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1 Introduction

Finding consistent truncations of higher-dimensional supergravity to yield lower-

dimensional theories is a notoriously difficult problem. By a consistent truncation we

mean that solutions of the lower-dimensional equations of motion automatically satisfy

those of the initial higher-dimensional theory. Because of the non-linearity of the field

equations such consistent truncation Ansätze are generically hard to find [1], unless the

background has a lot of underlying symmetry. For example, Scherk and Schwarz [2] showed

that consistent truncations can be defined on Lie groups, which are of course parallelisable

manifolds. As a result the truncation has the same number of supersymmetries as the

higher-dimensional theory.

Recently, the Scherk-Schwarz set-up has been generalised using double field theory

(DFT) [3–6] and exceptional field theory (EFT) [7–9], as well as generalised geome-

try [10–13]. These theories are O(D,D)- and Ed(d)-manifest extensions (or reformulations

in the case of generalised geometry) of 10-/11-dimensional supergravity which treat the

gauge and gravitational fields on an equal footing, see [14–17] for earlier work in this di-

rection. They thus naturally include fluxes in the Scherk-Schwarz set-up. As a result, a

generalised Scherk-Schwarz Ansatz [18–29] can be performed on a background which is

“generalised parallelisable” [28], the flux-analogue of a parallelisable manifold. Such back-

grounds may not be parallelisable as a differential manifold and indeed one can show that

an otherwise remarkable set of consistent truncations on spheres, in particular S7 [30] and

S4 [31, 32] of 11-dimensional SUGRA and S5 [33] for IIB SUGRA, can be understood as

such generalised Scherk-Schwarz Ansätze [23, 28].

With this set-up it has been possible to derive and study a variety of new consistent

truncations on spheres and hyperboloids [23, 34, 35], on non-geometric backgrounds [20, 36],

on product manifolds [37] as well as to study the relationship between different consistent

truncations [38].1 Because such generalised Scherk-Schwarz truncations are defined on gen-

eralised parallelisable spaces, they also preserve the same number of supersymmetries [13]

and thus yield maximal gauged SUGRAs when used in EFT or half-maximal gauged SUG-

RAs when used in DFT, or their respective generalised geometry analogues. While it is

possible to define a further truncation of the maximal gauged SUGRA to half-maximal

ones, corresponding to the reduction of EFT to DFT, see e.g. [20, 42], there are of course

half-maximal gauged SUGRAs which cannot be obtained this way. Furthermore, there

are half-maximal gauged SUGRAs which cannot be obtained by a consistent truncation of

type II theories but require either the heterotic SUGRA or 11-dimensional SUGRA.

The purpose of this paper is to initiate the study of consistent truncations which break

some amount of supersymmetry in exceptional field theory (and exceptional generalised

geometry). Here we will focus on the seven-dimensional case where we show how to obtain

arbitrary half-maximal gauged SUGRAs coupled to n vector multiplets and thus with scalar

coset space

Mscalar =
O(3, n)

O(3)×O(n)
× R+ . (1.1)

1The closely-related approach of [39–41] has also been fruitful in finding consistent truncations.
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Our set-up allows us to capture consistent truncations to half-maximal gauged SUGRAs

arising from either 11-dimensional or type II SUGRA, as well as the heterotic SUGRA, as

shown in [43].2

In order to break half of the supersymmetry, the internal manifold must have gener-

alised SU(2)-structure and we show how to define consistent truncations on such spaces.

In particular, the embedding tensor is encoded in the generalised Lie derivative acting

on the sections defining the truncation and automatically satisfies the linear constraint of

half-maximal gauged SUGRA. Exactly as in the maximal case [19], the section condition

is sufficient for the gaugings to fulfil the quadratic constraint.

In order to understand how to obtain n 6= 3 vector multiplets it is important to

distinguish between linear symmetry groups acting at each point in space and the symmetry

group acting on the sections we keep in the truncation. The linear symmetry group is in

the case of exceptional field theory just Ed(d), or in the case considered here SL(5). This is

simply a consequence of the field content of the theory, and not a result of the backgrounds

considered.3 However, when we consider truncations on generalised parallelisable spaces

then this also becomes the symmetry group acting on sections and this is why generalised

Scherk-Schwarz reductions lead to gauged SUGRAs with global symmetry group Ed(d).

On the other hand, when the background is not generalised parallelisable, as we will be

considering in this paper, the group acting on the space of sections can be much larger

because the number of independent sections can be larger. This is why the supergravities

we obtain have global symmetry groups O(3, n) which are clearly not subgroups of SL(5).

To emphasise this point, let us consider the more familiar example of general rela-

tivity in d + 4-dimensions on a product manifold so that its linear symmetry group is

GL(d) × GL(4). When performing a truncation on T 4, one obtains d-dimensional gravity

minimally coupled to scalars parameterising a coset whose global symmetry group is in-

deed GL(4). However, when considering less supersymmetric truncations, for example on

K3, one obtains duality groups which are not subgroups of GL(4). In the K3 example one

obtains d-dimensional gravity minimally coupled to scalars parameterising the coset space

O(3, 19)/O(3) × O(9). The duality group O(3, 19) acts of course on the space of sections

defining the truncation on K3, i.e. the 22 harmonic forms. The linear symmetry group of

the internal space, GL(4), which just tells us that at each point we have a 4-dimensional

metric plays no direct role in the global symmetry group of the reduced theory, O(3, 19).

We begin by reviewing the SL(5) EFT relevant for truncations to 7-dimensional gauged

SUGRAs in section 2 and introducing the tensors required to define a SU(2)-structure in

section 3. Then we reformulate the theory in section 4 in a way that is more adapted to

N = 2 SUSY. This involves rewriting the theory in terms of tensors defining the SU(2)-

structure group rather than the generalised metric. That such a reformulation bypassing

2We should mention that the approach we take here differs from that in [44] which reduces the usual flux

formulation of double field theory, which is only valid for paralellisable manifolds, on CY3 to obtain a N = 2

scalar potential. Furthermore, our approach allows us to consider general flux backgrounds whereas [44] is

restricted to fluxes which can be treated as small deviations to the Calabi-Yau background.
3In this discussion we ignore the existence of the extra coordinates but we show how these fit into the

picture in [43].
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the generalised metric is necessary should not come as a surprise since as a particular exam-

ple one could here consider the M-theory truncation on K3 for which the metric, and hence

generalised metric, is not explicitly known. We show how to rewrite the supersymmetry

variation of the gravitino as well as the scalar potential, kinetic terms and topological term

in a way that is adapted to N = 2 SUSY.

We next discuss how to perform a truncation of EFT on generalised SU(2)-structure

manifolds in section 5. The conditions for a consistent truncation are compactly formu-

lated in terms of the generalised Lie derivative. In particular, with the truncation Ansatz

we present the internal coordinates can only appear in the action through the embedding

tensor, which is defined by the generalised Lie derivative of the sections defining the trun-

cation. Thus when the embedding tensor components are constant, the Ansatz guarantees

that the action becomes independent of the internal coordinates and thus the truncation

is consistent. Finally, we conclude in section 6 by discussing possible application and

extensions of this work.

Summary of results. Throughout this paper we are concerned with generalised SU(2)-

structure manifolds. Such manifolds admit two linearly-independent, nowhere-vanishing

spinors. This is equivalent to the manifold having the following nowhere-vanishing tensors

under generalised diffeomorphisms: (κ,Aa, A
a, Bu,ab). Here a, b = 1, . . . , 5 denote SL(5)

indices and u = 1, . . . , 3 are SU(2)R indices denoting the R-symmetry. Furthermore, κ

is a scalar density of weight 1
5 and is related to the determinant of the external seven-

dimensional metric. Additionally these structures satisfy

AaAa =
1

2
, Bu,abA

a = 0 , εabcdeBu,abBv,cd = 4
√

2Ae . (1.2)

This set of tensors reduce the USp(4)-structure group to SU(2) and thus define a generalised

metric implicitly.

The action can be rewritten completely in terms of the generalised SU(2)-structure,

i.e. κ, Aa, A
a, Bu,ab. To do so one introduces a generalised SU(2)-connection ∇̃ which

annihilates the SU(2)-structure

∇̃abκ = ∇̃abAc = ∇̃abAc = ∇̃abBu,ab = 0 . (1.3)

Its intrinsic torsion lives in the representations

Wint = 2 · (1,1) + 2 · (1,3) + (3,1) + (3,3) + 3 · (2,2) + (2,4) , (1.4)

of SU(2)S × SU(2)R ⊂ SL(5), where SU(2)S refers to the structure group while SU(2)R
refers to the R-symmetry group. The intrinsic torsion can be used to rewrite the SUSY

variations and the scalar potential. For example, the generalised Ricci scalar is given by

R = 8S2 − 2T 2 − 8
√

2ST − 3TuT
u + TuS

u − 3

4
SuS

u − 16
√

2 εabcdeTabTcdAe

− 36
√

2 εabcdeT uabTu,cdAe −
4
√

2

3
MabSaSb −

16

3
MabSaTb +

8

3
MabUaSb .

(1.5)
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where S, T are singlets of the intrinsic torsion, Tu Su are (1,3) under SU(2)S × SU(2)R,

Tab are (3,1) under SU(2)S × SU(2)R, Tu
ab are (3,3) and Sa, Ta, Ua are the (2, 2) of the

intrinsic torsion.

We perform a truncation by expanding the SU(2)-structure in terms of a finite basis of

sections of the (1,1), (1,3) and (3,1)-bundles of SU(2)S × SU(2)R. In particular because

SU(2)S is non-trivially fibred over the manifold we use n sections of the (3,1)-bundle and

these will give rise to n vector multiplets in the reduced theory. We denote the sections by

na, na and ωM,ab, where M = 1, . . . n + 3 collective denotes the sections of the (3,1) and

(1,3)-bundles. These sections satisfy

nana = 1 , ωM,abn
a = 0 , ωM,abωN,cdε

abcde = 4ηMNn
e , (1.6)

where ηMN is an O(3, n) metric whose signature depends on the number of (3,1) sections.

The truncation Ansatz for the scalars is given by

〈κ〉(x, Y ) = |ē|1/7(x) e−2d(x)/5 ρ(Y ) ,

〈Aa〉(x, Y ) =
1√
2
e−4d(x)/5na(Y ) ,

〈Aa〉(x, Y ) =
1√
2
e4d(x)/5na(Y ) ,

〈Bu,ab〉(x, Y ) = e−2d(x)/5 bu,M (x)ωMab(Y ) ,

(1.7)

where we use 〈 〉 to denote the truncation Ansatz, and ρ(Y ) is a density of weight 1
5 under

generalised diffeomorphisms. The scalars bu
M then satisfy

bu
Mbv,M = δuv (1.8)

and parameterise the coset O(3,n)
O(3)×O(n) . Similarly |ē| and d(x) are the determinant of the

7-dimensional metric and the dilaton, respectively.

In order to have a consistent truncation, the sections ρ, na, na and ωM,ab must satisfy

three types of differential constraints. Firstly, any doublets must vanish, e.g.

naLω̃M ω̃M
ab = 0 , (1.9)

where we defined the n+ 3 generalised vectors

ω̃M
ab = ρωM

ab , with ωM
ab = εabcdeωM,cdne . (1.10)

Secondly, the generalised Lie derivative of the sections ωM,ab must be expandable in a basis

of the ωM,ab.

The embedding tensor of the half-maximal gauged supergravity is then given by the

generalised Lie derivative of the sections defining the truncation. In particular, this satisfies

the linear constraint of 7-d half-maximal gauged supergravities so that one can identify

fMNP =
1

4ρ
Lω̃[M

ωN |ab|ωP ]
ab ,

fM = naLω̃Mna , ξM = ρ−1Lω̃Mρ ,
Θ = ρna∂abn

b .

(1.11)
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By construction, closure of the algebra of generalised Lie derivatives (hence for example the

section condition) is sufficient for the gaugings to satisfy the quadratic constraints of the

gauged SUGRAs. Finally, the truncation is consistent when the embedding tensor (1.11)

is constant.

Unlike in the construction of effective actions, the ωM,ab’s appearing here are not

uniquely defined by the topology of the background. This is a reflection of the fact that

a given background can admit multiple, different consistent truncations. Additionally, it

is important to highlight that the consistent truncations defined here do not require the

background to be a solution of the equations of motion. In this case, the gauged SUGRA

will not have a vacuum at the origin of the scalar manifold, nor does it need to have

a vacuum at all. Related to this, the fields in the truncated theory are not in general

massless. In particular, the consistent truncation may have discarded some light modes

but kept certain heavier modes. However, it does so in a manner in which any solutions

can be uplifted to solutions of the full theory.

2 Overview of exceptional field theory

Let us begin by giving a brief review of the SL(5) exceptional field theory [8, 9, 45] with

emphasis on the aspects needed for our purposes. We refer the interested reader to the

reviews [46–48]. The SL(5) EFT can be viewed as a reformulation of 11-dimensional super-

gravity which makes the linear symmetry group SL(5) manifest. Thus, the starting point is

11-dimensional supergravity in a 7+4 split. Let us use xµ, µ = 1, . . . , 7, as coordinates for

the “external” 7-d space and label yī, ī = 1, . . . , 4 as the four “internal coordinates”. These

are part of 10 “extended coordinates”, Y ab, forming the antisymmetric representation of

SL(5), where we use a, b = 1, . . . , 5 as fundamental SL(5) indices. In the case where the in-

ternal geometry really is a torus, the extra six coordinates can be understood as being dual

to wrapping modes of branes. However, the extra coordinates are always introduced, in a

background-independent manner, and we will suggest a possible interpretation in the case

where the four-dimensional part of the internal space is non-toroidal, e.g. a K3, in [43].4

We will always refer to the seven-dimensional space as external and the four-dimensional

(or 10-dimensional if the extended viewpoint is taken) as “internal” although no truncation

has been performed, i.e. all fields can depend on any of the (7 + 10) coordinates.

All scalars with respect to this (7 + 4)-split can be described by the generalised metric

Mab ∈ SL(5)/USp(4). (2.1)

This coset can also be described by the generalised vielbein Vaij such that

Mab = VaijVb,ij , (2.2)

4In the case of double field theory this process is a little bit clearer. There one doubles the “internal”

space, corresponding to independent zero modes of left- and right-movers which one could introduce for a

string propagating in an arbitrary background. In the case of a toroidal background these zero modes are

indeed dual to momentum and winding modes of the string. In EFT an analogous zero-mode interpretation

is lacking.

– 5 –
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where i, j = 1, . . . , 4 are USp(4) indices which are raised/lowered by the symplectic invari-

ant Ωij . The Vaij furthermore satisfy

Va(ij) = 0 , VaijΩij = 0 ,
(
Vaij

)∗
= Va,ij . (2.3)

See [49] for more USp(4) conventions which we here largely follow. Similarly, all bosonic

objects with one leg in the external space can be combined into 10 vector fields Aµab.
Those with two external legs can be combined into five two-forms Bµν,a, etc.

Just as the bosonic degrees of freedom form SL(5) representations, so too do the local

symmetries of 11-dimensional supergravity, i.e. diffeomorphisms and p-form transforma-

tions. The symmetries acting on the internal space combine into so-called generalised

diffeomorphisms generated by the generalised Lie derivative. For a tensor in the SL(5)

fundamental representation V a of weight 1
5 this takes the form [13, 50, 51]

LΛV
a =

1

2
Λbc∂bcV

a − V b∂bcΛ
ac +

1

5
V a∂bcΛ

bc +
λ

2
V a∂bcΛ

bc , (2.4)

and for a scalar

LΛS =
1

2
Λab∂abS . (2.5)

All other cases follow by linearity. Note that from the above considerations ∂ab can be

seen to carry weight −1
5 under generalised diffeomorphisms. Furthermore, the parameter

of generalised diffeomorphisms Λab is in the 10 of SL(5) and has weight 1
5 , so that under

a generalised diffeomorphism it itself transforms as

LΛ1Λab2 =
1

2
Λ1

cd∂cdΛ
ab
2 +

(
2

5
+

1

10

)
Λab2 ∂cdΛ

cd
1 − Λcb2 ∂cdΛ

ad
1 − Λac2 ∂cdΛ

bd
1 . (2.6)

We will henceforth call any tensors in the 10 of SL(5) of weight 1
5 “generalised vectors”,

because they generate generalised diffeomorphisms.

For consistency the algebra of generalised diffeomorphisms must close, i.e.

[LΛ1 ,LΛ2 ]V a = L[Λ1,Λ2]D
V a . (2.7)

Here the D-bracket just represents the action of a generalised Lie derivative,

[Λ1,Λ2]abD = LΛ1Λab2 . (2.8)

In order for (2.7) to hold one needs to impose the so-called section condition [13, 50]

∂[abf∂cd]g = 0 , ∂[ab∂cd]f = 0 , (2.9)

where f and g denote any two objects of the SL(5) EFT. There are two inequivalent so-

lutions to the section condition, one corresponding to 11-dimensional SUGRA while the

other corresponds to type IIB [9, 52, 53]. Upon using a solution of the section condi-

tion, the generalised Lie derivative (2.4) generates the p-form gauge transformation and

diffeomorphisms of the corresponding SUGRA. Similarly, the action that we are about

to sketch reduces to the 11-dimensional SUGRA or IIB SUGRA action, upon imposing a

– 6 –
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solution of the section condition. However, one could also consider a set-up where there

is not a globally well-defined solution to the section condition, in which case we obtain a

non-geometric background.

Given the generalised Lie derivative, one can introduce connections which give covari-

ant derivatives with respect to these generalised diffeomorphisms. As usual one can also

introduce a torsion as the tensorial part of a connection ∇. This can be conveniently

defined via the generalised Lie derivative as

L∇ΛV a − LΛV
a =

1

2
τbc,d

aΛbcV d +
λ

2
τbcΛ

bcV d , (2.10)

where L∇Λ denotes the generalised Lie derivative (2.4) with all partial derivatives replaced

by the covariant derivatives ∇ab. It can be shown [13, 54, 55] that the torsion lives in the

following irreps of SL(5)

τab,c
d ∈ 10⊕ 15⊕ 40 . (2.11)

Using these concepts one can, for example introduce a generalised torsion-free

USp(4) connection [9, 13, 24, 54]. This connection is particularly useful for coupling

fermions [56–58] and can also be used to derive a “generalised curvature scalar”. We

will make use of it throughout this paper and label it by ∇ab. However, it is important to

note that the torsion constraint does not fix the connection uniquely. Instead, only certain

irreducible representations are uniquely fixed, see e.g. [13, 24]. The generalised curvature

scalar that can be derived in this way is in fact a scalar density under generalised diffeo-

morphisms which only involves derivatives with respect to the internal space of Mab and

gµν . It is the EFT lift of the scalar potential of seven-dimensional gauged SUGRAs. Con-

versely, it reduces to the scalar potential of maximal seven-dimensional gauged SUGRAs

upon imposing a Scherk-Schwarz Ansatz [22, 23]. We should mention that there are also

other geometric ways of constructing the generalised curvature scalar, e.g. [55, 59].

In order to define the EFT on the full (7 + 10)-dimensional space one needs to introduce

a seven-dimensional derivative which is covariant under generalised diffeomorphisms. This

is given by the covariant external derivative

Dµ = ∂µ − LAµ , (2.12)

and upon Scherk-Schwarz reduction this reduces to the gauge-covariant derivative of the

gauged SUGRA.

The final ingredient required for constructing the EFT action are the field strengths

of the vector fields, two-form and three-form potentials. We will label these as Aµab, Bµν,a,
Cµνρa and Dµνρσ,ab, which is the auxiliary 4-form potential appearing in the action without

kinetic term [9, 60, 61]. These have weights 1
5 , 2

5 , 3
5 and 4

5 , respectively, under generalised

diffeomorphisms. Following [60, 61], their field strengths can be written in SL(5) index-free

notation as

Fµν = 2∂[µAν] − [Aµ,Aν ]E + ∂̂Bµν ,

Hµνρ = 3D[µBνρ] − 3∂[µAν • Aρ] +A[µ • [Aν ,Aρ]]E + ∂̂Cµνρ ,

Jµνρσ = 4D[µCνρσ] + 3∂̂B[µν • Bρσ] − 6F[µν • Bρσ] + 4A[µ • (Aν • ∂ρAσ])

−A[µ • (Aν • [Aρ,Aσ]]E) + ∂̂Dµνρσ ,

(2.13)

– 7 –
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where the E-bracket is the antisymmetrised generalised Lie derivative

[V,W ]E =
1

2
(LVW − LWV ) , (2.14)

the • operation is defined as

(A1 • A2)a =
1

4
εabcdeAbc1 Ade2 ,

(A • B)a = AabBb ,

(A • C)ab =
1

4
εabcdeAcdCe ,

A • D =
1

2
AabDab ,

(B1 • B2)ab = B2[aB|1|b] ,
B • C = BaCa ,

(2.15)

and the (nilpotent) derivative ∂̂ is

∂̂Bab =
1

2
εabcde∂cdBe , ∂̂Ca = ∂baCb , ∂̂Da =

1

2
εabcde∂bcDde . (2.16)

Note that the derivative ∂̂ is a covariant derivative when acting on objects with the appro-

priate weight, i.e. when Ba has weight 2
5 , Ca has weight 3

5 and Dab has weight 4
5 .

With all these ingredients one can construct the SL(5) EFT action [9, 45, 62] as

S =

∫
d10Y d7x|e| (LEH + LSK + LGK − V ) + Stop . (2.17)

Here LEH is the seven-dimensional modified Einstein-Hilbert term, where all ∂µ are re-

placed by Dµ [63], in order to be invariant under generalised diffeomorphisms. This is

necessary because the seven-dimensional metric gµν is not a scalar but a density of weight
2
5 under generalised diffeomorphisms. The alternative is to use the vielbein formalism [53].

We define the modified Riemann tensor as

Rµνρσ = DρΓ
µ
νσ −DσΓµνρ + ΓµλρΓ

λ
νσ − ΓµλσΓλνρ , (2.18)

where

Γµνρ = gµσ
(
D(νgρ)σ −

1

2
Dσgνρ

)
. (2.19)

The modified Einstein-Hilbert term is then

LEH = gµνRρµρν . (2.20)

Furthermore,

LSK =
1

4
gµνDµMabDνMab ,

LGK = −1

8

(
FµνabFµν,cdMacMbd +

2

3
Hµνρ,aHµνρbMab

)
,

V = −
(

1

4
R+

1

8
MacMbd∇abgµν∇cdgµν

)
,

(2.21)
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where R is the generalised Ricci scalar [9, 24] which involves only internal derivatives of

the generalised metric. The topological term is best written as an integral over a 10-

dimensional extended space and an eight-dimensional external spacetime, whose boundary

is the seven-dimensional external spacetime we are considering [45, 60–62]

Stop = − 1

2
√

6

∫
d10Y d8x

(
1

4
∂̂Jµ1...µ4 • Jµ5...µ8 − 4Fµ1µ2 • (Hµ3...µ5 • Hµ6...µ8)

)
εµ1...µ8 .

(2.22)

While each of these terms is individually a scalar (density) under generalised diffeomor-

phisms, it transforms anomalously under external diffeomorphisms. The various coefficients

are fixed uniquely in order to ensure that the entire Lagrangian is invariant under external

spacetime diffeomorphisms.

3 Spinor bilinears and SU(2) structure

In order to obtain a half-maximal theory in seven-dimensions, the internal space must

admit two globally well-defined spinors, Θ1 and Θ2. These two spinors form a SU(2)R
doublet Θα̇, with α̇ = 1, 2, and are vectors of USp(4) ' Spin(5). The subscript R is used

to emphasise that this SU(2) corresponds to the R-symmetry. Let us begin by fixing our

spinor convention.

3.1 Spinor convention

The spinors transform as USp(4) vectors, i.e. we can write θα̇ i for each spinor with i =

1, . . . , 4 the USp(4) index and α̇ = 1, 2 the SU(2)R index as discussed above. For Spin(5)

the charge conjugation matrix has to be antisymmetric [64]. The only invariant tensor we

have is the symplectic tensor Ωij and so we take this to be the charge conjugation matrix.

In particular, it is also unitary because it satisfies

(Ωij)
∗ = Ωij . (3.1)

Hence

Ωik (Ωjk)
∗ = ΩikΩ

jk = δji , (3.2)

which shows that it is unitary, i.e. ΩΩ† = 1.

Because the charge conjugation matrix is antisymmetric we cannot define Majorana

spinors. Instead we can define symplectic Majorana spinors because we have extended

SUSY. Thus we have

(θ∗)α̇ i = θβ̇ jεβ̇α̇Ωji . (3.3)

Thus we will throughout use pseudo-real objects where both the USp(4) and SU(2)R indices

are raised/lowered by complex conjugation.

Finally, let us normalise our spinors. We will take the EFT spinors to have weight

−1/10, matching the usual EFT convention [56–58]. The full 11-d fermions are a product

of the 7-d fermions and the internal spinors and should have no weight. Thus we take the

internal spinors θα̇ i to have weight 1/10 and impose the normalisation condition

θα̇ iθβ̇ jΩij = κεα̇β̇ , (3.4)
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with κ a density of weight 1/5. This looks perhaps more natural if written as a positive

definite product:

θα̇ i(θ∗)β̇ i = κδα̇
β̇
. (3.5)

3.2 Spinor bilinears

We can use these two spinors to construct a set of bilinears which define the SU(2) structure.

In particular, we can form the following pseudo-real USp(4) tensors

κ , Aij =
1

κ
θα̇ iθβ̇ jεα̇β̇ −

1

2
Ωij , Bij

u =
i

κ
θα̇ iθβ̇ j (σu)α̇β̇ , (3.6)

where u = 1, . . . , 3 and σu are Pauli matrices. One can check that Aij ∈ 5 and Bu
ij ∈ 10.

These tensors satisfy a set of compatibility conditions:

Bu
[i
kBv

j]k = Aijδuv , Bu
[i
kA

j]k = 0 , Bu
ijBv ij = 2δuv . (3.7)

Any set of such tensors of USp(4) have stabiliser SU(2) ⊂ USp(4) and thus define a

generalised SU(2) structure. This can also be seen as follows. Consider decomposing

USp(4) −→ SU(2)S × SU(2)R, where SU(2)S denotes the SU(2) structure group. The

relevant representations then decompose as

5 −→ (2,2)⊕ (1,1) ,

10 −→ (1,3)⊕ (3,1)⊕ (2,2) ,
(3.8)

and Aij and Bu
ij correspond to the singlets under SU(2)S .

In order to define a reduction of the SL(5) × R+ structure group to SU(2) we need

to lift these objects to tensors of SL(5) × R+. We then have a SL(5) vector Aa and three

SL(5) antisymmetric tensors Bu,ab, which satisfy

Bu,abA
b = 0 , Bu,abBv,cdε

abcde = 4
√

2δuvA
e . (3.9)

Note that here we use the conventions that

ε(ij),(kl)[mn] = 4
√

2

(
δ[m

(iΩj)(kδn]
l) +

1

4
ΩmnΩi(kΩl)j

)
. (3.10)

However, we see that it is impossible to impose all the compatibility conditions (3.7) as

SL(5)× R+ relations on Aa and Bu,ab.

As a result, the objects (κ,Aa, Bu,ab) are stabilised by SU(2)nR4 ⊂ SL(5)×R+. Indeed,

one can check that they define 18 degrees of freedom, which matches the dimension of the

coset space
SL(5)× R+

SU(2) nR4
. (3.11)

The issue here is that by using spinor bilinears to construct invariant tensors, we are

already taking the structure group to be a subgroup of USp(4). Thus the spinor bilinears

can be used to further reduce the structure group from USp(4) to SU(2). However, to define
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a SU(2) structure of SL(5) × R+, without explicitly requiring the existence of spinors, we

need to introduce another SL(5) covector Aa satisfying

AaA
a =

1

2
. (3.12)

The additional four degrees of freedom of Aa are used to absorb the T 4 factor of the

stabiliser and thus make the structure group a subgroup of USp(4). Indeed, the set

(κ , Aa , Aa , Bu,ab) , (3.13)

satisfying

AaAa =
1

2
, Bu,abA

b = 0 , Bu,abBv,cdε
abcde = 4

√
2δuvA

e , (3.14)

parameterises the coset space
SL(5)× R+

SU(2)
, (3.15)

and thus defines a SU(2) ⊂ SL(5) × R+ structure. Because SU(2) ⊂ USp(4), this set of

tensors also implicitly defines a generalised metric.

To see that the stabiliser is indeed SU(2), note that up to a SL(5)×R+ transformation

we can take

A5 =
1√
2
, Aī = 0 , ī = 1, . . . , 4 , (3.16)

and thus

A5 =
1√
2
. (3.17)

This configuration is stabilised by SL(4) n T 4 but the T 4 degrees of freedom can be used

to set Aī = 0. As a result, the stabiliser now becomes SL(4) ⊂ SL(5)×R+. The constraint

Bu,abA
b = 0 , (3.18)

implies that Bu,̄i5 = 0 and thus we are left to satisfy

Bu,̄ij̄Bv,k̄l̄ε
īj̄k̄l̄ = 4δuv . (3.19)

Three such antisymmetric rank-two tensors of SL(4) parameterise the coset space

SL(4)/SU(2), see e.g. [65].

One should think of the objects Aa, A
a and Bu,ab as the “exceptional generalisation” of

the complex and Kähler structure on four-manifolds. We have already mentioned that they

implicitly define a generalised metric, although there is no explicit formula relating the two.

This is not surprising since, for example, the Kähler metric on K3 surfaces (which are an

example of exceptional SU(2)-manifolds) is not known. However, by their definition we can

identify Aa and Bu,ab with certain components of the coset representatives Vaij ∈ SL(5)
USp(4) .

This arises because the coset representatives define the map between SL(5) and USp(4)

and thus

Aa =
1

2κ
Vaijθα̇ iθj α̇ , Bu,ab =

i

2κ
(σu)α̇β̇ Vab

ijθi
α̇θj

β̇ , (3.20)

where Vabij = 1√
2
V[a

i
|k|Vb]jk.
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3.3 Properties of the spinor bilinears

Using Aa we can actually “raise” the indices on Bu,ab by defining the tensor

Vu
ab = εabcdeBu,cdAe . (3.21)

Due to the compatibility conditions (3.14), it further satisfies

1

2
Vu

abBv
ab =

√
2δu

v , Vu
abAb = 0 . (3.22)

The generalised vector of weight 1
5

Ṽu
ab = κVu

ab . (3.23)

will play an important role in defining the intrinsic torsion.

Furthermore, using Aa and Aa we can project any SL(5) vector, Qa, onto a subspace

parallel to Aa and perpendicular to it by

Qa = AaAbQ
b + Pa

bQb , (3.24)

where we introduced the projector

Pa
b = (δab − 2AaAb) , Pa

bAb = 0 . (3.25)

Note that this can also be expressed in terms of Vu
ab and Bu

ab as

Pa
b =

√
2

3
Bu

acVu
bc . (3.26)

One can also form the following objects which are adjoint-valued:

T ua
b =

1√
2
εuvwBv,acVw

bc . (3.27)

These satisfy the following algebra

T ua
cT vc

b = −δuv
(
δa
b − 2AaA

b
)
− εuvwTwab . (3.28)

It is clear that these objects form a hyper-complex structure in the subspace perpendicular

to Aa. In the fluxless M-theory limit this reduces to the hyper-complex structure on 4-

manifolds of SU(2)-structure.

Finally, we can also define a metric on the subspace perpendicular to Aa using

Mab = εuvwB
u
acB

v
bdV

w,cd ,

Mab = εuvwVu
acVv

bdBw,cd ,
(3.29)

which satisfy

MacMcb = 9
√

2P ab . (3.30)
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4 Reformulating the SL(5) EFT

We will now reformulate the SL(5) EFT in terms of the generalised SU(2)-structure, κ,

Aa, A
a, Bu,ab. This can be thought of as an SL(5) version of the rewriting in [66–68], but

extended to the case where there are non-vanishing gauge fields. This will be necessary in

order to obtain the full gauged SUGRAs after performing a consistent truncation and not

just their vacua.

To perform the reformulation we need to introduce a generalised SU(2)-connection,

which in general is not torsion-free. To motivate this, consider the case of maximal su-

persymmetry [55, 69]. In that instance the consistent truncation is defined on a space

with generalised identity-structure [24, 28] and thus the compatible connection is uniquely

given by the Weitzenböck connection. As showed in [55, 69] the EFT scalar potential can

be rewritten in terms of the torsion of this connection and upon truncation, the torsion

becomes the embedding tensor of the maximal gauged SUGRA.

Here we perform the analogous construction in the case of generalised SU(2)-structures

for which the connection is not unique. Nonetheless, the intrinsic SU(2)-torsion, which we

define and discuss in 4.1, corresponds to generalised fluxes and can be used to reformulate

the theory. For example, the intrinsic torsion appears in the SUSY variations, as we show

in 4.2, and in section 4.3 we show that we can express the scalar potential completely in

terms of the intrinsic torsion.5 In section 4.4 we rewrite the kinetic and topological terms

in terms of the generalised SU(2)-structure.

4.1 Intrinsic SU(2)-torsion

We now introduce a SU(2)-connection whose intrinsic torsion will be identified with the

embedding tensor of the half-maximal gauged supergravity obtained after truncating. A

SU(2)-connection ∇̃ab is compatible with the tensors defining the SU(2)-structure, i.e.

∇̃abκ = ∇̃abAc = ∇̃abAc = ∇̃abBu,cd = 0 . (4.1)

This does not uniquely specify the connection, unlike in the maximally-supersymmetric

case of an identity structure.

Recall from section 2 that the torsion of a connection ∇ is the tensor part of the

connection and can be defined in terms of the generalised Lie derivative, by

L∇ξ Ua − L∂ξUa =
1

2
ξbcUdτbc,d

a +
λ

2
Uaξbcτbc , (4.2)

where Ua has weight λ under generalised diffeomorphisms and τab is the trombone part of

the embedding tensor. We know that for SL(5) the torsion has components only in the

τ ∈W = 15⊕ 40⊕ 10 . (4.3)

In the following discussion of the intrinsic SU(2)-torsion we essentially follow the gen-

eral prescription outlined in [71]. The torsion map viewed as a map from the space of

5For readers who wish to read more about intrinsic torsion we refer to [70] as well as [71] for its uses in

generalised geometry.
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SU(2) connections to the space of torsions W may be neither injective nor surjective. In

the first case, many SU(2) connections could have the same torsion, while in the latter, it

is impossible to find a SU(2)-connection yielding an arbitrary torsion (the torsion map is

not right-invertible on all of W ). The part of the torsion that is independent of the choice

of SU(2) connection is called the intrinsic torsion, and is non-zero when the torsion map

is not surjective.

4.1.1 Representations in the intrinsic SU(2)-torsion

To calculate the representations in which the intrinsic SU(2)-torsion transforms note that

any two SU(2) connections must differ by an adjoint valued tensor in the 10, i.e. by

Σ ∈ Γ(KSU(2)) where

KSU(2) = 10⊗ ad(P̃SU(2)) . (4.4)

In terms of SU(2)S × SU(2)R representations6 we have

KSU(2) = (1,1)⊕ (5,1)⊕ (3,1)⊕ (3,3)⊕ (4,2)⊕ (2,2) . (4.5)

Now the torsion map is a map

τ : KSU(2) −→W , (4.6)

where W = 15⊕40⊕10 in terms of SL(5) representations. Decomposing W into SU(2)S×
SU(2)R we find

W = 2 · (3,3)⊕ 2 · (3,1)⊕ 2 · (1,3)⊕ 4 · (2,2)⊕ (2,4)⊕ (4,2)⊕ 3 · (1,1) . (4.7)

Thus we see that the image of the torsion map is at most

WSU(2) = Im τ ⊂ (3,1)⊕ (3,3)⊕ (1,1)⊕ (4,2)⊕ (2,2) , (4.8)

and hence the set which is independent of the connection is given by

Wint = W/WSU(2) ⊃ 2 · (1,1)⊕ (3,1)⊕ 2 · (1,3)⊕ (3,3)⊕ 3 · (2,2)⊕ (2,4) . (4.9)

Finally, for the sake of completeness let us mention that the kernel of the torsion map is

at least

U = Ker τ ⊃ (5,1) , (4.10)

although this will not concern us further.

In principle the image of τ could be smaller than the right-hand side of (4.8) in which

case the intrinsic torsion is larger than the right-hand side (4.9). However, a direct calcu-

lation shows that this is not the case and so we find

Wint = 2 · (1,1)⊕ (3,1)⊕ 2 · (1,3)⊕ (3,3)⊕ 3 · (2,2)⊕ (2,4) . (4.11)

Because they are intrinsic these are the only components of the SU(2)-torsion that are

physically relevant and we will see that these are related to the embedding tensor after

truncation. In the following section we will show that the EFT can be rewritten entirely

in terms of the SU(2)-structure and its intrinsic torsion.

6We will be sloppy here and not differentiate between sections and linear representation spaces.
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4.1.2 Explicit expressions for the intrinsic SU(2)-torsion

We now wish to find explicit expressions for the intrinsic SU(2)-torsion which has irre-

ducible components transforming in the representations (4.11). The fact that the intrinsic

torsion is independent of the SU(2)-connection means that it can be expressed directly

in terms of the SU(2)-structure and its partial derivatives with no connection appearing.

Thus, the intrinsic torsion is given by SL(5) tensorial combinations of derivatives of the

SU(2)-structure.

For example, consider the combination

S = Aa∂abA
b . (4.12)

It follows from the tensor hierarchy [60] that this is a tensor under generalised diffeomor-

phisms. Regardless we could have written it in terms of any connection ∇̃

S = Aa
(
∇̃abAb − Γ̃ab,c

bAc
)
, (4.13)

where Γ̃ab,c
d are the components of the connection ∇̃. Because S is a tensor and the first

term on the right-hand side of the above equation is a tensor, the final term must be a

tensor too. By definition, it is part of the torsion of ∇̃. If we now specialise to the case

where ∇̃ is a SU(2)-connection we find that

S = −AaΓ̃ab,cbAc , (4.14)

where as we said the right-hand side is part of the torsion. However, S was defined in (4.12)

without referring to a specific SU(2)-connection and thus we see that it corresponds to the

intrinsic torsion.

In order to find expressions for the intrinsic torsion let us first define the projectors

onto the representations appearing in (4.11). Firstly, note that Aa define the singlets in

the decomposition

5→ (1,1)⊕ (2,2) , (4.15)

as SL(5)→ SU(2)S×SU(2)R, and similarly Aa for the 5 decomposition. Then the subspace

perpendicular to Aa in the 5 corresponds to the (2,2). Thus, we use Aa to project onto

the (1,1) and the projector we have met in section 3.3 for the (2,2):

Pa
b = δa

b − 2AaA
b

=

√
2

3
Bu

acVu
bc ,

(4.16)

and similarly of course for the conjugate SL(5) reps.

For the 10 of SL(5) we have the decomposition

10→ (3,1)⊕ (1,3)⊕ (2,2) , (4.17)

as we break SL(5) → SU(2)S × SU(2)R. The three tensors Vu
ab project onto the (1,3)

representations, while Aa can be used to project onto the (2,2). Finally, we can use

Pab
cd =

(
δab

cd − 1

2
√

2
Bu,abVu

cd + 4A[aA
[cδb]

d]

)
, (4.18)
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to project onto the (3,1) since

Pab
cdBu,cd = 0 . (4.19)

Before giving the explicit expressions for the intrinsic torsion let us also define the

projector onto the (2,4) ⊂ (2,2)⊗ (1,3)

Pa
u,b

v = δa
bδuv +

√
2

3
Bu

acVv
cb . (4.20)

We are now ready to give explicit expressions for the intrinsic torsion.

Singlets

S = Aa∂abA
b ,

T =
1

12κ
εuvwV

u,cdLṼ vB
w
cd .

(4.21)

(1, 3)

Tu = −2κ2AaLṼu
(
Aaκ

−3
)
,

Su = 2κ−6LṼuκ
5 .

(4.22)

(3, 1)

Tab =
1

12κ
Pab

cdLṼuB
u
cd

=
1

12κ

(
LṼuB

u
ab −

1

2
√

2
Bv

abVv
cdLṼuB

u
cd + 4AcA[aLṼuB

u
b]c

)
.

(4.23)

(3, 3)

T uab =
1

12κ
εuvwPab

cdLṼvBw,cd

=
1

12κ
εuvw

(
LṼvBw,ab −

1

2
√

2
Bx

abVx
cdLṼvBw,cd + 4AcA[aLṼvB|w|,b]c

)
.

(4.24)

(2, 2)

Sa =
1

κ3
∂ab

(
Abκ3

)
− 2AaA

b∂bcA
c ,

Ta =
1

12κ
εuvwBu,abVv

bcLṼwAc ,

Ua =
1

κ
Bu,abLṼ uA

b .

(4.25)

(2, 4)

T ua =
1

κ
Pa

u,b
vε
vwxBw,bcLṼxA

c , (4.26)

or more explicitly

T ua =
1

κ

(
εuvwBv,abLṼwA

b +

√
2

3
Bu

abW
b

)
, (4.27)
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with

W a = εuvwVu
abBv,bcLṼwA

c . (4.28)

Note that while one can think of other tensorial combinations transforming in the above

representations they cannot be linearly independent from the expressions given above. For

example, we can of course raise and lower the (2,2) indices using the metric Mab defined

in (3.29). We can also dualise the (3,1) and (1,3) indices using εabcdeAe. However, in this

case it is clear that the resulting expressions are linearly dependent on the intrinsic torsion

given above.

4.1.3 Intrinsic torsion in terms of spinors

In order to rewrite the supersymmetry variations it will be useful to express the intrinsic

torsion in terms of the spinors θα̇,i. We do this using the torsion-free USp(4) connection.

For example, this allows us to write

S = Aa∂abA
b = Aa∇abAb

=
1

4
VaijVbklVabmnAij∇mnAkl

=
1

2
√

2
Aij∇ikAkj ,

(4.29)

where ∇ab is the torsion-free USp(4) connection as discussed in section 2. This can then

be expressed in terms of the spinors θα̇,i by the definition of Aij in equation (3.6).

One finds that

S =
1√
2κ

(
θiα̇∇ijθj,α̇ −

1

κ
θiα̇θ

j,β̇θk,β̇∇ijθ
k,α̇

)
,

T =
1

κ

(
θiα̇∇ijθj,α̇ +

1

κ
θiα̇θ

j,β̇θk,β̇∇ijθ
k,α̇

)
,

Tα̇β̇ = i (σ)u
α̇β̇
Tu = −4

√
2

κ2
θk(α̇θ

i
β̇)θ

j,ρ̇∇ijθk,ρ̇ ,

Sα̇β̇ = i (σu)α̇β̇ Su =
4
√

2

κ
θi(α̇∇|ij|θj β̇) .

(4.30)

4.2 Supersymmetry variation of the gravitino

Let us begin the rewriting of the theory in terms of the N = 2 structures by studying the

supersymmetry variations of the gravitino. The gravitini of the SL(5) EFT transform in

the 4 representation of USp(4). Under USp(4)→ SU(2)S × SU(2)R this decomposes as

4→ (2,1)⊕ (1,2) . (4.31)

We see that we obtain a SU(2)R doublet of gravitini ψµ
α̇ as well as SU(2)S doublet. The

gravitini forming a doublet of SU(2)S are responsible for enhancing the SUSY to N = 4

and thus we will ignore them here. Upon imposing the consistent truncation Ansatz they

will correspond to massive gravitino multiplets of the gauged SUGRA and we ensure the

truncation does not excite them.
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By comparison with [56, 57] and [49] one can see that the SUSY variation of the

gravitini of the SL(5) EFT can be written (up to coefficients and γ-matrix orderings which

are not important to us here) as

δεψ
i
µ ∼ Dµε

i + Va ikVbjk
[
γµ∇abεj +MabMcdFνρcdγνργµεj

]
+Hνρσ,aVajkΩijγνρσγµε

k .
(4.32)

The N = 2 gravitini are embedded in the USp(4) ones via the internal spinors θiα̇,

hence

ψ̃µ
i = θiα̇ψµ

α̇ . (4.33)

The N = 2 SUSY parameters are similarly embedded into the USp(4) ones as

ε̃i = θiα̇ε
α̇ . (4.34)

Hence we can write the variation of the N = 2 gravitini as

δε̃ψµ
α̇ ∼ −1

κ
θi
α̇δε̃ψ̃µ

i

∼ −1

κ

[
θi
α̇Dµ

(
θiβ̇ε

β̇
)

+ θi
α̇Va ikVbjkγµ∇ab

(
θj β̇ε

β̇
)

+ θj β̇θi
α̇VaikVb jkFνρabγνργµεβ̇

−Hνρσ,aθi α̇Vaijθj β̇γ
νρσγµε

β̇
]
. (4.35)

In appendix B we show how one can rewrite this in terms of the SU(2)-structure and

its intrinsic torsion. The result is

δεψµ
α̇ ∼ D̃µε

α̇ − 1

κ

(
θi
α̇∂µθ

i
β̇

)
εβ̇ +

1

20
Aµ

abτabε
α̇ +

1

κ
θi
α̇
(
L∇̂Aµθ

i
β̇

)
εβ̇

− κ

2

(
S +

T√
2

)
γµε

α̇ − κ

4
Sα̇β̇γµε

β̇

− i
√

2Vu
ab (σu)α̇ β̇γµ∇abε

β̇ − i
√

2Bu,abFνρab (σu)α̇ β̇γ
νργµε

β̇

−Hνρσ,aAaγνρσγµεα̇ .

(4.36)

One could proceed similarly for the other fermions which do not form doublets under

SU(2)S but we will not do so here as this is not necessary for our purposes.

4.3 Scalar potential

It is useful to write the scalar potential as

V = −1

4
R− 1

8
MacMbd∇abgµν∇cdgµν . (4.37)

Here R is the so-called generalised Ricci scalar [23] — although it is a density of weight

−2
5 — and contains only internal derivatives of the EFT scalars. It can also be written as

the square of covariant derivatives of spinors [13, 23, 24], that is

1

16
Rεi =

1

2
∇̂jk∇̂kiεj −

1

2
∇̂jk∇̂jkεi +

3

2
∇̂ik∇̂jkεj , (4.38)
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where ∇̂ is the USp(4) connection without the seven-dimensional spin connection. This

follows from the supersymmetry variation of the fermionic equations of motion which must

be proportional to the bosonic equations of motion [24]. We show how to derive these

coefficients in appendix A.

We now write the spinor as εi = θiα̇ε
α̇ in terms of a SU(2)R pair of spinors and use

the fact that the right-hand side is linear in εα̇ to find that

κ

16
R = −θα̇i

(
1

2
∇jk∇ikθj α̇ −

1

2
∇jk∇jkθiα̇ +

3

2
∇ik∇jkθj α̇

)
. (4.39)

We further integrate by parts to obtain

1

16
R = κ−1

(
∇jkθα̇i∇ikθj α̇ −

1

2
∇jkθα̇i∇jkθiα̇ +

3

2
∇ikθα̇i∇jkθj α̇

)
. (4.40)

We will show in 5.7 that this does reduce to the correct scalar potential of seven-dimensional

half-maximal gauged SUGRAs.

Now we are in a position to re-express the potential in terms of the spinor bilinears

Aa, Aa and Bu,ab via their intrinsic torsion (4.11). By expressing the intrinsic torsion in

terms of the spinors θα̇i we find the generalised Ricci scalar to be

R = 8S2 − 2T 2 − 8
√

2ST − 3TuT
u + TuS

u − 3

4
SuS

u − 16
√

2 εabcdeTabTcdAe

− 36
√

2 εabcdeT uabTu,cdAe −
4
√

2

3
MabSaSb −

16

3
MabSaTb +

8

3
MabUaSb .

(4.41)

Here Mab is the metric on the (2,2) as defined in (3.29).

Finally, we claim that one can write

− 1

4
MacMbd∇abgµν∇cdgµν = Vu

abV u,cd∇̃abgµν∇̃cdgµν , (4.42)

where ∇̃ab is the SU(2)-connection and which acts on gµν as

∇̃abgµν = κ2∂ab
(
κ−2gµν

)
. (4.43)

While this term vanishes when performing a consistent truncation as we are doing here,

in [43] we show that this does reproduce the correct term in the heterotic DFT.

4.4 Kinetic terms

The kinetic terms of the scalar and gauge fields are usually written in terms of the gener-

alised metric directly

Lkin =
1

4
gµνDµMabDνMab −

1

8

(
FµνabFµν,cdMacMbd +

2

3
Hµνρ,aHµνρbMab

)
. (4.44)

We need to rewrite these in terms of the SU(2) structures directly.

It is clear that the kinetic term for the scalars

gµνDµMabDνMab , (4.45)
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should be replaced by terms involving derivatives of Aa, Aa and Bu,ab. Derivatives of κ are

of course included in the Einstein-Hilbert term which needs no modification as it does not

involve a generalised metric. There are only two such terms which are independent:

gµν (DµBu,abDνB
u
cd) ε

abcdeAe , and gµνDµA
aDνAa . (4.46)

Similarly, we wish to replace the kinetic term of the gauge field by the terms

FµνabFµν,cdBu,abBu
cd , and FµνabFµν,cdBu[abB

u
cd] . (4.47)

Note that

Bu[abB
u
cd] =

1√
2
εabcdeA

e . (4.48)

For the Hµνγ,a one could consider the term

Hµνγ,aHµνγbAaAb (4.49)

as well as

Hµνρ,aHµνρbMab , (4.50)

However, as we are about to discuss in the next section 5.1, terms such as (4.50) necessarily

vanish when we have an honest N = 2 theory and so we will not consider them. This

possible omission is irrelevant for N = 2 theories which are the subject of this paper.

We claim that the kinetic terms are given by

Lkin =
√

2gµν (DµBu,abDνB
u
cd) ε

abcdeAe − 56 gµνDµA
aDνAa

+
1

8
FµνabFµν cd

(
Bu,abB

u
cd −Bu[abB

u
cd]

)
− 1

48
Hµνρ,aHµνρbAaAb .

(4.51)

One may be able to derive the coefficients appearing here by requiring invariance under

external diffeomorphisms. However, we have fixed the coefficients by comparison with

gauged SUGRA. As we will see in sections 5.8, (4.51) does reduce to the correct kinetic

terms of seven-dimensional half-maximal gauged SUGRA. In [43] we also show that it

reproduces the correct kinetic terms of the heterotic DFT.

5 Consistent truncations to half-maximal gauged supergravity

5.1 Decomposition of supergravity fields

The following discussion is the SL(5) EFT analogue of the discussion in section 2.2 of [66]

and section 3 of [67] where they consider four-dimensional N = 2 truncations of 10-

dimensional supergravity.

Let us begin by decomposing the EFT fields under SU(2)S × SU(2)R where the first

factor labels the SU(2)-structure group and the second the R-symmetry group. We give

the decompositions of the bosons in table 1 and that of the fermions in table 2.

Now we can reorganise all these degrees of freedom into N = 2 supermultiplets. The

singlets under the SU(2)-structure group form the graviton supermultiplet.

Graviton multiplet:
(
gµν , Aµ α̇

β̇ , φ, Cµνρ, ψµ
α̇, χα̇

)
. (5.1)
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Field SL(5) USp(4) SU(2)S × SU(2)R

Mab 15 14⊕ 1 (3,3)⊕ (1,1)⊕ (2,2)⊕ (1,1)

Aµ
ab 10 10 (3,1)⊕ (1,3)⊕ (2,2)

Bµν a 5 5 (2,2)⊕ (1,1)

Cµνρ
a 5 5 (2,2)⊕ (1,1)

Table 1. Decomposition of the SL(5) EFT bosonic degrees of freedom under SU(2)S × SU(2)R.

Field USp(4) SU(2)S × SU(2)R

ψµ
i 4 (2,1)⊕ (1,2)

χij,k 16 (2,1)⊕ (1,2)⊕ (3,2)⊕ (2,3)

Table 2. Decomposition of the SL(5) EFT fermionic degrees of freedom under SU(2)S × SU(2)R.

Those in the adjoint of the SU(2)-structure group form the vector multiplets (with A =

1, . . . , n).

Vector multiplets:
(
Aµ, φα̇

β̇ , χα̇
)A

. (5.2)

Finally, all doublets of the SU(2)-structure group form a doublet of gravitino multiplets

Gravitino multiplets:
(
Aµ

α̇, φα̇, ψµ, χα̇
β̇ , χ

)α
. (5.3)

Let us first understand how we obtain n 6= 3 vector multiplets. A naive expectation

would be to have three vector multiplets related to the (3,1) representations. However,

the generalised SU(2)-structure group is non-trivially fibred over the manifold. Thus, the

number of sections of the (3,1) bundle is in general n 6= 3 giving n 6= 3 vector multiplets.

By contrast, the SU(2)R group is trivially fibred over the manifold and hence it contains

exactly three sections. This is why, for example, we have exactly three vectors in the

graviton multiplet and three scalars in each vector multiplet. Finally, the scalars in the

vector multiplets, φα̇
β̇ A, as well as the scalar in the graviton multiplet, φ, will correspond

to deformations of the SU(2) structure A and Bu that we have introduced in section 3.

Now let us turn to the massive gravitino multiplets. These are associated to bro-

ken N = 4 SUSY. Indeed, one can only consistently couple these multiplets to seven-

dimensional half-maximal gauged SUGRA for n = 3 in which case we have a straightfor-

ward truncation of a N = 4 theory. Because we want an honest N = 2 theory, we do not

want couplings to the gravitino multiplets in the truncated theory. This is ensured by not

having any SU(2)S doublets in our Ansatz.

One can also understand the need for removing SU(2)S doublets in the truncation

Ansatz differently. We want to have a generalised SU(2)-structure, not an identity struc-

ture. But from the discussion in 3 we see that a nowhere vanishing section in the doublet

representation of the SU(2)S bundle would correspond to another pair of globally well-

defined internal spinors. In this case it is clear that the structure group would be broken

to an identity structure and we really have N = 4 SUSY. To avoid this, we project out all

doublets of the SU(2)-structure group in our Ansatz.
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5.2 Defining the truncation

We now wish to define a consistent truncation of the SL(5) EFT fields in order to obtain

a seven-dimensional half-maximal gauged SUGRA. For the scalar sector we expand the

SU(2)-structure (κ, Aa, A
a, Bu,ab) in terms of a finite basis of sections which we are about

to define.

In the analysis above we have seen that the SL(5) EFT degrees of freedom organise

themselves into sections of the (1,1), (1,3) and (3,1) bundles of SU(2)S × SU(2)R. Thus

we choose a SL(5) density and a finite number of these sections, which we label by

ρ(Y ), na(Y ), na(Y ), ωM,ab(Y ) , (5.4)

and where we have made it explicit that these objects only depend on the internal manifold.

na and na form a basis for the (1,1) sections coming from the 5 and 5 of SL(5) respectively.

Similarly, the ωM,ab provide a basis for the (3,1)⊕ (1,3) sections and thus satisfy

ωM,abn
b = 0 . (5.5)

Furthermore they consist of three sections of the (1,3)-bundle and n sections of the (3,1)-

bundle, reflecting the fact that the SU(2)S is non-trivially fibred while the SU(2)R is

trivially fibred, as already discussed in 5.1. We can thus write

ωM,ab = (ωI,ab, ωA,ab) , (5.6)

where I = 1, 2, 3 labels the SU(2)R adjoint sections and A = 1, . . . , n labels the SU(2)S
adjoint sections.

We normalise these sections according to

nana = 1 , ωM,abωN,cdε
abcde = 4ηMNn

e , (5.7)

where ηMN has signature (3, n) reflecting the number of adj(SU(2)R) and adj(SU(2)S)

sections. We will throughout this paper use ηMN to raise and lower (n + 3) vector indices.

We can use these relations to introduce n+ 3 sections of the (3,1)⊕ (1,3) ⊂ 10 of SL(5).

These are given by

ωM
ab = εabcdeωM,cdne . (5.8)

These satisfy

ωM
abωN,ab = 4ηMN , ωM

abna = 0 . (5.9)

Given these relationships we can further deduce the following identities which we will

use copiously in this paper.

ω(M
cbωM)ca = ηMN

(
δa
b − nanb

)
,

ω(M
acωP )abωN

bd = ωN
cdηMP ,

ωM,abε
abcde = 3ωM

[cdne] ,

ωM
abεabcde = 12ωM [cdne] ,

ωM
cdneεabcde = 4ωM,ab ,

ωM
abωN

cdεabcde = 16ηMNn
e .

(5.10)
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Furthermore, we will often find it convenient to use the following tensor densities of weight
1
5 under generalised diffeomorphisms

ω̃M
ab = ρωM

ab . (5.11)

In particular, ω̃M
ab is a generalised vector and will be useful in formulating the consistency

condition for our Ansatz.

Before giving the truncation Ansatz, let us point out that in general we are not de-

veloping an effective theory because our truncation Ansatz may be keeping heavy modes,

while discarding lower ones.7 Instead we wish to perform a consistent truncation such that

all solutions to the equations of motions of the lower-dimensional theory are also solutions

to the equations of motions of the full exceptional field theory, and thus of 11-dimensional

supergravity or type IIB. This allows us for example to perform a consistent truncation on

a background that is not a solution of the equations of motion.

Because we are only requiring a consistent truncation, not an effective one, the basis

of sections which we use for the truncation are not in general analogues of harmonic forms.

Indeed, they should not correspond to topological invariants of the background manifold

on which we define the consistent truncation. This is because one manifold may admit

several different consistent truncations for which different modes are kept, see for example

the discussion in the case of maximal SUSY in [28]. Instead, we will require a weaker set

of differential constraints on the sections which we discuss in subsection 5.4.

5.3 Truncation Ansatz

5.3.1 Scalar truncation Ansatz

We begin by expanding the generalised SU(2) structure in terms of the basis of sections

defining the truncation. We let the coefficients in the expansion depend on xµ, the seven

coordinates of the external space. These coefficients determine how the generalised SU(2)-

structure, hence the geometry of the internal manifold, changes and they become scalars

of the truncated seven-dimensional theory.

We will denote the truncation Ansatz by angled brackets: 〈 〉. For the scalar fields it

is given by

〈κ〉(x, Y ) = |ē|1/7(x) e−2d(x)/5 ρ(Y ) ,

〈Aa〉(x, Y ) =
1√
2
e−4d(x)/5na(Y ) ,

〈Aa〉(x, Y ) =
1√
2
e4d(x)/5na(Y ) ,

〈Bu,ab〉(x, Y ) = e−2d(x)/5 bu,M (x)ωMab(Y ) .

(5.12)

This implies that

〈Vuab〉 =
1√
2
e2d(x)/5 bu,M (x)ωM,ab(Y ) . (5.13)

7This is not because we are using exceptional field theory and thus keeping “wrapping modes” but a

generic and desired feature of consistent truncation Ansätze. Indeed the truncation considered here could

equally have been performed in generalised geometry.
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We must now check the compatibility conditions (3.14). The Ansatz (5.12) automati-

cally satisfies

AaA
a =

1

2
. (5.14)

However in order to satisfy

Bu,abBv,cdε
abcde = 4

√
2Ae , (5.15)

we find using (5.7) that

bu,Mbv,Nη
MN = δuv . (5.16)

This imposes six constraints on the 3n + 9 scalars bu,M . Furthermore, it is clear that a

rotation on the u index of bu,M corresponds to a SU(2)R rotation of the theory. We thus

identify any three sets of bu,M related by the action of SU(2)R. This removes another three

degrees of freedom of bu,M .

We are left with 3n degrees of freedom which is the dimension of the coset space

Mcoset =
O(3, n)

O(3)×O(n)
. (5.17)

Indeed, we can write

bu,Mb
u
N =

1

2
(ηMN −HMN ) , (5.18)

where HMN satisfies

HMPHNQηPQ = ηMN , (5.19)

because of (5.16). ThusHMN is a symmetric element of O(3, n) and hence gives coordinates

on the coset space Mcoset. It is the generalised metric of the seven-dimensional gauged

supergravity.

There are two further scalars d(x) and |ē|(x). These are related to the dilaton and the

determinant of the seven-dimensional metric ḡ7 with |ē| = |ḡ7|1/2. In total we see that we

obtain the scalar coset space

Mscalar =
O(3, n)

O(3)×O(n)
× R+ , (5.20)

where we are not counting |ē| as part of the scalar manifold because it forms part of the

external metric.

5.3.2 Fermion, gauge field and external metric truncation Ansatz

Let us now give the truncation Ansätze for the fermions and gauge fields. Recall from the

discussion in 4.2 that the N = 2 gravitini are embedded as USp(4) fermions by

ψµ
i = θiα̇ψµ

α̇ . (5.21)

Furthermore, we have rewritten the SUSY variations in terms of ψµ
α̇, χα̇, χα,ij and θi

α̇.

The truncation Ansatz for these objects is analogous to (5.12), e.g. for the gravitino it

takes the form

〈ψµi〉(x, Y ) = ψµ
α̇(x) Φi

α̇(Y ) ρ1/2(Y ) , (5.22)
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where Φi
α̇(Y ) is now an internal spinor with no weight under the generalised Lie derivative

and is the fermionic analogoue of ωMab, n
a and na, which can in turn be written as bilinears

of Φi
α̇. Writing (5.22) in terms of the N = 2 gravitini and θiα̇ directly it becomes

〈ψµα̇〉(x, Y ) = ψµ
α̇(x) ,

〈θiα̇〉(x, Y ) = Φi
α̇(Y ) ρ1/2(Y ) .

(5.23)

The SL(5) EFT has one-form, two-form and three-form gauge fields, as well as an

auxiliary four-form valued in the 10, 5, 5 and 10 of SL(5) and of weight 1
5 , 2

5 , 3
5 and 4

5

respectively. This determines their truncation Ansätze to be

〈Aµab〉(x, Y ) = Aµ
M (x)ωM

ab(Y ) ρ(Y ) ,

〈Bµν,a〉(x, Y ) = −4Bµν(x)na(Y ) ρ2(Y ) ,

〈Cµνγa〉(x, Y ) = Cµνγ(x)na(Y ) ρ3(Y ) ,

〈Dµνγσ ab〉(x, Y ) = DµνγσM (x)ωMab(Y ) ρ4(Y ) .

(5.24)

The factor of −4 in the two-form Ansatz has been chosen to match the half-maximal gauged

SUGRA conventions.

Similarly, the truncation Ansatz for the external metric is given by

〈eµµ̄〉(x, Y ) = ēµ
µ̄(x) e−2d(x)/5 ρ(Y ) . (5.25)

We have included the power of the dilaton in order to recover the string-frame action.

5.4 Consistency conditions and the embedding tensor

We have already listed a set of algebraic constraints which the truncation basis needs

to satisfy. These are given by equations (5.5) and (5.7). However, this is not enough

to guarantee a consistent truncation. As we already mentioned, we are in general not

truncating to the massless or lowest-lying excitations of a background. Thus, our sections

are not some sort of “exceptional harmonic forms”. Instead we require them to satisfy a

weaker set of constraints which can be naturally formulated in terms of the generalised Lie

derivative and ensures that we have a consistent truncation.

5.4.1 Doublet and closure conditions

First of all, we must ensure that we do not excite any doublets of SU(2)S , as we already dis-

cussed in 5.1. Thus, we require that any doublets generated by the tensorial combinations

of derivatives vanish. In particular, we impose

naLω̃M ω̃N,ab = 0 ,

Lω̃Mn
a = nanbLω̃Mn

b ,

∂ab

(
nbρ3

)
= ρ3nan

b∂bcn
c .

(5.26)

The first equation is manifestly a tensor while it can be checked from [60] that the second

equation is also a tensor. It is easy to see using (5.12) that these conditions ensure that

the doublets of the intrinsic torsion (4.25) and (4.26) vanish.
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Furthermore, we require the sections ωM,ab to form a closed set under the generalised

Lie derivative, i.e.

Lω̃Mω
N
ab =

1

4

(
Lω̃Mω

N
cd

)
ωP

cdωP ab . (5.27)

In other words, the generalised Lie derivative of ωM,ab can be expanded in the basis of

ωM,ab’s. Using (5.26) one can see that this implies

Lω̃Mω
Nab =

1

4

(
Lω̃Mω

Ncd
)
ωP cdω

P ab , (5.28)

so that the ωM
ab’s also form a closed set under the generalised Lie derivative.

These conditions are analogous to the differential conditions encountered when study-

ing consistent truncations of SU(3)-structure manifolds [66, 67]. There one requires the

sections used in the truncation Ansatz to form a closed set under the exterior derivative. In

the case of consistent maximally supersymmetric truncations of EFT, which are governed

by generalised identity-structures, these conditions are satisfied automatically and thus do

not need to be imposed by hand.

However, these conditions are not yet enough to guarantee a consistent truncations.

The remaining consistency condition is best understood by using the terminology of the

embedding tensor to which we turn next.

5.4.2 The half-maximal embedding tensor

It is easy to show that the conditions (5.7), (5.9) imply the following identities

Lω̃MωN
abωP,ab = −Lω̃MωP,abωN

ab ,

Lω̃MωN
abωP,ab − Lω̃MωN,abωP

ab = 4naLω̃MnaηNP ,
Lω̃Mω(N

abωP ),ab = 2naLω̃MnaηNP ,
(5.29)

where the third equation follows from the first two.

We will now show that the object

gMNP ≡
1

4
Lω̃MωN,abωP

ab , (5.30)

contains only the irreducible representations allowed by the linear constraint of half-

maximal gauged SUGRA [20] and can thus be identified with the embedding tensor. Let

us first define the O(n+ 3) vectors

fM = naLω̃Mna , ξM = ρ−1Lω̃Mρ . (5.31)

It follows immediately from (5.29) that

gM(NP ) =
1

4
Lω̃Mω(N |ab|ωP )

ab = −1

2
ηNP n

aLω̃Mna = −1

2
fMηNP , (5.32)

This implies that gMNP ∈ (n + 3) × (adj + (n + 3)). Furthermore, one can use the fact

that the torsion lies in the 15⊕ 40⊕ 10 of SL(5) to show that

g(MN)P =
1

4
Lω̃(M

ωN)abωP
ab

= 2ξP ηMN − 2ξ(MηN)P +
1

4
ηMNfP − f(MηN)P .

(5.33)
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Thus we see that the only irreducible representations of gMNP are given by

fMNP = g[MNP ] , fM , ξM . (5.34)

These are exactly the representations allowed for the embedding tensor by the linear con-

straint of the half-maximal gauged supergravity and we will see that indeed these objects

fMNP are to be identified with the embedding tensor. Additionally, there is a singlet de-

formation allowed in seven-dimensional half-maximal gauged supergravity [72] which we

identify with

Θ = ρna∂abn
b . (5.35)

By comparison with (4.21)–(4.24), fMNP , fM , ξM and Θ can also be identified with the

intrinsic SU(2) torsion of the background on which the truncation is defined.

The embedding tensor of gauged SUGRAs has to also satisfy a quadratic constraint

which ensures closure of the gauge group. Similarly, consistency of the EFT requires closure

of the algebra of generalised Lie derivatives. Indeed by the definition of the embedding

tensor in terms of generalised Lie derivatives (5.34), (5.31), the closure of the algebra

of generalised Lie derivatives automatically implies that the quadratic constraint for the

embedding tensor is satisfied.

For example, we could derive a set of quadratic constraints by considering

[Lω̃M , Lω̃N ]ωP,ab = L[ω̃M ,ω̃N ]ωP,ab , (5.36)

where [ω̃M , ω̃N ]ab ≡ Lω̃M ω̃Nab. Another set of quadratic constraints comes from

na [Lω̃M , Lω̃N ]na = naL[ω̃M ,ω̃N ]na . (5.37)

If we contract with ηMN the left-hand side vanishes identically whereas the right-hand

side gives

ηMNfMfN = 0 , (5.38)

which indeed reproduces a quadratic constraint for the vector fluxes of half-maximal gauged

SUGRA, see e.g. [42] for the case where n = 3.

As we already discussed in 2, the algebra of generalised Lie derivatives closes when the

section condition is fulfilled. Thus, when the background satisfies the section condition, the

gaugings automatically satisfy the quadratic constraint. There may however, be examples

where the section condition is violated but the quadratic constraint is not.

Furthermore, exactly as in the maximal case [23], we require ξM = 0 in order to have

an action principle for the reduced theory. This can be seen, exactly as in [23] by requiring

integration by parts to be valid. We want boundary terms to vanish∫
∂ab(|e|V ab) = 0 , (5.39)

where |e| is the determinant of the external vielbein and V ab has weight −1/5 under

generalised Lie derivatives. However, we can write

∂ab

(
|e|V ab

)
= 2LV̂ |e|

5/7 , (5.40)
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where V̂ ab = |e|2/7V ab is a generalised vector of weight 1
5 . After imposing the truncation

Ansatz we find

〈∂ab
(
|e|V ab

)
〉 = 10|e|VMξM , (5.41)

and hence we find that integration by parts is only possible when ξM = 0. ξM is known

as the trombone gauging and it is also known from the gauged SUGRA perspective that

such a gauging prohibits an action principle [73].

By performing the truncation on the SUSY variation in section 5.9 and particularly

scalar potential in section 5.7, we will obtain further evidence that the objects fMNP ,

fM , ξM and Θ are to be identified with the embedding tensor. Furthermore, we will see

that upon using the reduction Ansatz, all the ωMab’s, n
a’s and n̂a’s will drop out and the

only possible dependence on Y ab in the action will appear through the embedding tensor

components fMNP , fM , ξM and Θ and an overall factor given by a power of the internal

density ρ(Y ). Thus when the embedding tensor components are constant and obey the

quadratic constraint, e.g. by requiring the section condition the internal space, we obtain

a consistent truncation to a seven-dimensional gauged SUGRA.

5.5 Intrinsic torsion and the T -tensor

Let us now evaluate the intrinsic torsion (4.21)–(4.26) using the truncation Ansatz (5.12),

the relations (5.7), (5.9), (5.26) and the definitions (5.34), (5.31) and (5.35). We immedi-

ately find that the doublets (4.25) and (4.26) vanish on account of (5.26). For the other

representations we obtain

〈S〉 =
1

2ρ
e−8d/5Θ ,

〈T 〉 =
1

6ρ
e2d/5HMNP fMNP ,

〈Tu〉 =
1

ρ
√

2
e2d/5bu

M (3ξM − fM ) ,

〈Su〉 =
5
√

2

ρ
e2d/5bu

MξM ,

〈Tab〉 =
1

8ρ
√

2
PN+ Mω

M
ab (4ξN + fN ) ,

〈T uab〉 =
1

12ρ
√

2
εuvwbv

Nbw
PPQ+ Mω

M
abfNPQ .

(5.42)

Here we defined the left-moving and right-moving projectors PMN
− and PMN

+ as well as the

antisymmetric tensor HMNP as

PMN
− = bu

Mbu,N =
1

2

(
ηMN −HMN

)
,

PMN
+ = ηMN − buMbu,N =

1

2

(
ηMN +HMN

)
,

HMNP = εuvwbu
Mbv

Nbw
P .

(5.43)
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Similar to the maximally supersymmetric case [23] we expect these expressions to

correspond to the T-tensor of the seven-dimensional half-maximal gauged supergravity,

some components of which are given in [42] for the case of three vector multiplets, i.e. n = 3.

5.6 Reducing the external covariant derivative

As a first check that we are obtaining a half-maximal gauged SUGRA let us consider the

reduction of the external covariant derivative Dµ. We can consider acting with it on any

generalised vector, i.e. an object in the 10 of weight 1
5 , call it W ab with truncation Ansatz

〈W ab〉(x, Y ) = WM (x)ωM
ab(Y ) ρ(Y ) . (5.44)

Then from equations (5.34) and (5.31) we find

〈DµW
ab〉(x, Y ) = ρωM

ab

(
∂µW

M − 1

4ρ
WNLAµω̃NcdωM,cd

)
= ρωM

ab
(
∂µW

M +Aµ
NWP gNP

M −AµNξNWM
)

= ρωM
abDµW

M ,

(5.45)

where Dµ is the gauge-covariant derivative of the half-maximal gauged SUGRA (usually

this is only given in the case of vanishing 1-form fluxes fM = ξM = 0).

Similarly, if we have the external covariant derivative Dµ acting on a SL(5) vector Xa

which is truncated as

〈Xa〉(x, Y ) = X(x)na(Y ) , (5.46)

then the external covariant derivative reduces as

〈DµX
a〉(x, Y ) = na

(
∂µX

a +Aµ
NfNX

)
= naDµX . (5.47)

Again Dµ corresponds to the gauge-covariant derivative of the gauged supergravity.

5.7 Reducing the scalar potential

We will now take ξM = 0 in order to have an action for the reduced theory. Recall that

the potential is given by

V = −1

4
R+ Vu

abV u,cd∇abgµν∇cdgµν . (5.48)

It is easy to see that

〈∇abgµν〉 = 0 , (5.49)

so we are left to evaluate the generalised Ricci scalar.

From equations (4.41) and (5.42) we can see that the potential of the truncated

theory becomes

〈|e|V 〉=−1

4
ρ5|ē|e−2d

[
PMQ
− PNR−

(
PPS+ +

1

3
PPS−

)
fMNP fQRS+

1

2

(
PMN

+ +3PMN
−

)
fMfN

]
+

1

2
ρ5|ē|e−6dΘ2−

√
2

6
ρ5|ē|e−4dΘHMNP fMNP . (5.50)
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By writing out the left-moving and right-moving projectors explicitly and recalling that

the quadratic constraint implies ηMNfMfN = 0, we obtain

〈|e|V 〉 =
1

4
ρ5|ē|e−2dfMNP fQRS

(
− 1

12
HMQHNRHPS +

1

4
ηMQηNRHPS − 1

6
ηMQηNRηPS

)
− 1

8
ρ5|ē|e−2dHMNfMfN +

1

2
ρ5|ē|e−6dΘ2 −

√
2

6
ρ5|ē|e−4dΘHMNP fMNP .

(5.51)

This is precisely the scalar potential of seven-dimensional half-maximal gauged SUGRA

coupled to n vector multiplets, with general embedding tensor satisfying the linear con-

straint and including the singlet deformation Θ, see e.g. [42, 74]. A particularly interesting

feature is that we here automatically obtain the term

ηMQηNRηPSfMNP fQRS , (5.52)

which vanishes in truncations of double field theory when the section condition is fulfilled

by the background.

5.8 Reducing the kinetic terms

5.8.1 Scalar kinetic terms

Consider first the scalar kinetic terms. These were given by

gµνDµA
aDνAa , and (gµνDµBu,abDνB

u
cd) ε

abcdeAe . (5.53)

Let us begin with the kinetic terms of Aa. From the reduction Ansatz we find

〈DµA
a〉 =

1√
2
e−4d/5na

(
−4

5
∂µd+Aµ

MfM

)
≡ − 4

5
√

2
nae−4d/5Dµd , (5.54)

where we defined the gauge-covariant derivative of the dilaton, and thus

〈gµνDµA
aDνAa〉 =

8

25
ρ−2e4d/5ḡµνDµdDνd . (5.55)

Similarly, for Bu,ab we find

〈DµBu,ab〉 = ωM,ab

(
∂µ

(
bu
Me−2d/5

)
−AµNbuP e−2d/5gMN

P
)
≡ ωM,abDµ

(
bu
Me−2d/5

)
.

(5.56)

From (5.54) one can now read off Dµbu
M . We can now calculate

〈(DµBu,abDνB
u
cd) ε

abcdeAe〉 = 2
√

2Dµbu
MDνb

u
M +

24
√

2

25
DµdDνd . (5.57)

But from (5.18) we find

DµHMNDνHMN = 8Dµbu
MDνb

u
M , (5.58)
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and hence

〈(DµBu,abDνB
u
cd) ε

abcdeAe〉 =

√
2

4
DµHMNDνHMN +

24
√

2

25
DµdDνd . (5.59)

Combining (5.55) and (5.59) we find

〈|e|LSK〉 = 〈|e|gµν
(√

2DµBu,abDνB
u
cdε

abcdeAe − 56DµA
aDνAa

)
〉

= ρ5|ē|e−2d

(
1

2
ḡµνDµHMNDνHMN + 16ḡµνDµdDνd

)
.

(5.60)

This is the correct kinetic term for the scalars of seven-dimensional half-maximal gauged

SUGRA, see e.g. [42].

5.8.2 Gauge kinetic terms and topological term

Let us first of all consider the reduction of the field strength. We find

〈Fµνab〉 = ρωM
abFµν

M ,

〈Hµνγ a〉 = −4ρ2naHµνγ ,

〈Jµνγσa〉 = ρ3naJµνγσ ,

(5.61)

where Fµν
M , Hµνγ and Jµνγσ are the reduced field strength of the gauged SUGRA

Fµν
M = 2∂[µAν]

M − [Aµ, Aν ]M −Bµν
(
2ξM + fM

)
,

Hµνρ = 3D[µBνρ] + 3∂[µAν
MAρ]M −A[µ

M
[
Aν , Aρ]

]
M

+
1

4
ΘCµνρ ,

Jµνρσ = 4D[µCνρσ] +

(
3

2
fM + ξM

)
DµνρσM .

(5.62)

Here [Aµ, Aν ]M denotes the Lie bracket of the gauge group defined by the embedding

tensor gMNP .

[Aµ, Aν ]M ≡ gNPMAµNAνP = fNP
MAµ

NAν
P −A[µ

MAν]
N (4ξN + fM ) . (5.63)

Let us now consider the kinetic term for the vector fields

Lkin,vectors =
1

8
FµνabFµν,cd

(
Bu,abB

u
cd −Bu[abB

u
cd]

)
. (5.64)

First note that

Bu[abB
u
cd] =

1√
2
εabcdeA

e , (5.65)

and from (5.10) that

ωM
abωN

cdεabcde = 16ηMNn
e . (5.66)

It is now straightforward to see that

〈|e|Lkin,vectors〉 = ρ5|ē|e−2dḡµγ ḡνσFµν
MFγσ

N (2bu,Mb
u
N − ηMN )

= −ρ5|ē|e−2dḡµγ ḡνσFµν
MFγσ

NHMN ,
(5.67)

which is the correct kinetic term for the vector fields.
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Finally, let us reduce the kinetic term for the two-form potentials.

Lkin,2-form = − 1

48
Hµνρ,aHµνρbAaAb . (5.68)

We find

〈|e|Lkin,2-form〉 = −1

6
ρ5|ē|e−2dḡµσ ḡνρḡγλHµνγHσρλ , (5.69)

again reproducing the correct kinetic term for the two-form potentials.

Let us now turn to the topological term. Using (5.24) we find that the second term of

the topological part of the action vanishes, i.e.

〈Fµ1µ2 • (Hµ3...µ5 • Hµ6...µ8)〉 = 0 , (5.70)

and we are left with

〈Stop〉 =

∫
d8xd10Y ρ5 1

8
√

6
εµ1...µ8Jµ1...µ4Jµ5...µ8Θ , (5.71)

where we used (5.35). We see that the singlet deformation Θ induces a mass-like term for

the 3-form Cµνρ [72].

5.9 Reducing the SUSY variations

Finally, let us use the truncation Ansatz (5.22) to evaluate the SUSY variations (4.36).

For the gravitino variation we find

〈δεψµα̇〉 ∼ Dµε
α̇ − 1

4

(
e−2dΘ +

1

3
√

2
HMNP fMNP

)
γ̄µε

α̇

− i5
√

2

4
e4d/5 (σu)α̇ β̇b

u
Mξ

M γ̄µε
β̇ − ie2d/5bu,MFνρ

M (σu)α̇ β̇ γ̄
νργ̄µε

β̇

+ 4e4d/5Hνρσγ̄
νρσγ̄µε

α̇ ,

(5.72)

where Dµε
α̇ = ∂µε

α̇ − AµM (ξM − fM ) εα̇ is the gauge-covariant derivative of εα̇ and γ̄µ =

ēµ
µ̄γµ̄.

6 Conclusions

In this paper we showed how to construct seven-dimensional half-maximal consistent trun-

cations of 10- and 11-dimensional supergravity using exceptional field theory. To do this,

we began by reformulating the SL(5) exceptional field theory in a way that is adapted to

N = 2 SUSY. In particular, we rewrote the theory by replacing the generalised metric

Mab with a set of well-defined tensors κ, Aa, Aa, Bu,ab subject to a compatibility con-

dition, which define the SU(2)-structure. We showed that the existence of these tensors

is equivalent to there being two well-defined spinors on the internal space thus ensuring

we have N = 2 SUSY. Furthermore, we introduced generalised SU(2) connections and

their intrinsic torsion to rewrite the scalar potential, SUSY variations and kinetic terms of

the theory.
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A consistent truncation can then be defined by expanding the SU(2)-structure and

all other fields of the EFT in terms of a set of sections of the (1,1), the (3,1) and the

(1,3)-bundles of SU(2)S × SU(2)R ⊂ SL(5). The number of sections of the (3,1)-bundle

determines the number of vector multiplets in the gauged SUGRA. These sections were

subject to a number of differential constraints, in particular a “doublet constraint” which

ensured that all SU(2)S doublets vanished and hence that we obtained a N = 2 gauged

SUGRA. In addition, we had to impose that the sections defining the truncation formed a

closed set under the generalised Lie derivative.

We saw that the embedding tensor of the half-maximal gauged SUGRA is now given a

geometric definition in terms of the intrinsic SU(2) torsion of the background on which the

truncation is performed. It can thus be written in terms of the generalised Lie derivative of

the sections defining the truncation. Exactly as in the case of maximal SUSY, it automati-

cally satisfies the linear constraint of gauged SUGRA and satisfies the quadratic constraint

whenever the algebra of generalised diffeomorphisms closes, for example by imposing the

section condition. The truncation was shown to be consistent when the embedding tensor

is constant.

The framework introduced here can be used to find uplifts of half-maximal seven-

dimensional gauged SUGRAs which cannot be obtained by simple truncations of a maximal

seven-dimensional gauged SUGRA. These include gauged SUGRAs with non-zero singlet

part of the embedding tensor, Θ. A particularly interesting example of these admits a fully

stable deSitter vacuum [42].

It would also be interesting to generalise the procedure of this paper to lower-

dimensions. In this case the number of possible truncations increases because more fluxes

are available. For example, it would be nice to study the consistent truncation of IIA

on K3 where the full O(20, 4) duality group should become visible directly in EFT. An-

other generalisation that is possible in lower dimensions is to consider a larger amount of

broken supersymmetry. For example, in four dimensions one could consider N = 2 trunca-

tions, corresponding to truncations on generalised SU(6)-structure manifolds, which would

include “exceptional Calabi-Yau”s and their AdS counterparts [75, 76].

Finally, as we show in [43] one can use the set-up introduced here to obtain the heterotic

DFT by a reduction of EFT. In this case, the extended space contains a SU(2)-structure

manifold, but the coefficients in the truncation Ansatz are still allowed to depend on the

extended space, albeit in a restricted fashion. This is reminiscent of the way massive IIA

SUGRA can be obtained by a Scherk-Schwarz-like reduction of EFT [77]. In particular

the duality between M-theory on K3 and the heterotic string on T 3 arises naturally from

this picture.
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A Scalar potential in terms of spinors

As discussed in [13, 23, 24] one can write the generalised Ricci scalar in terms of covariant

derivatives of spinors, i.e.

Rεi ∼
(
∇̂2
)
εi , (A.1)

where ∇̂ is the torsion-free USp(4) connection but without spin connection.

To fix the right-hand side, we follow [24] and note that the potential must only involve

the determined parts of the torsion-free USp(4) connection. Also, we know that the right-

hand side must be linear in εi, and hence cannot have any double partial derivatives acting

on εi (as well as no single partial derivatives acting on εi). This knowledge is enough to fix

the right-hand side. The first observation lets us write

1

16
Rεi =

1

2
∇̂jk∇̂kiεj −

1

2
∇̂jk∇̂jkεi + α∇̂ik∇̂jkεj , (A.2)

as we will discuss in A.1, while the second implies that the potential must only make use

of the combinations coming from the commutator of two covariant derivatives and their

projection onto the 5 (since then the second order partial derivatives vanish by the section

condition), i.e.

1

16
Rεi =α

(
1

2
∇̂ij∇̂jkεk−

1

2
∇̂jk∇̂ijεk

)
+β

(
∇̂ik∇̂jkεj+∇̂jk∇̂ikεj−

1

2
∇̂jk∇̂jkεi

)
. (A.3)

These two conditions uniquely fix the Ricci scalar, up to an overall coefficient, to be

1

16
Rεi =

1

2
∇̂jk∇̂kiεj −

1

2
∇̂jk∇̂jkεi +

3

2
∇̂ik∇̂jkεj , (A.4)

and in particular the right-hand side is linear in εi.

A.1 Determined connections

We must use the covariant derivatives which only depend on the determined part of the

torsion-free USp(4) connection [13, 24]. There are four different possible combination,

depending on whether we act on a spinor in the 4 or 16 of USp(4). Let us denote a generic

spinor in the 4 by ε and a generic spinor in the 16 by χ which thus satisfies

χij,k = χ[ij],k , χij,kΩij = 0 , χ[ij,k] = 0 . (A.5)

The unique operators are given by

∇×4 ε , ∇×16 ε , ∇×4 χ , ∇×16 χ (A.6)

with ×4 and ×16 being the projectors onto the 4 and 16 respectively. In particular, we need

(∇×4 ε)
i = ∇ijεj ,

(∇×16 ε)
ij,k = ∇k[iεj] +

1

3

(
Ωij∇klεl + Ωk[i∇j]lεl

)
,

(∇×4 χ)i = ∇jkχij,k
(A.7)
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Now we can write

V εi = α̃ (∇×4 (∇×16 ε))
i + β̃ (∇×4 (∇×4 ε))

i . (A.8)

On the other hand, we use the commutator [∇,∇] ∈ 35 ⊕ 10 of USp(4). But since

10× 4 3 4 and 35× 4 6 34 only the 10 can contribute when acting on εi. This is given by

[∇,∇]ij10 = ∇k(i∇kj) . (A.9)

The other allowed combination involves the projector onto the 5 since this gives the section

condition for the terms involving only partial derivatives. We write

(∇×5 ∇)ij = ∇ik∇jk +∇jk∇ik −
1

2
Ωij∇kl∇kl , (A.10)

and thus combining the two we have

V εi =
α

2

(
∇ik∇jkεj −∇jk∇ikεj

)
+
β

2

(
∇ik∇jkεj +∇jk∇ikεj −

1

2
∇jk∇jkεi

)
. (A.11)

Equating the two allowed expressions gives the unique answer (4.40) (up to overall rescal-

ings of the coupling constant).

B SUSY variations of the gravitino

We begin with

δε̃ψµ
α̇ = −1

κ
θi
α̇δε̃ψ̃µ

i

∼ −1

κ

[
θi
α̇Dµ

(
θiβ̇ε

β̇
)

+ θi
α̇Va ikVbjkγµ∇ab

(
θj β̇ε

β̇
)

+ θj β̇θi
α̇VaikVb jkFνρabγνργµεβ̇

−Hνρσ,aθi α̇Vaijθj β̇γ
νρσγµε

β̇
]
. (B.1)

Let us go through this term-by-term.

We use the product rule to write the first term as

θi
α̇Dµ

(
θiβ̇ε

β̇
)

=
(
θi
α̇Dµθ

i
β̇

)
εβ̇ − κDµε

α̇ . (B.2)

We can further rewrite Dµθ
i
β̇ in terms of the intrinsic torsion. By definition (2.12)

Dµθ
i
β̇ = ∂µθ

i
β̇ − LAµθ

i
β̇

= ∂µθ
i
β̇ −

(
L∇̂Aµθ

i
β̇ −

1

20
Aµ

abτabθ
i
β̇

)
= ∂µθ

i
β̇ +

1

20
Aµ

abτabθ
i
β̇ − L

∇̂
Aµθ

i
β̇ ,

(B.3)

where we have introduced an SU(2) connection ∇̂ and used the definition of the torsion

via the generalised Lie derivative (4.2).
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The second term can also be rewritten using the intrinsic torsion. We first write it as

θi
α̇VaikVbjkγµ∇ab

(
θj β̇ε

β̇
)

=−
√

2θi
α̇Vabijγµ∇ab

(
θj β̇ε

β̇
)

=−
√

2Vabijγµ
(
θi
α̇∇abθj β̇

)
εβ̇+
√

2Vabijθi α̇θj β̇γµ∇abε
β̇ .

(B.4)

We now first use the relationship between Bu,ab and Vabij in equation (3.20). Thus we have

θi
α̇VaikVbjkγµ∇ab

(
θj β̇ε

β̇
)

=−
√

2Vabijγµ
(
θi
α̇∇abθj β̇

)
εβ̇+
√

2Vabijθi α̇θj β̇γµ∇abε
β̇

=
1√
2
γµ

(
θi
α̇∇ijθj β̇

)
εβ̇+
√

2iVu
ab (σu)α̇β̇ γµ∇abε

β̇ .
(B.5)

The first term on the right is proportional to the intrinsic torsion and can thus also

be rewritten in terms of the spinor bilinears using (4.30). To do this we first decompose it

into its irreducible representations

1√
2

(
θi
α̇∇ijθj β̇

)
= − 1

2
√

2
εα̇β̇

(
θi
γ̇∇ijθj γ̇

)
+

1√
2

(
θi

(α̇∇ijθj β̇)
)

= −κ
2

(
S +

T√
2

)
+
κ

4
Sα̇β̇ .

(B.6)

Hence we have that

θi
α̇Va ikVbjkγµ∇ab

(
θj β̇ε

β̇
)

=
κ

2

(
S +

T√
2

)
γµε

α̇ +
κ

4
Sα̇β̇γµε

β̇

+
√

2iVu
ab (σu)α̇ β̇γµ∇abε

β̇ .

(B.7)

The third and fourth term follow similarly and we get

θj β̇θi
α̇VaikVb jkFνρabγνργµεβ̇ = i

√
2Bu,abFνρab (σu)α̇ β̇γ

νργµε
β̇ ,

−Hνρσ,aθi α̇Vaijθj β̇γ
νρσγµε

β̇ =
1

2
Hνρσ,aAaγνρσγµεα̇ .

(B.8)

Putting everything together we find the (N = 2)-like gravitino variation.

δεψµ
α̇ ∼ Dµε

α̇ − 1

κ

(
θi
α̇∂µθ

i
β̇

)
εβ̇ +

1

20
Aµ

abτabε
α̇ +

1

κ
θi
α̇
(
L∇̂Aµθ

i
β̇

)
εβ̇

− κ

2

(
S +

T√
2

)
γµε

α̇ − κ

4
Sα̇β̇γµε

β̇

− i
√

2Vu
ab (σu)α̇ β̇γµ∇abε

β̇ − i
√

2Bu,abFνρab (σu)α̇ β̇γ
νργµε

β̇

−Hνρσ,aAaγνρσγµεα̇ .

(B.9)
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[36] F. Hassler and D. Lüst, Consistent Compactification of Double Field Theory on

Non-geometric Flux Backgrounds, JHEP 05 (2014) 085 [arXiv:1401.5068] [INSPIRE].

[37] A. Baguet, C.N. Pope and H. Samtleben, Consistent Pauli reduction on group manifolds,

Phys. Lett. B 752 (2016) 278 [arXiv:1510.08926] [INSPIRE].

[38] E. Malek and H. Samtleben, Dualising consistent IIA/IIB truncations, JHEP 12 (2015) 029

[arXiv:1510.03433] [INSPIRE].

– 38 –

http://dx.doi.org/10.1007/JHEP06(2013)101
http://dx.doi.org/10.1007/JHEP06(2013)101
https://arxiv.org/abs/1304.1472
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1472
http://dx.doi.org/10.1007/JHEP10(2012)174
https://arxiv.org/abs/1208.0020
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0020
http://dx.doi.org/10.1007/JHEP01(2015)131
https://arxiv.org/abs/1410.8145
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8145
http://dx.doi.org/10.1007/JHEP03(2014)019
https://arxiv.org/abs/1212.1586
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1586
http://dx.doi.org/10.1007/JHEP02(2014)075
http://dx.doi.org/10.1007/JHEP02(2014)075
https://arxiv.org/abs/1307.8295
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.8295
http://dx.doi.org/10.1103/PhysRevD.89.045009
https://arxiv.org/abs/1312.1061
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1061
http://dx.doi.org/10.1103/PhysRevD.88.125002
https://arxiv.org/abs/1309.0266
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0266
https://arxiv.org/abs/1401.3360
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.3360
https://arxiv.org/abs/1506.03457
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03457
http://dx.doi.org/10.1016/0550-3213(86)90290-7
http://dx.doi.org/10.1016/0550-3213(86)90290-7
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B274,363%22
http://dx.doi.org/10.1016/S0370-2693(99)01266-6
http://dx.doi.org/10.1016/S0370-2693(99)01266-6
https://arxiv.org/abs/hep-th/9905075
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905075
http://dx.doi.org/10.1016/S0550-3213(00)00193-0
https://arxiv.org/abs/hep-th/9911238
http://inspirehep.net/search?p=find+EPRINT+hep-th/9911238
http://dx.doi.org/10.1016/S0550-3213(00)00372-2
https://arxiv.org/abs/hep-th/0003103
http://inspirehep.net/search?p=find+EPRINT+hep-th/0003103
http://dx.doi.org/10.1103/PhysRevD.92.065004
https://arxiv.org/abs/1506.01385
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01385
http://dx.doi.org/10.1007/JHEP08(2016)074
https://arxiv.org/abs/1605.00563
http://inspirehep.net/search?p=find+EPRINT+arXiv:1605.00563
http://dx.doi.org/10.1007/JHEP05(2014)085
https://arxiv.org/abs/1401.5068
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5068
http://dx.doi.org/10.1016/j.physletb.2015.11.062
https://arxiv.org/abs/1510.08926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.08926
http://dx.doi.org/10.1007/JHEP12(2015)029
https://arxiv.org/abs/1510.03433
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.03433


J
H
E
P
0
6
(
2
0
1
7
)
0
2
6

[39] F. Ciceri, B. de Wit and O. Varela, IIB supergravity and the E6(6) covariant vector-tensor

hierarchy, JHEP 04 (2015) 094 [arXiv:1412.8297] [INSPIRE].

[40] A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity

and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009]

[INSPIRE].

[41] A. Guarino and O. Varela, Consistent N = 8 truncation of massive IIA on S6, JHEP 12

(2015) 020 [arXiv:1509.02526] [INSPIRE].

[42] G. Dibitetto, J.J. Fernández-Melgarejo and D. Marqués, All gaugings and stable de Sitter in

D = 7 half-maximal supergravity, JHEP 11 (2015) 037 [arXiv:1506.01294] [INSPIRE].

[43] E. Malek, From Exceptional Field Theory to Heterotic Double Field Theory via K3, JHEP

03 (2017) 057 [arXiv:1612.01990] [INSPIRE].

[44] R. Blumenhagen, A. Font and E. Plauschinn, Relating double field theory to the scalar

potential of N = 2 gauged supergravity, JHEP 12 (2015) 122 [arXiv:1507.08059] [INSPIRE].

[45] E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163]

[INSPIRE].

[46] D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, Phys. Rept. 566

(2014) 1 [arXiv:1306.2643] [INSPIRE].
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