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1 Introduction

The spontaneous breaking of global symmetries is described at low energies by a nonlin-

ear σ-model of the corresponding Goldstone modes which have nonlinear transformations.

These can often be obtained by applying an appropriate constraint on a linear σ-model.

In the case of supersymmetry, the Goldstone modes are fermions, the goldstini, and the

nonlinear σ-model for N = 1 is the Volkov-Akulov action [1]. In analogy with ordinary

symmetries, it can be obtained (up to field redefinitions) by a chiral superfield X satisfying

a nilpotent constraint X2 = 0 which eliminates its scalar component (sgoldstino) in terms

of the goldstino bilinear [2–5]:

X = − κκ

2F
+
√
2θκ− θ2F , (1.1)

where κ is the two-component Goldstone fermion, θ the usual fermionic coordinates and F

the (nonzero) auxiliary field. The most general Kähler potential is then quadratic K = XX

and the superpotential linear in X, P = ζX, with a proportionality constant ζ fixing the

scale of the supersymmetry breaking. Indeed, solving for F , one finds F = ζ + fermions

and one obtains (on-shell) the Volkov-Akulov action [2, 6].

Besides the use of nonlinear supersymmetry as an effective low-energy theory at ener-

gies below the sgoldstino mass, it can also be realized exactly in particular vacua of type

I string theory, when D-branes are combined with anti-orientifold planes that break the

linear supersymmetries preserved by the D-branes, while they preserve the other half that

are realized nonlinearly. In such vacua of “brane supersymmetry breaking”, superpart-

ners of brane excitations do not exist, and supersymmetry is nonlinearly realized with the

presence of a massless goldstino in the open string spectrum [7–11].

The generalization of these results to extended supersymmetry, in particular to N =

2, broken at two different scales, is a challenging and not straightforward problem. An

interesting case is N = 2 with one linear and one nonlinear supersymmetry, which is

the standard situation of D-branes in a N = 2 supersymmetric bulk and describes the

low-energy limit of partial N = 2 → N = 1 supersymmetry breaking. The goldstino

of the nonlinear supersymmetry should then belong to a multiplet of the N = 1 linear

supersymmetry, which can be either a vector or a chiral multiplet. In fact, both cases have

to be studied, since they constitute the Goldstone degrees of freedom of a massive spin-3/2

multiplet. Indeed, a massless spin-3/2 multiplet contains a gravitino and a graviphoton,

while a massive one contains, in addition, a spin-1 and a (Majorana) spinor, so that the

Goldstone modes are a vector, two 2-component spinors and two scalars [12].

When the second and nonlinear supersymmetry is taken into account, the above two

N = 1 multiplets should be described by constrained N = 2 superfields associated with

a Maxwell multiplet and a hypermultiplet. The latter comes with an extra complication

since it has no off-shell formulation in the standard N = 2 superspace. Fortunately,

the presence of bosonic shift symmetries associated with the would-be Goldstone bosons

providing the longitudinal components of the spin-1 fields, implies that the chiral multiplet

can be dualized to a linear multiplet having an off-shell description when promoted to a

(constrained) N = 2 single-tensor superfield.
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In this work we analyze the partial breaking of global N = 2 → N = 1 supersym-

metry [13], extending known results in the literature on Maxwell multiplets [13–17] and

single-tensor multiplets [18, 19], we derive the corresponding N = 2 constrained superfields

and study their possible interactions. The easiest way to introduce a breaking of N = 2

supersymmetry is by a (constant) deformation of the supersymmetry transformations of

the fermions that cannot be absorbed in expectation values of the auxiliary fields, unlike

the N = 1 case [16]. Partial breaking arises when the deformation parameters satisfy

particular relations, guaranteeing the existence of one goldstino associated with a linear

combination of the two supersymmetries. The goldstino superfield of one nonlinear su-

persymmetry can then be obtained by imposing a nilpotent (double chiral) constraint, in

analogy with X2 = 0 of N = 1.

The outline of this paper is the following. In section 2, we present a model of spon-

taneous partial breaking of N = 2 → N = 1 supersymmetry using one single-tensor

multiplet, which contains a N = 1 linear multiplet L and one chiral multiplet. The theory

admits a special superpotential that allows for partial supersymmetry breaking, in anal-

ogy with the magnetic Fayet-Iliopoulos (FI) term in the Maxwell multiplet model of [13].

This correspondence exchanges the N = 1 chiral field-strength superfield of the N = 2

Maxwell multiplet with the antichiral superfield DαL. Thus, the N = 2 Maxwell super-

field is chiral under both supersymmetries (CC), while the single-tensor superfield is chiral

under the first and antichiral under the second (CA). In section 3, we discuss nonlinear

deformations of the N = 2 Maxwell and single-tensor superfields, write the most general

actions and compute the scalar potentials that have N = 1 supersymmetric minima. In

section 4, we consider the infinite-mass limit that freezes half of the degrees of freedom,

and derive the constrained multiplets and the corresponding nilpotent constraints. We

then give the solutions of the constraints (off-shell) and derive the generalizations of the

goldstino Volkov-Akulov action in the presence of a linear supersymmetry, in addition to

the nonlinear one. These are the supersymmetric Dirac-Born-Infeld (DBI) action and a

similar action for the linear multiplet, in agreement with previous results. We then turn to

the study of interactions. To this end, we introduce in section 5 “long” N = 2 superfields

for the Maxwell and single-tensor multiplets with opposite relative chiralities compared

to the “short” ones, namely CA for the Maxwell and CC for the single-tensor, so that

one can write a Chern-Simons type of interaction that we discuss in section 6. This in-

teraction leads to a super-Brout-Englert-Higgs mechansim without gravity, in which the

linear multiplet is absorbed by the vector which becomes massive [19]. In section 6, we

also study more general constraints that describe incomplete N = 2 matter multiplets of

non-linear supersymmetry (vectors or single-tensors), half of the components of which are

projected out. Finally, section 7 contains concluding remarks and open problems, while

there are three appendices with our conventions (appendix A) and the technical details of

the Maxwell multiplet (appendices B and C).

In the following, W, Z, Y . . . denote N = 2 superfields with 8B+8F components, while

hatted superfields Ŵ, Ẑ . . . have 16B +16F fields. They are chiral with respect to the first

supersymmetry (which shifts Grassmann coordinates θα) and either chiral or antichiral

under the second supersymmetry (shifting θ̃α). All other superfields are N = 1 superfields.

– 3 –
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2 Partial supersymmetry breaking with one hypermultiplet

In this section we show the existence of partial supersymmetry breaking in a large class of

N = 2 theories with a single hypermultiplet. The hypermultiplet couplings have a (transla-

tional) isometry allowing for a description in terms of a dual single-tensor multiplet which

admits, like the Maxwell multiplet, a fully off-shell formulation. We use this formulation to

obtain these theories, dualize back to the hypermultiplet formulation and then display the

strong similarity between partial breaking with a Maxwell (namely the APT model [13])

and partial breaking with a single-tensor multiplet.

The single-tensor N = 2 multiplet [20–23] describes an antisymmetric tensor with

gauge symmetry

δ Bµν = 2 ∂[µΛν], (2.1)

three real scalar fields and two Weyl (or massless Majorana) spinors. In the same manner

that an antisymmetric tensor is dual to a pseudoscalar with axionic shift symmetry, a

single-tensor multiplet is equivalent to a hypermultiplet with shift symmetry. In both

cases, the symmetry implies masslessness. In analogy with the Yang-Mills or Maxwell

multiplet but in contrast with the hypermultiplet, the single-tensor multiplet admits an

off-shell formulation.

In terms of N = 1 superfields, the single-tensor multiplet has two descriptions which

can be viewed as the supersymmetrization either of the gauge invariant three-form field

strength

Hµνρ = 3 ∂[µBνρ] (2.2)

or of a two-form potential Bµν and of its gauge transformation. The first description [21]

associates a real linear superfield L, DDL = 0, which includesHµνρ, with a chiral superfield

Φ, Dα̇Φ = 0, for a total of 8B + 8F off-shell fields. The second supersymmetry variations

δ∗ can be written as

δ∗L = − i√
2
(ηDΦ+ ηDΦ) , δ∗Φ =

√
2i ηDL , δ∗Φ =

√
2i ηDL , (2.3)

where ηα is the spinor parameter of the second supersymmetry. Since the linearity condition

DDL = 0 is solved by

L = Dαχα −Dα̇χ
α̇ ≡ Dχ−Dχ , (2.4)

where the chiral spinor superfield χα includes Bµν , there is a second description with two

chiral superfields Φ and Y associated with χα, for a total of 16B+16F fields.1 The variations

are [19]

δ∗Y =
√
2 ηχ ,

δ∗χα = − i√
2
Φ ηα −

√
2

4
ηαDDY −

√
2i(σµη)α∂µY ,

δ∗Φ = 2
√
2i

[
1

4
DDηχ+ i∂µχσ

µη

]
. (2.5)

1The superfield Φ appears in both descriptions.
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They close the N = 2 superalgebra off-shell. The supersymmetric extension of the gauge

symmetry (2.1) is then

δgaugeχα = − i

4
DDDαV̂2 , δgaugeY =

1

2
DD V̂1 , δgaugeΦ = 0 , (2.6)

with V̂1 and V̂2 real: the gauge transformation of the single-tensor multiplet in the de-

scription (χα,Φ, Y ) is generated by a N = 2 Maxwell multiplet, which removes 8B + 8F
fields. There is a gauge with Y = 0, residual N = 1 supersymmetry and gauge invariance

generated by V̂2.

The kinetic N = 2 lagrangian in the description (L,Φ) takes the simple form [21]

Lkin. =

∫
d2θd2θH(L,Φ,Φ) , (2.7)

where H is any real function solving the three-dimensional Laplace equation

∂2H
∂L2

+ 2
∂2H
∂Φ∂Φ

= 0. (2.8)

A unique superpotential m̃2Φ is allowed, since, under the second supersymmetry,

δ∗
∫
d2θ (m̃2Φ) =

√
2i m̃2

∫
d2θ ηDL (2.9)

which is a derivative. For the real linear superfield L, Dα̇L is a chiral superfield with

expansion

Dα̇L = iϕα̇ − (θσµ)α̇(vµ + i∂µC)− θθ(∂µϕσ
µ)α̇ , vµ =

1

6
ǫµνρσ H

νρσ (2.10)

(in chiral coordinates), where the real scalar C is the lowest component of L. Note also

that the superpartner of L (under the second supersymmetry) is

Φ = z +
√
2θψ − θθf . (2.11)

2.1 Single-tensor multiplet formulation

To derive a theory with partial supersymmetry breaking, we first consider a generic N = 1

chiral function W (Φ), with second supersymmetry variation

δ∗
∫
d2θW (Φ) =

√
2i

∫
d2θWΦ ηDL , WΦ =

dW

dΦ
. (2.12)

It is not a derivative unless W (Φ) ∼ Φ. Since2

DD (θη L) = −2 ηDL = DD (θηL+ θηL) , (2.13)

the variation can also be written as3

δ∗
∫
d2θW (Φ) + h.c. = 2

√
2i

∫
d2θd2θ

[
WΦ −WΦ

]
(ηθ + ηθ)L . (2.14)

2These equalities respect the first supersymmetry (which shifts θ and θ).
3We usually omit derivatives when comparing lagrangian terms.
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Consider now the function

H(L,Φ,Φ) = i
[
−L2[WΦ −WΦ] + ΦW − ΦW

]
, (2.15)

which is obviously a solution of the Laplace equation, while the action corresponding to

L = i

∫
d2θd2θ

[
−L2[WΦ −WΦ] + ΦW − ΦW

]
+

∫
d2θ (m̃2Φ) + h.c.

=

∫
d2θ

[
i

2
WΦ (DL)(DL)− i

4
W DDΦ+ m̃2Φ

]
+ h.c.

(2.16)

is invariant under linear (off-shell) N = 2 supersymmetry.

To break spontaneously the second supersymmetry, we first add the generic superpo-

tential M̃2W (Φ) to (2.16):

Lnl =

∫
d2θ

[
i

2
WΦ (DL)(DL)− i

4
W DDΦ+ m̃2Φ+ M̃2W

]
+ h.c.

= i

∫
d2θd2θ

[
−L2(WΦ −WΦ) + ΦW − ΦW

]
+

∫
d2θ

[
m̃2Φ+ M̃2W

]
+ h.c.

(2.17)

The action corresponding to (2.17) is then invariant under linear N = 1 supersymmetry

as well as under the nonlinearly deformed second supersymmetry transformations

δ∗ L = δ∗nl L− i√
2
(ηDΦ+ ηDΦ), δ∗nl L =

√
2 M̃2 (θη + θη),

δ∗nlDα̇L = −
√
2 M̃2 ηα̇ , (2.18)

with δ∗Φ unchanged, since

δ∗nl Lkin. = −i
√
2 M̃2

∫
d2θWΦ ηDL+ h.c. = −M̃2 δ∗

∫
d2θW (Φ) + h.c. (2.19)

Lnl depends on two complex numbers, the deformation parameter M̃2 and the quantity

m̃2 in the linear N = 2 superpotential. Note also that the deformation in (2.18) implies

that the spinor ϕα̇ in the expansion (2.10) of Dα̇L transforms like a goldstino. In fact, the

transformations (2.18) for the N = 1 linear multiplet were first found in [18] by performing

a chirality switch on the transformations of the N = 1 Maxwell multiplet, first given in [14].

2.1.1 Alternative proof

Let us consider the N = 2 supersymmetric lagrangian (2.7). Suppose that, to induce

the partial breaking, we deform the second supersymmetry transformations of the single-

tensor multiplet, in such a way that the spinor ϕα̇ in the expansion of Dα̇L transforms like

a goldstino; the transformations take then the form (2.18). The deformation induces a new

term in the variation of the lagrangian under the second supersymmetry:

δ∗defLkin. =
√
2 M̃2

∫
d2θd2θ HL(θη + θη) , (2.20)

– 6 –
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where HL = ∂H
∂L

and H satisfies the Laplace equation in the limit M̃2 → 0. The expres-

sion (2.20) selects the θθθ and θθθ components of HL. To obtain partial breaking, these

components must transform as derivatives under the first, unbroken supersymmetry. This

is the case if the highest component of HL is zero or a derivative,
∫

d2θd2θHL = derivative , (2.21)

whose solution is

HL = G̃(Φ) + G̃(Φ)− 2L
(
GΦΦ(Φ) + GΦΦ(Φ)

)
(2.22)

where G, G̃ are holomorphic functions of Φ and GΦ = d
dΦG(Φ) (we use the derivatives merely

for convenience). The prefactor −2 of L terms is conventional. Consequently,

H = K(Φ,Φ) + L
(
G̃(Φ) + G̃(Φ)

)
− L2

(
GΦΦ(Φ) + GΦΦ(Φ)

)
, (2.23)

where K(Φ,Φ) is a function of Φ, Φ and, using the Laplace equation, we obtain

H =
(
ΦGΦ(Φ) + ΦGΦ(Φ)

)
− L2

(
GΦΦ(Φ) + GΦΦ(Φ)

)
, (2.24)

since terms linear in L do not contribute to the integral

∫
d2θd2θ .

Now let us consider again the derformation (2.20) of the lagrangian. With the use

of (2.24), it becomes (since terms proportional to L0 do not contribute):

δ∗defLkin. = −2
√
2M̃2

∫
d2θd2θ L

(
GΦΦ(Φ) + GΦΦ(Φ)

)
(θη + θη)

= M̃2
√
2

∫
d2θ DD

[
LGΦΦ(Φ) θη

]
+ h.c.

= −M̃2
√
2

∫
d2θ (ηDL)GΦΦ(Φ) + h.c. = iM̃2 δ∗

∫
d2θ GΦ(Φ) + h.c.

(2.25)

Consequently, the deformed lagrangian

Ldef,kin. =

∫
d2θd2θ H(L,Φ,Φ)− iM̃2

∫
d2θ GΦ(Φ) + h.c. (2.26)

is invariant under the first (linearly-realized) supersymmetry as well as under the second

nonlinearly-realized one. It is also obvious that the lagrangians corresponding to (2.15)

and (2.24) are equivalent upon identifying GΦ(Φ) = iW (Φ).

2.1.2 The vacuum

Theory (2.17) with m̃2 = 0 can be derived from a deformed chiral-antichiral N = 2

superfield with the use of a prepotential function G(Z). Let us define4

Z = Φ+
√
2i θ̃DL− 1

4
θ̃θ̃

[
4iM̃2 +DDΦ

]
. (2.27)

4We introduce a second set of Grassmann coordinates θ̃α, θ̃α̇ and use chiral-antichiral coordinates ỹµ

such that Dα̇ỹ
µ = D̃αỹ

µ = 0. Then, Z is a function of ỹµ, θ , θ̃.

– 7 –
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We then obtain

∫
d2θ

∫
d2θ̃ G(Z) + h.c. =

∫
d2θ

[
1

2
GΦΦ (DL)(DL)− 1

4
GΦDDΦ− i M̃2 GΦ

]
+h.c. (2.28)

Clearly, GΦ(Φ) = iW (Φ). Notice that the deformation cannot be understood as the expec-

tation value of a scalar of the N = 1 superfields.

Partial supersymmetry breaking is achieved if theory (2.17) has a vacuum state invari-

ant under the first (linear) supersymmetry. We then analyze the scalar potential, which,

since L does not have auxiliary fields, follows from the auxiliary f (in Φ) only. The auxiliary

field lagrangian is5

Laux. = i(WΦ −WΦ)ff − m̃2f − M̃2WΦf − m̃
2
f − M̃

2

WΦf

− i

2
WΦΦ[f ψψ − f ϕϕ] +

i

2
WΦΦ[f ψψ − f ϕϕ] = −V + Lferm..

(2.29)

It generates the scalar potential

V =
1

i(WΦ −WΦ)

∣∣∣m̃2 + M̃2WΦ

∣∣∣
2
. (2.30)

The term depending on L in theory (2.17) does not contribute to the potential. Fermion

mass terms read

Lferm. = −1

2
M̃2WΦΦ ψψ − 1

2

[
m̃2 + M̃2WΦ

] WΦΦ

WΦ −WΦ

ψψ + h.c.

−1

2

[
m̃2 + M̃2WΦ

] WΦΦ

WΦ −WΦ

ϕϕ+ h.c.

(2.31)

Three situations can occur.

Firstly, if M̃2 = m̃2 = 0, the theory has unbroken (linear) N = 2 supersymmetry and

all fields are massless. This is also the case if M̃2 = 0, m̃2 6= 0 and if the theory is canonical

(i.e. free), WΦΦ = 0, in which case the potential is an irrelevant constant V ∼ |m̃|4.
Secondly, if the second supersymmetry is not deformed (M̃2 = 0), the theory is not

free (WΦΦ 6= 0) and m̃2 6= 0, N = 2 breaks to N = 0 with

〈f〉 = − m̃
2

2 Im〈WΦ〉
. (2.32)

The theory has a vacuum state if 〈WΦΦ〉 = 0 has a solution, fermions remain then massless

and the splitting of scalar masses is controlled by 〈WΦΦΦ〉. This is also the case if m̃2 = 0

and M̃2 6= 0 with

〈f〉 = − M̃
2
〈WΦ〉

2 Im〈WΦ〉
. (2.33)

5In this section, we use the same notation Φ for the superfield and its lowest component. The other

components are ψ and f , as in the other sections. The kinetic metric of the multiplet is i
(
WΦ −WΦ

)
.
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Thirdly, partial breaking to N = 1 occurs if M̃2 6= 0 6= m̃2 and if the theory is not

canonical (WΦΦ 6= 0). At the vacuum state,

〈WΦ〉 = − m̃2

M̃2
〈f〉 = 0. (2.34)

Positivity of kinetic terms requires Im〈WΦ〉 < 0. The linear superfield L remains of course

massless, while the mass6 of Φ is controlled by 〈WΦΦ〉:

M2
Φ = M̃2M̃

2
∣∣∣∣

〈WΦΦ〉
2 Im〈WΦ〉

∣∣∣∣
2

. (2.35)

In principle, Φ can acquire a very large mass and decouple from the massless L.

The analogy with partial supersymmetry breaking in a N = 2 Maxwell multiplet

theory [13] is striking. Describing this multiplet with N = 1 superfields Wα = −1
4DDDαV

and X, with deformed supersymmetry variations

δ∗Wα = −
√
2M2 ηα +

√
2 i

[
1

4
ηαDDX + i(σµη)α ∂µX

]
, δ∗X =

√
2 i ηαWα, (2.36)

the invariant lagrangian is written as

LMax. =
1

2

∫
d2θ

[
1

2
FXXWW − 1

4
FXDDX +m2X − iM2FX

]
+ h.c.+ LF.I., (2.37)

where F(X) is the holomorphic prepotential and LF.I. = ξ
∫
d4θ V is the Fayet-Iliopoulos

(FI) term. Partial breaking arises if the theory is interacting, FXXX 6= 0, if M2 6= 0 6= m2

and ξ = 0. If we now compare with the lagrangian (2.17) and the deformed variation

δ∗Dα̇L = −
√
2 M̃2ηα̇ +

√
2i

[
1

4
ηα̇DDΦ− i(ησµ)α̇ ∂µΦ

]
, (2.38)

we observe that there is clearly a correspondence between Φ and X, FX(X) and W (Φ) with

a Lorentz chirality inversion from Wα to Dα̇L. However, there are significant differences,

namely the absence of auxiliary fields in L as well as the consequent inexistence of a

corresponding “electric” FI term analogous to the ξD term for the Maxwell multiplet.

2.2 Dual hypermultiplet formulation

The duality transformation from the single-tensor to the hypermultiplet formulation is a

Legendre transformation in N = 1 superspace. Instead of expression (2.7), let us use

Lkin. =

∫
d2θd2θ

[
H(V,Φ,Φ)− (S + S)V

]
. (2.39)

The field equation for S implies V = L and the field equation for V yields

HV = S + S (Legendre transformation) (2.40)

6Normalized with the metric −2 Im〈WΦ〉.
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which allows one to express V as a function of S + S, Φ and Φ. The Kähler potential for

the hypermultiplet with superfields S and Φ is then

K(S + S,Φ,Φ) =
[
H(V,Φ,Φ)− (S + S)V

]
V (S+S,Φ,Φ)

. (2.41)

In our case, the Legendre transformation is simply

KV = 0 =⇒ S + S = HV = −2iV (WΦ −WΦ) (2.42)

with also

HS = 0 =⇒ KS = −V . (2.43)

The dual hypermultiplet theory reads

Ldual = i

∫
d2θd2θ

[
−1

4

(S + S)2

WΦ −WΦ

+WΦ−WΦ

]
+

∫
d2θ

[
m̃2Φ+ M̃2W

]
+ h.c.

=

∫
d2θ

[
− i

2
WΦ(DKS)(DKS)−

i

4
WDDΦ+ m̃2Φ+ M̃2W

]
+ h.c.

(2.44)

The D-term in the first expression is the Kähler potential of a hyper-Kähler space,

detKmn = 1/2. Since the superpotential depends on Φ only, the auxiliary component

fS of S does not contribute to the potential. Its field equation

(WΦ −WΦ)fS − (S + S)WΦΦfΦ = 0 (2.45)

is actually the θθ component of the duality relation (2.42). The ground state in the partially

broken phase is again characterized by relations (2.34) with, in addition, 〈fS〉 = 0. On-shell,

relations (2.42) and (2.43) with L replacing V ,

HL = S + S , KS = −L , (2.46)

are consistent using the field equations for L and S,

DDDαHL = 0 , DDKS = 0 , (2.47)

as integrability conditions.

That the N = 1 theory (2.44) has a second supersymmetry is not obvious. Since the

Kähler potential K generates a hyper-Kähler metric, the first term certainly has (on-shell)

N = 2 [24]. Following [21], one easily verifies that K is invariant (up to a superspace

derivative) under the variations

δ∗KS =
i√
2
(ηDΦ+ ηDΦ) , δ∗Φ = −

√
2i ηDKS , δ∗Φ = −

√
2i ηDKS , (2.48)

where KS = ∂
∂S

K = − i
2

S+S

WΦ−W
Φ

. These variations are simply obtained by inserting the

second duality relation (2.46) in the single-tensor off-shell variations (2.3). The field equa-

tion DDKS = 0 provides the linearity and chirality of δ∗KS and δ∗Φ respectively. The

superpotential term m̃2Φ is also invariant. The nonlinear deformation which allows for the

presence of the superpotential M̃2W is then

δ∗nlDα̇KS =
√
2 M̃2 ηα̇ , (2.49)

in agreement with eqs. (2.18) and (2.46).
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2.3 Several single-tensor multiplets

The extension to a theory with several single-tensor multiplets is straigthforward. Consider

the deformed N = 2 chiral superfields

Za = Φa +
√
2i θ̃DLa − 1

4
θ̃θ̃

[
4i(M̃a)2 +DDΦ

a
]
. (2.50)

The lagrangian

L =

∫
d2θ

∫
d2θ̃ G(Za) + h.c.

=

∫
d2θ

[
1

2
Gab(DLa)(DLb)− 1

4
GaDDΦ

a − i(M̃a)2 Ga + m̃2
aΦ

a

]
+ h.c. ,

(2.51)

where

Ga =
∂

∂Φa
G(Φc) , Gab =

∂2

∂Φa∂Φb
G(Φc) ,

is invariant under the nonlinear second supersymmetry variations

δ∗La =
√
2(M̃a)2(θη + θη)− i√

2
(ηDΦ+ ηDΦ), δ∗Φa =

√
2i ηDLa. (2.52)

For m̃2
a 6= 0 6= (M̃ b)2, the condition for unbroken N = 1 is the cancellation of all auxiliary

fields fa:

− i〈Gab〉(M̃ b)2 + m̃2
a = 0. (2.53)

In this vacuum, the kinetic metric 2〈ReGab〉 must be invertible and the mass matrix of the

chiral multiplets Φa is then

Mab = − i

2
〈ReG−1

ac 〉〈Gbcd〉(M̃d)2, (2.54)

controlled by the third derivatives of G.

3 Nonlinear deformations

In the previous section, we made use of particular nonlinear deformations of the N =

2 single-tensor and Maxwell multiplets to engineer theories with partial supersymmetry

breaking. As illustrated by eq. (2.27), a nonlinear deformation of the single-tensor multiplet

can be introduced as a spurious constant component inserted in a N = 2 superfield.

In this section, we study general nonlinear deformations of these multiplets, using their

representation as chiral superfields in N = 2 superspace.

3.1 Deformations of the Maxwell superfield

A chiral-chiral (CC) N = 2 superfield describes the Maxwell multiplet:

W(y, θ, θ̃) = X +
√
2i θ̃W − 1

4
θ̃θ̃ DDX, Dα̇W = D̃α̇W = 0, (3.1)
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using chiral coordinates Dα̇ y
µ = D̃α̇ y

µ = 0, with also

Wα = −iλα + θαD − i
2(σ

µσνθ)αFµν − θθ (σµ∂µλ)α,

X = x+
√
2 θκ− θθ F,

1
4DDX = F +

√
2i θσµ∂µκ+ θθ✷x.

(3.2)

The SU(2)R symmetry of theN = 2 algebra acts linearly on the components of the Maxwell

superfield W. Defining fermion doublets

θ1 = θ, θ2 = θ̃, λ1 = κ, λ2 = λ, (3.3)

leads to

W(y, θ, θ̃) = x+
√
2 θiλi − θiθjYij + . . . (3.4)

omitting terms which depend on derivatives of the fields. Since θiθj = θjθi,

Yij = Yji = [~Y · ~σ σ2]ij (3.5)

and the vector ~Y is in general a complex SU(2)R triplet. But in W, the auxiliary fields

correspond to

Y11 = F, Y22 = F , Y12 = − i√
2
D, ~Y =

(
ImF,ReF,

D√
2

)
(3.6)

and the SU(2)R-invariant “reality” condition

Y ij ≡ Y ∗
ij = ǫikǫjlYkl (3.7)

is verified: a complex value of ~Y violating this condition cannot be seen as a background

value of N = 1 superfields X or Wα.

Since gauginos are in the θi components, nonlinear deformations of their variations, as

expected for goldstino fermions, should be introduced with

Wnl = A2θθ +B2θ̃θ̃ + 2Γθθ̃, (A, B, Γ complex)

= (Y2 + iY1) θθ + (Y2 − iY1) θ̃θ̃ − 2iY3 θθ̃
(3.8)

added to W. Then, ~Y =
(
− i

2 [A
2 −B2], 12 [A

2 +B2], iΓ
)
and

δκα =
√
2(A2ǫα + Γηα) + . . . δλα =

√
2(B2ηα + Γǫα) + . . . (3.9)

If Γ = ±AB, Wnl = (Aθ ± Bθ̃)2, δ(Bκα ∓ Aλα) = 0 and the deformation partially breaks

N = 2 to N = 1. We earlier used the particular case A = Γ = 0. The condition for partial

breaking is in any case incompatible with the reality condition (3.7): the auxiliary fields

F and D are not able to induce partial breaking with their background values; in other

words, the deformation parameters cannot be absorbed in the background values of the

auxiliary fields, in contrast with the case of the spontaneous breaking of N = 1. An SU(2)

rotation can be used to cancel Y3 = iΓ. With this choice, partial breaking occurs either if

A = 0, and the goldstino is λα, or if B = 0 and the goldstino is κα.
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3.2 Deformations of the single-tensor superfield

While a chiral-chiral (CC) superfield is relevant to study deformations of the Maxwell

multiplet, the single-tensor multiplet is conveniently described using a chiral-antichiral

(CA) N = 2 superfield Z,

Dα̇Z = D̃αZ = 0 , (3.10)

with the expansion

Z = Φ+
√
2i θ̃DL− 1

4
θ̃θ̃ DDΦ (3.11)

in the appropriate coordinates (ỹ, θ, θ̃), Dα̇ ỹ
µ = D̃α ỹ

µ = 0. A particular deformation

with partial supersymmetry breaking has been earlier described [eq. (2.28)] and we wish

to generalize it. Since fermion fields are in the components7

√
2 θψ −

√
2 θ̃ϕ (3.12)

of Z, the deformation parameters will add

Znl = Ã2 θθ + B̃
2
θ̃θ̃ (3.13)

to Z. In contrast with the Maxwell case, the mixed contribution θαθ̃α̇ is a space-time

vector and the deformations are encoded in two complex numbers Ã2 and B̃2 only. The

nonlinear variations of the spinors are

δψα =
√
2 (Ã2 − f) ǫα + . . . δϕα = −

√
2 (B̃2 + f) ηα + . . . (3.14)

and generic values of Ã2 and B̃2 break both supersymmetries. Partial breaking occurs if

either B̃2 = 0 and the goldstino is ψ in Φ, or if Ã2 = 0 with ϕ in L as the goldstino.

An expectation value 〈f〉 of the auxiliary f in Φ corresponds to Ã2 = −B̃2 and cannot

generate partial breaking on its own.

In the linear N = 2 theory, all fields are massless since the single-tensor multiplet in-

cludes a tensor with gauge symmetry. A generic lagrangian generated by the CA superfield

Z is

L =

∫
d2θ

[∫
d2θ̃ G(Z) + m̃2Φ

]
+ h.c. = Llin. + Lnl . (3.15)

where Lnl includes all terms generated by the deformations with parameters Ã2 and B̃2.

In the function G(Z), a term linear in Z is irrelevant (it contributes with a derivative) and

the component expansion of the lagrangian depends on the second and higher derivatives

of G. The only auxiliary field is f in Φ and Llin. includes the terms

[G′′(z) + G′′
(z)] ff +

[
1

2
G′′′(z)[f ψψ + f ϕϕ]− m̃2 f

]
+ h.c. (3.16)

7The field components of Φ are z, ψ and f and Dα̇L is expanded in eq. (2.10).
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The parameter m̃2 induces 〈f〉 = m̃2/2〈ReG′′〉 which breaks both supersymmetries if the

theory is not canonical, G′′′ 6= 0. The nonlinear deformation produces the following terms:

Lnl = −G′′(z)
[
B̃

2
f + Ã2 f + Ã2B̃

2]
+ h.c.

−1

2
G′′′(z)

[
B̃

2
ψψ + Ã2 ϕϕ

]
+ h.c.

(3.17)

Hence,

2 [ReG′′(z)] f = G′′(z)B̃
2
+ G′′

(z)Ã
2
+ m̃2 − 1

2
G′′′(z)ϕϕ− 1

2
G′′′

(z)ψψ

and the scalar potential and the fermion bilinear terms read respectively

V (z, z) =
1

2ReG′′

∣∣∣B̃2 G′′
+ Ã2 G′′ + m̃

2
∣∣∣
2
+ 2Re[Ã2B̃

2
G′′],

Lferm. =
1

2
ψψ

[ G′′′

2ReG′′ (B̃
2
G′′ + Ã

2
G′′

+ m̃2)− B̃
2
G′′′

]
+ h.c.

+
1

2
ϕϕ

[ G′′′

2ReG′′ (B̃
2
G′′ + Ã

2
G′′

+ m̃2)− Ã
2
G′′′

]
+ h.c.

(3.18)

The kinetic metric of the multiplet is 2ReG′′(z). Notice that these formulas do not depend

on the real scalar C in L, which always leads to a flat direction.

If ÃB̃ = 0 with Lnl 6= 0 and the ground state equation 〈B̃
2
G′′ + Ã

2
G′′

+ m̃2〉 = 0 has

a solution, one supersymmetry remains unbroken: 〈f〉 = 0. This requires m̃2 6= 0, since

positivity of the kinetic metric forbids 〈G′′〉 = 0. If B̃ 6= 0, the mass terms are

2〈ReG′′〉
[
MΦMΦ zz − 1

2
MΦψψ − 1

2
MΦ ψψ

]
, MΦ =

B̃
2
〈G′′′〉

2〈ReG′′〉 .

This is the case already obtained in eqs. (2.34) and (2.35): the chiral N = 1 superfield Φ

has mass MΦ, and L is massless. If Ã 6= 0, the mass terms are

2〈ReG′′〉
[
MΦMΦ zz − 1

2
MΦϕϕ− 1

2
MΦ ϕϕ

]
, MΦ =

Ã
2
〈G′′′〉

2〈ReG′′〉 .

The roles of ψ and ϕ are exchanged, the N = 1 multiplet with mass MΦ has fields z and

ϕ, while ψ is the N = 1 partner of Hµνρ and C in the massless linear superfield.

If ÃB̃ 6= 0, the non-zero second term in the scalar potential (which can have both

signs) breaks both supersymmetries, assuming that V has a ground state 〈z〉.

4 Constrained multiplets

When supersymmetry is partially broken in the Maxwell or single-tensor (hypermultiplet)

theory, a chiral multiplet (X or Φ) acquires an arbitrary mass. In the infinite-mass limit,

the field equation of this superfield is a constraint which allows for the elimination of

the massive chiral superfield. One is then left with a nonlinear realization of N = 2

supersymmetry in terms of the 4B + 4F fields of the N = 1 Maxwell or linear superfield.

– 14 –
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4.1 The infinite-mass limit

We begin with partial breaking in the Maxwell theory. Since the two options A2 = 0 and

B2 = 0 are equivalent, we only consider the first case and use the deformed chiral-chiral

deformed superfield

W = X +
√
2i θ̃W + θ̃θ̃

[
B2 − 1

4
DDX

]
, (4.1)

in terms of which the lagrangian is

L =
1

2

∫
d2θ

[∫
d2θ̃F(W) +m2X

]
+ h.c.+ LF.I.

=
1

4

∫
d2θ

[
FXXWW − 1

2
FXDDX + 2m2X + 2B2FX

]
+ h.c.+ LF.I.

(4.2)

Since the auxiliary fields f and D vanish in the ground state, the mass terms of the fermion

χ in X are

−B2

4
〈FXXX〉χχ− B

2

4
〈FXXX〉χχ

and, since the kinetic metric is Re〈FXX〉, the mass of X is

MX =
B2 〈FXXX〉
2 Re〈FXX〉 . (4.3)

The infinite-mass limit is 〈FXXX〉 → ∞ with fixed Re〈FXX〉 (as the latter corresponds to

the metric of the scalar manifold), thus disproving the claim made in [25]. Expanding the

field equation of X and retaining only the term in 〈FXXX〉 leads to the constraint

WW − 1

2
XDDX + 2B2X = 0 , (4.4)

which was first given in [14]. Multiplying (4.4) by Wα or X leads also to XWα = X2 = 0

and the constraint (4.4) is then equivalent to [16]

W2 = 0 . (4.5)

We now turn to the partial breaking in a single-tensor theory. Again, the two options

Ã2 = 0 and B̃2 = 0 are equivalent, so we only consider the first case and use the deformed

chiral-antichiral superfield

Z = Φ+
√
2i θ̃DL+ θ̃θ̃

[
B̃

2
− 1

4
DDΦ

]
, (4.6)

which induces the nonlinear deformation

δ∗nlDα̇L = −i
√
2 B̃

2
ηα̇ . (4.7)

The theory (3.15) and the field equation for Φ respectively read

L =

∫
d2θ

[
GΦ(Φ)

(
−1

4
DDΦ+ B̃

2
)
+

1

2
GΦΦ(Φ)(DL)(DL) + m̃2Φ

]
+ h.c. ,

0 = GΦΦ(Φ)

(
−1

4DDΦ+ B̃
2
)
+ 1

2GΦΦΦ(Φ)(DL)(DL) + m̃2.

(4.8)
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The lowest component is the field equation for the auxiliary field f ,

Gzz(z) (f − B̃
2
) = m̃2

omitting fermions, and 〈f〉 = 0 defines the ground state Gzz(〈z〉) = −m̃2/B̃
2
and the

kinetic metric normalization 2ReGzz(〈z〉).
As explained earlier, the mass of Φ is controlled by Gzzz(〈z〉) and this free parameter

can be sent to infinity keeping Gzz(〈z〉) finite as in the Maxwell case. In this limit,

Gzz(Φ) ∼ Gzzz(〈z〉)[Φ− 〈z〉], Gzzz(Φ) ∼ Gzzz(〈z〉)

and the field equation becomes8

1

2
ΦDDΦ− (DL)(DL) = 2B̃

2
Φ , (4.9)

which does not depend on the function G and which was first given in [18]. This equation

allows to eliminate Φ. The solution expresses Φ as a function of (DL)(DL), with

Φ = − 2(DL)(DL)

4B̃
2
−DDΦ

=⇒ ΦDα̇L = Φn = 0 (n ≥ 2). (4.10)

The second supersymmetry variation of the constraint (4.9) is

δ∗
[
1

2
ΦDDΦ− (DL)(DL)− 2B̃

2
Φ

]
= −2

√
2 ∂µ(ησ

µDLΦ) . (4.11)

The invariance of the constraint then follows from the results (4.10). Moreover, since

Z2 = Φ2 + 2
√
2iΦ θ̃DL− θ̃θ̃

[
1

2
ΦDDΦ− (DL)(DL)− 2B̃

2
Φ

]
, (4.12)

eq. (4.9) is equivalent to the N = 2 condition

Z2 = 0 . (4.13)

4.2 Solutions of the constraints

The solution of (4.4), and thus of (4.5), was first given in [14]. In our conventions, it is

X = −W 2

2B2

[
1−D

2

(
W

2

4B4 + a+ 4B4
√
1 + a

2B4 + b2

16B8

)]
, (4.14)

where

a =
1

2
(D2W 2 +D

2
W

2
) , b =

1

2
(D2W 2 −D

2
W

2
) . (4.15)

The bosonic part of lagrangian (4.2) then takes the form

L|bos = 8m2B2

(
1−

√
1− 1

B4 (−FµνFµν + 2D2)− 1
4B8 (FµνF̃µν)2

)
. (4.16)

8One can redefine Φ− 〈z〉 −→ Φ.
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The equation of motion for D is then

D = 0 , (4.17)

and, substituting back into (4.16), one arrives at [14, 16]

L|bos = 8m2B2

(
1−

√
1 + 1

B4FµνFµν − 1
4B8 (FµνF̃µν)2

)

= 8m2B2

(
1−

√
− det

(
ηµν −

√
2

B2Fµν

))
.

(4.18)

It is also possible to add the FI term

ξ

∫
d2θd2θ V =

1

2
ξD (4.19)

to the lagrangian (4.16). Solving the equation of motion for D then gives

− 2

B4
D2 = − ξ2

ξ2 + 2 · 162m4

(
1 +

1

B4
FµνF

µν − 1

4B8
(FµνF̃

µν)2
)

, (4.20)

and substituting back to (4.16), we find that the latter takes the form

L|bos = 8m2B2

(
1−

(
1 +

ξ2

4 · 8 · 16m4

)√
1− 1

B4
(−FµνFµν + 2D2)− 1

4B8
(FµνF̃µν)2

)

= 8m2B2


1−

√
1 +

ξ2

83m4

√

− det
(
ηµν −

√
2

B2
Fµν

)

 , (4.21)

which means that the addition of the FI term only changes the prefactor of the Born-Infeld

lagrangian included in L.
Following [14, 18] and [19], we now give the solution Φ = Φ(DL) of the constraint (4.10)

or equivalently of (4.13). In our conventions, it is

Φ = − 1

2B̃2

[
(DL)2 −D

2
(

(DL)2(DL)2

4B̃4+ã+4B̃4

√
1+ ã

2B̃4
+ b̃2

16B̃8

)]
, (4.22)

where we have assumed that B̃ is real for simplicity and

ã =
1

2

(
D

2
[(DL)2] +D2[(DL)2]

)
= ã , b̃ =

1

2

(
D

2
[(DL)2]−D2[(DL)2]

)
= −b̃ . (4.23)

Due to the constraint (4.13), only if G has linear dependence on Z will it contribute

to (3.15). However,
∫

d2θ d2θ̃Z + h.c. ∼
∫
d2θ

(
B̃2 − 1

4
DDΦ

)
+ h.c. = derivative . (4.24)

Consequently, (3.15) takes the form

L = m̃2

∫
d2θΦ+ h.c.

= − m̃2

2B̃2

∫
d2θ (DL)2

[
1−D

2

(
(DL)2

4B̃4 + ã+ 4B̃4
√
1 + ã

2B̃4
+ b̃2

16B̃8

)]
+ h.c. (4.25)
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Moreover, using (2.10), we find

(DL)2|bos = θ2 (υµυ
µ + 2iυµ∂

µC − ∂µC∂µC) ,

ã|bos = 4
(
υ2 − (∂C)2

)
, b̃|bos = −8i υ · ∂C . (4.26)

Then

L|bos = m̃2B̃2
(
1−

√
1 +

2

B̃4

(
υ2 − (∂C)2

)
− 4

B̃8
(υ · ∂C)2

)
(4.27)

= m̃2B̃2

(
1−

√
1− 2

B̃4

(1
6
HµνρHµνρ + ∂µC∂µC

)
− 1

9B̃8
(ǫµνρσHνρσ∂µC)2

)
.

5 The “long” super-Maxwell superfield

In section 6 we will construct supersymmetric interactions of deformed or constrained

single-tensor and Maxwell supermultiplets. We will find it useful to describe the Maxwell

multiplet in terms of a chiral-antichiral superfield, with 16B + 16F components, as an

alternative to the 8B+8F chiral-chiral superfield (3.1). In the present and technical section,

we thus proceed to construct this “long” N = 2 superfield for the super-Maxwell theory.

To begin with, both types of superfields exist for the single-tensor multiplet. In par-

ticular, the latter can be described either by the “short” (8B + 8F ) chiral-antichiral (CA)

superfield (3.11),

Z = Φ+
√
2i θ̃D L− θ̃θ̃

1

4
DDΦ, (5.1)

(and its AC conjugate), or by a “long” chiral-chiral (CC) superfield [19]

Ẑ = Y +
√
2 θ̃χ− θ̃θ̃

[
i

2
Φ +

1

4
DDY

]
, (5.2)

where Y , Φ and χα are chiral N = 1 superfields with 16B + 16F field components. They

are related by9

Z = − i

2
D̃D̃ Ẑ +

i

2
DD Ẑ (5.3)

and the real linear superfield L is

L = Dχ−Dχ. (5.4)

Chirality of χα implies linearity of L.

There is a gauge invariance acting on the long CC superfield. According to eqs. (5.1)

and (5.4), Z = 0 if Φ = 0 and Dχ = Dχ. The second condition is a Bianchi identity

verified by

χα = − i

4
DDDαΠ, χα̇ = − i

4
DDDα̇Π, (Π real). (5.5)

Hence, Z is invariant under

Ẑ −→ Ẑ +W (5.6)

9Identities in Apprendix A may help.
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where W is a Maxwell (chiral-chiral) superfield (3.1). This gauge invariance eliminates

8B + 8F components in Ẑ. We now proceed to construct a “long” chiral-antichiral N = 2

superfield for the super-Maxwell theory.

5.1 The chiral-antichiral N = 2 superfield

A generic chiral-antichiral superfield, Dα̇Ŵ = D̃αŴ = 0, has the expansion

Ŵ = U +
√
2 θ̃Ω− θ̃θ̃

[
i

2
X +

1

4
DDU

]
, (5.7)

where the N = 1 superfields U,X and Ωα̇ which include 16B + 16F fields, are chiral: they

vanish under Dα̇. In components, Ωα̇ includes a complex vector Vµ (8B) and two Majorana

fermions:

Ωα̇ = ωα̇ + (θσµ)α̇Vµ − θθ λα̇. (5.8)

Such a chiral right-handed (the index α̇) spinor superfield can always be written as

Ωα̇ = Dα̇ L, Ωα = −Dα L, (5.9)

where L is complex linear, DDL = 0. In components, a complex linear superfield can be

written

L(x, θ, θ) = Φ(x, θ, θ)− θω − θσµθVµ + θθθλ− i

2
θθ θσµ∂µω +

i

2
θθθθ ∂µ

Vµ (5.10)

with Φ chiral, Dα̇Φ = 0, an expansion which leads directly to Dα̇ L = Ωα̇ in eq. (5.8). In

other words,

Ŵ = U +
√
2 θ̃ DL− θ̃θ̃

[
i

2
X +

1

4
DDU

]
(5.11)

in general.

Upon defining the chiral-chiral superfield

W = − i

2
D̃D̃ Ŵ +

i

2
DD Ŵ, (5.12)

one finds

W = X +
√
2i θ̃αDα̇

[
DαΩ

α̇
+

1

2
D

α̇
Ωα

]
− θ̃θ̃

1

4
DDX

= X +
√
2i θ̃αWα − θ̃θ̃

1

4
DDX,

(5.13)

where Wα is the usual Maxwell chiral superfield

Wα = −1

4
DDDαV

with, however,

V = 2(L+ L) (5.14)

instead of V being simply a real superfield. This new condition follows from

Dα̇

[
DαΩ

α̇
+

1

2
D

α̇
Ωα

]
= −1

2
DDDα(L+ L) , (5.15)
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which is a consequence of (5.12). The N = 2 gauge transformation of Ŵ leaving W
invariant can be read from expressions (5.13) and (5.14): W = 0 if X = 0 and L = iL,

with a real linear L. In other words, W is invariant under

Ŵ −→ Ŵ + Y, Y = U +
√
2i θ̃ DL− θ̃θ̃

1

4
DDU. (5.16)

Eq. (5.1) indicates that this gauge variation is induced by a single-tensor supermultiplet in

a “short” chiral-antichiral superfield.

5.2 The long and short super-Maxwell superfields

To summarize, to describe the single-tensor and the Maxwell multiplet, we have obtained

two pairs of N = 2 superfields respectively, with each pair containing one long (16B +16F )

and one short (8B + 8F ) superfield:

Long, 16B + 16F Short, 8B + 8F Gauge variation, 8B + 8F

Maxwell: Ŵ W δ Ŵ = Zgauge δW = 0

Single-tensor: Ẑ Z δ Ẑ = Wgauge δZ = 0

Counting off-shell degrees of freedom in the “long” Maxwell multiplet is interesting. Firstly,

X and U include 8B + 8F fields while the complex linear L has 12B + 12F components.10

The superfield Ŵ depends however on Dα̇ L and one can write L = Φ + ∆L (Φ chiral),

with 8B +8F fields in ∆L: the superfield Ŵ sees then only 16B +16F fields. One actually

expects that a larger supermultiplet with 24B + 24F fields exists, with all N = 2 partners

of L. This is discussed in appendix B.

The variation (5.16) is not the gauge transformation of the super-Maxwell theory: it

does not act on V = 2(L + L). It only allows to eliminate U and 4B + 4F components

of L, leaving X, V , Wα and then also the N = 2 superfield W unchanged. The standard

Maxwell gauge transformation V −→ V + Λ+ Λ is actually

L −→ L+
1

2
Λ, Dα̇ Λ = 0, (5.17)

which is a symmetry of Ŵ.11 A comparison of 2(L+L) with the standard expansion of the

Maxwell real superfield indicates that the gauge field and the auxiliary θθθθ component

are respectively
Aµ = −4ReVµ ,

D = −4 ∂µ ImVµ .
(5.18)

Replacing the scalar D by the divergence of a vector field has nontrivial consequences which

are precisely discussed in appendix C. In short, the role of the FI coefficient ξ is taken by an

integration constant appearing when solving the field equation of ImVµ and a well-defined

procedure for the elimination of ImVµ shows that the theories formulated with either D

or ImVµ are physically equivalent.

10It is a complex superfield (16B + 16F ) with the chiral constraint DD L = 0, removing 4B + 4F fields.
11See appendix B.
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5.3 Long superfield and nonlinear deformations

According to relation (5.12), the nonlinear deformation Wnl can be transferred to a defor-

mation Ŵnl only if A2 = B
2
, Γ = 0 since the only available chiral-antichiral deformation

term would be

Ŵnl = − i

2
A2 θθ θ̂θ̂. (5.19)

This is the case if the deformation can be viewed as a background value of the auxiliary F

in X, which never leads to partial breaking. A similar argument holds for the single-tensor

superfield with relation (5.3). Then, to consider a general deformation and in particular

if the interest is in partial supersymmetry breaking, the deformed short version of the

superfields must be used. Since these short superfields have different chiralities, writing an

interaction of two deformed supermultiplets is problematic.

6 Interactions

6.1 The Chern-Simons interaction

The interaction of a N = 2 Maxwell multiplet with a single-tensor multiplet can be in-

troduced either by a supersymmetrization of the Chern-Simons coupling B ∧ F or by a

supersymmetrization of Fµν −Bµν . These options are related via electric-magnetic duality.

The supersymmetric interaction exists for off-shell fields and can be written in N = 2 or

N = 1 superspace. The goal of this subsection is to discuss the Chern-Simons coupling of

a nonlinear or constrained Maxwell or single-tensor multiplet with unbroken linear N = 1,

to its counterpart with linear N = 2.

In terms of N = 1 superfields, the N = 2 Chern-Simons interaction can be written

in two simple ways. Firstly, using (L,Φ) and (V1, V2) to describe the single-tensor and

Maxwell multiplets respectively, the Chern-Simons interaction with (real) coupling g can

be written as a N = 1 D-term [16, 19]:

LCS = −g

∫
d2θd2θ

[
V1(Φ + Φ) + V2L

]
. (6.1)

It is invariant under the second supersymmetry variations (2.3) and (B.1) and it is also

gauge invariant. A second expression using an F -term exists in terms of χα, Φ for the

single-tensor and X, Wα for the Maxwell multiplet, using the relations

L = Dχ−Dχ, Wα = −1

4
DDDαV2, X =

1

2
DDV1

and some partial integrations:

LCS = g

∫
d2θ

[
1

2
ΦX + χαWα

]
+ g

∫
d2θ

[
1

2
ΦX − χα̇W

α̇
]
. (6.2)

The expressions (6.1) and (6.2) differ by a derivative term. The chiral form can be extended

to a chiral integral over N = 2 superspace, using the chiral-chiral superfields W and Ẑ for
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the Maxwell and single-tensor multiplets respectively [19]:12

LCS = ig

∫
d2θ

∫
d2θ̃WẐ + h.c. (6.3)

All dependence on Y disappears in the imaginary part of [WẐ]
θ̃θ̃

(under a spacetime

integral). This expression is also invariant under the gauge transformation (5.6) of Ẑ,

since, for any pair of (short) Maxwell multiplets W1 and W2,

Im

∫
d2θ

∫
d2θ̃W1W2 and Im

∫
d2θWα

1 W2α

are derivative terms.

Finally, one can also write the Chern-Simons lagrangian using the chiral-antichiral

superfields Z (short) and Ŵ (long) for the single-tensor and the Maxwell multiplet respec-

tively13

LCS = ig

∫
d2θ

∫
d2θ̃ ŴZ + h.c. (6.4)

This can be verified either by direct calculation or by using relation (5.12) and partial

integrations in expression (6.3) and of course V2 = 2(L + L). Equation (6.4) is invariant

up to a derivative term under the gauge transformation (B.13) of Ŵ, since, for any pair of

(short) single-tensor multiplets Z1, Z2,

Im

∫
d2θ

∫
d2θ̃Z1Z2 and Im

∫
d2θ (Dα̇L1)(D

α̇
L2)

are derivative terms.

In terms of the N = 1 component superfields,

LCS = g

∫
d2θ

[
1

2
ΦX + (DL)(DL)

]
+ g

∫
d2θ

[
1

2
ΦX + (DL)(DL)

]
. (6.5)

In components, using expansions (2.10) and (5.10), we find that (under a spacetime

integral)

LCS = −1

2
g(xf + xf + zF + zF + κψ + κψ) + igλϕ− igλϕ

−1

8
g ǫµνρσB

µνF ρσ + 2g C∂µ ImV
µ − g ∂µϕσ

µω − g ωσµ∂µϕ , (6.6)

where F ρσ ≡ ∂ρAσ − ∂σAρ .

6.1.1 The Chern-Simons interaction with deformed Maxwell multiplet

The nonlinearly-deformed Maxwell multiplet is described by the CC superfieldW, including

the deformation terms (3.8). This leads to the Chern-Simons interaction

Lnl = ig

∫
d2θ

∫
d2θ̃ Ẑ W + h.c.

= LCS + ig

∫
d2θ

[
B2Y −

√
2Γ θχ−A2 θθ

(
i

2
Φ +

1

4
DDY

)]
+ h.c. ,

(6.7)

12See eqs. (3.1) and (5.2).
13Eqs. (3.11) and (5.11).
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where LCS is given by (6.2). For the partial breaking, using A = Γ = 0, we obtain

Lnl = g

∫
d2θ

[
1

2
ΦX + χαWα + iB2Y

]
+ h.c. (6.8)

The second supersymmetry variation
√
2iB2ηχ of iB2Y is cancelled by the nonlinear varia-

tion of Wα, δ
∗Wα = −

√
2iB2ηα+linear. However, the equation of motion of Y is inconsis-

tent. One can get around this problem by using l > 1 deformed Maxwell multiplets (namely

one “long” single-tensor and at least two “short” and deformed Maxwell multiplets), as

then the relevant equation of motion would take the form of a tadpole-like condition

gaB
2
a = 0 , a = 1, . . . , l , (6.9)

where ga would be the coupling of each Chern-Simons interaction. This is in agreement

with the claim made in [26] and [27], namely that one cannot couple hypermultiplets to a

single Maxwell multiplet in a theory with partial breaking induced by the latter.

The Chern-Simons interaction (6.8) can be combined with the kinetic lagrangian

Lkin. =

∫
d2θd2θH(L,Φ,Φ) +

1

2

∫
d2θ

∫
d2θ̃F(W) + h.c. (6.10)

for the two multiplets, as well as with an FI contribution

LFI = ξ

∫
d2θd2θ V2 +

1

2
m2

∫
d2θ X + h.c. (6.11)

The theory depends then on a function H solving the Laplace equation and on an arbi-

trary holomorphic function F . Imposing the constraint W2 = 0 (where W is deformed)

eliminates X, which becomes a function X(WW ) of WW and its derivatives. Moreover,

due to the constraint, the lagrangian no longer depends on F and it reduces to
∫

d2θd2θH(L,Φ,Φ) + ξ

∫
d2θd2θ V2 +

1

2
m2

∫
d2θ X + h.c. (6.12)

The resulting theory has a linear N = 1 as well as a second nonlinear supersymmetry and

has been analyzed in [19].

6.1.2 The Chern-Simons interaction with deformed single-tensor multiplet

In the analogous procedure for the nonlinear single-tensor multiplet, the CA super-

field (3.11) with deformation (3.13) is coupled to the long Maxwell CA superfield (5.11):

Lnl = ig

∫
d2θ

∫
d2θ̃ Ŵ Z + h.c.

= LCS + ig

∫
d2θ

[
B̃

2
U − Ã2 θθ

(
i

2
X +

1

4
DDU

)]
+ h.c. ,

(6.13)

where LCS is given by (6.5). Requiring now partial breaking with Ã = 0 yields

Lnl = g

∫
d2θ

[
1

2
ΦX + (DL)(DL) + iB̃

2
U

]
+ h.c. (6.14)
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Since14

δ∗ iB̃
2
U =

√
2i B̃

2
ηDL , δ∗Dα̇L = −

√
2i B̃

2
ηα̇ ,

Lnl is invariant under a linear N = 1 and under a second nonlinear supersymmetry. How-

ever, the equation of motion of U is inconsistent as that of Y of the previous subsection

— this problem can be solved by coupling the “long” Maxwell multiplet(s) to at least two

“short” and deformed single-tensor multiplets.15

The complete theory has then lagrangian

L = Lnl +

[
1

2

∫
d2θ

∫
d2θ̃F(W) +

∫
d2θ

∫
d2θ̃ G(Z) +

∫
d2θ m̃2Φ

]
+ h.c.

+ξ

∫
d2θd2θ V2 , (6.15)

where Z is deformed and we have added an FI term for V2. Upon imposing the con-

straint (4.13), G does not contribute to (6.15), since

∫
d2θ

∫
d2θ̃Z + h.c. ∼

∫
d2θD

2
Φ+ h.c. = deriv. term (6.16)

and the bosonic part of (6.15) becomes

Lbos =
1

2

∫
d2θ

∫
d2θ̃F(W)|bos + h.c.− 2ξ ∂µ ImVµ

+2g

(
− 1

26
ǫµνρσH

νρσAµ + C ∂µ ImVµ − B̃2 ImFU

)

+(gRex+ 2m̃2)B̃2

·
(
1−

√
1− 2

B̃4

(
1

6
HµνρHµνρ + ∂µC∂µC

)
− 1

9B̃8
(ǫµνρσHνρσ∂µC)2

)
, (6.17)

where B̃ has been assumed to be real and FU is the auxiliary field of U . Notice that

the lagrangian (4.27) has acquired a field-dependent coefficient (gRex + 2m̃2)B̃2 as its

analogue, the Born-Infeld lagrangian, does in ref. [19].

The solution of the equation of motion for the auxiliary field F ofX is F = 0. Moreover,

the equation of motion for the auxiliary field ImVµ is

∂µ
(
16ReFxx ∂

ν ImVν + 2g C
)
= 0 , (6.18)

whose solution is

16ReFxx ∂
ν ImVν + 2g C = −λ , (6.19)

14See appendix B.
15Note that there is no reason to identify the imaginary part of the auxiliary field of U with a four-

form field as was done for Y in [19]. In particular, the variation of Y under the gauge transformation

of Ẑ is δgaugeY = − 1

2
DD∆′ [19], where ∆′ is a real superfield, while the variation of U under the gauge

transformation of Ŵ is δgaugeU = Σc (see (B.12) of appendix B) and the chiral superfield Σc is not necessarily

identified with DD∆′′, where ∆′′ is a real superfield.
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where λ is an arbitrary integration constant. For reasons explained in appendix C, we

make the identification

λ = 2ξ . (6.20)

The scalar potential of the theory is then

V =
1

32ReFxx
(2g C − 2ξ)2 , (6.21)

whose supersymmetric vacuum is at

< C >=
ξ

g
. (6.22)

In this vacuum, x corresponds to a flat direction of the potential and is massless. The

canonically normalized mass M2
C,can that C aquires is then

M2
C,can =

1

4

1

ReFxx

g2B̃2

2g Rex+ 4m̃2
. (6.23)

Moreover, the interaction term − 1
12g ǫµνρσH

νρσAµ generates a mass term for Aµ and we

find that the canonically normalized mass M2
Aµ,can

is

M2
Aµ,can = M2

C,can . (6.24)

The spectrum consists then of a massive N = 1 vector multiplet and a massless N = 1

chiral multiplet X; the Chern-Simons coupling results in the vector multiplet W absorbing

the goldstino multiplet, while X remains massless. Consequently, we observe a mechanism

analogous to the super-Brout-Englert-Higgs effect without gravity [19], which is induced

by the Chern-Simons coupling of the previous subsection (6.1.1).

6.2 Constrained matter multiplets

In subsection 6.1, we described the couplings of the deformed N = 2 goldstino multiplet

to unconstrained matter N = 2 multiplets. They are based on a Chern-Simons interaction

that couples a Maxwell to a single-tensor multiplet, where one of the two contains the

goldstino. In both cases, upon imposing a nilpotent constraint on the goldstino multiplet,

the Chern-Simons interaction generates a super-Brout-Englert-Higgs phenomenon without

gravity, where the goldstino is absorbed in a massive N = 1 vector multiplet, while a

massless chiral multiplet remains in the spectrum.

Here, we discuss generalisations of the nilpotent constraint in order to describe, besides

the goldstino, incomplete matter multiplets of non-linear supersymmetry in which half

of the degrees of freedom are integrated out of the spectrum, giving rise to constraints.

Examples of such constraints in N = 1 non-linear supersymmetry, which is described by

the nilpotent goldstino superfield X with X2 = 0, are given by

XΦ = 0 , (6.25)
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which eliminates the scalar component of the matter chiral superfield Φ, or

XΦ = chiral , (6.26)

that eliminates the fermion component of Φ [5]. In N = 2, we examine below both cases,

with the goldstino being part of either a nilpotent (deformed) Maxwell multiplet W with

W2 = 0, or of a nilpotent (deformed) single-tensor multiplet Z with Z2 = 0.

6.2.1 The goldstino in the Maxwell multiplet

Consider the case in which the goldstino is in a deformed Maxwell multiplet W0, given

by (4.1)

W0 = X0 +
√
2i θ̃W0 + θ̃θ̃

[
B2 − 1

4
DDX0

]
, (6.27)

which satisfies the constraint W2
0 = 0, or, equivalently, eq. (4.4) [14]:

X0 = −2
W0W0

4B2 −DDX0

. (6.28)

To describe an incomplete N = 2 vector multiplet with non-linear supersymmetry contain-

ing an N = 1 vector W1, we consider the N = 2 constraint

W0W1 = 0 , (6.29)

where W1 is an undeformed (and short) Maxwell multiplet given by (3.1):

W1 = X1 +
√
2i θ̃W1 −

1

4
θ̃θ̃ DDX1 . (6.30)

The constraint (6.29) then yields the following set of equations

X0X1 = 0 ,

X0W1α +X1W0α = 0 , (6.31)

X1B
2 − 1

4
DD(X0X1 +X1X0) +W0W1 = 0 .

We now use (6.28) and the identity

(W0W1)W0α = −1

2
(W0W0)W1α (6.32)

to solve the second of equations (6.31), which yields

X1 = −4
W0W1

4B2 −DDX0

+ hW0W0 , (6.33)

where h is a chiral superfield. This expression verifies the first eq. (6.31) for all h and the

third eq. (6.31) if

h = −2
DDX1

(4B2 −DDX0)2
(6.34)
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and thus

X1 = −4
W0W1

4B2 −DDX0

− 2
DDX1

(4B2 −DDX0)2
W0W0 . (6.35)

One may further use the solution (4.14) for X0 and solve (6.35) to obtain X1 as a function

of W0, W1 and their derivatives; the constraint (6.29) eliminates X1.

Note that the constraint W2
0 = W0W1 = 0 is a particular case of the system of

equations

dabcWbWc = 0 ; a, b, c = 1, . . . , l (6.36)

introduced in [28, 29] to obtain coupled DBI (Dirac-Born-Infeld) actions. In eqs. (6.36), all

Wa are in general deformed with different deformation parameters Ba and the constants

dabc are totally symmetric. Our constraints correspond to the case of two N = 2 vector

multiplets with d000 = d001 = 1 and all other d’s vanishing.

We can also describe incomplete N = 2 single-tensor multiplets containing a single

N = 1 chiral multiplet. For that, let us consider the constraint

W0Ẑ = 0 , (6.37)

where Ẑ is a “long”16 single-tensor multiplet given by (5.2). Equation (6.37) then leads to

X0Y = 0 ,

X0χα + iY W0α = 0 , (6.38)

Y B2 − i

2
ΦX0 −

1

4
DD(X0Y + Y X0)− iW0χ = 0 ,

which, following the same steps as before, yield

Y = 4i
W0χ

4B2 −DDX0

− 2
2iΦ+DDY

(4B2 −DDX0)2
W0W0 , (6.39)

which again one may solve to eliminate Y = Y (W0, χ,Φ).

One can also check if the expression (6.39) is covariant under the gauge variation (5.6)

Ẑ −→ Ẑ +Wg , (6.40)

where Wg is a “short” (undeformed) Maxwell multiplet with components (Xg,Wgα), or,

equivalently,

δY = Xg , δχα = iWgα , δΦ = 0 . (6.41)

Under (6.41), the expression (6.39) becomes

Xg = −4
W0Wg

4B2 −DDX0

− 2
DDXg

(4B2 −DDX0)2
W0W0 , (6.42)

which, as was previously shown, is actually the consequence of

W0Wg = 0 , (6.43)

16Note that it is easy to check that the constraint W0Z = 0, where Z is a “short” single-tensor multiplet,

leads to an overconstrained system of equations.
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that is the variation of (6.37) under (6.40). The expression (6.39) is thus invariant only

under the reduced gauge transformations (6.40) subject to the constraint (6.43). These are

not sufficient to eliminate all unphysical components of Ẑ.

Alternatively, we can consider that we actually solve the constraints W0(Ẑ − Wg) =

W0Wg = 0, where Ẑ − Wg is gauge invariant and Wg can be eliminated by a gauge

transformation (6.40). One can then choose Y − Xg = 0 and use eq. (6.39) to eliminate

χ− iWg in terms of the N = 1 chiral superfield Φ:

χα − iWgα =
Φ

(4B2 −DDX0)
W0α . (6.44)

In the physically-relevant linear superfield L however, Wg disappears:

L = Dχ−Dχ = D(χ− iWg)−D(χ− iW g) ,

since Wg verifies the Bianchi identity.

6.2.2 The goldstino in the single-tensor multiplet

Now let us consider the case in which the goldstino is in a deformed single-tensor multiplet

Z0, given by

Z0 = Φ0 +
√
2i θ̃DL0 + θ̃θ̃

[
B̃

2
− 1

4
DDΦ0

]
, (6.45)

which satisfies (4.13)

Z2
0 = 0 , (6.46)

or equivalently eq. (4.10) [18]:

Φ0 = −2
(DL0)(DL0)

4B̃
2
−DDΦ0

. (6.47)

To describe another incomplete N = 2 single-tensor multiplet with non-linear super-

symmetry containing an N = 1 linear multiplet, we consider the N = 2 constraint

Z0Z1 = 0 , (6.48)

where Z1 is an undeformed (and short) single-tensor multiplet given by (3.11)

Z1 = Φ1 +
√
2i θ̃DL1 −

1

4
θ̃θ̃ DDΦ1 . (6.49)

Following the same steps as before, as well as the identity

(DL0DL1)Dα̇L0 = −1

2
(DL0DL0)Dα̇L1 , (6.50)

we find

Φ1 = −4
DL0DL1

4B̃
2
−DDΦ0

− 2
DDΦ1

(4B̃
2
−DDΦ0)2

DL0DL0 , (6.51)
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which one may solve to eliminate the chiral component Φ1 in terms of L1 and the goldstino

multiplet L0. Note that the constraints Z2
0 = Z0Z1 = 0 can be generalised to a system of

equations

d̃abcZbZc = 0 ; a, b, c = 1, . . . , l , (6.52)

in analogy with the system (6.36), where d̃abc are totally symmetric constants, in order to

obtain a coupled action of non-linear (deformed) single-tensor multiplets.

Finally, we consider the constraint

Z0Ŵ = 0 , (6.53)

where Ŵ = 0 is a “long” Maxwell multiplet given by (5.7), and, using the same procedure

as before, we obtain

U = 4i
DL0DL

4B̃
2
−DDΦ0

− 2
2iX +DDU

(4B̃
2
−DDΦ0)2

DL0DL0 , (6.54)

which eliminates U . Using the same reasoning as before, one can show that the solu-

tion (6.54) is invariant under the reduced gauge variation (5.16)

Ŵ −→ Ŵ + Zg , (6.55)

where Zg is a “short” (undeformed) single-tensor multiplet, namely δU = Φg , δL =

iLg , δX = 0, satisfying the constraint

Z0Zg = 0 . (6.56)

Following the same procedure as for the solution of the constraint (6.37), one can use the

full gauge invariance to set U = 0. Eq. (6.54) can then be used to eliminate Ωα̇ = Dα̇ L in

terms of the N = 1 chiral superfield X:17

Dα̇ L =
X

4B̃
2
−DDΦ0

Dα̇ L0 . (6.57)

This result defines L up to the addition of an arbitrary chiral field: as expected, the

constraint equation (6.57) is invariant under the Maxwell gauge transformation

L −→ L+ Λc, Dα̇Λc = 0

(see appendix B). In addition, the physically-relevant V = 2(L+L) in invariant under the

gauge ambiguity (6.55).

17Since L is real linear, SL is complex linear for any chiral S.
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7 Conclusions

In this work, we studied the off-shell partial breaking of global N = 2 supersymmetry using

constrained N = 2 superfields. The corresponding Goldstone fermion belongs to a vector

or a linear multiplet of the unbroken N = 1 supersymmetry and is described by a deformed

N = 2 Maxwell or single-tensor superfield, respectively, satisfying a nilpotent constraint.

Unlike N = 1 non-linear supersymmetry, where the nilpotent constraint assumes a non-

vanishing expectation value for the F-component of the goldstino superfield arising a priori

from the underlying dynamics, in N = 2, non-linear supersymmetry is imposed by hand

through a non-trivial deformation that cannot be obtained by an expectation value of the

auxiliary fields.

We then studied interactions between the goldstino and matter multiplets of N = 2

supersymmetry (vectors and single-tensors that have off-shell descriptions), as well as gen-

eralisations of the nilpotent constraints describing incomplete matter multiplets. The in-

teractions are of the Chern-Simons type and describe a super-Brout-Englert-Higgs phe-

nomenon without gravity where the goldstino is absorbed into a massive N = 1 vector

multiplet. The constraints describe, in the case of a goldstino in a Maxwell multiplet,

either incomplete N = 2 vector multiplets containing only a N = 1 vector, or incomplete

(“long”) N = 2 single-tensors containing a N = 1 chiral multiplet. Similarly, in the case of

a goldstino in a linear multiplet, the constraints describe either incomplete single-tensors

containing a N = 1 linear multiplet, or (“long”) Maxwell containing a N = 1 chiral mul-

tiplet. We were not able to find constraints on incomplete N = 2 matter multiplets that

do the opposite, keeping the N = 1 linear component of a single-tensor in the first case, or

the N = 1 vector component of the Maxwell multiplet in the latter case.

It would be interesting to study the interactions of the Goldstone degrees of freedom of

a massive spin-3/2 multiplet consisting of an N = 1 vector and an N = 1 linear multiplet.

It is not clear whether our results are sufficient to provide a description of such a system.

Another open but related question is the coupling to supergravity realising partial breaking

of N = 2 supersymmetry and its rigid limit.
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A Conventions and some useful identities

The notation [. . .] in (2.1) is used for antisymmetrization with weight one. Specifically,

∂[µBνρ] =
1

6
∂µBνρ ± 5 permutations .
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The supersymmetric derivatives Dα and Dα̇ are the usual N = 1 expressions verifying

{Dα, Dα̇} = −2i(σµ)αα̇∂µ:

Dα =
∂

∂θα
− i(σµθ)α ∂µ, Dα̇ =

∂

∂θ
α̇
− i(θσµ)α̇ ∂µ. (A.1)

As a consequence,

[Dα, DD] = −4i(σµD)α∂µ , [Dα̇, DD] = 4i(Dσµ)α̇∂µ . (A.2)

In D̃α and D̃α̇, θα, θα̇ are replaced by θ̃α, θ̃α̇. Note also that (Dα̇)
† = −Dα.

The Maxwell field-strength chiral superfields are defined as

Wα = −1

4
DDDα V, W α̇ = −1

4
DDDα̇ V, W α̇ = −(Wα)

∗ (A.3)

where V is a real superfield. In addition,

2i ∂µχσ
µθ̃ = θ̃DDχ, DD θ̃χ = −2 θ̃DDχ,

2 θ̃σµ∂µω = i θ̃αDα̇Dαω
α̇, DD θ̃ω = θ̃αDα̇D

α̇
ωα ,

(A.4)

where χα (left-handed) and ωα̇ (right-handed) are N = 1 chiral spinor superfields, Dα̇χβ =

Dα̇ωβ̇ = 0, and
1

16
DDDDY = −✷Y. (A.5)

where Y is a chiral superfield, Dα̇ Y = 0. Other useful identities are

ηα̇DD = −2Dα̇ ηD , DDDαL = −2Dα̇DαD
α̇
L = 4i(σµD)α∂µL ,

where L is a complex linear superfield.

B More on the Maxwell supermultiplet

The usual construction of the N = 2 Maxwell multiplet starts with two real N = 1

superfields V1 and V2 with second supersymmetry variations

δ∗V1 = − i√
2
(ηD + ηD)V2, δ∗V2 =

√
2i(ηD + ηD)V1. (B.1)

The parameters of the U(1) gauge variations are in a single-tensor N = 2 multiplet:

δgaugeV1 = Λℓ , δgaugeV2 = Λc + Λc , (B.2)

with Λℓ real linear and Λc chiral: Λℓ = Λℓ, DDΛℓ = 0, Dα̇Λc = 0. Under the second

supersymmetry,

δ∗Λℓ = − i√
2
(ηDΛc + ηDΛc), δ∗Λc =

√
2i ηDΛℓ, δ∗Λc =

√
2i ηDΛℓ. (B.3)
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The gauge field is the θσµθ component of V2. The N = 2 multiplet containing the field

strength Fµν uses the chiral superfields

X =
1

2
DDV1, Wα = −1

4
DDDαV2 W α̇ = −1

4
DDDα̇V2. (B.4)

Variations (B.1) imply:

δ∗X =
√
2 i ηαWα, δ∗X =

√
2 i ηα̇W

α̇
,

δ∗Wα =
√
2 i

[
1

4
ηαDDX + i(σµη)α ∂µX

]
, (B.5)

δ∗W α̇ =
√
2 i

[
1

4
ηα̇DDX − i(ησµ)α̇ ∂µX

]
.

These are the second supersymmetry variations of the components of the “short” chiral-

chiral superfield (3.1):

W(y, θ, θ̃) = X +
√
2i θ̃W − 1

4
θ̃θ̃ DDX.

To go to the “long” Maxwell multiplet, one introduces the complex linear L with

eq. (5.14),

V2 = 2(L+ L), δgauge L =
1

2
Λc , (B.6)

and variations (B.1) suggest to write

δ∗L =
i√
2
ηD V1, δ∗L =

i√
2
ηD V1, (B.7)

which verifies the linearity conditions DDL = DDL = 0. However, L (12B +12F ) and V1

(8B + 8F ) do not form an off-shell representation of N = 2: the algebra does not properly

close18 and the number of off-shell fields is not a multiple of 8B + 8F .

To find the complete multiplet, we rely upon the chiral-antichiral superfield written in

its two forms (5.7) and (5.11):

Ŵ = U +
√
2 θ̃Ω− θ̃θ̃

[
i
2X + 1

4DDU

]
,

Ŵ = U +
√
2 θ̃ DL− θ̃θ̃

[
i
2X + 1

4DDU

]
.

(B.8)

Since the first expression is a chiral-antichiral superfield with 16B +16F components,19 the

second supersymmetry variations

δ∗U =
√
2 ηΩ,

δ∗Ωα̇ = − i√
2

[
X ηα̇ + iDα̇(ηDU + ηDU)

]
, (B.9)

δ∗X = 2
√
2i

[
1

4
DDηΩ− i ησµ∂µΩ

]

give an off-shell representation of N = 2 supersymmetry.

18See below.
19U and X have 4B + 4F components each, Ωα includes 8B + 8F fields.
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In the second expression (B.8), Ωα̇ has been replaced by L, introducing 4B + 4F
supplementary components which are actually invisible in Ŵ: the gauge variation (B.6)

leaves Ŵ invariant. In addition, the variation δ∗Ωα̇ cannot be written as Dα̇δ
∗
L without

a supplementary condition on the chiral X. This is where

X =
1

2
DDV1

helps by firstly adding 4B + 4F fields to reach 24B + 24F with U and L and secondly by

turning the second supersymmetry variations (B.9) into

δ∗U =
√
2 ηDL , δ∗U = −

√
2 ηDL ,

δ∗L =
i√
2
ηD V1 +

1√
2
(ηDU + ηDU) ,

δ∗L =
i√
2
ηD V1 −

1√
2
(ηDU + ηDU) ,

δ∗V1 = − i√
2
(ηD + ηD) 2(L+ L) = − i√

2
(ηD + ηD)V2

(B.10)

which represents N = 2 supersymmetry off-shell.20 This is the long representation of the

Maxwell N = 2 supermultiplet with N = 1 superfield content U , L and V1 for a total of

24B + 24F fields. Since

δ∗ V2 =
√
2i (ηD + ηD)V1 , (B.11)

the 16B + 16F multiplet with superfields V1 and V2 is included in the long representation.

The long multiplet has two gauge variations generated by two independent single-tensor

multiplets with superfields (Λℓ,Λc) and (Σℓ,Σc) respectively. The gauge variations are

δgauge U = 0 +Σc ,

δgauge L = 1
2Λc +iΣℓ , δgauge L = 1

2Λc −iΣℓ ,

δgauge V1 = Λℓ +0 , δgauge V2 = Λc + Λc +0 .

(B.12)

Standard Maxwell gauge transformations (B.2) are generated by (Λℓ,Λc). They leave

invariant U , Dα̇ L, Wα and X and then also the N = 2 superfields W and Ŵ.

The gauge transformation generated by (Σℓ,Σc) acts on Ŵ according to

δgauge Ŵ = Σc +
√
2i θ̃DΣℓ − θ̃θ̃

1

4
DDΣc ≡ S. (B.13)

which is a short chiral-antichiral multiplet similar to eq. (5.1). This is the gauge trans-

formation already discussed in paragraph 5.1, which leaves V1, V2, Wα, X and then W
invariant. There is a (N = 1) gauge in which U = 0. In this gauge, however,

[δ∗1, δ
∗
2 ]L = 2i (η1σ

µη2 − η2σ
µη1) ∂µL− iΛℓ

Λℓ = i(η2Dη1D − η1Dη2D)L− i(η2Dη1D − η1Dη2D)L .
(B.14)

20Verifying explicitly the closure of the algebra is relatively easy.
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Since Λℓ is a real linear superfield, the algebra closes up to a gauge transformation of L

and the multiplet is not complete without U .21

The two sets of gauge variations (B.12) remove 16B + 16F components in the long

supermultiplet, to obtain the 8B+8F physically relevant components of the super-Maxwell

theory: the gauge field −4ReVµ (3B), the (auxiliary) longitudinal vector D = −4 ∂µ ImVµ

(1B), the two complex scalars in X (4B) and two Majorana gauginos (8F ).

C More on ImVµ

In the construction of the long Maxwell N = 2 superfield, the abelian gauge field is not,

as is usually the case, a component of a real superfield V , but it appears in the expansion

of a complex linear superfield L, with the relation V = 2(L + L). As a consequence, the

auxiliary scalar field D in the expansion of V is replaced by the divergence of a vector field.

Comparing expansion (5.10) of L with

V = θσµθ Aµ +
1

2
θθθθD + . . .

one finds Aµ = −4ReVµ and D = −4 ∂µ ImVµ. In the version of super-Maxwell theory22

with the auxiliary scalar D, its lagrangian is quadratic in D:

LD =
1

2
AD2 +

1

2
(B + ξ)D, A > 0, (C.1)

where A and B are functions of other scalar fields23 and the constant ξ is the FI term.

In particular, A would be the gauge kinetic metric in super-Maxwell theory (hence the

positivity condition). To integrate over D, it is legitimate to solve the field equation

2AD +B + ξ = 0 and substitute the result into LD to obtain the scalar potential

LD = −(B + ξ)2

8A
= −V . (C.2)

This theory does not have any symmetry and the (supersymmetric) ground state is at

〈B〉 = −ξ. The contribution of LD to the field equations of the scalars appearing as

variables of A and B is of course given by

∂zLD = −∂z
(B + ξ)2

8A
= −∂zV . (C.3)

The replacement V = 2(L+ L) leads to D = ∂µVµ with Vµ = −4 ImVµ and then to a

quadratic lagrangian for the divergence of a vector field,

L =
1

2
A(∂µVµ)

2 +
1

2
(B + ξ) ∂µVµ, A > 0, (C.4)

21In this gauge, variations (B.7) hold.
22This appendix applies to N = 1 and N = 2 super-Maxwell theories.
23They do not depend on derivatives of fields. These scalar fields are collectively denoted by z.
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instead of expression (C.1). Now, the FI term is a derivative which does not contribute to

the dynamical equations and the field equation for Vµ is

∂µ[2A∂νVν +B] = 0. (C.5)

Its solution

∂νVν = −B + c

2A
(C.6)

involves an integration constant c which replaces the FI coefficient ξ. The more subtle

point is the procedure to obtain the lagrangian after the integration of ∂µVµ, since the

right-hand side of the solution is not a derivative of off-shell fields.

This situation is not new in the literature. Redefine

Vµ =
1

6
ǫµνρσA

νρσ, Fµνρσ = 4 ∂[µAνρσ]. (C.7)

Since

∂µVµ =
1

24
ǫµνρσFµνρσ, (∂µVµ)

2 = − 1

24
FµνρσFµνρσ, (C.8)

the lagrangian (C.4) becomes

LF = − 1

48
AFµνρσFµνρσ +

1

48
(B + ξ) ǫµνρσFµνρσ. (C.9)

It is part of N = 8 supergravity, with A = e, and the introduction of the ξ term has

been studied as a potential source for a cosmological constant [30]. Another example is the

massive Schwinger model [31]24 where the Maxwell lagrangian

L = −1

4
FµνF

µν +
1

2
θ ǫµν∂µAν +Aµjµ (C.10)

(jµ is a conserved fermion current) does not propagate any field. In the gauge A0 = 0,

L =
1

2
(∂0A1)

2 + θ ∂0A1, (C.11)

and the field equation ∂2
0A1 = j1 implies the presence of a physically-relevant arbitrary

integration constant in F01 = ∂0A1, to be identified with the parameter θ.

Returning to our lagrangian (C.4) and solution (C.6), if we substitute the solution

into the lagrangian, ∂µVµ becomes a function of the scalar fields z, it is not any longer

a derivative and the ξ-term would then become physically relevant and contribute to the

field equation of z. We obtain

L = −(B + ξ)2

8A
+

(ξ − c)2

8A
= −V (C.12)

and the contribution of L to the field equations of the scalar fields z is of course ∂zL = −∂zV .
Comparing with expression (C.3), equivalence is obtained if we identify the integration

constant with the FI coefficient ξ,

c = ξ. (C.13)

24As also explained in ref. [30].
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except if A is constant (the super-Maxwell theory has then canonical kinetic terms), in

which case the second constant term in the potential is irrelevant. With this procedure,

both versions of the theory depend on a single arbitrary constant c = ξ, the FI coefficient

of the super-Maxwell theory.

Notice that a derivative term may in general contribute to currents. The canonical

energy-momentum tensor for a “lagrangian” Lξ = ξ ∂µVµ is

Tµν = ξ [∂νVµ − ηµν ∂
ρVρ] (C.14)

which is not zero, conserved (∂µTµν = 0) and an improvement term (so that the total

energy-momentum is zero, assuming the absence of boundary contributions):

T00 = ξ ~∇ · ~V , T0i = ξ ∂iV0. (C.15)
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