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1 Introduction

The low energy limit of string theory compactifications on string-size manifolds cannot

be obtained by usual Kaluza-Klein reductions of ten-dimensional supergravity, since these

do not incorporate the light modes originating from strings or branes wrapping cycles

of the internal manifold. At special points in moduli space, some of these modes become

massless, and there is an enhacement of symmetry promoting the (typically Abelian) gauge

groups appearing in Kaluza Klein compactifications to non-Abelian groups. For toroidal

compactifications of the heterotic string, this phenomenon has been beautifully described

by Narain [1]. In compactifications of the bosonic string on k-dimensional tori, the U(1)kL×
U(1)kR symmetry of the Kaluza-Klein reduction gets enhanced to GL×GR at special points

in moduli space, where GL, GR are simply-laced groups1 of rank k and dimension n, and

there are n2 massless scalars transforming in the (n, n) adjoint representation of the left

and right symmetry groups. These special points correspond to tori whose radii are of order

one in string units, and the states that provide the enhancement have non-zero winding

number besides non-zero momentum in some torus directions.

Capturing winding states within a field theory requires new ingredients beyond those of

ordinary Kaluza-Klein compactifications. In the double field theory (DFT) framework [2],

these include the introduction of a T-dual coordinate to every torus direction, which is the

Fourier dual of the corresponding winding mode (for reviews see [4–6]). DFT is therefore a

field theory formulated on a double torus incorporating the O(k, k) T-duality symmetry of

the bosonic string on a k-torus. Consistency of the theory requires constraints. Although

the most general form of these constraints is unclear, a sufficient but not necesary constraint

is the so-called section condition or strong constraint, that restricts the fields to depend on a

maximally isotropic subspace with respect to the O(k, k) inner product, such as the original

k-torus or its T-dual one, and the original field theory is recovered but now formulated in

an O(k, k)-covariant way. Understanding to what extent this constraint can be violated

while keeping a consistent theory remains an open question, about which there are a few

answers in particular setups.

The setup relevant to this paper is that of generalized Scherk-Schwarz reductions of

double field theory [7, 8] on generalized parallelizable manifolds [9], namely manifolds for

which there is a globally defined generalized frame on the double space, such that the C-

bracket algebra (the generalization of the Lie algebra that is needed in double field theory)

on the frame gives rise to (generalized) structure constants, which are on the one hand

trully constant, and on the other should satisfy Jacobi identities. As in standard Scherk-

Schwarz reductions [10], the only allowed dependence on the internal (double) coordinates

is through this frame. Even though the dependence of the frame on internal coordinates

might violate the strong constraint, it was shown in [11, 12] that the theory is consistent

at the classical level, as long as the structure constants satisfy the Jacobi identities.

A generalized Scherk-Schwarz reduction of double field theory on a double circle gives

the low energy action for compactifications of the bosonic string on a circle, and the pro-

1For simplicity we consider the cases of equal groups on the left and on the right, i.e. GL = GR = G,

but the construction can be generalized to different groups GL, GR of equal rank k.
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cedure implemented in [13] allows to describe the string theory features described above

when the radius is close to the self-dual one. In this paper we extend the results of [13],

and show that the low-energy action for compactifications of the bosonic string on any

k-torus in a region of moduli space close to a point of symmetry enhancement to a group

G × G can be obtained from double field theory. To that aim, we consider double field

theory on the double torus (of dimension k + k), and build an O(d+n,d+n)
O(d+n)×O(d+n) structure

on it (where d denotes the number of external directions and n is the dimension of G),

given by a generalized metric. The generalized metric, or rather the generalized vielbein

for it, is of the Scherk-Schwarz form, namely it is the product of a piece that depends on

the external coordinates, and involves the 2n vector and n2 scalar fields of the reduced

theory that are massless at the enhancement point, and a piece depending on the internal,

doubled, 2k coordinates. The internal piece is such that the C-bracket algebra gives rise

to the G × G symmetry. Plugging this generalized metric in the double field theory ac-

tion and following the generalized Scherk-Schwarz reduction of [7, 8], we obtain an action

that exactly reproduces the string theory three-point functions at the point of symmetry

enhancement. Furthermore, we show how the process of symmetry breaking by Higgsing

in the effective action gives the exact string theory masses for the vector and scalar fields

close to the enhancement point in moduli space, up to second order in deviations from

this point. The Higgsing process amounts to giving vacuum expectation values to the k2

scalars along the Cartan directions of the group G × G, and we show that these vevs are

precisely given by departure of the metric and B-field on the torus away from their values

at the enhancement point.

We provide the explicit expression for the generalized vielbein. For G = SU(2)k,

the piece of the vielbein that depends on the internal 2k coordinates is a straightforward

extension of the one corresponding to k = 1 that was constructed in [13]. The su(2)kL ×
su(2)kR algebra is obtained from the C-bracket of a block-diagonal frame made of k +

k (3 × 3)-blocks, where each block involves the vertex operators of the corresponding

SU(2) ladder currents. Geometrically, this translates into a 2-dimensional fibration of the

directions corresponding to positive and negative roots over the Cartan direction, given by

the corresponding circle coordinate yL(R) = y±ỹ. The fibration has trivial monodromy. For

groups that have additionally non-simple roots, we show that the bracket can be deformed

in a way that preserves the O(k, k) covariance. The deformation accounts for the cocycle

factors that are necessary in the vertex representation of the current algebra, and then we

can reproduce the g×g algebra with a generalized vielbein that depends on k+k coordinates

only. An alternative generalized frame can be constructed from the formulation of DFT

on group manifolds [14, 16], in which it depends on n coordinates. The question whether

there exists a vielbein depending strictly on k + k coordinates that gives rise to the g× g

algebra under the usual C-bracket, when g has at least one non-simple root, remains open.

A very interesting question is whether there is a description of the full moduli space,

namely a formulation that includes all the states that are massless at any point in the

moduli space. We show that such a description requires considering a higher-dimensional

torus at a point of maximal enhancement. For T 2 and T 3, one gets the effective action

at any point in moduli space by considering one of the points of maximal enhancement

– 3 –
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on a torus of one higher dimension (T 3 and T 4 respectively), and combining the process

of spontaneous symmetry breaking together with a decompactification limit. For T 4, a

description that includes the whole moduli space requires considering enhancement points

at an even larger torus, namely a T 7. We explain how this process works dimension by

dimension. Note, though, that the action obtained this way does not correspond to a low

energy action, since states that are massless at one point in moduli space get string-order

masses at another point.

The paper is organized as follows. In section 2 we review toroidal compactifications of

bosonic string theory. We consider the O(k, k) covariant formulation of compactifications

on T k with constant background metric and antisymmetric 2-form fields and the basics of

T-duality. The enhancement of the gauge symmetry at special points in moduli space is

discussed in general for T k and details are provided for the k = 2 case. The basic features

of DFT and generalized Scherk-Schwarz compactifications are reviewed in section 3. Using

this framework, we construct the effective action of bosonic string theory compactified on

T k in the vecinity of a point of symmetry enhancement in section 4. In particular, we show

that a deformation of the C-bracket involving the cocycle factors of the vertex algebra

allows to reproduce the structure constants of the enhanced symmetry algebra. In section

5 we check that the construction reproduces the string theory results when moving slightly

away from that point. A higher dimensional formulation that allows to accommodate all

maximal enhancement points in a single approach is presented in section 6. Finally, an

overview and conclusions are given in section 7. Three appendices collect the necessary

definitions and notation used in the main text. Basic notions of simply laced Lie algebras

and Lie groups are reviewed in appendix A, some basic facts about cocycles are contained

in appendix B and the explicit discussion of symmetry breaking on T 4 is the subject of

appendix C.

2 Toroidal compactification of the bosonic string

In this section we recall the main features of toroidal compactifications of the bosonic

string. We first discuss the generic k case and then we concentrate on the k = 2 example.

For a more complete review see [17].

2.1 Compactifications on T k

Consider the bosonic string propagating in a background manifold that is a product of a d =

26−k dimensional space-time times an internal torus T k with a constant background metric

g = ete
(
⇒ gmn = eamδabe

b
n

)
(2.1)

and antisymmetric two-form field Bmn, m,n = 1, . . . , k. For simplicity we take the dilaton

to be zero. The set of vectors em define a basis in the compactification lattice Λk such that

the target space is the k-dimensional torus T k = Rk/πΛk.

The contribution from the internal sector to the world-sheet action is

S =
1

4π

∫
M
dτdσ

(
δαβgmn − iεαβBmn

)
∂αY

m∂βY
n. (2.2)

– 4 –



J
H
E
P
0
6
(
2
0
1
7
)
0
0
5

The metric and the B-field are dimensionless,2 the world-sheet metric has been gauge fixed

to δαβ (α, β = τ, σ) and the internal string coordinate fields satisfy

Y m(τ, σ + 2π) ' Y m(τ, σ) + 2πwm , (2.3)

where ωm ∈ Z are the winding numbers and

Y m(z, z̄) = Y m
L (z) + Y m

R (z̄) , z = exp(τ + iσ) , z̄ = exp(τ − iσ) , (2.4)

with

Y m
L (z) = ymL −

i√
2
pmL lnz + · · · ,

Y m
R (z̄) = ymR −

i√
2
pmR lnz̄ + · · · , (2.5)

the dots standing for the oscillators contribution.

The periodicity of the wavefunction requires quantization of the canonical momentum3

pm = i
δS

δ∂τY m
= (igmn∂τY

n +Bmn∂σY
n)

=
1√
2
gmn(pnL + pnR) +

1√
2
Bmn(pnL − pnR) = nm ∈ Z , (2.6)

and (2.3) implies the quantisation condition

Y m(τ, σ + 2π)− Y m(τ, σ) = (pmL − pmR )
2π√

2
= 2πωm . (2.7)

These equations give

paL =
1√
2
êa
m [nm + (gmn −Bmn)ωn] , (2.8a)

paR =
1√
2
êa
m [nm − (gmn +Bmn)ωn] . (2.8b)

The vectors êa constitute the canonical basis for the dual lattice Λk∗, i.e. êa
mean = δmn,

and thus they obey

êtê = g−1
(
⇒ êa

mδabêb
n = gmn

)
. (2.9)

The pairs (paL, paR) transform as vectors under O(k, k,R) and they expand the 2k-

dimensional momentum lattice Γ(k,k) ⊂ R2k. From (2.8) one sees they satisfy

p2
L − p2

R = 2ωmnm ∈ 2Z , (2.10)

and therefore they form an even (k, k) Lorentzian lattice. In addition, self-duality Γ(k,k) =

Γ(k,k)∗ follows from modular invariance [1, 18].

The space of inequivalent lattices and inequivalent backgrounds reduces to

O(k, k,R)

O(k,R)×O(k,R)×O(k, k,Z)× Z2
, (2.11)

where O(k, k,Z) is the T-duality group (we give more details about it in the next section),

and the Z2 factor accounts for the world-sheet parity σ → −σ, a symmetry acting on the

background as Bmn → −Bmn.

2We will write explicit factors of α′ later in the text when they are needed for clarification.
3The unusual i factor is due to the use of Euclidean world-sheet metric.
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2.2 O(k, k) covariant formulation

The mass of the states and the level matching condition are respectively given by

m2 = 2(N + N̄ − 2) +
(
p2
L + p2

R

)
, (2.12a)

0 = 2(N − N̄) +
(
p2
L − p2

R

)
. (2.12b)

These can be written in terms of the momentum and winding numbers using an O(k, k)-

covariant language by introducing the vector Z and the O(k, k,R) invariant metric η

Z =

(
ωm

nm

)
, η =

(
0 1k
1k 0

)
, (2.13)

as well as the “generalized metric” of the k-dimensional torus, given by the 2k× 2k matrix

H =

(
g −Bg−1B Bg−1

−g−1B g−1

)
∈ O(k, k,R) . (2.14)

The mass formula (2.12a) and the level matching condition (2.12b) then read

m2 = 2(N + N̄ − 2) + ZtHZ , (2.15a)

0 = 2(N − N̄) + ZtηZ , (2.15b)

respectively.

Note that both the mass formula and the level matching condition are invariant under

the T-duality group O(k, k,Z) acting as

Z → OZ , H → OHOt , η → OηOt = η , O ∈ O(k, k,Z) . (2.16)

The group O(k, k,Z) is generated by integer theta-parameter shifts, associated with the

addition of an antisymmetric integer matrix Θmn to the antisymmetric B-field,

OΘ =

(
1 Θ

0 1

)
, Θmn ∈ Z , (2.17)

lattice basis changes

OM =

(
M 0

0 (M t)−1

)
, M ∈ GL(k,Z) , (2.18)

and factorized dualities, which are generalizations of the R→ 1/R circle duality, of the form

ODi =

(
1−Di Di

Di 1−Di

)
, (2.19)

where Di is a k × k matrix with all zeros except for a one at the ii component.

– 6 –
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Notice the particular role played by the element η viewed as a sequence of factorized

dualities in all tori directions, i.e.

η = OD ≡
k∏
i=1

ODi . (2.20)

Its action on the generalized metric is

H → ODHOtD =

(
g−1 −g−1B

Bg−1 g −Bg−1B

)
= H−1 , (2.21)

and, together with the transformation Z → ODZ which accounts for the exchange

wm ↔ nm, it generalizes the R ↔ 1/R duality of the circle compactification. These

transformations define the dual coordinate fields (up to the center of mass coordinates)

Ỹm(z, z̄) = −i[(gmn −BmpgpqBqn)wn +Bmng
npnp]τ + nmσ + · · ·

= gmn(Y n
L − Y n

R ) +Bmn(Y n
L + Y n

R ) , (2.22)

the dots standing for the oscillator contributions.

A vielbein E for the generalized metric

H = EtE, (2.23)

can be constructed from the vielbein for the metric (2.1) and inverse metric (2.9), as follows

E =

(
Ea

Ea

)
=

(
ea

êa − ιêaB

)
=

(
e 0

−êB ê

)
. (2.24)

In the basis of left and right movers, that we call “LR”, where the O(k, k,R) metric η takes

the diagonal form

ηLR = (RηRT ) =

(
1 0

0 −1

)
, R =

1√
2

(
1 1

−1 1

)
, (2.25)

the vielbein is

ELR ≡ RE ≡

(
EaL
EaR

)
=

1√
2

(
e− êB ê

−e− êB ê

)
. (2.26)

Note that this is not the most general parameterisation for the generalized vielbein. We

could have used on the first line a vielbein for the (ordinary) metric e, and its inverse ê, and

on the second line, which corresponds to the right sector, a different vielbein ē, ˆ̄e giving

rise to the same metric ētē = ete = g. For simplicity we use in most of the text the same

vielbein on the left and on the right, except later in section 4 (see in particular Eq (4.6)),

where we need to make use of this freedom.

Then the momenta (paL, paR) in (2.8) are(
paL
paR

)
= ELR Z . (2.27)

– 7 –
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2.3 Gauge symmetry enhancement

At special points in moduli space there is an enhancement of gauge symmetry due to the

fact that there are extra massless states with non-zero momentum or winding on the torus.

From (2.12a) and (2.12b), the massless states satisfy

p2
L + 2N − 2 = 0, (2.28a)

p2
R + 2N̄ − 2 = 0, (2.28b)

and therefore, N, N̄ ≤ 1. This means there are, from the point of view of the non-compact

d-dimensional space-time, massless 2-tensors (given by the usual states with no momentum

or winding and Nx = N̄x = 1),4 massless vectors (with Nx = 1, N̄x = 0 or Nx = 0, N̄x = 1),

and massless scalars (with Nx = N̄x = 0).

Let us concentrate on the vectors first, and analyze the case Nx = 0, N̄x = 1. There

are two types of massless states of this form, those with Ny = 1 and no momentum or

winding, and states with Ny = 0 and winding or momentum such that p2
L = 2, pR = 0.

The former are the k Kaluza-Klein (KK) vectors generating U(1)kL in the left sector, which

are massless at any point in moduli space. The fields and their vertex operators are

Amµ → V (z, z̄) = εmµ : Hm(z)∂̄Xµ eiK
ρXρ : , Hm(z) = i

√
2∂Y m = i

√
2∂Y m

L , (2.29)

where µ, ν, ρ = 0, 1, . . . , d − 1, and Kρ is the d-dimensional momentum in space-time.

The massless states with no oscillation but momentum or winding number along internal

directions have vertex operators

Aαµ → V (z, z̄) = εαµ : Jα(z) ∂̄Xµ eiK
ρXρ : , Jα(z) = cαJ̃

α(z) = cαe
i
√

2αmymL (z), (2.30)

where αm label the compact left-moving momenta, related to (2.8a) by

αm = eam paL, (2.31)

and cα is a cocycle introduced to ensure the right properties of the OPE between vertex

operators (see appendix B for more details). The reason for introducing new notation for

the left-moving momentum will become clear in a moment. The OPE of the currents Jα

with those in the KK sector (2.29) is

Hm(z)Jα(w) ∼ αmJα(w)

z − w
, (2.32)

and allows to identify Hm as the Cartan currents and Jα as the currents corresponding to

a root α of the holomorphic part of the enhanced algebra. The OPE between two J̃α reads

J̃α(z)J̃β(w) ∼ (z − w)(α,β)J̃α+β(w) + (z − w)(α,β)+1α · i∂yJ̃α+β(w) + · · · (2.33)

where (α, β) = αmβnK(Hm, Hn) denotes the inner product. The Killing form K is given

in (A.6), and is just a δmn in the Cartan-Weyl basis. Singular terms appear in the OPE

only if (α, β) is equal to −2 or −1. If (α, β) = −2, then β = −α and one gets from (2.33)

Jα(z)J−α(w) ∼ 1

(z − w)2
+
α ·H
z − w

. (2.34)

4Nx (Ny) denote the oscillation numbers along the non-compact (compact) directions.
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If (α, β) = −1, then α+ β is a root and (2.33) reads

Jα(z)Jβ(w) ∼ (−1)α∗β
Jα+β

z − w
+ . . . (2.35)

The sign is determined by the ∗ product defined in eq. (B.10) and can be reproduced by

the cocycles. It makes the OPE invariant under α↔ β and z ↔ w.

Altogether eqs.(2.32), (2.34) and (2.35) show that the currents Hm, Jα satisy the OPE

algebra of the holomorphic part of the enhanced symmetry group. This group has rank

k (the dimension of the torus). Furthermore, the requirement p2
L = 2 implies that the

enhanced symmetry must correspond necessarily to a simply laced algebra. We denote the

dimension of the left-moving part of the algebra by n. The number of roots α is equal

to (n − k). We will see below some examples of enhanced gauge groups. In appendix A

we collect the necessary definitions, notation and conventions regarding Lie algebras and

Lie groups.

The right part of the enhanced gauge algebra is constructed in an analogous way from

states with Nx = 1, N̄x = 0, and either N̄y = 1 and no momentum or winding, or N̄y = 0

and momentum and winding such that pL = 0, p2
R = 2. The vertex operators for the

former are

Āmµ → V (z, z̄) = ε̄mµ : H̄m(z̄) ∂XµeiK
ρXρ : , H̄m(z) = i

√
2∂̄Y m = i

√
2∂̄Y m

R , (2.36)

and for the latter

Āαµ → V (z, z̄) = ε̄αµ : J̄α(z) ∂XµeiK
ρXρ : , J̄α(z̄) = cα

¯̃Jα = cαe
i
√

2ᾱmYmR (z̄) (2.37)

with

ᾱm = eam paR (2.38)

a root of the Lie group corresponding to the right part of the enhanced gauge symmetry.

This group has rank k as well, but might not be the same as the one on the left. For

simplicity, we will consider from now on the case of equal groups on the left and on the right,

which is what happens at points of maximal enhancement (to be discussed later) that will be

our primary focus. Almost all of the formulas have though a straighforward generalisation

to a gauge symmetry enhancement group GL ×GR of rank (k, k) and dimension (nL, nR).

Regarding the extra massless scalars, one gets a total of n2. k2 of them are the usual

KK scalars with Ny = N̄y = 1 and no momentum or winding, corresponding to the internal

metric and B-field. The fields and their vertex operators are

Mmn → V (z, z̄) = εmn : Hm(z)H̄n(z̄)eiK
ρXρ : . (2.39)

They are massless at any point in moduli space, and their vev’s determine the type of

symmetry enhancement. At the points in moduli space where the symmetry is enhanced

to a group of dimension (n, n), there are (n− k)× k scalars with Ny = 0, N̄y = 1, p2
L = 2

and vertex operators

Mαn → V (z, z̄) = εαn : Jα(z)H̄n(z̄) eiK
ρXρ : , (2.40)

– 9 –
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as well as k × (n− k) scalars with N̄y = 0, Ny = 1, p2
R = 2 and vertex operators

Mmβ → V (z, z̄) = εmβ : Hm(z)J̄β(z̄) eiK
ρXρ : . (2.41)

As we will see, in the effective theory around a point in moduli space where there is

symmetry enhancement, these are the Goldstone bosons in the symmetry breaking process.

Finally, there are (n−k)2 scalars with no oscillation number and p2
L = p2

R = 2. Their vertex

operators are

Mαβ → V (z, z̄) = εαβ : Jα(z)J̄β(z̄) eiK
ρXρ : . (2.42)

Let us now see explicitly how to find the extra massless vectors and scalars with

momentum or winding number. Their existence depends on the location in moduli space,

i.e. it depends on gmn and Bmn. The massless vectors in the left moving sector should have

pR = 0, p2
L = 2, and therefore satisfy

nm = (gmn +Bmn)ωn , ωmgmnω
n = 1 , nmω

m = 1 . (2.43)

The simplest case to analyse is that of a torus with diagonal metric and all the radii at

the self-dual point, together with vanishing B-field (gmn = δmn, Bmn = 0.) For each torus

direction there are two extra massless vectors with nm = ωm = ±1. These combine with

the KK vectors (2.29) to enhance the symmetry from U(1)kL to SU(2)kL. Combining with the

right moving sector, one has SU(2)kL×SU(2)kR. Other examples of symmetry enhancement

groups are found at points in moduli space which are fixed points of a subgroup of the

O(k, k,Z) T-duality group.

Maximal enhancement5 occurs when the background is a fixed point of the symme-

try (2.21) up to an identification by a theta shift (2.17) and an SL(k,Z) transforma-

tion (2.18), namely when

H−1 = OMOΘHOtΘOtM . (2.44)

The case H = 12k just discussed is the simplest one (with OM = OΘ = 1), but there are

more general examples in which the background is [19]

gmn =
1

2
Amn , Bmn =

1

2
sgn(m− n)Amn, (2.45)

where sgn denotes the sign function and Amn is the Cartan matrix associated to the corre-

sponding algebra. Note that the matrices g+B and its transpose g−B at the enhancement

point acquire a triangular form. Non-maximal enhanced symmetries can be found at fixed

points of factorized dualities instead of the full inversion transformation (2.21).

We will analyse in the next section the case of T 2 compactifications in detail, where

the gauge groups of maximal enhancement are SU(2)2
L × SU(2)2

R and SU(3)L × SU(3)R.

5“Maximal” stands here for an enhanced semi-simple and simply-laced symmetry group of rank k cor-

responding to a level 1 affine Lie algebra.
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2.4 Compactifications on T 2

Here we discuss in detail the k = 2 case. The k2 = 4 moduli can be joined conveniently

into two complex fields as follows. The complex structure is given by

τ = τ1 + iτ2 =
g12

g22
+ i

√
g

g22
, (2.46)

while the Kähler structure is introduced as

ρ = ρ1 + iρ2 = B12 + i
√
g, (2.47)

where g = g11g22 − g2
12 is the determinant of the metric on the torus. The inverse rela-

tions read

g =
ρ2

τ2

(
|τ |2 τ1

τ1 1

)
, B =

(
0 ρ1

−ρ1 0

)
. (2.48)

Later we will need a vielbein for the metric and its inverse, which can be taken to be

e =

√
ρ2

τ2

(
τ2 0

τ1 1

)
, ê ≡ (e−1)t =

1
√
ρ2τ2

(
1 −τ1

0 τ2

)
. (2.49)

The generalized metric, defined in (2.14), reads in terms of τ and ρ

H =
1

ρ2τ2


|ρ|2|τ |2 |ρ|2τ1 −ρ1τ1 ρ1|τ |2

|ρ|2τ1 |ρ|2 −ρ1 ρ1τ1

−ρ1τ1 −ρ1 1 −τ1

ρ1|τ |2 ρ1τ1 −τ1 |τ |2

 , (2.50)

and the corresponding generalized veilbein (2.24) is

E =
1

√
ρ2τ2


ρ2τ2 0 0 0

ρ2τ1 ρ2 0 0

−ρ1τ1 −ρ1 1 −τ1

ρ1τ2 0 0 τ2

 . (2.51)

The left and right moving momenta (2.8) in terms of τ and ρ read6

pL =
1√

2ρ2τ2

[
(n1 − τ̄n2)− ρ̄(ω2 + τ̄ω1)

]
, (2.52a)

pR =
1√

2ρ2τ2

[
(n1 − τ̄n2)− ρ(ω2 + τ̄ω1)

]
. (2.52b)

The moduli space is isomorphic to O(2, 2,R)/(O(2,R) × O(2,R)) = SL(2,R)/U(1) ×
SL(2,R)/U(1), where τ and ρ sweep each SL(2,R)/U(1) factor, respectively. The duality

group is generated by the usual S and T modular transformations, together with the

factorized duality D exchanging the complex and the Kähler structures7

S : (τ, ρ) −→ (−1/τ, ρ) , T : (τ, ρ) −→ (τ + 1, ρ) , D : (τ, ρ) −→ (ρ, τ) . (2.53)

6Here we are expressing the vectors paL and paR on the tangent space of T 2 as complex variables.
7In terms of the O(k, k,Z) transformations given in the previous section, S and T are the GL(2) transfor-

mations in (2.18) given respectively by MS =
(
0 −1
1 0

)
and MT =

(
1 1
0 1

)
, while D is a T-duality transformation

OD2 .
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Figure 1. Fundamental domain for the modulus τ .

Worldsheet parity acts by

W : (τ, ρ) −→ (τ,−ρ̄) . (2.54)

The fundamental domain is given by two copies of the domain shown in figure 1.

The possible groups of symmetry enhancement for the left or right sector have rank 2,

and are thus U(1)×U(1) (no enhancement), SU(2)×U(1) or the maximal SU(2)× SU(2)

or SU(3). All of these occur on the plane τ = ρ (up to identifications under the discrete

symmetries (2.53) and (2.54)). As discussed in the previous subsection, enhancement to

SU(2)2
L×SU(2)2

R occurs in a compactification with metric given by the identity (i.e. all radii

equal to the string length) and no B-field. This satisfies (2.45), where the Cartan matrix

for SU(2)2 is given in (A.24), and corresponds to τ = ρ = i. The Cartan matrix of SU(3) is

given in (A.28), and thus according to (2.45), the SU(3)L × SU(3)R enhancement point is

reached for B12 = −1
2 , g11 = g22 = 1, g12 = −1/2. This corresponds to τ = ρ = −1

2 + i
√

3
2 ,

which is at the other corner of the fundamental domain in figure 1. We will discuss the

physics around these two points in detail in the next subsections. (SU(2) × U(1))L ×
(SU(2) × U(1)R enhancement occurs at the borders of the fundamental region, namely at

ρ = τ = −1/2 + iτ2, ρ = τ = iτ2 and |ρ| = |τ | = 1. At the interior of the region, the

enhancement group is U(1)2
L×(SU(2)×U(1))R. This asymmetry between the left and right

sectors can be understood from the fact that points at the interior are not fixed points of

the Z2 symmetry B → −B (or ρ1 → −ρ1). The mirror region, which is to the right of

the region displayed in figure 1 in our conventions, has enhanced gauge symmetry group

(SU(2)×U(1))L ×U(1)2
R.

The locations of these groups on the domain ρ = τ are displayed in figure 2.

2.4.1 SU(2)2L × SU(2)2R enhancement point

At τ = ρ = i there is a gauge symmetry enhancement point with SU(2)2
L × SU(2)2

R gauge

group. This corresponds to the two-torus being a product of two circles at the self-dual

radii, namely the metric is given by the identity and there is no B-field. This satisfies

gmn = 1
2Amn, where Amn is the Cartan Matrix of the su(2)2 algebra given in (A.24). We

choose the vectors êi defined in (2.9) to be

ê1 = (1, 0), ê2 = (0, 1) . (2.55)
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Figure 2. Enhancement groups on the domain τ = ρ. The groups SU(3)L×SU(3)R and SU(2)2L×
SU(2)2R occur at the isolated points on the left and right vertices, respectively, while [SU(2) ×
U(1)]L × [SU(2)×U(1)]R occurs along the boundaries.

n1 n2 w1 w2
√

2 pm,L
√

2 pm,R root vector

1 0 1 0 (2,0) (0,0) α1 A
1
L

0 1 0 1 (0,2) (0,0) α2 A
2
L

1 0 -1 0 (0,0) (2,0) α1 A
1
R

0 1 0 -1 (0,0) (0,2) α2 A
2
R

Table 1. Massless vectors with momentum and winding at the SU(2)2L × SU(2)2R enhancement

point (τ, ρ) = (i, i). Only those associated with positive roots are shown.

At this point there are 12 massless vectors and 36 massless scalars. The left vectors

associated to the Cartan subalgebra are given by (2.29) and those associated to the ladder

operators by (2.30), where now the α in (2.30) are the roots of the su(2)2 algebra. For the

left gauge group, the massless ladder vectors at τ = ρ = i are those in table 2.1. There is

an identical construction for the right sector, with appropiate ni and wi.

2.4.2 SU(3)L × SU(3)R enhancement point

At τ = ρ = −1
2 + i

√
3

2 there is a symmetry enhancement point. The resulting gauge group

is SU(3)L × SU(3)R. The metric and B-field are given by

gmn =
1

2

(
2 −1

−1 2

)
, Bmn =

1

2

(
0 −1

1 0

)
, (2.56)

where gmn = 1
2Amn, Amn being the Cartan matrix of the su(3) algebra. We choose the

vectors êa defined in (2.9) to be

ê1 = (2/
√

3, 1/
√

3) , ê2 = (0, 1) . (2.57)
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n1 n2 w1 w2
√

2 pm,L
√

2 pm,R root vector

1 0 1 0 (2,-1) (0,0) α1 A
1
L

-1 1 0 1 (-1,2) (0,0) α2 A
2
L

0 1 1 1 (1,1) (0,0) α3 A
3
L

1 -1 -1 0 (0,0) (2,-1) α1 A
1
R

0 1 0 -1 (0,0) (-1,2) α2 A
2
R

1 0 -1 -1 (0,0) (1,1) α3 A
3
R

Table 2. Massless vectors with momentum and winding at the SU(3)L × SU(3)R enhancement

point ρ = τ = −1/2 + i
√

3/2. Only those associated with positive roots are shown.

n1 n2 w1 w2
√

2 pm,L
√

2 pm,R scalar

2 -1 0 0 (2,-1) (2,-1) M11

1 -2 0 0 (1,-2) (1,-2) M22

1 1 0 0 (1,1) (1,1) M33

1 1 1 -1 (2,-1) (-1,2) M12

2 -2 -1 -1 (1,-2) (2,-1) M21

2 -1 -1 -2 (1,-2) (1,1) M23

Table 3. Some of the massless scalars with momentum and winding at the SU(3)L × SU(3)R
enhancement point.

The generalized metric (2.14) (which is given in (2.50) in terms of τ and ρ) is

H =
1

3


4 −2 −1 −2

−2 4 2 1

−1 2 4 2

−2 1 2 4

 . (2.58)

This satisfies (2.44) with OΘ = 1 and OM = OMS
where MS is defined in footnote 7.

There are 16 massless vectors and 64 massless scalars at this point in moduli space. The

left vectors associated to the Cartan subalgebra are given by (2.29) and those associated

to the ladder operators by (2.30), where now α = paL are the roots of the su(3) algebra.

For the left gauge group, the ladder vectors that are massless at the SU(3) point are those

in table 2.2. There is a similar construction for the right sector, with appropiate ni and

wi. In table 2.3 we give some of the 64 massless scalars, to be used in section 5.2.

Note that the vector A2 in table 2 is not the same as the one denoted A2 in table 1

corresponding to the SU(2)2 case, as the notation refers to the roots of each algebra.

Comparing the two tables, we can see that there is an overlap between them and this will

be important in section 6.
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3 Scherk-Schwarz reduction in double field theory

In this section we review Scherk-Schwarz reductions [10] of double field theory [7, 8]. We

start with some very basic notions of double field theory [2, 3] (for details see for example

the reviews [4–6]).

3.1 Basics of double field theory

Double field theory incorporates the T-duality symmetry of string toroidal compactifica-

tions in a theory of fields propagating on a double space. The theory is covariant under

a global O(D,D,R) symmetry.8 The propagating degrees of freedom are the generalized

metric (2.14) and the dilaton e−2d =
√
gD e

−2φ. The action is [3]

S =
1

2k2
D

∫
dX e−2d

(
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL + . . .

)
, (3.1)

where . . . involve terms with derivatives of the dilaton. The index M = 1, . . . , 2D runs

over the fundamental representation of O(D,D), and the doubled coordinates are XM =

(xµ, x̃µ, y
m, ỹm), where ym are associated to the CFT fields Y m and their dual ỹm are

associated to the dual fields Ỹm in (2.22).

Despite the non-covariant appearence of the action, one can show that it is a scalar

under generalized diffeomorphisms9 [20, 21]

(LVW )M = V P∂PW
M −WP∂PV

M + ∂MVPW
P . (3.2)

The algebra of generalized diffeomorphisms closes under the so-called weak and strong

contraints

∂M∂
M · · · = 0 , ∂M · · · ∂M · · · = 0 , (3.3)

where the dots represent any field or gauge parameter. These constraints imply that the

fields only depend on half of the coordinates. The weak constraint is the operator version

of the level matching condition (2.15b) restricted to the sector N = N̄ , namely Z → ∂M ,

ZtηZ → ∂M∂
M . Here we also consider states with N 6= N̄ and therefore we will not enforce

the weak constraint on the internal double torus. Moreover we will solve the constraints

in space-time so that the fields effectively depend on XM = (xµ, ym, ỹm). The algebra will

nevertheless close, as we explain shortly.

Given a frame EA for the generalized metric (2.23), one defines the generalized fluxes

through

LEAEB = fAB
CEC . (3.4)

It is not hard to show that fABC = fAB
DηDC are totally antisymmetric.

In this paper we restrict the dependence of the fields on the internal coordinates as

done in a Scherk-Schwarz reduction (see (3.6) below), and demand the generalized fluxes

8Here D = d + k is the dimensionality of space-time, with d external directions and k internal ones.

This however need not always be the case, the O(D,D) covariance might not be associated to D physical

dimensions, as we will see in section 4.2.
9For this one should take into account the terms involving derivatives of the dilaton in (3.1) and recall

that e−2d transforms as a density.
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with internal indices to be constant. For this particular case, closure of the algebra of

diffeomorphisms requires weaker constraints than (3.3), namely the algebra closes as long

as the generalized fluxes satisfy the quadratic constraints of gauged supergravity [12]

f[AB
DfC]D

E = 0 . (3.5)

3.2 Generalized Scherk-Schwarz reductions

We consider the generalized Scherk-Schwarz reduction of the DFT action (3.1) as in [7, 8].

In these reductions, the O(D,D,R) covariance is broken into GL(d) × O(k, k,R), namely

the double tangent space splits into a double tangent space of an internal “twisted double

torus” of dimension 2k, and a double tangent space for the d-dimensional external space,

where the O(d, d) covariance is finally broken to GL(d). In this section we use Â =

1, . . . , 2D as the fundamental (flat) index of O(D,D), and for any vector V this splits

into VÂ = (V α, VA, Vα), where α = 0, . . . , d− 1 is a flat d-dimensional external-space-time

index10 and A = 1, . . . , 2k runs over the internal twisted double torus.

For generalized Scherk-Schwarz compactifications, the generalized vielbein is a product

of two pieces, one depending on the d external coordinates x and the other one depending

on the internal ones, y and ỹ:

EÂ(x, y, ỹ) = UÂ
Â′(x)EÂ′(y, ỹ) . (3.6)

After integrating over the internal double torus, all the information about the internal space

will be encoded in the (constant) generalized fluxes (3.4). The matrix U parameterises the

scalar, vector and tensor fields of the reduced d-dimensional action, namely a vielbein for

the d-dimensional metric ẽ (by which we mean ẽαµ(x), and its inverse ˆ̃eα
µ will be denoted

ˆ̃e), a two-tensor B̃ = 1
2B̃µν(x)dxµ ∧ dxν , 2k vector fields AAµ (x)dxµ and n2 scalar fields

encoded in ΦA
B(x). One can take the following ansatz for the vielbein [8]

E =

EαEA
Eα

 =

 ẽ 0 0

Φ ·A Φ 0

−ˆ̃e(B̃ + 1
2A ·A) −ˆ̃eA ˆ̃e


1 0 0

0 E 0

0 0 1

 , (3.7)

where · denotes the O(k, k) internal product, namely (Φ · A)A = ΦA
BηBCA

C with η the

invariant metric, and E here refers to EA
M , the 2k × 2k piece of the veilbein depending

on the internal coordinates that parameterises the coset O(k, k,R)/O(k)×O(k). Choosing

EA
M as the internal vielbein characterizing the background for the torus, ΦA

B describes

the fluctuations over this background.

Let us concentrate on the internal part of the vielbein

EAM (x, y, ỹ) = ΦA
B(x)EB

M (y, ỹ) . (3.8)

10Note that the index α is used in all other sections to denote a root of a Lie algebra. There should be

no confusion as we need to write explicitly a flat space-time index only in this section, and here we do not

need an index for the roots.
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This piece of the frame forms the “internal generalized metric”, defined as11

HMN = δABEAMEBN = HABEAMEBN , (3.9)

where

HAB = δCDΦC
AΦD

B . (3.10)

Using the Scherk-Schwarz form of the veilbein (3.6) parameterised as in (3.7) and

integrating the DFT action (3.1) along the internal twisted double torus gives an action of

the form of (the electric bosonic sector of) gauged half-maximal supergravity [7, 8]

Sd =
1

2κ2
d

∫
ddx
√
gde
−2ϕ

[
R+ 4∂µϕ∂

µϕ− 1

12
HµνρH

µνρ

+
1

8
DµHABDµHAB − 1

8
HABFAµνFBµν (3.11)

− 1

12
fAB

CfDE
F
(
HADHBEHCF − 3HADηBEηCF + 2 ηADηBEηCF

)]
.

Here we have included the kinetic term of the dilaton, R is the d−dimensional Ricci scalar,

fAB
C are the constant fluxes, generated by the “twist” EA(y, ỹ) as in (3.4), which gauge a

subgroup of the global O(k, k) symmetry such that

DµHAB = ∂µHAB +
1

2
fCDAA

D
µHCB +

1

2
fCDBA

D
µHAC ,

FAµν = ∂[µAν]
A − 1

2
fABCAµ

BAν
C , (3.12)

Hµνρ = 3(∂[µBνρ] −AA[µ∂νAρ]A − fABCAA[µA
B
ν A

C
ρ]) .

4 Effective action from DFT

In this section we show that the generalized Scherk-Schwarz reduction discussed above gives

the effective theory of the bosonic string compactified on a torus in the vecinity of a point in

moduli space where there is symmetry enhancement. We will proceed in two steps. In the

first one we do a reduction on an ordinary double torus (i.e. no twist) of dimension 2k, to

identify the massless vector and scalar fields of the reduced theory with the corresponding

string states of section 2.3. In the second step we show how to incorporate the extra

massless states arising at the enhancement point in the DFT description.

4.1 Torus reduction

As a first step we consider the generalized Scherk-Schwarz reduction of the previous sec-

tion on an ordinary double torus (i.e. no twist). The structure constants are zero, and

therefore we get an ungauged action with 2k abelian vectors Aµ
A, and k2 scalars encoded

in HAB. The 2k abelian vectors are those with vertex operators given by (2.29) and (2.36),

corresponding to the U(1)kL × U(1)kR symmetry of the torus reduction. The k2 scalars are

the fields of the string states given by the vertex operators (2.39) and are related to the

11In case EA
M is complex, this expression should read HMN = HABEAM∗EBN .
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metric and B-field on the torus. To get the precise relation, consider an expansion around

a given point in moduli space corresponding to a (constant) metric g0 and B-field B0 on

the torus. The internal part of the generalized vielbein in the left-right basis (i.e. where

ηAB has the diagonal form (2.13)), given in (2.26) reads, at first order(
EaL
EaR

)
=

1√
2

(
e0 − ê0B0 ê0

−e0 − ê0B0 ê0

)
+

1√
2
δ

(
e− êB ê

−e− êB ê

)
, (4.1)

where e0 is a frame for g0.12 Performing this expansion and accommodating the terms such

that it has the form of a Scherk-Schwarz reduction (3.6), one gets(
EaL
EaR

)
= Φ(x) E(y, ỹ) ,

with

Φ(x) =

(
1 + 1

2(δê et0 + δe êt0 − ê0 δB ê
t
0) −1

2 ê0 (δg − δB) êt0

−1
2 ê0 (δg + δB) êt0 1 + 1

2(δe êt0 + δê et0 + ê0 δB ê
t
0)

)

and

E(y, ỹ) =
1√
2

(
e0 − ê0B0 ê0

−e0 − ê0B0 ê0

)
, (4.2)

where actually E is constant here (independent of y, ỹ). We see that Φ is an element

of SO+(k, k,R), the component of O(k, k,R) connected to the identity. Inserting this

into (3.10) we get, up to first order,

HAB =

(
1 M

M t 1

)
, (4.3)

where we have defined

M = −ê0 (δg − δB) ˆ̄et0 (4.4)

and

M t = −ˆ̄e0 (δg + δB) êt0 . (4.5)

Here we are using two different vielbeins, one for the left and another one for the right sec-

tors, ê0 and ˆ̄e0, giving rise to the same inverse metric g−1
0 (see comments below eq. (2.26)).

The scalar fields of the reduced theory are encoded in the k × k matrix M , which is in

the off-diagonal part of H (in the left-right basis) and thus has one left-moving and one

right-moving index. Writing the indices explicitly, we have

Mab = −ê0a
m ˆ̄eob

n (δgmn − δBmn) . (4.6)

12One can actually use a different frame for the left and the right movers, e0 and ē0. We will need to use

this freedom in section 5.
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Plugging (4.3) and taking fAB
C = 0 in (3.11) we get

S =
1

2κ2
d

∫
ddx
√
−ge−2ϕ

[
R+ 4∂µϕ∂µϕ−

1

12
HµνρH

µνρ +
1

4
∂µMab∂

µMab

−1

8
F aµνFaµν −

1

8
F̄ aµνF̄aµν −

1

4
MabF

aµνF̄ bµν

]
, (4.7)

where F a and F̄ a are the abelian field strengths for the U(1)kL and U(1)kR groups, respec-

tively. This is precisely the effective action derived from toroidally compactified string

theory [18].

4.2 Symmetry enhancement

Here we discuss how to incorporate the symmetry enhancement arising at special points

in moduli space that we discussed in section 2.3. The case of the circle at the self-dual

radius, where the U(1)L × U(1)R gauge symmetry is enhanced to SU(2)L × SU(2)R, was

worked out in [13].13 Now we generalize to T k, and an enhancement to a generic group

G×G of dimension n+n and rank k+ k (as discussed in section 2.3, the generalization to

two different groups with the same rank is straightforward). The index a = 1, . . . , n runs

over the adjoint of G, while A,B = 1, . . . , 2n and M,N,= 1, . . . , 2n run over the adjoint

of G×G.

We incorporate the symmetry enhancement into the DFT formalism through a gener-

alized Scherk-Schwarz reduction, as discussed in section 3.2. To construct the ingredients

that go into this recipe, we shall consider the following points.

1. The compactification torus will be identified with the maximal torus of the enhanced

symmetry group G. The O(k, k,R) covariance of the T k reduction will be promoted

to O(n, n,R), where n is the dimension of G.14 This has the right dimension to

accommodate:

— the 2n massless vector fields Aaµ, Ā
a
µ (see (2.29), (2.30), (2.36), (2.37)) in the

fundamental representation.

— the n2 scalars Mab (see (2.39), (2.40), (2.41), (2.42)).

2. We shall assume the ansatz for the generalized frame to have the Scherk-Schwarz

form (3.6), with A in (3.7) standing for the 2n massless vectors AAµ , and ΦA
B con-

taining the n2 scalars.

3. The matrix of scalar fields ΦA
B will be assumed to parameterise SO+(n,n,R)

SO(n,R)×SO(n,R) such

that HAB in (3.10) is a symmetric element of O(n, n) close to the identity, and thus

of the form (4.3) in the left-right basis. The scalar fields are therefore accommodated

in the n× n matrix.

13See [22] for an extension to the gauge symmetry breaking.
14Note that the space itself is not extended further than the double torus of dimension 2k. The derivative

in (3.2) along “internal directions” has only non-zero components along the 2k Cartan directions of the

2n-dimensional tangent space.
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4. The internal piece of the vielbein EA
M will be promoted as well to an element in

O(n, n,R) and we shall assume that the generalized metric for the background,15

when restricted to the Cartan sector, reduces to the original one, determined by the

Cartan metric of the enhanced symmetry group as given by (2.45).

5. The fluxes computed from EA
M shall be in diagonal form, i.e. there is no mixing

between barred and unbarred indices, and they reproduce the structure constants of

the left and right enhanced gauge groups. A dependence on the internal coordinates

is therefore mandatory, but we shall restrict to depence only on the Cartan subsector,

namely on the torus coordinates and their duals, EA
M = EA

M (y, ỹ).

Under these considerations, the Scherk-Schwarz reduced DFT action (3.11) reads

S =
1

2k2
d

∫
ddx
√
−ge−2ϕ

[
R+ 4∂µϕ∂µϕ−

1

12
HµνρH

µνρ +
1

4
DµMabD

µMab

−1

8
F aµνFaµν −

1

8
F̄ aµνF̄aµν −

1

4
MabF

aµνF̄ bµν (4.8)

− 1

12
fabcf̄a′b′c′M

aa′M bb′M cc′ +
1

4
fabcf

abc +
1

4
f̄abcf̄

abc

]
,

where

DµMaa′ = ∂µMaa′ +
1

2
f cdaAµ

dMca′ +
1

2
f̄ c
′
d′b′Āµ

d′Mac′ , (4.9)

F aµν = ∂[µAν]
a − 1

2
fabcAµ

bAν
c,

F̄ aµν = ∂[µĀν]
a − 1

2
f̄abcĀµ

bĀν
c,

Hµνρ = 3

(
∂[µBνρ] −Aa[µ∂νAρ]a −

1

3
fabcA

a
[µA

b
νA

c
ρ] − Ā

a
[µ∂νĀρ]a −

1

3
f̄abcĀ

a
[µĀ

b
νĀ

c
ρ]

)
,

Up to the cosmological constant term Λ = 1
4fabcf

abc + 1
4 f̄abcf̄

abc, this is the effective action

obtained from the three point functions in string theory [13, 23, 25]. The requirement

of conformal invariance of the sigma model action (2.2) determines the vanishing of the

cosmological constant, and then as argued in [13, 15, 16], in order to reproduce the string

theory results it is necessary to add the O(D,D) covariant term −e−2dΛ to the DFT

lagrangian (3.1).

We will show how this action reproduces the right patterns of symmetry breaking when

moving away from a point of maximal enhancement, i.e. when giving vacuum expectation

values to the Cartan subsector of the matrix of scalars M . But before doing that, we pause

for a second to expand on the choice of internal vielbein EA
M (y, ỹ) (or twist) realizing the

enhancement of the gauge algebra.

4.2.1 Internal double space

It was shown in [12] that the result of a generalized Scherk-Schwarz compactification of

DFT is effectively equivalent to gauging the theory and parameterising the generalized

15By “the generalized metric for the background” we mean the metric GMN ≡ δABEAMEBM .
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fields in terms of the degrees of freedom of the lower dimensional theory. In this sense,

one can simply choose the gaugings in (4.8) as the structure constants of the enhanced

symmetry algebra. However, the question whether there exists an explicit realization of

the twists EA
M that gives rise to the enhanced gauge algebra under the generalized diffeo-

morphisms (3.4) is a highly non-trivial one. In this section we discuss this issue and give

an explicit realization of the algebra.

A twist for the su(2)kL × su(2)kR algebra can be easily found as a straightforward gen-

eralization of the one found in [13] for the circle compactification. Namely, the general-

ized tangent space is extended so that it transforms in the fundamental representation

of O(d + n, d + n), and one can then think of the extra massless vectors with non-trivial

momentum and winding as coming from a metric and a B -field with a leg along these extra

n dimensions. The fields in this fictitious manifold depend on a double set of coordinates:

ym, ỹm,m = 1, . . . , k dual to the components of momentum and winding along the compact

directions, respectively. In the left-right basis it reads

EA
M (ymL , y

m
R ) =

i√
2

diag

(
J1, J1, . . . , Jk, Jk, 2Ik,−J

1
,−J1

, . . . ,−Jk,−Jk,−2Ik

)
,

(4.10)

where Jm = Jm∗ = ei
√

2αmymL , J
m

= J
m∗

= ei
√

2αmymR , are the SU(2) CFT ladder current

operators, i.e. there are k pairs of raising and lowering currents and a k dimensional identity

in the left moving block as well as in the right moving one. This generalized vielbein realizes,

under the C-bracket of generalized diffeomorphisms (4.4), k copies of su(2)L and k copies

of su(2)R. To derive this, we use that the derivative in (4.4) has non-trivial components

∂P = (0, 0, . . . , 0, 0, ∂y1L
, . . . , ∂ykL

, 0, 0, . . . , 0, 0, ∂y1R
, . . . , ∂ykR

), (4.11)

and indices are raised and lowered with

ηPQ =

(
κpq 0

0 −κpq

)
, (4.12)

κpq being the Killing metric of SU(2)k.

Note that the non-trivial commutator between the raising and lowering directions is

obtained from the last term in (3.2) (or the third term in (4.19)), which is precisely the

term that makes the C-bracket differ from the Lie bracket. It is quite remarkable that the

C-bracket, which encodes the gauge symmetries of the usual massless sector of the bosonic

string theory, i.e. of the states with N = N̄ = 1, gives rise also to the algebra of the extra

massless string modes with momentum and winding, which have N 6= N̄ . The algebra satis-

fies the quadratic constraints (3.5), and therefore the generalized Scherk-Schwarz reduction

based on this frame is consistent. Moreover, the generalized metric defined from (4.10) is

the identity matrix, and then it reproduces, in particular, the generalized metric of the

k-torus with diagonal metric and vanishing B-field in the Cartan sector.
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We now generalize this construction for generic groups, following the procedure imple-

mented in [13]. We start with the generalized vielbein (2.24)

EA =

(
eam 0

−ê laBlm êma

)(
dym

∂ym

)
, (4.13)

where e, ê and B are the vielbein, inverse vielbein and B-field on the torus at the point of

enhancement. Then we identify ∂ym ↔ dỹm, rotate to the right-left basis on the space-time

indices and bring the generalized vielbein to a block-diagonal form rotating the flat indices,

which leads to

ELR =
√

2

(
e 0

0 −e

)(
dyL
dyR

)
, (4.14)

where

dymL =
1

2
gmn[(g −B)npdy

p + dỹn] , dymR =
1

2
gmn[(g +B)npdy

p − dỹn] . (4.15)

Finally, we extend this 2k × 2k matrix so that it becomes an element of O(n, n), where

2n is the dimension of G × G. Following the construction implemented above for the

SU(2)kL × SU(2)kR case, we can incorporate the CFT ladder currents as16

ELR(yL, yR) =
i√
2


J 0 0 0

0 2e 0 0

0 0 −J̄ 0

0 0 0 −2e

 , (4.16)

where J , J̄ are (n − k) × (n − k) diagonal blocks, with n − k the number of roots of the

left and right Lie algebras, with elements

Jai = δa
iJ̃αi(yL) , J̄ai = δa

i ¯̃Jαi(yR) , (4.17)

and J̃αi(y1
L, . . . , y

k
L) = ei

√
2αi

mymL , ¯̃Jαi(y1
R, . . . , y

k
R) = ei

√
2αi

mymR are the left- and right-

moving raising and lowering currents associated to the αi root, up to the cocycle factors

(see (2.30)). Note that the 2n×2n matrix (4.16) depends only on the coordinates associated

to the Cartan directions of the algebra.

We can now calculate the structure constants replacing this generalized frame in (3.4),

namely

fABC = 3E[A
M∂MEB

NEC]
P ηNP . (4.18)

Since the currents satisfy ∂ymL J̃
αi = i

√
2αmi J̃

αi (and similarly for the right-moving sector),

in this way we get all the structure constants of G which involve one Cartan generator.

The remaining ones can be obtained in this scheme from the following deformation of

the generalized Lie derivative

(L̃EAEB)M = (LEAEB)M + ΩAB
CEC

M

= EA
N∂NEB

M − EBN∂NEAM + ∂MEA
PEB

QηPQ + ΩAB
CEC

M , (4.19)

16We have rearranged the rows and columns in (4.16) so that the extended generalized vielbein looks

like (4.10) and the multiplicative i factor was added as explained in footnote 11.
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where ΩABC vanishes if one or more indices correspond to Cartan generators and if A,B,C

are associated with roots, say α, β, γ, respectively,

ΩABC =

{
(−1)α∗β δα+β+γ if two roots are positive,

−(−1)α∗β δα+β+γ if two roots are negative.

This deformation accounts for the cocycle factors that were excluded from the CFT current

operators in (4.16) but, as discussed in section 2, they are necessary in order to compensate

for the minus sign in the OPE Jα(z)Jβ(w) when exchanging the two currents and their

insertion points z ↔ w (see appendix B for more details). It was conjectured in [18] that

such factors would also appear in the gauge and duality transformations of double field

theory, and actually, they can be included without spoiling the local covariance of the

theory. Indeed, the cocycle tensor ΩABC satisfies the consistency constraints of gauged

DFT, namely [11, 12]

ΩABC = Ω[ABC] , Ω[AB
DΩC]D

E = 0 , ΩABC∂
C · · · = 0 , (4.20)

and it breaks the O(n, n) global covariance to O(k, k). Then, all the structure constants

of G can be obtained from (4.19) using the expression (4.16) for the generalized vielbein.

To see how this works for SU(3), it is convenient to recall the non-vanishing structure

constants in the Cartan-Weyl basis

f111 = f133 =

√
3

2
, f211 = −f233 = − 1√

2
, f222 =

√
2 , f123 = −f123 = 1.

These can be obtained from (4.19) using the O(8, 8) matrix (4.16) where

J1 = J1∗ = e−i(2y
1
L−y

2
L) , J2 = J2∗ = e−i(y

1
L−2y2L) , J3 = J3∗ = e−i(y

1
L+y2L) ,

and similarly for the right sector, where y1
L, y

2
L, y

1
R, y

2
R are the coordinates associated to the

Cartan directions, and the only non-vanishing components of the cocycle tensor are

Ω123 = 1 , Ω123 = −1 . (4.21)

Note that the generalized vielbeins (4.10) and (4.16) are eigenvectors of the operator

∂M∂
M . Indeed in the LR basis, they verify

−1

4
(∂2
ymL
− ∂2

ymR
)ELR

=
i

2
√

2
diag(α2

1J
α1 , . . . , α2

n−kJ
αn−k , 0, . . . , 0, α2

1J̄
α1 , . . . , α2

n−kJ̄
αn−k , 0, . . . , 0) .

Interestingly, this can be written as

−1

4
(∂2
ymL
− ∂2

ymR
)EA

M = (N − N̄)EA
M , (4.22)

where the eigenvalues are
α2
i

2 (−α2
i

2 ) in the left-moving (right-moving) sector corresponding

to the ladder currents, and zero in the Cartan sector. This means that the generalized

– 23 –



J
H
E
P
0
6
(
2
0
1
7
)
0
0
5

vielbein satisfies a modified version of the weak constraint, holding even when N 6= N̄ ,

which looks like the operator form of the level matching condition that is necessary to

account for the extra massless fields arising at the enhancement point. The frames (4.10)

and (4.16) depend on y, ỹ and thus they violate the strong constraint. However, the alge-

bra satisfies the quadratic constraints (3.5), and therefore the generalized Scherk-Schwarz

reduction based on this frame is consistent, and now we see it is also consistent with the

level matching condition to be satisfied by the string states.

We have presented the formalism to obtain the structure constants in a constructive

way. However, once we know the answer, it is instructive to look at it from the DFT point

of view. From this perspective, the deformation of the C-bracket given in (4.19) requires

a modification of (3.1), so that the DFT action is invariant under the deformed trans-

formations. This would give the action (4.8) with the gaugings given by fABC = ΩABC .

Then, a generalized Scherk-Schwarz reduction as described above gives the gaugings con-

taining the Cartan directions and completes the set of structure constants of the enhanced

symmetry group.

4.2.2 Vielbein à la WZW on group manifolds

An alternative construction of the generalized internal vielbein can be obtained from the

formulation of DFT on group manifolds [14, 16] if the fifth condition in section 4.2 is

relaxed and one allows the vielbein to depend on coordinates beyond the torus ones and

their duals. In this framework, the vielbein depends on the n coordinates of the group

manifold corresponding to one of the factors of the enhanced symmetry group. Although

this gives a geometric frame, in the sense that it does not depend on the dual coordinates

and then it obeys the strong constraint, it is a natural construction for the WZW model

with gauge group G at level 1, which is the CFT describing the propagation of the bosonic

string on the corresponding group manifold.

In this formulation, the vielbein is of the form (2.26), generalized as in (4.3) (i.e. we

use a different vielbein for the left and the right sectors, e, ē, giving rise to the same metric

(see footnote 12)), namely [9] (
EL
ER

)
=

1√
2

(
e− êB ê

−ē− ˆ̄eB ˆ̄e

)
. (4.23)

The frames e, ē are obtained from the left- and right-invariant Maurer-Cartan forms, taking

values on the associated Lie algebra

−iγ(y, z)−1∂mγ(y, z) = em
ata, (4.24a)

−i∂mγ(y, z)γ(y, z)−1 = ēm
ātā, (4.24b)

where we have distinguished between the coordinates y associated to the Cartan generators,

and the coordinates z associated to the ladder generators.17 Here {ta} is an orthonormal

17Note that the coordinates in (4.24a) and (4.24b) are the same. There is no dependence on left and

right coordinates separately as in the previous section. On the contrary, one needs to introduce the (n− k)

coordinates z associated to the roots, although these coordinates have no natural interpretation from the

toroidal geometry.
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basis for the Lie algebra associated with the gauge group, and it can be freely taken as

the standard basis with the inner product defined by the Killing form κab. If Bmn is taken

such that its field strength in flat indices is given by

Habc = fabc, Hāb̄c̄ = fāb̄c̄, (4.25)

the vielbein (4.23) gives the desired g× g algebra [9, 14–16].

We now show that this vielbein also satisfies the assumption (4), namely the generalized

metric when restricted to the Cartan subsector reduces to that of the torus. This can be

done by choosing a properly factorized parameterisation γ(y, z). Let

γ(y, z) = Γ(z) exp (iyrhr), (4.26)

where {hr} are the Cartan generators in the Chevalley basis. After replacing it into (4.24a)

we obtain

em
ata = −i exp (−iyrhr)Γ(z)−1∂mΓ(z) exp (iyrhr) = −i exp (−iyrhr)∂m exp (iyrhr)

= hm = αm
ata, (4.27)

where αm
a are the simple roots of the Lie algebra. Condition (4) follows from the fact that

αm
aκabαn

b = Amn is the Cartan matrix. The same can be done for the right sector.

Notice that this construction gives gL = gR, and there is no straightforward general-

ization of this construction that yields different groups.18

5 Effective description around a point of maximal enhancement

In this section we show that the effective action (4.8) reproduces the string theory results

at the vecinity of a particular point in moduli space where the symmetry enhancement is

maximal, i.e. given by G×G, with G a semi-simple and simply laced Lie group of dimension

n and rank k. We check in particular that it gives the right masses of scalar and vector

fields when moving slightly away from the point of symmetry enhancement. We do this in

general for any T k and G×G group, and then inspect more closely the example of T 2 at the

SU(3)L×SU(3)R point, which is the simplest setup that has already all the non-trivialities

of the generic case. All the necessary definitions and conventions of Lie algebras are given

in appendix A.

Let us first recall the notation. We use a, b = 1, . . . n to denote indices in the adjoint

representation, and p, q = 1, . . . , k for the Cartan subsector. We will use the Chevalley ba-

sis defined in (A.11) where the triplet ep, hp, fp of raising, Cartan and lowering generators

associated to the simple root p satisfy the standard su(2) commutation relations. Addi-

tionally, we use an index u = 1, . . . , 1
2(n− 3k) to denote the lowering generators associated

to the non-simple roots. The index ı = 1, . . . , 1
2(n− k) labels all negative roots (and thus

ı = {p, u}).
18Different scalings for the structure constants on the left and on the right sector can be obtained by allow-

ing dependence on one dual coordinate [24]. However, as pointed out in [14], different scalings correponds

to having different levels in the Kac-Moody algebra of left and right-movers and thus has no connection to

the CFT of the bosonic string on a torus.
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The 2n vectors that span the enhanced symmetry group G×G are split into two types:

1. 2k real vectors Ap, Āp along the k Cartan directions

2. 2× 1
2(n− k) complex vectors Aı, Āı along ladder generators (Ai = (Aı)†) which can

be further split into simple and non-simple roots Aı = {Ap, Au} and Āı = {Āp, Āu}

The n2 scalars are split into three types:

1. k2 real scalars of the form Mpp′ with both legs along a Cartan direction

2. k(n− k) complex scalars of the form Mpı with one leg along a Cartan direction

3. (n− k)2 complex scalars of the form M ı with no legs along Cartan directions

The vectors in (1) are massless at all points in moduli space and parameterise gµp±Bµp.
The vectors in (2) get masses when moving away from the point of symmetry enhancement,

as we will discuss in detail. The scalars in (1) are the ones that remain massless at all

points in moduli space. They parameterise the metric and B-field on the k-torus, or rather

its deviation from the value at the enhancement point (which we take to be the origin

in moduli space). In the neighborhood of an enhancement point these scalars acquire a

vacuum expectation value vpp
′
. We thus redefine

Mpp′ → 4vpp
′
+Mpp′ , (5.1)

so that
〈
Maa′

〉
= 0 for all a, a′. The factor of 4 is introduced in order to compare the results

with those coming from string theory. We show now in detail how these vevs break the

enhanced symmetry spontaneously. The covariant derivative of the scalars given in (4.9)

becomes, for those with one index along a Cartan direction

DµMaa′ = ∂µMaa′ +
1

2
f cdaAµ

dMca′ +
1

2
f̄ c
′
d′b′Āµ

d′Mac′ . (5.2)

The square of this gives a mass to the vectors Ap. Similar terms give masses to all vectors

associated to ladder generators. We get19

m2
Ap = v(2)pp , m2

Au = (ntv(2)n)uu , (5.3a)

m2
Āp′

= (v(2)t)p
′p′ , m2

Āu′
= (ntv(2)tn)u

′u′ , (5.3b)

where we have defined

v(2) = vA−1vt , (5.4)

and v is the k × k matrix of vevs, vpp
′

in the Chevalley basis, while n is the matrix of

coefficients np
u in the linear combination of the root αu

αu = np
uαp . (5.5)

19Again, in order to compare with string theory later on, we should take the structure constants in the

DFT effective action equal to one half the structure constants in the Chevalley basis. This can be done by

rescaling all the generators: Ja → 1
2
Ja.
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Some of the scalars acquire masses from the potential term ff̄MMM in the effective

action (4.8), which becomes

Vff̄MMM = −1

2

{
vpp
′
[
(|Mpp′ |2 − |Mpp′ |2) + np′

u′(|Mpu′ |2 − |Mpu′ |2)

+np
u(|Mup′ |2 − |Mup′ |2) + np

unp′
u′(|Muu′ |2 − |Muu′ |2)

]}
+fabcfa′b′c′M

aa′M bb′M cc′ , (5.6)

where we have used the structure constants in (A.20), (A.22). We see that only scalars of

type (3) (with no legs along Cartan directions) acquire masses from this term, with a mass

squared proportional to the vev’s. Scalars of type (2) remain massless at this level and are

the Goldstone bosons of the spontaneous symmetry breaking. As we will see shortly, they

acquire masses that are quadratic in the vevs, matching those of the vectors.

We discuss now in more detail the process of spontaneous symmetry breaking. By

giving arbitrary vevs to all scalars in the Cartan subsector, we see that all the gauge

vectors acquire mass and the gauge symmetry is spontaneosly broken to U(1)kL × U(1)kR.

Similarly, if v has a row with all zeros, let’s say the row p, then the corresponding (complex)

vector Ap remains massless, and there is an SU(2) subgroup of GL that remains unbroken.

If the matrix v has a column with all zeros, the vectors Āp of the right-moving enhanced

gauge symmetry stay massless and there is an SU(2) subgroup of GR that stays unbroken.20

Since the Cartan matrix is non-degenerate, the converse is also true: the only way that a

vector Ap remains massless is if vpp
′

= 0 for all p′:

vpp
′

= 0 ∀p′ ⇔ m2
Ap = 0,

vpp
′

= 0 ∀p ⇔ m2
Āp′ = 0 . (5.7)

For the vectors associated to non-simple roots the situation is more tricky as it depends on

which integers np
u are non-zero. Au remains massless if vpp

′
= 0 for all p such that np

u 6= 0

and for all p′. Note that we cannot preserve only the vectors corresponding to non-simple

roots: if all the vectors corresponding to simple roots are massless, then necessarily v = 0

and then there is no symmetry breaking at all. This implies that the spontaneus breaking

of symmetry always involves at least one U(1) factor, corresponding to the Cartan of the

SU(2) associated to the simple root whose vector becomes massive. Thus we cannot go

from one point in moduli space of maximal enhancement (given by a semi-simple group)

to another of maximal enhancement by a spontaneous breaking of symmetry. We will

comment more on this in the next section.

Regarding the scalars, arbitrary vevs (for scalars of type (1)) give masses to scalars

of the type (3), with no legs along Cartan directions. The squared masses are linear in

the vevs. Scalars of type (2), with one leg along a Cartan direction, stay massless at this

level. However, it is easy to see that they acquire a mass of the same order of the vectors,

namely second order in the vevs, coming from expanding HAB in (3.11) to second order in

20In the following, whenever not necessary, we do not make the distinction between a positive or a negative

root, denoted respectively by i and ı.
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M , which gives (cf. (4.3) for the expansion at first order)

HAB =

(
1 + 1

2MM t M

M t 1 + 1
2M

tM

)
. (5.8)

From the term ffHHH in (3.11) we get a contribution that is quartic in M coming from

two factors of H expanded at second order and the third factor at zeroth order. This gives

masses to the scalars that are precisely those of the vectors, namely we get (including also

the linear order contribution)

m2
Mpp′ = −2vpp′ +m2

Ap +m2
Āp′ ,

m2
Mpu′ = −2vpp′np′

u′ +m2
Ap +m2

Āu′ ,

m2
Muu′ = −2np

uvpp′np′
u′ +m2

Au +m2
Āu′ ,

m2
Mpi′ = m2

Āi′ . (5.9)

We thus get that for arbitrary vevs, all vectors and scalars except those along Cartan

directions acquire masses, and the symmetry is broken to U(1)kL × U(1)kR. If vpq = 0 for

a given p and for all q, while all other vevs are non-zero, then the remaining symmetry is

(SU(2) × U(1)k−1)L × U(1)kR where the SU(2)L factor corresponds to the root p, and the

massless scalars are, besides those purely along Cartan directions, those of the form Mpq.

5.1 Comparison with string theory

Let us compare the vector and scalar masses that we got in the previous section from

the double field theory effective action to those of string theory, given by (2.15a). We

decompose the generalized metric H as in (3.9) where EA
M is the generalized vielbein at

the point of enhancement, that we will call E0, and HAB represents the fluctuations from

the point, parameterised in terms of the matrix M as in (4.3) (though here we will need the

second order term as well, the expression up to second order is given in (5.8)21). Inserting

this in the mass formula we get

m2 = 2(N + N̄ − 2) + ZtEt0

(
1 + 1

2MM t M

M t 1 + 1
2M

tM

)
E0Z . (5.10)

On the other hand, from eq. (2.27)

E0 Z =

(
paL
paR

)
. (5.11)

We thus get

m2 = 2(N + N̄ − 2) (5.12)

+ptL

(
1 +

1

2
MM t

)
pL + ptR

(
1 +

1

2
M tM

)
pR + ptLMpR + ptRM

tpL .

21Note that M here is a k × k matrix spanning along the Cartan directions only, as in section 4.1.
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For left-moving vectors one has N̄ = 1 and either N = 1 and pL = pR = 0, or N = 0 and

pR = 0, paL = αa with α a root of the enhanced gauge algebra (which have norm ptLpL = 2).

The former vectors (Cartans) are massless for any M , while the latter have mass

m2
Aα =

1

2
αtMM tα . (5.13)

Similarly, for the vectors in the right sector, we get

m2
Āα =

1

2
αtM tMα . (5.14)

Inserting the expression (4.4) for the matrix M in terms of δg − δB ≡ v we get

m2
Aα =

1

2
αtê0vg

−1
0 vtêt0α = αtê0vA

−1vtêt0α = αav
(2)
ab α

b , (5.15)

where in the second equality we have used that the metric at the points of maximal en-

hancement is given by the Cartan matrix, eq. (2.45), and in the third equality the definition

of v(2) given in (5.4). This is precisely the mass for the left moving vectors found from

DFT, eq. (5.3), where for simple roots the contraction of v(2) in an orthonormal basis with

a root αp, gives the component (v(2))pp in the Chevalley basis as in (5.3). For a non-simple

root αu we have to contract additionally with the components of αu in the basis of simple

roots, given by the integers n, and we recover again the masses in (5.3).

For the scalars, those of type (1) (both legs along Cartan directions) have N = N̄ = 1,

pL = pR = 0, and are massless for any M . Scalars of the form (2) (one leg along Cartan)

have N = 1 and pL = 0, pR = α (or the same exchanging left and right). Their masses are

thus exactly those of the vectors corresponding to the same root, namely

m2
Mpi′

= m2
Āi
′ , m2

Mip
= m2

Ai , (5.16)

in agreement with what we have found from DFT, eq. (5.9), confirming that these are the

Goldstone bosons of the spotanteous breaking of symmetry. Finally, scalars of type (3)

have N = N̄ = 0, pL = α, pR = β and their masses are

m2
Mαβ

= αtMβ + βtM tα+
1

2
αtMM tα+

1

2
βtM tMβ . (5.17)

Using again (4.4) to write this in terms of v we get

m2
Mαβ

= −2αavabβ
b + αav

(2)
ab α

b + βav
(2)t
ab βb

= −2αavabβ
b +m2

Aα +m2
Āβ . (5.18)

This precisely matches the masses found from DFT, eq. (5.9), as, for example, taking

α = αp, β = αp′ α
aVabβ

b = vpp
′
.

We have shown that the masses found from DFT precisely resproduce the string theory

masses, up to second order in the vacuum expectation value of the scalars along Cartan

directions. We have identified these vacuum expectation values with the fluctuations of

the metric and B-field away from the point of maximal enhancement, namely

v = δg − δB . (5.19)

In the next section we will show this matching even more explicitly for the case of T 2

at the SU(3)L × SU(3)R enhancement point.
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5.2 Example of T 2 around SU(3)L × SU(3)R enhancement point

Let us be more explicit with certain aspects discussed in the previous section by inspecting

the effective action for a T 2 around the SU(3)L×SU(3)R enhancement point. The relevant

formulas for the su(3) algebra are given in A.2. Here a = 1, . . . , 8, i = 1, 2 and the index u

has a single value that we call 3.

The masses for the vectors in the left-moving sector (5.3a) are

m2
A1 =

2

3
((v11)2 + v11v12 + (v12)2),

m2
A2 =

2

3
((v21)2 + v21v22 + (v22)2) , (5.20)

m2
A3 =

2

3
((v11)2 + v11v12 + (v12)2 + (v21)2 + v21v22 + (v22)2

+2v11v21 + v11v22 + v12v21 + 2v12v22) ,

where the vevs are given in the Chevalley basis. For the right-moving sector we have

m2
Ā1 =

2

3
((v11))2 + v11v21 + (v21)2) ,

m2
Ā2 =

2

3
((v12)2 + v12v22 + (v22)2) , (5.21)

m2
Ā3 =

2

3
((v11)2 + v11v21 + (v21)2 + (v12)2 + v12v22 + (v22)2

+2v11v12 + v11v22 + v21v12 + 2v21v22) .

The potential (5.6) reads

V = −1

2

[
v11(|M11|2 − |M11|

2) + v12(|M12|2 − |M12|
2)

+v21(|M21|2 − |M21|
2) + v22(|M22|2 − |M22|

2)

+(v11 + v12)(|M13|2 − |M13|
2) + (v11 + v21)(|M31|2 − |M31|

2 (5.22)

+(v12 + v22)(|M32|2 − |M32|
2) + (v21 + v22)(|M23|2 − |M23|

2)

+(v11 + v12 + v21 + v22)(|M33|2 − |M33|
2)
]

+ fabcf̄
a′b′c′Maa′M bb′M cc′ .

We can see explicitly what we discussed in the previous section. Giving vevs to all

vpp
′

breaks the full SU(3)L × SU(3)R to U(1)2
L × U(1)2

R. If v11 = v12 = 0, and the others

are non-zero, we break to (SU(2)×U(1))L× (U(1)2)R, where the SU(2)L that is preserved

corresponds to the root 1. The scalars M1i stay massless at linear order in the vevs,

while the other scalars with no roots along the Cartans are massive. As discussed in the

previous section, the scalars M2i acquire a mass at second order in the vevs, equal to

that of the vector Āi, and are the Goldstone bosons for the symmetry breaking on the

right sector. The scalars M1i also acquire a second order mass given by the mass of the

vectors Āi. Similarly, for v21 = v22 = 0 and the others non-zero we preserve the same

group, but the unbroken SU(2)L corresponds to the second root. For v11 = v21 = 0 we

preserve (U(1)2)L × (SU(2)×U(1))R, where the SU(2)R corresponds to the first root, and

the massless scalars are Mi1. In order to break to (SU(2) × U(1))L × (SU(2)× U(1))R we
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need to set three vevs to zero, and the only non-zero vev is along the Cartans of the two

massive vectors (i.e. only v22 6= 0 if the two preserved SU(2)’s are those of the root 1). We

also see that we cannot have the third vector massless while the other two massive, as we

anticipated in the previous section. We thus cannot break to SU(2)2
L × SU(2)2

R.

Let us compare now to the situation in string theory, discussed in detail in section 2.4.2.

The four vevs vpp
′

correspond to the fluctuations of g and B away from the enhancement

point, which in the case of T 2 are parameterised by the two complex moduli τ and ρ, or

rather by δτ = τ − (−1
2 + i

√
3), δρ = ρ − (−1

2 + i
√

3). We can see from figure 2 that

in order to preserve (SU(2) × U(1))L × (SU(2) × U(1))R we need to move either along

the curve |τ | = |ρ| = 1, or along the vertical line τ1 = ρ1 = −1
2 . Both curves are one-

dimensional and thus given in terms of a single parameter, or a single vev, in accordance

to what we just discussed. Staying away from these lines, but still on the plane τ = ρ,

requires two independent parameters, in accordance to the statement that in order to break

to U(1)2
L × (SU(2)×U(1))R one needs two vevs.

We now find the relation between the vevs vpp
′

and δτ, δρ directly by comparing

the DFT and the string theory masses for the scalars at linear order in the vevs, and then

show that we indeed get equation (5.19) relating the vevs to the metric and B-field. Setting

equal the DFT and string theory masses (that we write on the left and right hand side,

respectively) for the following scalars, whose momentum and winding numbers are given

in table 3, we get

M11 : v11 = −
√

3δρ2 + 3δτ1 −
√

3δτ2 ,

M22 : v22 = 2
√

3δτ2 − 2
√

3δρ2 ,

M33 : v11 + v12 + v21 + v22 = −2
√

3δρ2 − 3δτ1 −
√

3δτ2 ,

M23 : v21 + v22 = −3δρ1 −
√

3δρ2 − 3δτ1 +
√

3δτ2 .

And thus we identify, in the Chevalley basis,

v =
4

3

(
3δτ1 −

√
3(2δρ2 + δτ2) 3(δρ1 − δτ1) +

√
3(δρ2 − δτ2)

−3(δρ1 + δτ1) +
√

3(δρ2 − δτ2) −2
√

3(δρ2 − δτ2)

)
. (5.23)

We can see from here the different directions of symmetry breaking: the plane τ = ρ has

δτ = δρ and thus v12 = v22 = 0. Therefore, on this plane the SU(2)R corresponding

to the root 2 is unbroken. On the vertical line one has additionally δτ1 = δρ1 = 0, and

thus only v11 6= 0, and preserving additionally the SU(2)L symmetry corresponding to the

root 2. The curve |τ | = 1 has δτ1 = − τ2
τ1
δτ2 =

√
3δτ2 and thus only v21 6= 0, so the

(SU(2)× U(1))L × (SU(2)× U(1))R unbroken symmetry corresponds to the root 1 on the

left and 2 on the right.

We can also check that we recover the masses of the vectors coming from string theory.

Replacing these expressions into the mass for the vectors (5.21) we get the string theory
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masses expanded at second order in the fluctuations

m2
A1
l

=
4

3

(
δρ2

1 − δρ1δτ1 −
√

3δρ1δτ2 + δρ2
2 −
√

3δρ2δτ1 + δρ2δτ2 + δτ2
1 + δτ2

2

)
,

m2
A2
l

=
4

3

(
δρ2

1 + 2δρ1δτ1 + δρ2
2 − 2δρ2δτ2 + δτ2

1 + δτ2
2

)
, (5.24)

m2
A1
l

=
4

3

(
δρ2

1 − δρ1δτ1 +
√

3δρ1δτ2 + δρ2
2 +
√

3δρ2δτ1 + δρ2δτ2 + δτ2
1 + δτ2

2

)
.

We now check that the expression we obtained for v is in agreement with (5.19). Recall,

from (4.6) we have

−(e0)apMab(e0)bp′ = −Mpp′ = (δg − δB)pp′ . (5.25)

Taking the expectation value of this, and using (5.1)

Mpp′ → 4vpp
′
+Mpp′ ,

we get

−4(e0)apvab(e0)bp′ = (δg − δB)pp′ . (5.26)

Up to first order in δρ and δτ one has

vab =
2√
3

(
δρ2 + δτ2 −δρ1 + δτ1

δρ1 + δτ1 δρ2 − δτ2

)
(5.27)

(δg − δB)Chevalley = −4et
2√
3

(
δρ2 + δτ2 −δρ1 + δτ1

δρ1 + δτ1 δρ2 − δτ2

)
e = (5.23) , (5.28)

where

e =

(√
3/2 0

−1/2 1

)
(5.29)

is the vielbein at the SU(3)L×SU(3)R enhancement point. We have thus verified eq. (5.19),

namely the vacuum expectaction value of the scalar fields with two Cartan indices are noth-

ing but the deviation of metric and B-field away from the point of symmetry enhancement.

6 Effective description for all moduli space

Up to this point we have been able to describe the effective behavior of the bosonic string

compactified on a torus using DFT strategies at any point in moduli space. For points

with no symmetry enhancement, the usual (ungauged) DFT formulation directly gives the

answer. Symmetry enhancement, on the other hand, requires an ad-hoc increase of the

dimension of the O(d+ k, d+ k) realization in order to account for the full massless sector

in the low energy regime. Spontaneous symmetry breaking provides a suitable process for

further exploring the neighborhood of each enhancement point in moduli space.

If symmetry breaking in target space can be integrated beyond the infinitesimal level,22

i.e. vevs can acquire a finite value, it can be realized as a process for describing not only

22A hint that this can be the case is given by the fact that spontaneous symmetry breaking is related to

exactly marginal deformations of the associated WZW model.
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a neighborhood of the enhancement point but an extended “patch” in moduli space. A

natural question arising is if it is possible for this patch to cover the full moduli space. Or

equivalently, if there exists a unique DFT describing the entire moduli space this way.

For the simplest case of the compactification on a circle, the answer is positive. Indeed,

the DFT action for the bosonic string compactified on a self-dual circle, which is associated

with the unique enhancement point in the corresponding moduli space, gives rise after

symmetry breaking to the action for any other circle compactification [13]. However, for

a compactification on a higher dimensional torus, if we insist in looking for a unified

description in a maximal enhancement point, the answer fails to be positive already for

2-dimensional tori. As we have seen, maximal enhancement points for a 2-torus are those

corresponding to SU(3)L × SU(3)R and SU(2)2
L × SU(2)2

R, the first group having higher

dimension than the second one. But SU(2)2 cannot be realized as a regular subgroup of

SU(3), and therefore points with SU(3)L× SU(3)R and SU(2)2
L× SU(2)2

R cannot be linked

by a symmetry breaking, a fact that has been already pointed out in a more general setting

in a previous section. Neither SU(3)L × SU(3)R nor SU(2)2
L × SU(2)2

R could describe the

full moduli space.

In order to accommodate all maximal enhancement points in a single approach, we shall

need additional dimensions. How the new higher dimensional DFT should be implemented

and how we need to treat the new “unphysical” directions is the subject of the rest of

this section.

For simplicity, let us discuss, again, the 2-dimensional torus. Even though the vectors

that are purely left-moving at one point in moduli space become a mixture of left and

right-moving vectors away from that point, left-moving massless vectors never become

purely right moving at some other point. We thus treat the left-moving and right-moving

vectors independently in what follows. As discussed, SU(2)2 is not a regular subgroup

of SU(3), but both groups can be embedded in the rank 3 group SU(2) × SU(3). Let

us therefore consider a 3-dimensional toroidal compactification with (SU(2) × SU(3))L ×
(SU(2)× SU(3))R enhancement. The action obtained through DFT strategies with O(d′+

11, d′+11) symmetry is23 (4.8) with a, b, . . . , a′, b′, . . . running in the adjoint representation

of SU(2)× SU(3). The structure constants are explicitly given in appendix A.

If we set all Cartan scalar vevs to zero except v11, SU(2)×SU(3) spontaneously breaks

into U(1)× SU(3). Indeed, since we have v2p′ = v3p′ = 0 for any p′, from (5.7) follows that

A2 and A3 remain massless and the same is true for A
2
, A

3
since vp2 = vp3 = 0 for all p.

The vector A4 also remains massless since np
4 6= 0 for p = 2, 3. On the other hand, vectors

indexed with a Cartan entry never get mass. Therefore, only vectors with a leg in a root

of SU(2), namely, A1, A1, A
1

and A
1
, acquire mass through (5.2). In turn, some scalars

also acquire mass. These are those scalars with at least a leg in a root of SU(2). More

explicitly, Mpp′ , Mpp′ , Mpp′ and Mpp′ with p = 1 and p′ = 1, . . . , 4 and with p = 1, . . . , 4

and p′ = 1, respectively, through (5.8.1) and (5.8.2), Mpp′ and Mpp′ with p = 1, . . . , 3

and p′ = 1 and Mpp′ and Mpp′ with p = 1 and p′ = 1, . . . , 3 through (5.8.4). The scalars

23Here d′ stands for the dimension of the extended space and 11 is the dimension of SU(2) × SU(3). We

do not use the previous notation for reasons that will become clear in what follows.

– 33 –



J
H
E
P
0
6
(
2
0
1
7
)
0
0
5

that remain massless agree with those of a 3-dimensional toroidal compactification with

a (U(1) × SU(3))L × (U(1) × SU(3))R enhancement. When truncating away the massive

modes, the action (4.7) reduces to the one with (U(1)× SU(3))L× (U(1)× SU(3))R. After

realizing that the structure constants are in block form, i.e. they do not mix indices from

SU(2) and SU(3), it is straightforward to see from (4.8) that the kinetic terms reduce

consistently. For instance, DµM11 = ∂µM11, F 1
µν = ∂[µA

1
ν], etc., while the corresponding

expressions for the fields with entries in SU(3) remain as in (4.8) but only with the SU(3)

block of structure constants. Concerning the potential term, contributions coming from

structure constants with a leg in SU(2) are projected out and a potential compatible with

a (U(1)× SU(3))L × (U(1)× SU(3))R enhancement is retained.

If instead of v11 the only non-vanishing vev is v33 (alternatively, v22), SU(2) × SU(3)

beaks to U(1)× SU(2)2. Since v1p′ = v2p′ = 0 for any p′, it follows that A1 and A2 remain

massless, and the same happens when exchanging left and right. Vectors with a leg in

a specific simple root of SU(3), namely, A3, A3, A
3

and A
3
, acquire mass through (5.2).

Also A4, A4, A
4

and A
4

acquire mass, this time since neither n3
4 nor v33 vanish. Scalars

with at least an entry equal to these specific simple roots or the non-simple roots acquire

mass as well due to (5.8). The remaining massless field content is, thus, consistent with a

(U(1)×SU(2)2)L× (U(1)×SU(2)2)R enhancement. When projected out onto the massless

sector, the action (4.7) reduces to the one with this symmetry. This time the proof is trickier

than before. It follows from (4.8) after realizing that the structure constants with an entry

equal to 3 are non trivial when the other entries are associated with the corresponding

simple roots of SU(3) or the non-simple roots, which are precisely those modes that are

removed from the massless sector.

We have been able to embed both maximal enhancements of T 2, namely, SU(3)L ×
SU(3)R and SU(2)2

L × SU(2)2
R, into a single maximal enhancement group associated with

a compactification on T 3. The increase in the torus dimension does not respond to the

necessity of encoding any extra massless string winding mode and it is related with the

appearance of the also unwanted U(1) factors. This fact suggests a way of consistently

removing the extra “unphysical” direction, namely, by decompactifying it. While doing

so in (4.7), all vectors and scalars with at least an index in U(1) accommodate as new

components in the metric and B-field of a higher dimensional extended space. This picture

turns out to be consistent if this extended space agrees with the original one, namely, if

d′ = d − 1. Heuristically, when we borrow a dimension from the extended d-dimensional

space, we compactify it to get a 3-dimensional torus and we consider the action associated

with the (SU(2) × SU(3))L × (SU(2) × SU(3))R enhancement, we get a unified way of

describing both maximal enhancements of T 2 if, in the end, we decompactify the extra

dimension, giving it back to the extended space.

Concerning the choice of SU(2)×SU(3), it is clear that it was not the only one available.

For instance, another rank 3 choice would be SU(4). And of course there are infinitely

many other groups with rank greater than 3, which in turn would need a higher number of

decompactified dimensions. The choice of SU(2) × SU(3) is the minimal one since among

those groups with lowest rank that have SU(3) and SU(2)2 as regular subgroups, it is the
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one with the lowest dimension. The dimension of this group is the one we expect: by

inspecting tables 2.1 and 2.2 that show the massless vectors at the two points of maximal

enhancement, we see that the first massless vector in table 2.1 is the same as the first

vector in table 2.2, while the second massless vector in table 2.1 does not appear in the list

of massless vectors in table 2.2. Thus, the number of left-moving vectors that are massless

at some point in moduli space is 2 × 1 (A1, A1) plus 2× 3 (the second vector in table 2.1

together with the second and third vectors in table 2.2) plus the two Cartan vectors which

gives a total of 10. This is the same as the dimension of SU(2) × SU(3) minus one for the

extra Cartan direction that is decompactified at the end of the process.

The discussion for the 2-dimensional torus can be generalized for higher dimensions.

Indeed, the problem of describing in a unified way the entire moduli space associated with

a compactification on a k-dimensional torus could be solved by looking at a compactifi-

cation in an enhancement point on a torus of higher dimension, say k + p, such that the

entire moduli space of the k-dimensional torus in the boundary can be reached, after sym-

metry breaking, by decompactifying p directions. These decompactified directions will be

absorbed by the extended space so they will remain physical if we “borrow” them from the

extended space at first: they “return” to space-time after the process ends.

This strategy can always be implemented by simply considering the direct product of

all maximal enhancement groups, but of course this choice does not constitute the most

“economical” one. In order to discuss how to get the minimal group, let us briefly recall

Dynkin’s recipe for obtaining maximal regular subalgebras of a given algebra [26]. Let g

be a semi-simple Lie algebra. Its maximal regular subalgebras are constructed either by

removing from the associated extended Dynkin diagram a node whose mark is a prime

number, this yields the semi-simple ones, or by removing two nodes with mark 1 and

the addition of a u(1) factor, which gives the non-semi-simple subalgebras. As we have

already seen, maximal regular semi-simple subalgebras cannot be reached by means of

a spontaneous symmetry breaking. Therefore, we shall concentrate on non-semi-simple

maximal subalgebras.

For simply-laced algebras Dynkin’s procedure for obtaining non-semi-simple regular

maximal subalgebras simplifies. Indeed, the maximal non-semi-simple regular subalgebras

of su(N) are obtained by removing a single node from its diagram, while for so(2N) they

are obtained after removing a boundary node. For the exceptional Lie algebras E6 and E7,

the non-semi-simple regular subalgebras can be determined by removing a boundary node

lying in the longest leg of its Dynkin diagram. E8, on the other hand, has no non-semi-

simple maximal regular subalgebras at all. A spontaneous symmetry breaking is related to

a chain of projections that reduce to one of these when restricted to the semi-simple part

of the gauge group.

Having all these facts in mind, it is straightforward to visualize the procedure for

constructing the minimal enhancement group. Let us work out some specific examples.

For T 2 the maximal enhancement points correspond to the groups24 SU(2)2 and SU(3),

whose Dynkin diagrams are given in table 6.1. The minimal group including these ones

24From now on we discuss only one sector of the enhancement group G×G.
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Enhancement group Unifying group

Rank Group Dynkin diagram Rank Group Dynkin diagram

2
SU(2)2

3 SU(2)× SU(3)
SU(3)

Table 4. The case T 2. The groups refer to one single sector, say the left-moving one.

Enhancement group Unifying group

Rank Group Dynkin diagram Rank Group Dynkin diagram

3

SU(2)3

4 SU(4)× SU(2)SU(3)× SU(2)

SU(4)

Table 5. The case T 3.

Enhancement group Unifying group

Rank Group Dynkin diagram Rank Group Dynkin diagram

4

SU(2)4

7 SO(12)× SU(2)

SU(3)× SU(2)2

SU(4)× SU(2)

SU(3)2

SU(5)

SO(8)

Table 6. The case T 4.

regularly must have rank less than or equal to 4 since the enhancement point for the torus

T 4 with diagrams includes them. By removing a node from this diagram we get

two enhancement points for T 3 that actually work: SU(3) × SU(2), with diagram ,

and SU(4), whith diagram . We recognize the answer in the first group, since it has

the smallest dimension.

For T 3 the maximal enhancement points are given in table 6.2. Again, it is possible

to include all these graphs as subdiagrams of the enhancement group of a torus with a

single extra dimension. Indeed, SU(4)×SU(2) and SU(5), whose diagrams are and

, do the job. The first one has the lowest dimension.

The 4-dimensional torus involves new aspects. The diagrams to ensemble are those

listed in table 6.3.

A new feature is the fact that one of the maximal enhancement points is associated

with a group, SU(2)4, which is a regular subgroup of the group associated with another

maximal enhancement point, i.e. SO(8). Nevertheless, as we have already mentioned, two

enhancement points such that the group for one of them is a semi-simple maximal regular

subgroup of the other are not linked by a spontaneous symmetry breaking. Both diagrams

must be considered separately.

It can straightforwardly be checked that it is impossible to include all the diagrams

in a diagram associated with a torus with a single extra dimension. Indeed, the minimal

– 36 –



J
H
E
P
0
6
(
2
0
1
7
)
0
0
5

Enhancement group Unifying group

Rank Group Dynkin diagram Rank Group Dynkin diagram

5

SU(2)5

9 SO(16)× SU(2)

SU(3)× SU(2)3

SU(4)× SU(2)2

SU(3)2 × SU(2)

SU(5)× SU(2)

SU(4)× SU(3)

SU(6)

SO(8)× SU(2)

SO(10)

Table 7. The case T 5.

diagram including the full list in table 6 turns out to be SO(12)×SU(2), namely, a maximal

enhancement point of T 7 with diagram . (Note that if regular maximal semi-

simple subgroups were reached by a symmetry breaking, the minimal diagram would be

SO(12), namely, a point in T 6).

In the following table we present the unifying scheme for T 5. For k ≥ 6 the new feature

is the appearance of the exceptional groups in the list. Since these groups must be treated

separately, they do not add more than abstruse combinatorics to the problem and we prefer

not to make explicit the solutions beyond T 5.

Let us now check that this formal group theory exercise gives answers with (very)

sensible physical meaning. In the T 2 case, we have shown that the dimension of the smallest

“unifying group”, SU(2)×SU(3), is the one we expect by counting the number of different

left-moving vectors that are massless at either the SU(2)2 or the SU(3) enhancement point.

The same exercise for T 3 gives a surprising answer: the number of different massless

vectors combining those at the three maximal enhancement points is 16. We would thus

expect the group that contains all these to have dimension equal or greater than 20 (16

+ 3 Cartan directions on T 3 + 1 extra Cartan from the direction to be decompactified).

However, the smallest unifying group, shown in table 5, is SU(4) × SU(2), which has

dimension 18. Is group theory giving a more economical choice that one needs from string

theory? The answer is negative, and we can understand the result from both sides. From

string theory, we show in appendix C that by choosing different directions on T 4 to take

the decompactification limit, one can recover from the 14 vectors associated to roots of

SU(4) × SU(2), the total of 16 different vectors that are massless at some point in the

moduli space of the T 3 compactification. From group theory, this is equivalent to saying

that a given root on a 4-dimensional lattice can give rise to different 3-dimensional roots

by taking different 3-dimensional subspaces.
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7 Conclusions

The Abelian gauge symmetries of KK compactifications in point-particle theories corre-

spond to isometries of the compact directions. In string theory, the appearance of winding

modes in addition to KK modes, suggests that the corresponding isometries would be

those of a double torus incorporating the perspective of both, momentum and winding

modes. Actually, U(1)kL × U(1)kR is the isometry of T 2k, and double field theory seems to

be the appropriate framework to deal with these double geometries. The O(d + k, d + k)

global symmetry of DFT, where d is the number of non-compact dimensions, allows to

symmetrically include a torus and its T-dual one.

However, the non-Abelian gauge symmetries arising in toroidal compactifications of

string theory require additional structures. As shown in [13], the enhancement of the gauge

symmetry occuring in compactifications of one dimension on a string-size circle, requires

to promote the O(d+1, d+1) symmetry to O(d+3, d+3). Now, we have incorporated the

enhanced gauge symmetry arising at special points in the moduli space of compactifications

on T k by building an O(d + n, d + n) structure, where n + n is the dimension of the left

and right enhanced gauge groups. The effective action of toroidal compactifications of

bosonic string theory was reproduced by a generalized Scherk-Schwarz reduction of the

DFT action. The reduced action gives the precise string theory masses of vectors and

scalars close to a point of maximal enhancement, which is nicely described in the effective

action by spontaneous symmetry breaking. We have also shown that the full sector of

states that become massless at any point in moduli space can be described by considering a

compactification on a higher-dimensional torus at a certain point of maximal enhancement.

We have presented two possible expressions for the twist matrix realizing the enhanced

gauge algebra. In the realization constructed in section 4.2.1, one can interpret the vector

fields with non-vanishing compact momentum or winding number as arising from a Kaluza-

Klein compactification of a “metric” and “B”-field living on a 2n-dimensional manifold,

n+n being the dimension of the G×G enhanced gauge group, and the twist matrix as the

corresponding generalized vielbein. This generalized vielbein depends on the coordinates of

a double k-dimensional torus associated to the Cartan generators. The structure constants

of the gauge algebra can be obtained from this vielbein using the deformed C-bracket (4.19),

which is consistent with the local symmetries and the O(k, k) covariance of the theory.

The deformation accounts for the cocycle factors that are necessary in the current algebra

representation and breaks the O(d+ n, d+ n) symmetry to O(d+ k, d+ k). The “cocycle

tensor” used to deform the algebra reproduces the structure constants involving only ladder

generators, to which we have not associated any coordinate, and thus it satisfies the last

consistency constraint in (4.20). This deformation is reminiscent of the deformation of the

bracket needed to account for Romans mass in massive type IIA supergravity [27, 28].

An interesting property of this generalized vielbein is that it is an eigenvector of ∂M∂
M .

Actually, it satisfies a modified version of the weak constraint (holding even when N 6= N̄)

which looks like the operator form of the level matching condition accounting for the extra

massless fields arising at the enhancement point. This observation clarifies a recurrent

discussion about the consistency of generalized Scherk-Schwarz compactifications, which
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were thought to violate the level matching condition. Now we see that the weak constraint

is modified and it agrees with the level matching condition.

The alternative construction of the vielbein in section 4.2.2 is based on the formulation

of DFT on group manifolds [14, 16]. In this framework, the vielbein depends on the n

coordinates of the group manifold corresponding to the maximally enhanced symmetry

group. Although this gives a geometric frame, in the sense that it does not depend on a

double set of coordinates and then it obeys the strong constraint in 2n dimensions, from

the point of view of compactifications on a k-torus this frame would be non-geometric, as

it depends on more than k coordinates. However, the extra n−k coordinates have no clear

interpretation from the torus point of view.

DFT allows to anticipate the T-duality symmetry of string theory before dimensional

reduction, and thus it provides a fruitful framework to better understand this symmetry.

Much progress has been achieved since the original ideas were put forward [29, 30] and

several genuine stringy features have been reproduced within this field theory context.

Indeed, it has been possible to go beyond supergravity incorporating α′-corrections [31–34],

massive string states [23] and now, the gauge symmetry enhancement of generic toroidal

compactifications. Nevertheless, the geometry of the double space remains elusive and

more work is necessary to comprehend and grasp the significance of the O(D,D) geometry

underlying DFT.
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A Lie algebras

In this appendix we collect the necessary definitions and notation used in the text regarding

simply-laced Lie algebras of dimension n. We follow closely [26]. We start with a general

discussion and then specialize to the groups needed in the text, namely SU(2)2, SU(3) and

SU(2)× SU(3).

A Lie algebra can be specified by a set of generators Xa, a = 1, . . . , n and their

commutation relations [
Xa, Xb

]
= fabcX

c (A.1)

where the constants fabc are the structure constants. In the standard Cartan-Weyl basis,

the Lie generators are defined as follows. First, a set of Cartan generators Hm (m =

1, . . . , k) expanding a maximal commutative subalgebra (the so-called Cartan subalgebra)

is fixed. Here k, the dimension of the Cartan subalgebra, stands for the rank of the full

Lie algebra. The remaining generators are chosen to be the simultaneous eigenvectors of

all Hm under the adjoint action, namely, satisfying

[Hm, Jα] = αmJα. (A.2)
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The k-dimensional vector α is called a root of the Lie algebra, and the associated generator

Jα a “ladder” operator. Since the Cartan subalgebra is maximal, roots are non-degenerate.

Notice that Hermitian conjugation of the previous equation shows that −α is a root when-

ever α is, provided J−α = Jα†.

The Jacobi identity shows that the commutator of two ladder generators associated

with opposite roots commute with all the Cartan generators and therefore it must be

an element of the Cartan subalgebra as well. The choice of this element determines the

normalization of ladder operators. Usually it is fixed as25

[Jα, J−α] = α ·H, (A.3)

where α ·H = αmδmnH
n. On the other hand, the commutator of two ladder generators Jα

and Jβ must vanish if α+ β is not a root and it must be proportional to Jα+β otherwise,

explicitly:

[Jα, Jβ ] = Nα,βJ α+β if α+ β is a root. (A.4)

The Killing form is defined as

K(X,Y ) =
1

2g
Tr (AdXAdY ) , (A.5)

where g is the dual Coxeter number of the Lie algebra. In the Cartan-Weyl basis (and for

a simply-laced algebra) we have

K(Hm, Hn) = δmn, K(Jα, J−α) = 1, (A.6)

for any root α.

Any root α can be written as

α = nmβm (A.7)

where {βm} is a basis for the k-dimensional space of roots. The root α is said to be positive

if the first non-zero number in the sequence (n1, n2, . . .) is positive and, consequently, it

will be associated to a raising operator. We will be using the following notation in the

remainder of this work: taking the set {αi} of positive roots, i = 1, . . . , 1
2(n − k), we will

denote the raising and lowering ladder operators as:

J i = Jαi for raising operators

J ı = J−αi for lowering operators (A.8)

The structure constants will have the same type of index, for example (no summation

over i): [
Hm, J i

]
= fmiiJ

i , with fmii = αi
m (A.9)

where αi
m = (αi)

m is the m-th component of the vector αi.

25Some of the equations are written using the fact that for simply-laced Lie algebras |α|2 = αmδmnα
n = 2.
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Simple roots are those that cannot be written as a combination of two positive roots.

They provide a suitable basis for the dual space of the Cartan subalgebra. We shall denote

by αp with p = 1, . . . , k the simple roots. It is a classical result that the full set of roots of

a given semisimple Lie algebra can be reconstructed through the action of the Weyl group

from the set of simple roots, which in turn can be straightforwardly extracted from the

so-called Cartan matrix

Apq = αp · αq = αp
mδmnαq

n. (A.10)

Moreover, this matrix completely fixes the commutation relations of the algebra as can be

seen from the Chevalley basis, to which we now turn.

In the Chevalley basis, to each simple root αp there corresponds two generators ep and

fp, associated, respectively, with the raising operator Jp and the lowering operator Jp.

The Cartan generators are defined as

hp = αp ·H. (A.11)

Their commutation relations read

[hp, hq] = 0,

[hp, eq] = Aqp eq,

[hp, f q] = −Aqp f q,
[ep, f q] = δpq hq, (A.12)

where no summation over p or q is understood on the right hand sides.

The remaining ladder generators (recall that there are 1
2(n − 3k) positive non-simple

roots) are obtained by repeated commutation of these ones, subject to the so-called Serre

relations:

(Ad(ep))1−Aqp eq = [ep, [ep, · · · , [ep︸ ︷︷ ︸
(1−Aqp) times

, eq]]] = 0, (A.13)

and similarly for f .

The non-simple roots are a linear combination of the simple roots

αu = np
uαp (A.14)

where u = 1, . . . , 1
2(n− 3k) labels non-simple roots. If αp are positive roots, and all np are

positive for a given root u, then αu is a positive root. We shall write the commutation re-

lations between ladder operators associated to non-simple roots and the Cartan subalgebra

as (no summation over u)

[hp, eu] = cpueu,

[hp, fu] = −cpufu, (A.15)

where

cpu = αp · αu = Apqnq
u. (A.16)
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We thus get

[eu, fu] = np
u hp . (A.17)

The Killing form in the Chevalley basis is given by

K(ei, f j) = δij , K(hp, hq) = Apq. (A.18)

It will be useful to write explicit expressions for some fabc (all indices down) as there

are many contractions that involve structure constants with indices in this position. The

p − th row of the Cartan matrix gives the structure constants in the Chevalley basis for

the p− th simple root, i.e.:

Apq = f qpp, (A.19)

and lowering all indices with K−1 we get

fqpp = δpq, (A.20)

which takes a very simple form. For non-simple roots we have (no summation over u)

fpuu = cpu, (A.21)

and then

fpuu = np
u. (A.22)

A.1 SU(2)2

For SU(2)2 the simple roots can be taken as

α1 =
√

2(1, 0) , α2 =
√

2(0, 1) . (A.23)

The Cartan matrix is

A =

(
2 0

0 2

)
. (A.24)

The non-trivial commutation relations in the Chevalley basis read

[h1, e1] = 2e1, [e1, f1] = h1, [h1, f1] = −2f1,

[h2, e2] = 2e2, [e2, f2] = h2, [h2, f2] = −2f2 , (A.25)

and the (antisymmetric) structure constants are given by

f111 = f222 = 1, (A.26)

all the other being zero.
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A.2 SU(3)

For SU(3) we take the simple positive roots to be

α1 =
√

2

(√
3

2
,−1

2

)
, α2 =

√
2 (0, 1) , (A.27)

and the Cartan matrix is

A =

(
2 −1

−1 2

)
. (A.28)

Therefore, the commutation relations in the Chevalley basis read

[h1, e1] = 2e1, [e1, f1] = h1, [h1, f1] = − 2f1,

[h2, e2] = 2e2, [e2, f2] = h2, [h2, f2] = − 2f2,

[h1, e2] = − e2, [h1, f2] = f2,

[h2, e1] = − e1, [h2, f1] = f1, . (A.29)

After introducing

e3 = [e1, e2], (A.30)

f3 = −[f1, f2],

the Serre relations reduce to

[e1, e3] = [e2, e3] = 0, (A.31)

[f1, f3] = [f2, f3] = 0.

Once these relations are used, we get the remaining non-trivial commutation formulas,

namely

[h1, e3] = e3, [h1, f3] = − f3,

[h2, e3] = e3, [h2, f3] = − f3,

[e3, f1] = − e2, [e1, f3] = − f2, (A.32)

[e3, f2] = e1, [e2, f3] = f1,

[e3, f3] = h1 + h2 ,

and thus the 2× 1 matrix cpu defined in (A.16) is c13 = c23 = 1.

The (antisymmetric) structure constants are

f111 = f133 = f222 = f233 = 1,

f123 = −f123 = 1. (A.33)

all the other being zero.
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A.3 SU(2) × SU(3)

For SU(2)× SU(3) we use

α1 =
√

2(1, 0, 0) , α2 =
√

2

(
0,

√
3

2
,−1

2

)
, α3 =

√
2 (0, 0, 1) . (A.34)

The Cartan matrix is

A =

 2 0 0

0 2 −1

0 −1 2

 , (A.35)

and therefore,

[h1, e1] = 2e1, [e1, f1] = h1, [h1, f1] = − 2f1,

[h2, e2] = 2e2, [e2, f2] = h2, [h2, f2] = − 2f2,

[h3, e3] = 2e3, [e3, f3] = h3, [h3, f3] = − 2f3,

[h2, e3] = − e3, [h2, f3] = f3,

[h3, e2] = − e2, [h3, f2] = f2 . (A.36)

After introducing

e4 = [e2, e3],

f4 = −[f2, f3],

the Serre relations read

[e1, e2] = [e1, e3] = 0,

[e2, e4] = [e3, e4] = 0,

[f1, f2] = [f1, f3] = 0,

[f2, f4] = [f3, f4] = 0. (A.37)

Once these relations are used, we get the remaining non-trivial commutation formulas,

namely

[h2, e4] = e4, [h2, f4] = − f4,

[h3, e4] = e4, [h3, f4] = − f4,

[e4, f2] = − e3, [e2, f4] = − f3,

[e4, f3] = e2, [e3, f4] = f2,

[e4, f4] = h2 + h3. (A.38)

The Killing form is defined as

K(ei, fj) = δij , K(hi, hj) = Aij . (A.39)
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The structure constants are

f111 = 1,

f222 = f244 = f333 = f344 = 1,

f234 = −f234 = 1. (A.40)

all the other being zero.

B Cocycles

Eq. (2.30) involves the cocyle factors cα. These need to be introduced as the OPE of two

currents J̃α, J̃β

J̃α(z)J̃β(w) ∼ J̃α+β

z − w
+ . . . (B.1)

should be invariant under the interchange J̃α(z) ↔ J̃β(w) and z ↔ w, while (B.1) picks

up a minus sign. The cocycle factors compensate for the extra sign, i.e.

Jα(z) = cαJ̃
α(z) . (B.2)

Explicitly, if the mode expansion of yi(z) is

yi(z) = yi0 − ipi ln z + i
∑
n 6=0

ain
n
z−n , (B.3)

where in particular [
pi, yj0

]
= −iδij , (B.4)

then cα = cα(p). As a result, when cα(p) passes over a vertex operator, its argument

is shifted:

eiα·ycβ(p) = (−1)(α,β)cβ(p− α)eiα·y . (B.5)

To have all signs right in the OPE, we thus need

cα(p)cβ(p− α) = (−1)(α,β)cβ(p)cα(p− β) . (B.6)

Furthermore, a closed algebra requires

cα(p)cβ(p− α) = ε(α, β)cα+β(p) , (B.7)

with ε(α, β) = ±1. A solution to this equation is given by the following

cα(p) = (−1)p∗α , (B.8)

where the * product between two elements of the root lattice

p =
∑

niαi , α =
∑

miαi , ni ,mi ∈ Z , (B.9)

is given by

p ∗ α =
∑
i>j

nimj(αi, αj) . (B.10)
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root w1 w2 w3 w4 n1 n2 n3 n4

α1 1 0 0 0 1 0 0 0

α2 0 1 0 0 −1 1 0 0

α3 0 0 1 0 0 −1 1 0

α4 0 0 0 1 0 0 0 1

α5 1 1 0 0 0 1 0 0

α6 0 1 1 0 −1 0 1 0

α7 1 1 1 0 0 0 1 0

α−1 −1 0 0 0 −1 0 0 0

α−2 0 −1 0 0 1 −1 0 0

α−3 0 0 −1 0 0 1 −1 0

α−4 0 0 0 −1 0 0 0 −1

α−5 0 −1 −1 0 1 0 −1 0

α−6 −1 −1 0 0 0 −1 0 0

α−7 −1 −1 −1 0 0 0 −1 0

Table 8. Momentum and winding numbers of the massless vectors at the [SU(4) × SU(2)]L ×
[SU(4)× SU(2)]R enhancement point of T 4.

C Symmetry breaking for the T 4

In this appendix we explicitly work out the unified description on T 4 of the full moduli

space of T 3. Indeed, there are three points of maximal enhancement in T 3, which give rise

to the (left) gauge groups SU(4), SU(3) × SU(2) and (SU(2))3. As discussed in the main

text, these can be described in terms of the SU(4) × SU(2) enhancement point of T 4.

Aside from the Cartan vectors, there are in total 16 distinct (in terms of the quantum

numbers wi and ni) raising/lowering vectors if the three enhancement points of T 3 are

considered together, while in SU(4)×SU(2) there are only 14. We will show explicitly that

these 14 vectors suffice to account for the 16 distinct ones on T 3.

The SU(4)× SU(2) raising/lowering vectors are given in table 8.

To get the SU(4) gauge group, one gives vevs to M4p, Mp4, p = 1, 2, 3, 4 in which

case the vectors associated to α±4 acquire mass and should be discarded. The remaining

vectors are those from SU(4), as expected (cf. table 9). The identification of coordinates

between the T 4 and the T 3 is x1
T 4 → x1

T 3 , x
2
T 4 → x2

T 3 , x
3
T 4 → x3

T 3 , and x4
T 4 corresponds to

the decompactified coordinate.

The simplest way to understand how to get the SU(3)×SU(2) gauge group is to look at

the simple roots of SU(4)× SU(2) (αp, p = 1, 2, 3, 4) and try to get those of SU(3)× SU(2)

(αp, p = 1, 2, 3 in table 10). Looking at the quantum numbers wp and np this is achieved

if we discard α3 from the SU(4) × SU(2) and identify the remaining three with the ones

of SU(3) × SU(2). In terms of the vectors, according to (5.3) we must give vevs to M3p

and Mp3 in order to give mass to the vectors associated to α3 (this means the vectors

associated to the simple root α3 and the ones associated to non-simple roots constructed
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root w1 w2 w3 w4 n1 n2 n3 n4

α1 1 0 0 0 1 0 0 0

α2 0 1 0 0 −1 1 0 0

α3 0 0 1 0 0 −1 1 0

α4 1 1 0 0 0 1 0 0

α5 0 1 1 0 −1 0 1 0

α6 1 1 1 0 0 0 1 0

α−1 −1 0 0 0 −1 0 0 0

α−2 0 −1 0 0 1 −1 0 0

α−3 0 0 −1 0 0 1 −1 0

α−4 0 −1 −1 0 1 0 −1 0

α−5 −1 −1 0 0 0 −1 0 0

α−6 −1 −1 −1 0 0 0 −1 0

Table 9. Momentum and winding numbers of the massless vectors at the SU(4)L × SU(4)R en-

hancement point of T 3.

root w1 w2 w3 n1 n2 n3

α1 1 0 0 1 0 0

α2 0 1 0 −1 1 0

α3 1 1 0 0 1 0

α4 0 0 1 0 0 1

α−1 −1 0 0 −1 0 0

α−2 0 −1 0 1 −1 0

α−3 −1 −1 0 0 −1 0

α−4 0 0 −1 0 0 −1

Table 10. Momentum and winding numbers of the massless vectors at the [SU(3) × SU(2)]L ×
[SU(3)× SU(2)]R enhancement point of T 3.

from α3, such as αi, i = ±6,±7). The rest of the vectors remain massless and are identified

with the ones of SU(3) × SU(2). The coordinates of the two tori are identified as x1
T 4 →

x1
T 3 , x

2
T 4 → x2

T 3 , x
4
T 4 → x3

T 3 , and x3
T 4 corresponds to the decompactified coordinate.

To get the SU(2)3 gauge group we must first redefine the lattice of T 4 in order to

identify the vectors with the ones in table 11 . We define the matrix

T =


1 0 0 0

0 1 0 0

0 −1 1 0

0 0 0 1

 , (C.1)

such that the winding numbers change as w′ = Tw and the momentum numbers as n′ =

(T t)−1n. The new quantum numbers are presented in table 12 and we must get rid of
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root w1 w2 w3 n1 n2 n3

α1 1 0 0 1 0 0

α2 0 1 0 0 1 0

α3 0 0 1 0 0 1

α−1 −1 0 0 −1 0 0

α−2 0 −1 0 0 −1 0

α−3 0 0 −1 0 0 −1

Table 11. Momentum and winding numbers of the massless vectors at the SU(2)3L × SU(2)3R
enhancement point of T 3.

root w
′1 w

′2 w
′3 w

′4 n′1 n′2 n′3 n′4

α1 1 0 0 0 1 0 0 0

α2 0 1 −1 0 −1 1 0 0

α3 0 0 1 0 0 0 1 0

α4 0 0 0 1 0 0 0 1

α5 1 1 −1 0 0 1 0 0

α6 0 1 0 0 −1 1 1 0

α7 1 1 0 0 0 1 1 0

α−1 −1 0 0 0 −1 0 0 0

α−2 0 −1 1 0 1 −1 0 0

α−3 0 0 −1 0 0 0 −1 0

α−4 0 0 0 −1 0 0 0 −1

α−5 0 −1 0 0 1 −1 −1 0

α−6 −1 −1 1 0 0 −1 0 0

α−7 −1 −1 0 0 0 −1 −1 0

Table 12. Momentum and winding numbers of the massless vectors at the [SU(4) × SU(2)]L ×
[SU(4)× SU(2)]R enhancement point of T 4, in the basis rotated by T .

the vectors associated to α′i, i = ±2,±5,±6,±7 and keep all the other vectors, the ones

associated to α′i, i = ±1,±3,±4 which have the same quantum numbers as the ones coming

from SU(2)× SU(2)× SU(2) once we identify x
′1
T 4 → x1

T 3 , x
′3
T 4 → x2

T 3 , x
′4
T 4 → x3

T 3 .

To give masses to the vectors associated to α′i, i = ±2,±5,±6,±7, it suffices to con-

centrate on α′2 as all other roots are linear combinations that include α′2, so they will

acquire mass if α′2 does. This is achieved by giving vevs to M
′2p and M

′p2 according

to (5.3). The coordinate that will be decompactified is x
′2
T 4 and the rest are identified as

x
′1
T 4 → x1

T 3 , x
′3
T 4 → x2

T 3 , x
4
T 4 → x3

T 3 .

Thus, we see that the 14 raising/lowering vectors of T 4 are sufficient to describe all

raising/lowering vectors of T 3.
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