω′−ωcω′

∣∣∣∣ φ+
B(ω′−ωc) θ(ω′−ωc)

+

[
θ(ω′) θ(ωc−ω′)

ω′

]
+

∫ ∞
0

dω
ω2
c

ω (ω+ωc)
φ+
B(ω) . (B.9)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2

2

1+r3
ln r2 φ

+
B(ω)

= θ(ω′)

∫ ∞
0

dω

[
ωc

ω+ωc
P 1

ω′−ω−ωc
−ωc
ω

1

ω′−ω

]
φ+
B(ω)

−ωc
ω′

ln
∣∣∣ωc
ω′

∣∣∣ [φ+
B(ω′−ωc) θ(ω′−ωc)−φ+

B(ω′) θ(ω′)

]
+

{[
θ(ω′) θ(ωc−ω′)

ω′

]
+

+
θ(ω′−ωc)

ω′

} ∫ ∞
0

dω
ω2
c

ω(ω+ωc)
φ+
B(ω) . (B.10)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
1+r2+r3

(1+r3)2

r2
2−(1+r3)2

r3
ln

1+r2+r3

1+r2
φ+
B(ω)

=

∫ ∞
0

dω θ(ω′−ωc) θ(ω+ωc−ω′)
φ+
B(ω)

ω
+ωc

[
φ+
B(ω′−ωc)
ω′−ωc

θ(ω′−ωc)−
φ+
B(ω′)

ω′
θ(ω′)

]
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−ω2
c ln

∣∣∣∣ ωc
ω′−ωc

∣∣∣∣ ddω′ φ+
B(ω′)

ω′
+

∫ ∞
0
dωθ(ω′−ωc)θ(ω+ωc−ω′)P

ω2
c

ω′−ω
d

dω

φ+
B(ω)

ω
. (B.11)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2

2 (r3+2)
1+r2+r3

(1+r3)2
ln

1+r2

r2
φ+
B(ω)

= ω2
c

{
θ(ω′−ωc)

ω′
lim
ω→0

φ+
B(ω)

ω
+ln

∣∣∣∣ωc−ω′ωc

∣∣∣∣ d

dω′
φ+
B(ω′)

ω′

+ θ(ω′−ωc)
∫ ∞

0
dωP 1

ω′−ω
d

dω

φ+
B(ω)

ω

+

[
θ(ω′−ωc)

ω′2
−δ′(ω′) ln

∣∣∣∣ωc−ω′ωc

∣∣∣∣] ∫ ∞
0

dω
φ+
B(ω)

ω

}
. (B.12)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2(1+r2+r3)

1+r3
φ+
B(ω)

=
ωc
ω′
φ+
B(ω′)−ωc δ(ω′)

∫ ∞
0

dω
φ+
B(ω)

ω
. (B.13)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
ln2

(
µ2

n·p (ω−ω′)

)
φ−B(ω)

= 2

∫ ∞
0

dω θ(ω′−ω) ln

(
µ2

n·p (ω′−ω)

)
P 1

ω′−ω−ωc
φ−B(ω)

−
[
ln2

(
µ2

n·pωc

)
−π2

]
φ−B(ω′−ωc) θ(ω′−ωc) . (B.14)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
ln

(
(1+r2+r3)2

(1+r2)(1+r3)

)
ln

(
µ2

n·p (ω−ω′)

)
φ−B(ω)

= −
[
ln2

∣∣∣∣ ωc
ω′−ωc

∣∣∣∣−π2 θ(ω′−ωc)
]
φ−B(ω′)

+

∫ ∞
0

dω θ(ω′−ω)

[
ln2

∣∣∣∣ω′−ω−ωcω′−ωc

∣∣∣∣−π2 θ(ω′−ωc) θ(ω+ωc−ω′)
]
d

dω
φ−B(ω)

+ 2

∫ ∞
0

dω θ(ω′−ωc) θ(ω+ωc−ω′) ln

∣∣∣∣ω′−ω−ωcω′−ωc

∣∣∣∣
×
[
P 1

ω′−ω
+ln

∣∣∣∣ µ2

n·p (ω−ω′)

∣∣∣∣ d

dω

]
φ−B(ω)

− ln

(
ω′−ωc
ωc

)
ln

(
µ2

n·pωc

)
φ−B(ω′−ωc) θ(ω′−ωc)

+

∫ ∞
0

dω θ(ω′)
[
θ(ωc−ω′)−θ(ω−ω′)

] 1

ω′−ω−ωc
ln

∣∣∣∣ µ2

n·p (ω−ω′)

∣∣∣∣ φ−B(ω)

+

∫ ∞
0

dω θ(ω′−ω)P 1

ω′−ω−ωc
ln

∣∣∣∣ω′−ωcω′−ω

∣∣∣∣ φ−B(ω) . (B.15)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2

1+r2+r3
ln

(
µ2

n·p (ω−ω′)

)
φ−B(ω)

= −ωc δ(ωc−ω′) ln

(
µ2

n·pωc

)
φ−B(0)−θ(ω′)P ωc

ωc−ω′
φ−B(0)+ φ−B(ω′) θ(ω′)
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−φ−B(ω′−ωc) θ(ω′−ωc)−ωc ln

(
µ2

n·pωc

) [
d

dω′
φ−B(ω′−ωc)

]
θ(ω′−ωc)

+

∫ ∞
0

dω θ(ω′−ω)P ωc
ω′−ωc−ω

d

dω
φ−B(ω) . (B.16)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
ln2(1+r2+r3)φ−B(ω)

=

[
ln2

(
ωc−ω′

ω′

)
−π

2

3

]
θ(ωc−ω′) θ(ω′)φ−B(0)

+

∫ ∞
0

dω

[
ln2

(
ω+ωc−ω′

ω′

)
−π

2

3

]
θ(ω+ωc−ω′) θ(ω′)

d

dω
φ−B(ω) . (B.17)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
ln2(1+r3) φ−B(ω)

= 2

∫ ∞
0

dω ln

(
ω−ω′

ω′

)
1

ω′−ω−ωc
θ(ω−ω′) θ(ω′)φ−B(ω)

− ln2
(ωc
ω′

)
φ−B(ω′−ωc) θ(ω′−ωc) . (B.18)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
ln(1+r2+r3) ln(1+r3)φ−B(ω)

=
1

2

∫ ∞
0

dω

[
ln2

(
ω+ωc−ω′

ω′

)
−π2

]
θ(ω−ω′)θ(ω′) d

dω
φ−B(ω)

+

∫ ∞
0

dω θ(ω+ωc−ω′) θ(ω′) ln

(
ω+ωc−ω′

ω′

) [
P 1

ω−ω′
+ln

∣∣∣∣ω′−ωω′

∣∣∣∣ d

dω

]
φ−B(ω)

+
1

2

[
ln2
(ωc
ω′

)
−π2

]
φ−B(ω′) . (B.19)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
1+r2

r3
ln

(
1+r2+r3

1+r2

)
φ−B(ω)

=

∫ ∞
0

dω ln

(
ω+ωc−ω′

ω′−ωc

)
θ(ω+ωc−ω′) θ(ω′−ωc) (ωc−ω′)

d

dω

φ−B(ω)

ω
. (B.20)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
(1+r2)2 ln (1+r2) φ−B(ω)

= −
(
ω′−ωc
ω′

)2

ln

(
ω′−ωc
ω′

)
φ−B(ω′−ωc) θ(ω′−ωc)

+

∫ ∞
0

dω

(
ω

ω+ωc

)2

θ(ωc−ω′) θ(ω′)P
1

ω′−ω−ωc
φ−B(ω)

+

[
θ(ω′) θ(ωc−ω′)

ω′

]
+

∫ ∞
0

dω
ωc (2ω+ωc)

(ω+ωc)2
φ−B(ω)

−
[
θ(ω′) θ(ωc−ω′)

ω′2

]
++

∫ ∞
0

dω
ω2
c

ω+ωc
φ−B(ω) . (B.21)
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1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2 [r2+2(1+r3)]

(1+r3)2
ln (1+r2+r3) φ−B(ω)

= −θ(ωc−ω′) θ(ω′) ln

(
ωc−ω′

ω′

)
φ−B(0)−θ(ω′) ln

(ωc
ω′

)
φ−B(ω′)

+
[
θ(ω′) θ(ωc−ω′)

ωc
ω′

]
+
φ−B(0)−φ+

B(ω′) θ(ω′)+φ+
B(ω′−ωc) θ(ω′−ωc)

−ωc ln
(ωc
ω′

) d

dω′
φ−B(ω′)−

∫ ∞
0

dω θ(ω+ωc−ω′) θ(ω′)
[

ln

(
ω+ωc−ω′

ω′

)
d

dω

+P 1

ω−ω′
+P ωc

ω−ω′
d

dω

]
φ−B(ω) . (B.22)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
ln (1+r2+r3) φ−B(ω)

= θ(ωc−ω′) θ(ω′) ln

(
ωc−ω′

ω′

)
φ−B(0)

+

∫ ∞
0

dω θ(ω+ωc−ω′) θ(ω′) ln

(
ω+ωc−ω′

ω′

)
d

dω
φ−B(ω) . (B.23)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
ln (1+r2) ln (1+r3) φ−B(ω)

= − ln

(
ω′−ωc
ω′

)
ln
(ωc
ω′

)
φ−B(ω′−ωc) θ(ω′−ωc)

+

∫ ∞
0

dω θ(ωc−ω′) θ(ω′)
1

ω′−ω−ωc
ln

∣∣∣∣ω′−ωω′

∣∣∣∣ φ−B(ω)

+

∫ ∞
0

dω θ(ω−ω′) θ(ω′) 1

ω′−ω−ωc
ln

∣∣∣∣ω′−ωcω′

∣∣∣∣ φ−B(ω) . (B.24)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2

1+r2+r3
ln (1+r3) φ−B(ω)

= φ−B(ω′−ωc) θ(ω′−ωc)−φ−B(ω′) θ(ω′)− θ(ω′−ωc)ωc ln
(ωc
ω′

) d

dω′
φ−B(ω′−ωc)

+

∫ ∞
0

dω θ(ω−ω′) θ(ω′) ωc
ω′−ω−ωc

d

dω
φ−B(ω) . (B.25)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
ln2 (1+r2) φ−B(ω)

= − ln2

(
ω′−ωc
ω′

)
φ−B(ω′−ωc) θ(ω′−ωc)

+ 2

∫ ∞
0

dω θ(ωc−ω′) θ(ω′) ln

(
ωc−ω′

ω′

)
1

ω′−ω−ωc
φ−B(ω) . (B.26)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2 ln r2

1+r2+r3
φ−B(ω)

= ωc

[
θ(ω′)P 1

ω′−ωc
φ−B(0)−θ(ω′−ωc) ln

(ωc
ω′

) d

dω′
φ−B(ω′−ωc)
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+

∫ ∞
0

dω θ(ω′)P 1

ω′−ω−ωc
d

dω
φ−B(ω)

]
. (B.27)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2

[
r2

(1+r3)2
+

2

1+r3
+r2+2

]
ln r2 φ

−
B(ω)

= −
{[

θ(ωc−ω′) θ(ω′)
ω′2

]
++

+
θ(ω′−ωc)

ω′2
+δ′(ω′) ln

∣∣∣∣ ωc
ω′−ωc

∣∣∣∣} ∫ ∞
0

dω
ω2
c

ω+ωc
φ−B(ω)

+

{[
θ(ωc−ω′) θ(ω′)

ω′

]
+

+
θ(ω′−ωc)

ω′

} ∫ ∞
0

dω
ωc (ωc+2ω)

(ω+ωc)2
φ−B(ω)

+ωc

{[
θ(ωc−ω′) θ(ω′)

ω′

]
+

+
θ(ω′−ωc)

ω′

}
φ−B(0)−ln

(ωc
ω′

) (
1+ωc

d

dω′

)
φ−B(ω′)

+

∫ ∞
0

dω θ(ω′)P 1

ω′−ω

(
1+ωc

d

dω

)
φ−B(ω)

+ ln
(ωc
ω′

) ω′2+2ω′ωc−ω2
c

ω′2
φ−B(ω′−ωc) θ(ω′−ωc)

−
∫ ∞

0
dω θ(ω′)P 1

ω′−ω−ωc
ω2+4ω ωc+2ω2

c

(ω+ωc)2
φ−B(ω) . (B.28)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
Li2

(
1+r3

1+r2+r3

)
φ−B(ω)

=

∫ ∞
0

dω

{[
π2

6
+ln

(
ω+ωc−ω′

ω′−ωc

)
ln

(
ω+ωc−ω′

ωc

)]
θ(ω+ωc−ω′)

−1

2
ln2

∣∣∣∣ω′−ω−ωcω′−ωc

∣∣∣∣ } θ(ω′−ωc) d

dω
φ−B(ω)−

∫ ∞
0

dω

[
θ(ω+ωc−ω′) θ(ω′−ωc)

× ln

(
ωc

ω+ωc−ω′

)
+θ(ω′−ω−ωc) ln

(
ω′−ω−ωc
ω′−ωc

)]
P 1

ω−ω′
φ−B(ω)

+

∫ ∞
0

dω

[
θ(ω+ωc−ω′) θ(ω′−ωc) Li2

(
ω′−ω

ω′−ω−ωc

)
− θ(ω′−ω−ωc) ln

(
ω′−ω

ω′−ω−ωc

)
ln

(
ω′−ω−ωc
ω′−ωc

)]
d

dω
φ−B(ω) . (B.29)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
Li2

(
1

1+r2

)
φ−B(ω)

=

[
Li2

(
ω′−ωc
ω′

)
−π

2

3
+

1

2
ln2

(
ω′

ω′−ωc

)]
φ−B(ω′−ωc) θ(ω′−ωc)

−
∫ ∞

0
dω θ(ω′−ωc) ln

ω′

ω′−ωc
P 1

ω′−ω−ωc
φ−B(ω) . (B.30)

1

π
Imω′

∫ ∞
0

dω

ω′−ω−ωc+i0
r2

[
8

1+r2+r3
+

1

1+r3
+1

]
φ−B(ω)

= − δ(ω′)
∫ ∞

0
dω

ωc
ω+ωc

φ−B(ω)−φ−B(ω′) θ(ω′)+
ω′+ωc
ω′

φ−B(ω′−ωc) θ(ω′−ωc)

− 8ωc

[
δ(ω′−ωc)φ−B(0)+

d

dω′
φ−B(ω′−ωc) θ(ω′−ωc)

]
. (B.31)
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Here, the parameter n̄ · p in the definitions of r2 and r3, displayed in (3.16), should appar-

ently be replaced by ω′ in the above convolution integrals. The plus functions are defined as∫ +∞

−∞
dω′

[
f(ω′)

]
+
g(ω′) =

∫ ∞
−∞

dω′ f(ω′)
[
g(ω′)− g(0)

]
,∫ +∞

−∞
dω′

[
f(ω′)

]
++

g(ω′) =

∫ ∞
−∞

dω′ f(ω′)
[
g(ω′)− g(0)− ω′ g′(0)

]
. (B.32)

C The coefficient functions of Φeff
−,n(ω′, µ)

We present the coefficient functions ρ
(i)
−,n̄ (i = 1, . . . , 7) entering the “effective” DA

Φeff
−,n(ω′, µ) defined in (3.49).

ρ
(1)
−,n̄(ω′) = ln

(
µ2

n·pωc

) [
2 ln

(
ω′−ωc
ωc

)
−ln

(
µ2

n·pωc

)]
−2 ln2

(ωc
ω′

)
+ln2

(
ω′−ωc
ωc

)
−
(

1−ωc
ω′

)2
ln

(
ω′−ωc
ω′

)
−ω

′2+2ω′ωc−ω2
c

ω′2
ln
(ωc
ω′

)
−ωc
ω′

+2Li2

(
ω′−ωc
ω′

)
+

5π2

6
+1 , (C.1)

ρ
(2)
−,n̄(ω′) = 2ωc

[
3 ln

(
µ2

n·pωc

)
+4

]
, (C.2)

ρ
(3)
−,n̄(ω′) = 2

[
ln2

∣∣∣∣ ωc
ω′−ωc

∣∣∣∣−ln2
(ωc
ω′

)
+π2 θ(ωc−ω′)

]
, (C.3)

ρ
(4)
−,n̄(ω′) = 2ωc δ(ωc−ω′)

[
3 ln

(
µ2

n·pωc

)
+4

]
−θ(ω′−ωc)

ωc
ω′

+2

[
ln2

(
ωc−ω′

ω′

)
−ln

(
ωc−ω′

ω′

)
−π

2

3

]
θ(ωc−ω′)θ(ω′) , (C.4)

ρ
(5)
−,n̄(ω, ω′) = P 1

ω′−ω−ωc

{
2 θ(ω′−ω) ln

∣∣∣∣ µ2

n·p (ω′−ωc)

∣∣∣∣+θ(ωc−ω′) θ(ω′) ( ω

ω+ωc

)2

+θ(ω′)
ω2+4ωωc+2ω2

c

(ω+ωc)2
−2 θ(ω′−ωc) ln

(
ω′

ω′−ωc

)}
+P 1

ω−ω′

{
−4 θ(ω+ωc−ω′) θ(ω′) ln

(
ω+ωc−ω′

ω′

)
+θ(ω′) θ(ω′−ω−ωc)

+4 θ(ω+ωc−ω′) θ(ω′−ωc) ln

(
ωc

ω+ωc−ω′

)
+4 θ(ω′−ωc) ln

∣∣∣∣ω′−ω−ωcω′−ωc

∣∣∣∣
−2 θ(ω′)

θ(ωc−ω′)−θ(ω−ω′)
ω′−ω−ωc

(
ln

∣∣∣∣ µ2

n·p (ω−ω′)

∣∣∣∣+ln

∣∣∣∣ω′−ωcω′

∣∣∣∣)
+2 θ(ω′)

θ(ωc−ω′)+θ(ω−ω′)
ω′−ω−ωc

ln

∣∣∣∣ω′−ωω′

∣∣∣∣
+θ(ω′−ωc)

(
ωc

ω′2
−ωc+2ω

ω+ωc

1

ω′

)
ωc

ω+ωc

+

(
δ(ω′)−ωc ln

∣∣∣∣ωc−ω′ωc

∣∣∣∣ δ′(ω′)) ωc
ω+ωc

}
, (C.5)
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ρ
(6)
−,n̄(ω, ω′) = −4 θ(ω′−ωc) θ(ω+ωc−ω′) ln

(
ω+ωc−ω′

ω′−ωc

)[
ln

∣∣∣∣ µ2

n·p (ω−ω′)

∣∣∣∣
+ ln

(
ω+ωc−ω′

ωc

)]
+2 θ(ω′) θ(ω+ωc−ω′) θ(ω′−ω) ln2

(
ω+ωc−ω′

ω′

)
−4 θ(ω+ωc−ω′) θ(ω′) ln

(
ω+ωc−ω′

ω′

)
ln

∣∣∣∣ω′−ωω′

∣∣∣∣
−2 θ(ωc+ω−ω′) θ(ω′) ln

(
ω+ωc−ω′

ω′

)
−θ(ω′−ω−ωc) θ(ω′)

ωc
ω′−ω

+ 2
[
θ(ω′−ωc)−θ(ω′−ω)

]
ln2

∣∣∣∣ω′−ω−ωcω′−ωc

∣∣∣∣
− 4 θ(ω+ωc−ω′) θ(ω′−ωc) Li2

(
ω′−ω

ω′−ω−ωc

)
+ 4 θ(ω′−ω−ωc) ln

(
ω′−ω

ω′−ω−ωc

)
ln

(
ω′−ω−ωc
ω′−ωc

)
+ 2π2

[
θ(ω′−ω) θ(ω′−ωc) θ(ω+ωc−ω′)+θ(ω−ω′) θ(ω′)

−1

3
θ(ω′) θ(ω+ωc−ω′)

]
, (C.6)

ρ
(7)
−,n̄(ω, ω′) = 2 θ(ω+ωc−ω′) θ(ω′−ωc)

(
ωc−ω′

)
ln

(
ω+ωc−ω′

ω′−ωc

)
. (C.7)
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