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1 Introduction

Over the past couple of decades, it has become clear that black holes in more than four

spacetime dimensions are much less constrained than their four dimensional counterparts.

In particular, it is no longer true that stationary black holes are uniquely specified by a

few conserved charges at infinity. Some of this nonuniqueness is due to the fact that black

hole horizons can have nontrivial topology. The five-dimensional black ring [1] is perhaps

the most famous example. A less familiar cause of nonuniqueness is nontrivial topology

outside the horizon.

To illustrate this, consider five-dimensional minimal supergravity. This theory admits

an asymptotically flat, supersymmetric black hole with S3 horizon and trivial topology

outside [2]. This BMPV black hole is a two-parameter family of solutions characterized

by their charge Q and equal angular momenta Jψ in the two orthogonal planes.1 The

solution has a regular black hole horizon if 6
√

3πJ2
ψ < Q3. This theory also has a large

class of stationary, asymptotically flat, supersymmetric solutions with no horizons and

nontrivial topology (see [3] for a review). These “bubbling” geometries have nontrivial S2’s

supported by magnetic flux. Although they are usually studied as candidate nonsingular

microstates for a black hole, one can add extremal black holes to these geometries while

keeping the solution stationary and supersymmetric. This creates a large class of new

spherical black hole solutions. It was shown in [4] that the resulting black holes can have

the same conserved charges as the BMPV solution, providing the first example of continuous

non-uniqueness within the class of spherical black holes (supersymmetric or otherwise).

In this note we will show that when Jψ is close to the BMPV upper bound, the black

holes with nontrivial topology outside the horizon can have greater entropy than the BMPV

black hole. We will also show that these black holes can exceed the BMPV upper bound on

Jψ. The latter fact is perhaps not surprising since there is structure outside the horizon at

larger radius which can carry some of the angular momentum. This is perhaps analogous to

1We will use Euler angles (ψ, φ) on S3, so for BMPV Jφ = 0.
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the fact that a black ring can carry much more angular momentum than a spherical black

hole. The first fact, however, is more surprising. Shortly after the groundbreaking work by

Strominger and Vafa [5], the entropy of the BMPV black holes was reproduced by counting

BPS microstates of string theory with the same charges (Q, Jψ) at weak coupling [2]. At

the time, the BMPV black hole was the only one known with these charges, so it seemed

like a perfect agreement. Now that we have new solutions with greater entropy, further

arguments are needed to understand why the original counting of states reproduces the

BMPV entropy. We will discuss this in section 5.

This is not the first time that black hole solutions have been found with the same

charges as the BMPV solution and greater entropy. Although a single supersymmetric

black ring [6] cannot have the same charges as BMPV, two concentric supersymmetric

black rings can, and sometimes have greater entropy [7]. (This is a precursor to the

four dimensional entropy enigma [8].) This phenomenon also occurs for a bound state of

two spherical spinning black holes [9]. If one focusses on the near horizon geometry of

BMPV, there are other asymptotically AdS black holes with the same charges and more

entropy [10]. However, we believe the solutions discussed here are the first examples of

asymptotically flat, single horizon black holes with the same charges but greater entropy

than BMPV.2

We will start with a four parameter family of black holes with a single nontrivial

S2 outside the horizon. Setting Jφ = 0 yields a three parameter subset with the same

charges as BMPV. The area of the black hole vanishes along a surface in this parameter

space, which marks the boundary of the physically interesting solutions. Along most of

this boundary, the geometry is singular. However there is a set of measure zero where

the spacetime is nonsingular and reduces to the original bubbling geometry. Near these

regular points, one can view the solution as adding a black hole to a soliton. There are

many previous examples of placing black holes inside solitons [13–16] but they are usually

only approximate solutions or constructed numerically. Here, as a result of supersymmetry,

we have a simple analytic form of the solutions for any size black hole. (For another recent

example, see [17].)

2 Black hole and bubble spacetime in five dimensions

Five dimensional minimal supergravity is described by the action

S =
1

16πG

∫
d5x

[√
−g(R− FmnFmn)− 2

3
√

3
εmnpqrAmFnpFqr

]
(2.1)

This theory admits an asymptotically flat, supersymmetric black hole with S3 horizon and

a 2-cycle C, or ‘bubble’, outside the horizon [4]. Here we present the solution in a simpler

parameterisation which allows for a more explicit analysis. Its construction and regularity

2The recently constructed three-parameter family of black lens solutions [11] cannot have the same

charges as BMPV. This also seems to be the case for the black lens solutions subsequently constructed

in [12].
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analysis proceeds in exactly the same fashion as in [4], so we will be brief and summarise

the main results.

Supersymmetric solutions to minimal supergravity with a Gibbons-Hawking base take

the general form

ds2 = −f2
(
dt+ ωψ(dψ + χ) + ω̂

)2
+ f−1

[
H−1(dψ + χ)2 +H(dr2 + r2dΩ2

2)
]

(2.2)

A =

√
3

2

[
f
(
dt+ ωψ(dψ + χ) + ω̂

)
−KH−1(dψ + χ)− ξ

]
(2.3)

where dΩ2
2 = dθ2 + sin2 θdφ2 and the functions

f−1 = L+H−1K2, ωψ = H−2K3 +
3

2
H−1KL+M (2.4)

are determined by harmonic functions H,K,L,M on R3 and the 1-forms χ, ξ, ω̂ on R3 are

fixed by these up to quadratures [18]. We take a ‘3-centred’ Gibbons-Hawking base with

H =
1

r
− 1

r1
+

1

r2
, χ =

(
cos θ − r cos θ − a1

r1
+
r cos θ − a2

r2

)
dφ (2.5)

where r1 =
√
r2 + a21 − 2a1r cos θ and r2 =

√
r2 + a22 − 2a2r cos θ are the Euclidean dis-

tances from the centres and we assume 0 < a1 < a2. The remaining data are given by

K =
k1
r1

+
k2
r2
, L = 1 +

`0
r

+
k21
r1
− k22
r2
, (2.6)

M = −3

2
(k1 + k2) +

m0

r
+

k31
2r1

+
k32
2r2

(2.7)

ξ =

(
− k1

r cos θ − a1
r1

− k2
r cos θ − a2

r2

)
dφ (2.8)

ω̂ =

(
1

4a1r

[
(k31 + 2m0 − 3k1`0)

(
r1 +

r2 − a21
r1

)
+ 3r(2k1 + k2)

(
r1 −

r2 − a21
r1

)]
+

1

4a2r

[
(k32 − 2m0 − 3k2`0)

(
r2 +

r2 − a22
r2

)
− 3rk1

(
r2 −

r2 − a22
r2

)]
− (k1 + k2)

3(a1a2 + r2 − (a1 + a2)r cos θ)

2(a2 − a1)r1r2
+

3

2
(k1 + k2) cos θ + c

)
dφ (2.9)

where (`0, k1, k2,m0, c) are constants.

The solution is asymptotically flat R1,4 provided 0 < ψ < 4π and c is chosen such that

ω̂ = O(r−1) as r →∞. Then, setting r = ρ2/4, as ρ→∞

ds2 ∼ −dt2 + dρ2 +
1

4
ρ2
[
(dψ + cos θdφ)2 + dΩ2

2

]
(2.10)

with subleading terms O(ρ−2). The solution is smooth at the ‘centres’ r1 = 0 and r2 = 0

if 0 < ψ < 4π and the following constraints on the parameters are satisfied

(ωψ)r1=0 = 0 , (ωψ)r2=0 = 0 (2.11)

– 3 –
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Lorentzian signature at the centres also requires the inequalities

f−1r1=0 =
`0−k21+a1

a1
− (k1+k2)

2

a2−a1
< 0 , f−1r2=0 =

`0−k22+a2
a2

+
(k1+k2)

2

a2−a1
> 0 (2.12)

Near these centres t = constant defines spatial hypersurfaces which approach the origin

of R4.

The centre r = 0 is a regular horizon if

`0 > 0 , `30 −m2
0 > 0 (2.13)

This can be established by introducing new coordinates (v, r, ψ′, θ, φ)

dt = dv +

(
A0

r2
+
A1

r

)
dr , dψ = dψ′ +

B0

r
dr (2.14)

and choosing constants A0, A1, B0 such that the metric and its inverse are analytic at

r = 0.3 The near-horizon geometry, obtained by the scaling limit (v, r)→ (v/ε, εr), ε→ 0,

depends only on (`0,m0) and is given by

ds2NH = −r
2

`20
dv2 ± 2`0√

`30 −m2
0

dvdr − 2m0r

`20
dv(dψ′ + cos θdφ)

+

(
`0 −

m2
0

`20

)
(dψ′ + cos θdφ)2 + `0dΩ2

2 (2.15)

FNH =

√
3

2
d

[
rdv

`0
+
m0

`0
(dψ′ + cos θdφ)

]
(2.16)

This is globally isometric to that of the BMPV black hole. Spatial cross-sections of the

horizon are of S3 topology and have area

AH = 16π2
√
`30 −m2

0 (2.17)

The above conditions imply k1 + k2 6= 0.4 This allows us to solve the constraints (2.11)

uniquely for (`0,m0). (The solution is not illuminating and will not be given here.)

The spacetime outside the horizon r > 0 is smooth if K2 +HL > 0 and stably causal

if gtt < 0. We have verified numerically that these conditions are satisfied for a large set of

coordinate/parameter values in the special case studied in the next section, provided the

above inequalities between the parameters are obeyed. The solution is thus parameterised

by the four constants (k1, k2, a1, a2) subject to the above inequalities.

The space outside the horizon has non-trivial topology. Curves between the centres

r1 = 0 and r2 = 0 correspond to 2-cycles C, whereas curves between r = 0 and r1 = 0

correspond to non-contractible 2-discs D which end on the horizon. The z-axis splits into

intervals I− = (−∞, 0), ID = (0, a1), IC = (a1, a2), I+ = (a2,∞), on which different linear

combinations of the U(1)2-Killing fields v± = ∂φ±∂ψ vanish. The rod diagram [19] is given

in figure 1.5

3We find A2
0 = `30 −m2

0 and B0 = A0m0/(`
3
0 −m2

0) with A0 < 0 (> 0) corresponding to the future (past)

horizon. A1 is a more complicated constant. The Maxwell field is then also analytic at the horizon.
4If k1 + k2 = 0 the constraints (2.11) imply k1 = m0 = 0; in this case (2.12) implies `0 < 0 which is

incompatible with a regular horizon.
5A uniqueness theorem for non-extremal black holes of this type can be found in [20].
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(1, 0) H (0, 1)

D

(1, 0)

C

(0, 1)

Figure 1. Rod diagram of black hole and bubble spacetime. The pair of integers above each

interval specifies the combination of ∂ψ, ∂φ which vanishes there in the basis (v+, v−).

The original BMPV solution is recovered by taking k1 = k2 = 0, and a2 → a1. This

removes the nontrivial topology outside the horizon.

The charge, Q = 1
4π

∫
S3
∞
?F , and angular momenta, Ji = 1

16π

∫
S3
∞
?dmi, (where mi are

the rotational Killing fields ∂ψ and ∂φ) of the black hole and bubble spacetime are

Q = 2
√

3π
(
`0 + 2k1(k1 + k2)

)
(2.18)

Jψ = π
(

3(k1 + k2)
(
`0 + k1(2k1 + k2)

)
+ 2m0

)
(2.19)

Jφ = 3π
(
a1(2k1 + k2)− a2k1

)
(2.20)

The mass is determined by the BPS relation M =
√

3Q/2, and the ‘dipoles’ are6

q[D] ≡ −1

2
vi−Φi|ID = −

√
3

2
(k1 + k2) , q[C] ≡ −1

2
vi+Φi|IC =

√
3

2
k1 (2.21)

where Φi are magnetic potentials defined by ∇bΦi = Fabm
a
i which vanish at infinity [21].

These five physical quantities are related by the constraint

Jφ = q[D]Q+
8π√

3
q[D]q[C]

(
q[D]− q[C]

)
(2.22)

The area in terms of the physical quantities is

AH = 8π2
[

1

6
√

3π3

(
Q+

16π√
3
q[C]q[D]

)3
−
(
Jψ + Jφ

π
+

16√
3
q[D]q[C]2

)2]1/2
(2.23)

This expression will be the main object of our study below.

By choosing different boundary conditions at r = 0, the above family of solutions

corresponds to the soliton spacetime with two bubbles found in [22]. This is achieved by

imposing that the solution at the centre r = 0 is smooth, and that near this centre, t =

constant defines spatial hypersurfaces which approach the origin of R4. This requires that

`0 = m0 = 0 together with (ωψ)r=0=0 and

f−1r=0 = 1 +
k21
a1
− k22
a2

> 0 (2.24)

In fact, it can be shown that (ωψ)r=0 − (ωψ)r1=0 + (ωψ)r2=0 = 0 so that (ωψ)r=0 = 0

does not impose any further constraint. Thus the soliton spacetime is parameterised by

(k1, k2, a1, a2) subject to the constraints (2.11) with `0 = m0 = 0, and hence is a 2-

parameter family of solutions.

6Unlike the case of a black ring, the dipoles cannot always be expressed as a flux integral. Indeed,

Π[D] ≡ 1
4π

∫
D
F = q[C] − m0

`0
receives a contribution from the horizon. However, Π[C] ≡ 1

4π

∫
C
F = q[D].

– 5 –
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3 Equal angular momentum phase space

Interestingly, it was observed in [4] that there exist black hole and bubble spacetimes with

identical global charges to the known BMPV black hole, providing the first example of con-

tinuous non-uniqueness within the class of spherical black holes. The angular momentum

of the BMPV black hole is

Jφ = 0 (3.1)

with respect to the Euler angles (ψ, φ) on the S3 at infinity. It is convenient to express

the remaining physical quantities in units of Q (i.e. mass). We define the dimensionless

angular momentum and area

η ≡
√

6π
√

3
|Jψ|
Q3/2

, aH ≡

√
3
√

3

32π

AH

Q3/2
(3.2)

For the BMPV black hole solution one simply has

0 ≤ ηBMPV < 1 , aBMPV =
√

1− η2 . (3.3)

We will now derive the analogous phase space for the black hole and bubble solution

discussed above.

For the black hole and bubble solution the angular momentum constraint (3.1) is

k2 = −(2a1 − a2)k1
a1

(3.4)

and hence reduces to a three parameter family (k1, a1, a2). Solving the constraints (2.11)

we find

`0 =
(2a1 − a2)k21

a1
, m0 =

a21k1(4k
2
1 + 3a2)− a2(a1 + a2)k

3
1

2a21
(3.5)

and hence

f−1r1=0 =
a21 − 2(a2 − a1)k21

a21
, f−1r2=0 =

a1a2 + 2(a2 − a1)k21
a1a2

(3.6)

Thus the inequalities (2.12) and (2.13) reduce to

2a1 > a2 , k21 >
a21

2(a2 − a1)
(3.7)

together with positivity of the area (this is a more complicated expression). The electric

charge is simply

Q =
2
√

3πa2k
2
1

a1
(3.8)

The other physical quantities are most conveniently expressed in terms of (3.2) and a

dimensionless dipole

ν ≡

√
πq[C]2√

3Q
(3.9)

– 6 –
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The area as a function of these quantities is

aH =

√
(16ν2 − 1)3 −

(
η + 48

√
2ν
(
ν2 − 1

8

))2
(3.10)

To analyse this formula we need to work out the bounds on (η, ν).

In terms of the parameters of the solution

η =
3a21a2 + 2k21a1a2 + k21(2a1 − a2)(a2 − a1)

2k21
√
a1a32

, ν =

√
a1
8a2

. (3.11)

Observe that (3.7) implies η > 0 so these solutions never possess zero angular momentum.

Using (3.7) we also immediately obtain

1

4
< ν <

1

2
√

2
≈ 0.354 (3.12)

To obtain the bounds for the angular momentum η, it is convenient to introduce an auxiliary

dimensionless parameter

y ≡ 2(a2 − a1)k21
a21

> 1 (3.13)

where the inequality follows from (3.7). A computation shows that one can rewrite this as

y =
6(1− 8ν2)

1 + 4
√

2ην − 40ν2 + 128ν4
(3.14)

Positivity of the denominator and the inequality (3.13) impose lower and upper bounds on

η respectively:
−1 + 40ν2 − 128ν4

4
√

2ν
< η <

5− 8ν2 − 128ν4

4
√

2ν
(3.15)

However, note that positivity of the area (3.10) also imposes lower and upper bounds on

η. It may be verified that this provides a more stringent upper bound. The lower bound is

more complicated with the one for the area only providing a more stringent bound below

ν ≈ 0.275. Thus we deduce,

ηmin(ν) < η < ηmax(ν) , (3.16)

ηmin = max

(
−1 + 40ν2 − 128ν4

4
√

2ν
, −(16ν2 − 1)3/2 + 6

√
2ν(1− 8ν2)

)
ηmax = (16ν2 − 1)3/2 + 6

√
2ν(1− 8ν2)

where the max is taken over the range (3.12).

In summary, we have shown that the parameter space of the black hole and bubble

solution is given by (3.12) and (3.16). This is plotted in figure 2.

Let us now consider the smooth soliton solutions discussed at the end of the previous

section, with Jφ = 0. In terms of the parameters we again must have (3.4). The solution

to the constraints (2.11) is now7

a2 = 2a1 , a1 =
k21
3
, k2 = 0 . (3.17)

7There is another solution, k1 = 0; however, this is incompatible with (2.12).

– 7 –
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0.85
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0.95

1.00

1.05

ν

η

aH = 0
↓

aH = 0→

Figure 2. ηmax (blue) and ηmin (yellow) versus ν for 1/4 < ν < 1/(2
√

2). The allowed region is

that bounded by the blue and yellow curves. Note that ηmax > 1 for all ν. It can been seen that

the allowed set of solutions exist on either side of the BMPV bound η = 1.

Thus the soliton is a 1-parameter family of solutions, parameterised by k1 6= 0. The

physical quantities simplify substantially:

Q = 4
√

3πk21 , Jψ = 6πk31 , q[C] = −q[D] =

√
3

2
k1 (3.18)

In terms of the dimensionless quantities:

ηs =
3

2
√

2
≈ 1.061 , νs =

1

4
(3.19)

Observe that this corresponds to the point at the lower limit of ν where ηmax = ηmin for

the black hole and bubble solution, i.e. the top left hand corner of figure 2. The rest of the

boundary of the allowed black hole region corresponds to naked singularities.

It is interesting to investigate the black hole solution near the soliton point η = ηs, ν =

1/4. In fact, the ηmax(ν) and ηmin(ν) curves are tangent at ν = 1/4. Thus we find that for

any black hole solution in this family, as η → ηs,

ν(η) =
1

4
+

1

3
√

2
(ηs − η) +O(ηs − η)2 (3.20)

and using (3.10) this implies

aH ∼

√
128
√

2

27
(ηs − η)3/2. (3.21)

We will now show one can interpret this as the area of a small nonrotating extremal black

hole sitting in the soliton geometry.

The near-horizon geometry is given in (2.15) and the charge and angular momenta of

the corresponding BMPV black hole are8

Q̄ = 2
√

3π`0 , J̄ψ = 2πm0 (3.22)

8These can be computed from the near-horizon geometry using appropriate conserved charges defined

on the horizon, see e.g. [23].

– 8 –



J
H
E
P
0
6
(
2
0
1
7
)
0
4
8

so the corresponding η̄ = m0/`
3/2
0 . Then, in terms of the parameters of the full solution

η̄ =

√
2η − 12ν(1− 8ν2)√

2(16ν3 − 1)3/2
(3.23)

Hence, expanding near the soliton point along (3.20) gives

η̄ ∼ 3
√

3

21/44

√
ηs − η (3.24)

which shows that the black hole angular momentum vanishes faster than the charge so

to leading order, the black hole does not carry angular momentum. Furthermore, the

dimensionless area of the corresponding extremal black hole (which has M̄ =
√

3Q̄/2) is

āH =

(
Q̄

Q

)3/2
= (16ν2 − 1)3/2 ∼

√
128
√

2

27
(ηs − η)3/2 (3.25)

where the last relation is again valid near the soliton point along (3.20). Thus we find

precise agreement with (3.21).

This is very similar to previous examples of inserting black holes inside solitons, and

agrees with the result of a simple thermodynamic argument. To maximize the entropy, a

noninteracting system of a small black hole and soliton will have all the angular momentum

carried by the soliton. In contrast to most previous examples, however, we now have an

explicit analytic form of the solution for any size black hole. The existence of arbitrarily

small black holes implies that the soliton admits static solutions for a charged test particle.

One can check that a static test particle with mass m and charge e can indeed be added

to the bubbling geometry, but only if m =
√

3e/2. In other words, only if the test particle

is also BPS.

4 Comparison with the BMPV black hole

Now we will compare the BMPV solution to the black hole and bubble solution in more

detail. In particular, we are interested in when the area of the black hole and bubble

solution is greater than (or equal to) the area of the BMPV black hole, so aH ≥
√

1− η2.
Using our explicit formula (3.10), this condition is equivalent to

η ≥ ηcrit ≡
1 + 20ν2 − 32ν4

6
√

2ν
(4.1)

The curve ηcrit(ν) is plotted in figure 3. It can be seen that ηcrit is very close to the BMPV

bound η = 1 across the whole range of solutions.

Figure 4 compares ηcrit with both ηmax and ηmin. One can see that ηcrit < ηmax for all ν

in the allowed range. On the other hand, ηcrit > ηmin if and only if ν > 1
2

√
2−
√

3 ≈ 0.259.

In fact, at the cross-over point ν = 1
2

√
2−
√

3, it is easily checked that ηcrit = ηmin = 1.

Furthermore, ηmin > 1 for all smaller ν, so there are no corresponding BMPV solutions

in this region of phase space. However for larger ν, we deduce there are two phases of

– 9 –
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Figure 3. ηcrit versus ν for 1/4 < ν < 1/(2
√

2).
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Figure 4. ηmax (blue), ηmin (yellow) and ηcrit (green) versus ν for 1/4 < ν < 1/(2
√

2).

solutions; one with ηmin < η < ηcrit < 1 which has lower area than the corresponding

BMPV solution, and a second phase with ηcrit < η < ηmax which for η < 1 coexists with

BMPV and has greater area.

Thus we have shown that for

1

2

√
2−
√

3 < ν <
1

2
√

2
(4.2)

there is a band of solutions ηcrit < η < 1 which have the same conserved charges as the

BMPV black hole but greater entropy. The area of the two solutions in the region of

overlap is plotted in figure 5.

It is interesting to find the maximum entropy state for fixed η. For η . 0.998 the

BMPV solution dominates the black hole and bubble solution. However, as can be seen

from figure 5, for η & 0.998 the black hole and bubble solution dominates in the range (4.2).

It is clear from the figure that in this region, for a certain value of ν = ν∗(η), the entropy

of the black hole and bubble solution is maximised. Determining ν∗(η) requires finding

the appropriate root of ∂νaH = 0 (a quintic in ν). Fortunately, since the region of interest

0.998 . η < 1 is very close to one, we may determine ν∗(η) to good accuracy by expanding

– 10 –



J
H
E
P
0
6
(
2
0
1
7
)
0
4
8

ν
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Figure 5. aH versus (ν, η) for 1
2

√
2−
√

3 < ν < 1/(2
√

2) and 0.998 < η < 1. The blue surface is

the BMPV solution and the orange one is the black hole and bubble solution.

in (1− η). Indeed, we find

ν∗(η) ≈ 0.284 + 2.025(1− η) (4.3)

amax(η) ≈ 0.059 + 2.404(1− η) (4.4)

In contrast, for BMPV near η = 1 we have aBMPV ≈
√

2(1− η).

5 Discussion

We have studied a four-parameter family of black hole solutions with a topologically non-

trivial S2-cycle outside the horizon. We found that there is a three-dimensional subset

with the same charges as the BMPV black hole, some of which contain greater entropy.

This might be viewed as a “single black hole entropy enigma”.

From the gravitational standpoint, there is a natural explanation for this phenomenon.

The new black holes only have greater entropy when the angular momentum Jψ is close to

the BMPV upper bound J(Q) ≡ (Q3/6
√

3π)1/2. However the entropy of a BMPV black

hole vanishes as Jψ approaches J(Q). The new solutions have structure outside the horizon

which can carry angular momentum. So when the total angular momentum approaches

J(Q), the remaining angular momentum carried by the black hole is less than this and

hence the entropy remains nonzero.

One might object that the configuration outside the black hole carries charge as well

as angular momentum, so it is a priori possible that the charge of the black hole would

also be reduced leaving the BMPV bound unaffected. However we have seen that the new

family of black hole solutions can have Jψ > J(Q), and have a near horizon geometry that

is the same as BMPV, with shifted parameters. This shows that the nontrivial topology

outside the horizon carries relatively more angular momentum than charge so if the total

quantities satisfy Jψ = J(Q), the black hole itself carries Jψ < J(Q) and has a nonzero

entropy.

The question remains why the original counting of microstates [2] gave the correct

entropy for the BMPV black hole and not one of these new solutions. Even though Jψ

– 11 –



J
H
E
P
0
6
(
2
0
1
7
)
0
4
8

and Q are quantized in string theory, in the limit of large Q many discrete values would

lie inside the region where the new black holes have greater entropy. The original counting

involved computing a certain index (the elliptic genus) in weakly coupled string theory and

extrapolating to strong coupling. It was always possible that this index undercounted the

number of BPS states. A recent construction [24] has indeed found weakly coupled BPS

states with Jψ > J(Q), but although the number of such states is exponentially large, it

cannot explain the entropy of the macroscopic black holes discussed here.

One might think that a possible explanation for the original agreement is that since

the bubbling geometries have nontrivial topology, they are nonperturbative solutions that

cannot be seen in string perturbation theory. So the original counting of microstates in

Minkowski spacetime could not include black holes sitting in these spacetimes. However, it

has been argued that as one decreases the string coupling, the bubbles reduce to wrapped

branes which can be seen at weak coupling [25]. So either the index calculation undercounts

the number of BPS states, or there are more complicated BPS bound states of branes and

strings that are not included in the D-brane system that was originally studied.

We can try to get a deeper understanding using holography. The new black hole

solutions can be lifted to six dimensions and the asymptotically flat region removed by

taking a decoupling limit. The resulting spacetime is asymptotically AdS3 × S3, and one

can ask what are the dual CFT states that they correspond to. Unfortunately, even without

adding black holes, the CFT dual of the bubbling geometries are not yet known [26, 27].

We should note that it has recently been argued that the bubbling geometries are all

nonlinearly unstable [28], in the sense that adding a small finite amount of energy will

change the solution by a large amount. The likely endpoint of this instability is a state

with string scale curvature and large stringy corrections to supergravity [29]. The same

instability probably applies to the black hole solutions discussed here.

Finally, we have examined just the simplest example of a black hole with nontrivial

topology outside the horizon. Many more examples could be constructed and explored.

For example, a supersymmetric black hole with n nontrivial 2-cycles outside the horizon

could be constructed in the Gibbons-Hawking class by taking harmonic functions with n+2

centres. As argued above, structure outside the horizon can carry angular momentum and

hence extra 2-cycles could decrease the proportion of angular momentum carried by the

black hole. This suggests that, as the total angular momentum approaches J(Q), adding

2-cycles outside the black hole could further increase the entropy. By continuity, this

argument also suggests that the region of phase space where the entropy dominates over

BMPV would increase (i.e. the lower bound on η would decrease). It would be interesting

to investigate this in more detail.

Acknowledgments

It is a pleasure to thank D. Marolf and A. Strominger for discussions. GTH is supported in

part by NSF Grant PHY-1504541. HKK is supported by NSERC Discovery Grant 418537-

2012. JL is supported in part by the Science and Technology Facilities Council (STFC)

[ST/L000458/1].

– 12 –



J
H
E
P
0
6
(
2
0
1
7
)
0
4
8

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions,

Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].

[2] J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes,

Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].

[3] I. Bena and N.P. Warner, Black holes, black rings and their microstates,

Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].

[4] H.K. Kunduri and J. Lucietti, Black hole non-uniqueness via spacetime topology in five

dimensions, JHEP 10 (2014) 082 [arXiv:1407.8002] [INSPIRE].

[5] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,

Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

[6] H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring,

Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [INSPIRE].

[7] J.P. Gauntlett and J.B. Gutowski, Concentric black rings, Phys. Rev. D 71 (2005) 025013

[hep-th/0408010] [INSPIRE].

[8] F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos,

JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

[9] P.M. Crichigno, F. Porri and S. Vandoren, Bound states of spinning black holes in five

dimensions, JHEP 05 (2017) 101 [arXiv:1603.09729] [INSPIRE].

[10] I. Bena, B.D. Chowdhury, J. de Boer, S. El-Showk and M. Shigemori, Moulting black holes,

JHEP 03 (2012) 094 [arXiv:1108.0411] [INSPIRE].

[11] H.K. Kunduri and J. Lucietti, Supersymmetric black holes with lens-space topology,

Phys. Rev. Lett. 113 (2014) 211101 [arXiv:1408.6083] [INSPIRE].

[12] S. Tomizawa and M. Nozawa, Supersymmetric black lenses in five dimensions,

Phys. Rev. D 94 (2016) 044037 [arXiv:1606.06643] [INSPIRE].

[13] M.S. Volkov and D.V. Galtsov, Black holes in Einstein-Yang-Mills theory (in Russian),

Sov. J. Nucl. Phys. 51 (1990) 747 [INSPIRE].

[14] K.-M. Lee, V.P. Nair and E.J. Weinberg, Black holes in magnetic monopoles,

Phys. Rev. D 45 (1992) 2751 [hep-th/9112008] [INSPIRE].

[15] P. Basu et al., Small hairy black holes in global AdS spacetime, JHEP 10 (2010) 045

[arXiv:1003.3232] [INSPIRE].

[16] O.J.C. Dias, G.T. Horowitz and J.E. Santos, Gravitational turbulent instability of

anti-de Sitter space, Class. Quant. Grav. 29 (2012) 194002 [arXiv:1109.1825] [INSPIRE].

[17] P.A. Cano, P. Meessen, T. Ort́ın and P.F. Ramirez, Non-Abelian black holes in string theory,

arXiv:1704.01134 [INSPIRE].

– 13 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevLett.88.101101
https://arxiv.org/abs/hep-th/0110260
http://inspirehep.net/search?p=find+EPRINT+hep-th/0110260
http://dx.doi.org/10.1016/S0370-2693(96)01460-8
https://arxiv.org/abs/hep-th/9602065
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602065
http://dx.doi.org/10.1007/978-3-540-79523-0_1
https://arxiv.org/abs/hep-th/0701216
http://inspirehep.net/search?p=find+EPRINT+%22hep-th/0701216%22
http://dx.doi.org/10.1007/JHEP10(2014)082
https://arxiv.org/abs/1407.8002
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.8002
http://dx.doi.org/10.1016/0370-2693(96)00345-0
https://arxiv.org/abs/hep-th/9601029
http://inspirehep.net/search?p=find+EPRINT+hep-th/9601029
http://dx.doi.org/10.1103/PhysRevLett.93.211302
https://arxiv.org/abs/hep-th/0407065
http://inspirehep.net/search?p=find+EPRINT+hep-th/0407065
http://dx.doi.org/10.1103/PhysRevD.71.025013
https://arxiv.org/abs/hep-th/0408010
http://inspirehep.net/search?p=find+EPRINT+hep-th/0408010
http://dx.doi.org/10.1007/JHEP11(2011)129
https://arxiv.org/abs/hep-th/0702146
http://inspirehep.net/search?p=find+EPRINT+hep-th/0702146
http://dx.doi.org/10.1007/JHEP05(2017)101
https://arxiv.org/abs/1603.09729
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.09729
http://dx.doi.org/10.1007/JHEP03(2012)094
https://arxiv.org/abs/1108.0411
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0411
http://dx.doi.org/10.1103/PhysRevLett.113.211101
https://arxiv.org/abs/1408.6083
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6083
http://dx.doi.org/10.1103/PhysRevD.94.044037
https://arxiv.org/abs/1606.06643
http://inspirehep.net/search?p=find+EPRINT+arXiv:1606.06643
http://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,51,747%22
http://dx.doi.org/10.1103/PhysRevD.45.2751
https://arxiv.org/abs/hep-th/9112008
http://inspirehep.net/search?p=find+EPRINT+hep-th/9112008
http://dx.doi.org/10.1007/JHEP10(2010)045
https://arxiv.org/abs/1003.3232
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.3232
http://dx.doi.org/10.1088/0264-9381/29/19/194002
https://arxiv.org/abs/1109.1825
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1825
https://arxiv.org/abs/1704.01134
http://inspirehep.net/search?p=find+EPRINT+arXiv:1704.01134


J
H
E
P
0
6
(
2
0
1
7
)
0
4
8

[18] J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric

solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587

[hep-th/0209114] [INSPIRE].

[19] S. Hollands and S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two

axial Killing fields, Commun. Math. Phys. 283 (2008) 749 [arXiv:0707.2775] [INSPIRE].

[20] J. Armas, Uniqueness of black holes with bubbles in minimal supergravity,

Class. Quant. Grav. 32 (2015) 045001 [arXiv:1408.4567] [INSPIRE].

[21] H.K. Kunduri and J. Lucietti, The first law of soliton and black hole mechanics in five

dimensions, Class. Quant. Grav. 31 (2014) 032001 [arXiv:1310.4810] [INSPIRE].

[22] I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes,

Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].

[23] H.K. Kunduri and J. Lucietti, Classification of near-horizon geometries of extremal black

holes, Living Rev. Rel. 16 (2013) 8 [arXiv:1306.2517] [INSPIRE].

[24] B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-theory, spinning black holes and

multi-string branches, JHEP 01 (2016) 009 [arXiv:1509.00455] [INSPIRE].

[25] V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates:

from D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [INSPIRE].

[26] K. Skenderis and M. Taylor, The fuzzball proposal for black holes,

Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].

[27] S. Giusto, E. Moscato and R. Russo, AdS3 holography for 1/4 and 1/8 BPS geometries,

JHEP 11 (2015) 004 [arXiv:1507.00945] [INSPIRE].

[28] F.C. Eperon, H.S. Reall and J.E. Santos, Instability of supersymmetric microstate

geometries, JHEP 10 (2016) 031 [arXiv:1607.06828] [INSPIRE].

[29] D. Marolf, B. Michel and A. Puhm, A rough end for smooth microstate geometries,

JHEP 05 (2017) 021 [arXiv:1612.05235] [INSPIRE].

– 14 –

http://dx.doi.org/10.1088/0264-9381/20/21/005
https://arxiv.org/abs/hep-th/0209114
http://inspirehep.net/search?p=find+EPRINT+hep-th/0209114
http://dx.doi.org/10.1007/s00220-008-0516-3
https://arxiv.org/abs/0707.2775
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.2775
http://dx.doi.org/10.1088/0264-9381/32/4/045001
https://arxiv.org/abs/1408.4567
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4567
http://dx.doi.org/10.1088/0264-9381/31/3/032001
https://arxiv.org/abs/1310.4810
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4810
http://dx.doi.org/10.1103/PhysRevD.74.066001
https://arxiv.org/abs/hep-th/0505166
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505166
http://dx.doi.org/10.12942/lrr-2013-8
https://arxiv.org/abs/1306.2517
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2517
http://dx.doi.org/10.1007/JHEP01(2016)009
https://arxiv.org/abs/1509.00455
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00455
http://dx.doi.org/10.1088/1126-6708/2008/01/056
https://arxiv.org/abs/hep-th/0606118
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606118
http://dx.doi.org/10.1016/j.physrep.2008.08.001
https://arxiv.org/abs/0804.0552
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.0552
http://dx.doi.org/10.1007/JHEP11(2015)004
https://arxiv.org/abs/1507.00945
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00945
http://dx.doi.org/10.1007/JHEP10(2016)031
https://arxiv.org/abs/1607.06828
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.06828
http://dx.doi.org/10.1007/JHEP05(2017)021
https://arxiv.org/abs/1612.05235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1612.05235

	Introduction
	Black hole and bubble spacetime in five dimensions
	Equal angular momentum phase space
	Comparison with the BMPV black hole
	Discussion

