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1 Introduction

A long standing goal of topological string theory is to obtain the topological string partition

function Ztop as an analytic function on the parameter space of the theory. The latter is the

product of the coupling constant space C — or C2 in the case of refinement — in which the

genus counting parameter gs — or gs and the coupling constant of the refinement s — take

values, and the appropriate moduli space MX of the underlying Calabi-Yau manifold X.

This program has been most successful in the case of toric (hence non-compact) Calabi-Yau

manifolds. The topological vertex [1] and its refined variants [2, 3] permit the computation

of Ztop in the large radius regime of MX in a power series expansion in exponentiated

flat coordinates of MX , with coefficients that are rational functions in eiε1 and eiε2 , with

g2s = ε1ε2, s = (ε1+ε2)
2. The holomorphic anomaly equations [4] and their refinement [5–8]

can be used to compute the coefficients of Ftop = logZtop in an asymptotic (gs, s) expansion

as analytic functions on MX . In the compact case, some impressive all genus results for
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certain directions in the Kähler cone have been obtained for Calabi-Yau manifolds that are

elliptically fibered, see e.g. [9]. An open question is how to define Ztop without recourse to

any expansion.

In [10, 11], the open topological string partition function Ztop,open on a toric Calabi-Yau

manifold X was studied for a particular class of torically invariant branes, and the mirror

curve C of X identified as the open string moduli space for this problem. This insight led

to the computation of Ftop,open to leading order in gs. Ref. [12] proposed that to extend

the computation beyond leading order in gs, the mirror curve C had to be elevated to

an operator OC . In fact, it is the Nekrasov-Shatashvili (NS) limit [13] gs → 0, s = ~2 of

Ztop,open that can be determined via a quantization of the mirror curve, as ZNS
top,open lies in

the kernel of OC [13–15],1

OCZ
NS
top,open = 0 . (1.1)

The idea to recover the closed topological string partition function from the monodromy of

the open partition function was put forward in [12], and made more precise in [13–15]. In

a remarkable series of papers [17–24], the quantization of the mirror curve has been taken

as a framework within which to define Ztop non-perturbatively. In the genus one case, the

equation (1.1) can straightforwardly be rewritten as a spectral problem for the complex

structure parameter z of the mirror geometry,

ÕZNS
top,open = zZNS

top,open . (1.2)

Here, OC is put in the form Õ − z via appropriate variable redefinitions [22].2 Upon

specifying the function space F in which ZNS
top,open is to lie, this eigenvalue problem can be

solved numerically. For the higher genus case, [24] identify the mirror curve C of the toric

Calabi-Yau manifold X with the spectral curve of a quantum integrable system determined

by the toric data of X. The underlying class of quantum integrable systems was introduced

by Goncharov and Kenyon [28]. The complex structure parameters zi of the mirror curve

map to the spectrum of the integrable system. Ref. [17] and follow-up works propose a

quantization condition on the parameters zi based on a non-perturbative modification of

FNS
top,closed, which roughly takes the form (see equation (3.12) below for the precise statement)

∂Tk
(
FNS,pert

top,closed + FNS,BPS
top,closed + FNS,BPS,np

top,closed

)
= nk +

1

2
, nk ∈ N ∪ {0} . (1.3)

Here, FNS,pert
top,closed and FNS,BPS

top,closed are the conventional perturbative and enumerative contribution

to the closed topological string partition function in the NS limit. FNS,BPS,np
top,closed is a contri-

bution included in the quantization condition to cancel poles of FNS,BPS
top,closed in q = exp (i~).

Condition (1.3), at real values of ~, has been shown to reproduce the numerical results

obtained by diagonalizing the Hamiltonians of the associated Goncharov-Kenyon system

numerically in a harmonic oscillator eigenbasis of L2(R) to high precision.

1A different path towards such a quantization via the study of defects in five dimensional gauge theory

is taken in [16].
2The significance of the choice of variables upon quantization of the mirror curve has been addressed in

various works [12, 25–27], but a complete understanding is still lacking.
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In this paper, we aim to establish that the quantization condition (1.3) arises upon

imposing single-valuedness of the elements of the kernel of OC . To this end, we need

to determine the monodromy of solutions to (1.1) as functions of the complex structure

parameters zi on which OC depends. We propose to do this in the framework of exact

WKB analysis applied to difference equations. The WKB analysis of difference equations

has received some treatment in the literature (see e.g. [29, 30]), however, to our knowledge,

not in the form we require for our study. We thus attempt to generalize to difference

equations the approach presented e.g. in [31] to the transition behavior of WKB solutions

of differential equations. We find that the transition behavior in the case of linear potentials

can be studied in detail. Difference equations lack the rich transformation theory required

to lift the analysis rigorously to general potentials [31]. Our analysis hence relies on the

conjecture that the transition behavior for potentials with simple turning points is governed

only by these, and well approximated in their vicinity by the linear analysis.

To explain the non-perturbative contribution to (1.3), we will argue that by the choice

of harmonic oscillator states for the numerical diagonalization, the elements of the function

space F are constrained to be L2 functions in x with smooth dependence on ~. The latter

condition requires adding a non-perturbative piece in ~ to ZNS
top,open as hitherto defined.

Equation (1.3) arises from the constraint that the function thus obtained be single-valued.

We will study the monodromy problem of difference equations in section 2. In section 3,

we discuss the open topological string partition function from various perspectives and

explain how we expect the quantization condition (1.3) to arise. This discussion is applied

to the example O(K)→ P1 × P1 in section 4, in which we also present numerical evidence

for the quantization condition (1.3) in the case of complex ~. We end with conclusions.

2 Monodromy from exact WKB

In this section, we will provide evidence linking the monodromy problem of solutions to

difference equations of the form (1.1) arising upon quantization of mirror curves to the

so-called quantum B-periods. We first flesh out an argument provided by Dunham [32] in

the case of differential equations using exact WKB methods. We then set out to generalize

these methods to difference equations.

2.1 Differential equation

We will briefly review the basics of WKB analysis in this subsection, following [31]. A

somewhat more detailed review in the same spirit can be found in [33].

The starting point of the analysis is a second order differential equation(
ε2∂2x −Q(x)

)
Ψ(x) = 0 , (2.1)

depending on a small parameter ε. Q(x) is a meromorphic function of x with possible ε

dependence, which we for simplicity will take to be of the form Q(x) =
∑N

n=0Q2n(x)ε2n.

To solve this equation, we can make a WKB ansatz

ψWKB(x) = exp

∫ x

S(x) dx , (2.2)
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with S considered as a formal power series in ε,

S(x) =
1

ε
S−1(x) +

∞∑
n=0

Sn(x)εn . (2.3)

Plugging this ansatz into the differential equation (2.1) yields the expansion coefficients Sn
recursively,

S2
−1(x) = Q0(x) , (2.4)

2S−1Sn+1 +
n∑

n1=0

Sn(x)Sn−n1(x) +
Sn(x)

dx
= Qn+2 , n > −1 . (2.5)

The equation (2.4) has two solutions S−1 = ±
√
Q0(x). The choice of sign propagates

down to all expansion coefficients S2n+1. We thus obtain two formal WKB solutions ψ±WKB

to (2.1), reflecting the fact that the differential equation is of second order.

Denoting

Sodd =
∑
n odd

Snε
n , Seven =

∑
n even

Snε
n , (2.6)

it is not hard to show that

Seven = −1

2

d logSodd

dx
. (2.7)

The two formal WKB solutions can thus be expressed as

ψ±WKB(x) =
1√
Sodd

exp

(
±
∫ x

Sodd dx

)
. (2.8)

The two formal series ψ±WKB will generically merely provide asymptotic expansions of two

solutions to (2.1). Exact WKB analysis is concerned with recovering the functions under-

lying such expansions.

Borel resummation is a technique to construct a function having a given asymptotic

expansion as a power series

ψ(ε) =

∞∑
k=0

ψkε
k . (2.9)

It proceeds in two steps. The first is to improve the convergence behavior of (2.9) by

considering the Borel transform

ψB(y) =
∞∑
k=1

ψk
yk−1

(k − 1)!
. (2.10)

The second step is to take the Laplace transform of (2.10),

Sθ[ψ](ε) = ψ0 +

∫
`θ

e−
y
ε ψB(y) dy . (2.11)

Here, `θ is a half-line in the y-plane, emanating from the origin at angle θ to the abscissa.

If the sum in (2.10) and the integral in (2.11) exist, then Sθ[ψ](ε) defines a function with
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asymptotic expansion given by (2.9), called a Borel resummation of the formal power

series (2.9). The Laplace transform (2.11) can fail to exist if ψB(y) exhibits a singularity

on the integration path `θ. Integrating along `θ± on either side of the singularity will then

generically give rise to two functions Sθ± [ψ](ε), both with asymptotic expansion (2.9), but

differing by exponentially suppressed pieces in 1
ε . The position of the singularities of the

Borel transform ψB thus leads to a subdivision of the y-plane into sectors. Choosing `θ to

lie in different sectors will give rise to different Borel resummations of (2.9).

When the coefficients of the formal power series (2.9) depend on a variable x,

ψ(x, ε) =

∞∑
k=0

ψk(x)εk , (2.12)

the position of the poles of the Borel transform (2.10), and hence the subdivision of the

y-plane into sectors, will depend on x. Keeping the integration path `θ fixed, crossing

certain lines in the x-plane will result in poles of ψB crossing `θ. These lines are called

Stokes lines. They divide the x-plane into Stokes regions. The Borel resummation of (2.12)

performed on either side of a Stokes line will yield functions whose analytic continuation

to a mutual domain will differ by exponentially suppressed terms.

Returning to the WKB analysis of a second order differential equation, the Stokes

phenomenon implies that a Borel resummation of the formal WKB solutions (2.8) will

yield a different basis of the solution space depending on the Stokes region in which the

Borel resummation is performed. This behavior can be studied by first considering the

case of a linear potential Q(x) = x, then using the transformation theory of differential

equations to reduce the analysis of more general potentials to this case. For potentials

with only simple zeros, the results are as follows: the Stokes lines emanate from zeros of

the potential, called turning points. Simple turning points have three Stokes lines and a

branch cut emanating from them. The trajectory of Stokes lines depends on the choice of

integration path `θ for the Laplace transform and is determined by the equation

Im eiθ
∫ x

x0

S−1 dx = 0 , (2.13)

with x0 the position of the turning point. As the Borel resummation of the formal WKB

solutions ψ±WKB in any Stokes region yields a basis of solutions to the differential equa-

tion (2.1), each such pair can be expressed as a linear combination of any other such pair.

Neighboring Stokes regions are assigned transition matrices which enact the linear transfor-

mation relating the associated two pairs of solutions. The form of the transition matrices

depends on the normalization of the WKB solutions, determined by the lower bound on

the integration in the exponential of the WKB ansatz (2.2). Choosing this lower bound to

be the turning point from which the Stokes line separating the two Stokes regions emanates

yields ε independent transition matrices.

The exact form of the transformation matrices can be determined, as mentioned above,

by solving the differential equation with linear potential explicitly, and then mapping the

general situation to this case. The space of solutions to the linear problem is spanned by

Airy functions. For our purposes, we will only need the product T of the three transition
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Figure 1. A generic potential with two turning points; the branch cut is chosen to connect the

two turning points.

matrices which arise when we circumnavigate a turning point in counter clockwise order,

crossing three Stokes lines consecutively, but without crossing the branch cut. To compute

T , it suffices to know that the Airy functions are single-valued in the vicinity of the turning

point. It follows that

B · T = id , (2.14)

where the matrix B relates the Borel resummation of ψ±WKB in the same Stokes region,

but on either side of the branch cut. Crossing the branch cut interchanges ψ+
WKB and

ψ−WKB, and leads to a factor of i due to the square root in the denominator of (2.8). This

reasoning yields

T = ±i

(
0 1

1 0

)
. (2.15)

The sign depends on conventions that we will not bother to fix, as it will cancel in our

considerations.

Let us now consider a potential with two simple turning points, giving rise to a Stokes

pattern as depicted in figure 1. We want to consider the monodromy of a pair of WKB so-

lution as we encircle the two turning points once. If we begin with a pair of WKB solutions

normalized at the turning point x1, we must change their normalization by multiplying by

the matrix

NSR
1→2 =

(
exp[

∫ x1
x2
Sodd dx] 0

0 exp[−
∫ x1
x2
Sodd dx]

)
(2.16)

in order for their transition behavior upon circumnavigating the turning point x2 to be

governed by (2.15). The superscript SR is to denote the Stokes region in which the integra-

tion path from x1 to x2 lies. The exponential entries in the normalization matrix are called

Voros multipliers. They are to be understood as the Borel resummation of the indicated

formal power series. Such Borel resummations exhibit interesting jumping behavior with

regard to the choice of expansion parameter ε, as e.g. recently discussed in [33].

– 6 –
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In total, we obtain the monodromy matrix

NSRa
2→ 1TN

SRb
1→ 2T = −

(
exp[

∮
Sodd dx] 0

0 exp[−
∮
Sodd dx]

)
, (2.17)

with the superscripts SRa and SRb indicating that the integration path connecting x1 and

x2 is to be taken above/below the branch cut. The integration cycle is accordingly a path

encircling the branch cut.

Requiring a pair of WKB solutions in the situation depicted in figure 1 to be single-

valued is hence equivalent to demanding∮
Sodd dx = 2πi

(
n+

1

2

)
. (2.18)

2.2 Difference equation

Unlike differential equations, difference equations have no obvious transformation theory.

Under variable transformation other than linear, their form changes drastically. We will

perform an exact WKB analysis in the case of linear potential in the following, but not be

able to offer an intrinsic criterion determining for which potentials the linear approximation

is justified.

2.2.1 Generalities

Consider a difference equation in the form[
cosh ε∂x −Q(x)

]
Ψ(x) = 0 , (2.19)

for a potential Q(x) which we take to be ε independent for simplicity. With the WKB

ansatz

ψWKB(x) = exp

∫ x

S(x) dx = N(ε) expR(x) , (2.20)

N(ε) being a normalization factor which we shall fix below, we obtain

exp

[ ∞∑
n=1

1

(2n)!
S(2n−1)(x)ε2n

]
cosh

[ ∞∑
n=0

1

(2n+ 1)!
S(2n)(x)ε2n+1

]
= Q(x) . (2.21)

Expanding

S =
1

ε
S−1 +

∞∑
n=0

Snε
n , R =

1

ε
R−1 +

∞∑
n=0

Rnε
n , (2.22)

we obtain

coshS−1 = Q(x) ⇔ S−1 = ±arccoshQ(x) + 2πin , n ∈ Z (2.23)

and furthermore

S0 = −1

2
S′−1 cothS−1 = −1

2

d

dx
log sinhS−1 (2.24)

=
Q(x)Q′(x)

2(1−Q(x)2)
= −1

4

d

dx
log(Q2(x)− 1) ,

S1 = ± . . . .

– 7 –
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Hence,

ψ±WKB(x) =
1

(Q2(x)− 1)
1
4

exp

[
±1

ε

∫ x

arccoshQ(x) dx+O(ε)

]
, (2.25)

where we have chosen a branch in (2.23).

The analytic structure of the inverse cosh function is best understood by expressing

it as

arccosh z = log
(
z +
√
z − 1

√
z + 1

)
. (2.26)

The arccosh function has two branch points at ±1 respectively due to the square root

functions, and one at −∞ due to the logarithm. Choosing the branch cuts for the square

roots and the logarithm in the negative real direction, the branch cuts of the two square

roots cancel beyond z = −1, at which point the branch cut of the logarithm begins.3 The

sheet structure of arccosh is hence such that the branch cut along [−1, 1] connects two

sheets related via a sign flip, as

log
(
z +
√
z − 1

√
z + 1

)
7→ log

(
z −
√
z − 1

√
z + 1

)
= − log

(
z +
√
z − 1

√
z + 1

)
, (2.28)

whereas the branch cut beyond z = −1 connects sheets related via a shift of the imaginary

part by 2π. Of the three branch points ±1, −∞, the point 1 is distinguished in that it is

at finite distance and does not lie on a branch cut. The expansion of arccoshz around this

point has
√
z as leading term. We thus identify the points {x0 : Q(x0) = 1} as the turning

points of the difference equation. As long as Q′(x0) 6= 0, we can approximate the behavior

of the difference equation in the vicinity of such a turning point by a linear potential.

2.2.2 WKB for a linear potential

The difference equation with a linear potential is(
cosh ε∂x − x

)
Ψ(x) = 0 . (2.29)

Setting Q(x) = x in (2.23) and (2.24), the WKB coefficients Sn can be integrated, yielding

R−1 = ±
∫
S−1(x) dx = ±

(√
x2 − 1− x arccosh(x)

)
, (2.30)

R0 =

∫
S0(x) dx = −1

4
log(−1 + x2) , etc.

By (2.25) and using (2.26), the leading order behavior of the WKB solution is thus

ψ±WKB(x) =
N(ε)

(x2 − 1)
1
4

exp

[
±1

ε

(√
x2 − 1− x log

(
x+

√
x2 − 1

))
+O(ε)

]
. (2.31)

In fact, we can check explicitly that this WKB solution provides an asymptotic expansion

for a solution of the difference equation (2.29), as we can construct a solution to this

3The preimage of the negative real axis under

z 7→ z +
√
z2 − 1 (2.27)

is the interval (−∞,−1].
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equation based on the Bessel function [34].4 Recall that the Bessel function satisfies the

recursion relation

Jν+1(z)− 2
ν

z
Jν(z) + Jν−1(z) = 0 . (2.32)

The function Jx
ε
(1ε ) thus solves the difference equation (2.29).

The Bessel function is known to have asymptotic behavior, for ν → ∞ along the real

axis and constant positive z, given by (see e.g. [36])

Jν(νz) ∼ 1

(2πν
√

1− z2)
1
2

exp
[
ν
(√

1− z2 − log(1 +
√

1− z2) + log z
)]

. (2.33)

Upon the identification

ν 7→ x

ε
, z 7→ 1

x
, (2.34)

this coincides with the WKB result ψ+
WKB (2.31), with the normalization N(ε) fixed at

N(ε) =

√
ε

2π
. (2.35)

We have hence matched the leading behavior of the WKB solution (2.31) to the asymptotic

expansion of the Bessel function Jx
ε
(1ε ) for positive real x and ε small and positive. To study

the Stokes phenomenon, we will now take advantage of the fact that the Bessel function is

also the solution to a differential equation, to which we can apply the exact WKB methods

reviewed in the previous section. Indeed, Jν(z) solves the differential equation

z2
d

dz2
y + z

d

dz
y + (z2 − ν2)y = 0 . (2.36)

We can eliminate the linear term and cast the equation in the form (2.1) by considering

wν(z) =
√
z y(νz), which satisfies

d2

dz2
wν(z)−

(
1− z2

z2
ν2 − 1

4z2

)
wν(z) = 0 . (2.37)

The conventional theory of exact WKB analysis of differential equations allows us to de-

termine the Stokes behavior of the WKB expansion of the solutions to this differential

equation. By relating this expansion to the WKB solution of the difference equation, we

can derive the Stokes behavior of the latter.

Making a WKB ansatz5 w ∼ expR∂ , we obtain the leading terms

S∂−1 = ±
√

1− z2
z2

, (2.38)

S∂0 = −
(S∂−1)

′

2S∂−1
= −1

2

d

dz
logS∂−1 . (2.39)

4Bessel functions appear in [35] in the analysis of Stokes curves of loop type. It would be interesting to

explore connections to the analysis presented here.
5The superscript ∂ is to distinguish quantities pertaining to the differential equation (2.37) from those

pertaining to the difference equation (2.29).
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By comparing to the asymptotic expansion (2.33), we can fix the normalization of the

WKB expansion to
√
zJν(νz) ∼ 1√

2πν
exp

∞∑
n=−1

R∂n(z)ν−n . (2.40)

Comparing to

Jx
ε
(
1

ε
) ∼

√
ε

2π
exp

∞∑
n=−1

Rn(x)εn , (2.41)

the uniqueness of asymptotic expansions in power series implies

∞∑
n=−1

Rn(x)εn =
∞∑

n=−1
R∂n(

1

x
)
( ε
x

)n
. (2.42)

We have here assumed that the WKB expansions (2.41) and (2.40) yield asymptotic ex-

pansions to the indicated solutions of the difference and differential equation respectively.

In the case of the differential equation, this is guaranteed by general theory. We have

verified (2.42) to high order in ε.

We next address the question of how the Stokes lines of the two asymptotic expansions

ψ∂WKB(z) = e
1
ε
R∂−1(z)

∞∑
k=0

ψ∂k (z)εk+
1
2 and ψWKB(x) = e

1
ε
R−1(x)

∞∑
k=0

ψk(x)εk+
1
2 (2.43)

= e
1
ε
xR∂−1(1/x)

∞∑
k=0

ψ∂k (1/x)

xk
εk+

1
2

are related. The Borel transforms of the two expansions are given by

ψ∂B(z, y) =
∞∑
k=0

ψ∂k (z)

Γ
(
k + 1

2

)(y +R∂−1(z))k−
1
2 (2.44)

and

ψB(x, y) =

∞∑
k=0

ψk(x)

Γ(k + 1
2)

(y +R−1(x))k−
1
2 (2.45)

=
1√
x

∞∑
k=0

ψ∂k
(
1
x

)
Γ
(
k + 1

2

) (y
x

+R∂−1

(
1

x

))k− 1
2

(2.46)

=
1√
x
ψ∂B

(
1

x
,
y

x

)
. (2.47)

Hence, ∫ ∞
−R−1(x)

e−
y
ε ψB(x, y) dy =

∫ ∞
−R−1(x)

e−
y
ε

1√
x
ψ∂B

(
1

x
,
y

x

)
dy (2.48)

=
√
x

∫ ∞
−R−1(x)

x

e
− y
ε/xψ∂B

(
1

x
, y

)
dy (2.49)

=
√
xψ∂

(
1

x
,
ε

x

)
. (2.50)
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Figure 2. Flow lines for S−1 = arccosh(z).

The Borel sum of the WKB series of the difference equation hence indeed equals, for real

x and small positive ε,
√
xψ∂WKB

(
1
x ,

ε
x

)
= Jx

ε

(
1
ε

)
. From the theory of exact WKB for

differential equations, we know that the Borel transform ψ∂B(z, y) has a branch point in

the y-plane at R∂−1(z). The Laplace transform performed along the real axis, i.e. with

`θ = R+ in the notation of (2.11), will hence be ill-defined for R∂−1(z) ∈ R+, identifying

this condition as determining the location of the Stokes line. By (2.45), ψB(x, y) hence

exhibits a branch point at y/x = R∂−1
(
1
x

)
, i.e. y = R−1(x). The condition determining

the location of the Stokes line is therefore R−1(z) ∈ R+. We conclude that the location of

the Stokes lines of the difference equation is determined by the phase of R−1(z), just as a

naive generalization of the conventional WKB results would have suggested. By

R−1(z) =
−2
√

2

3
(z − 1)

3
2 +O((z − 1)

5
2 ) , (2.51)

the Stokes line structure close to the turning point at z = 1 is the same as around a simple

turning point in the case of a differential equation of the form (2.1), see figure 2.

The behavior of the Borel resummed WKB solution Ψ∂
WKB upon crossing Stokes lines

emanating from the turning point z = 1 is governed by the general theory. In particular,

the transition behavior of Ψ∂
WKB upon circumnavigating a turning point is given by the

matrix (2.15), and ΨWKB inherits this behavior.

If we assume that the monodromy of the WKB solutions of difference equations is gov-

erned by Stokes lines emanating from turning points {x0 : Q(x0) = 1}, and that the behav-

ior upon crossing such lines is captured by the analysis for linear potential just presented,

then the analysis of section 2.1 applies, leading to the single-valuedness condition (2.18) in

the case of potentials with two turning points.
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3 The open topological string and the mirror curve

3.1 The conjectured quantization condition

We begin this section by reviewing the quantization condition discussed in the introduction

as presented in [24]. In this form, it applies to the topological string on an arbitrary toric

Calabi-Yau manifold X. The mirror to such a space is given by a pair (C, λ), consisting

of a complex curve C together with a meromorphic 1-form λ, the 5d analogue of the

Seiberg-Witten differential [37]. C is given as the zero locus of a polynomial

PC(ex, ep, e−x, e−p) = 0 (3.1)

which can be constructed, up to linear redefinitions of the variables x and p, from the toric

data of X [38]. The latter can be presented as a grid diagram, given by the intersection

of the three dimensional fan of X with the x3 = 1 plane. The number of interior points of

the grid diagram corresponds to the genus g of C. Each such point gives rise to a modulus

zi which enters as a parameter in PC . Each of the N boundary points of the grid diagram

beyond the first three gives rise to an additional parameter mi or zg+i in PC , referred to

as a mass parameter in [39].6 The moduli zi, i = 1, . . . , g, coincide in the large radius limit

with Qi = exp(−Ti), the exponentials of the flat coordinates Ti on the complexified Kähler

moduli space of X. These are chosen among the g+N − 3 simply logarithmic solutions of

the underlying Picard-Fuchs equations governing the periods of the meromorphic 1-form

λ on the curve C. They are paired with doubly logarithmic solutions corresponding to B-

periods. In contrast, the mass parameters mi or zg+i correspond to residues of the 1-form

and do not have dual partners. They are given as algebraic functions of the g + N − 3

exponentiated logarithmic solutions Qi to the Picard-Fuchs system.

The polynomial PC can be promoted to an operator OC by setting

p =
~
i
∂x , such that [x, p] = i~ . (3.2)

This operator is conjectured to have the open topological string wave function on X in the

NS limit, ZNS
top,open, in its kernel,

OC Z
NS
top,open = 0 , (3.3)

with x identified as the open string modulus. Ref. [24] identifies the equation

OCΨ = 0 (3.4)

as the quantum Baxter equation for the Goncharov-Kenyon integrable system determined

by the toric data of X. The eigenvalues of the Hamiltonians of this system map to the

complex structure parameters zi, i = 1, . . . , g, of C. Solving the quantum Baxter equa-

tion (3.4) with appropriate boundary conditions on Ψ is equivalent to solving the spectral

problem. Numerical evidence for this beyond the genus one case is reported in [23].

6These do not necessarily correspond to physical masses in the geometrically engineered theory; the

geometry engineering pure SU(2) e.g. exhibits such a mass parameter, and it corresponds to the scale Λ at

which the gauge theory is defined.
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The conjectured quantization condition [24] is a set of equations, indexed by g integers

ni, whose solution set of g-tuples is to coincide with the Goncharov-Kenyon spectrum. The

ingredients that enter into the quantization condition are the Nekrasov-Shatashvili limit of

the refined topological string free energy [2, 13], FNS
top,closed, and the quantum mirror map [15].

FNS
top,closed encodes integer invariants associated to the Calabi-Yau X [40]. These appear most

naturally when it is expressed in terms of the flat coordinates Ti on the complexified Kähler

moduli space of X. We can distinguish between two contributions to FNS
top,closed. First, there

is a perturbative contribution which depends on the triple intersection numbers aijk of the

compact toric divisors of X (suitably generalized to the non-compact setting) and integers

bNSi , which have not been given a geometric interpretation yet,

FNS,pert
top,closed(T , ~) =

1

6~

gN∑
i,j,k=1

aijkTiTjTk +

(
4π2

~

) gN∑
i=1

bNSi Ti . (3.5)

The second contribution depends on integer invariants Nd
jL,jR

of the geometry, with d a

gN -tuple mapping to a class in H2(X) via the choice of coordinates Ti, and the half-integers

(jL, jR) indicating a representation of SU(2) × SU(2), and has the form

FNS,BPS
top,closed(T , ~) =

∞∑
w=1

∑
jL,jR

∑
d

Nd
jL,jR

2w2

sin
[
~w
2 (2jl + 1)

]
sin
[
~w
2 (2jR + 1)

]
sin3 ~w

2

Qwd , (3.6)

with Qi = exp(−Ti) as introduced above, and Q = (Q1, . . . , Qg). Following [24], we have

indexed this contribution with BPS due to its enumerative interpretation [2, 6, 40, 41]. In

the spirit of [13], one would then like to impose a quantization condition on the parameters

Qi via
gN∑
j=1

Cij
∂

∂Tj

(
FNS,pert

top,closed(T , ~) + FNS,BPS
top,closed(T , ~)

)
= 2π

(
ni +

1

2

)
. (3.7)

Cij is the intersection matrix between a basis of curve classes in X, corresponding to a basis

of the Mori cone of the toric geometry and the coordinates Ti, and the torically invariant

divisors of X. It arises in [42] to relate the derivatives of the prepotential to these divisors.

The crucial ingredient in the quantization condition of [24], inspired by the so-called

pole cancellation mechanism in [43], is to consider a third contribution to the quantization

condition based on FNS,BPS
top,closed, but evaluated at (up to a detail to which we return presently)(

2π

~
T ,

4π2

~

)
. (3.8)

The inspiration behind including this term stems from the observation that the contribu-

tion (3.6) to the free energy has poles, due to the sum over w, at ~ = 2π rs for all integer

values of r and s. As a function of q = exp(i~), it hence necessarily exhibits at best a

natural boundary of analyticity on the unit circle (in fact, we will see in the example of

local P1 × P1 in section 4.5 that even away from the unit circle, the expansion (3.6) is not

convergent). The quantization condition (3.7) as it stands is hence ill-defined, at least for

such values of ~. The evaluation point (3.8) is chosen to precisely cancel the contribution
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from each of these poles: for ~ = 2π rs , the pole which arises in (3.7) at w = ls, l ∈ N is can-

celed by the contribution of the corresponding derivative of the NS free energy evaluated

at (3.8) at w = lr, l ∈ N. This almost works as is: the residues evaluate to

− Res|~=2π r
s

djN
d
jL,jR

2w

sin
[~w

2 (2jL + 1)
]

sin
[~w

2 (2jR + 1)
]

sin3 ~w
2

Qdw|w=ls = (3.9)

= −
djN

d
jL,jR

w2
(2jL + 1)(2jR + 1)

cos
[~w

2 (2jL + 1)
]

cos
[~w

2 (2jR + 1)
]

cos3 ~w
2

Qdw|~=2π r
s
,w=ls

= −
djN

d
jL,jR

(ls)2
(2jL + 1)(2jR + 1)(−1)lr(2jL+2jR+1)Qd ls

and

− Res|~=2π r
s

djN
d
jL,jR

2w

sin
[
2π2w
~ (2jl + 1)

]
sin
[
2π2w
~ (2jR + 1)

]
sin3 2π2w

~
Qd 2π

~ w|w=lr = (3.10)

=
djN

d
jL,jR

(ls)2
(2jL + 1)(2jR + 1)(−1)ls(2jL+2jR+1)Qd ls .

The sign factors in (3.9) and (3.10) can be adjusted such that the two terms cancel if the

Kähler parameters can be shifted by a B-field that satisfies

(−1)2jL+2jR+1+B·d = 1 (3.11)

for all pairs (jL, jR) for which Nd
jL,jR

6= 0 [44]. The existence of such a B-field has been

shown for many classes of examples, but a proof of its existence for all toric geometries is

still lacking. Combining these elements yields the conjectured quantization condition

gN∑
j=1

Cij
∂

∂Tj

[
FNS,pert(T , ~) + FNS,BPS(T + πiB, ~)+

+
~

2π
FNS,BPS

(
2π

~
T + πiB,

4π2

~

)]
= 2π

(
ni +

1

2

)
. (3.12)

The equations (3.12) can be solved to express the Kähler parameters T in terms of the

integers ni. The so-called quantum mirror map, discussed further in section 4, then maps

these solutions to the eigenvalues zi of the Goncharov-Kenyon spectral problem.7

3.2 The open topological string partition function

The open topological string partition function, as defined in [45], serves as a generating

function for open Gromov-Witten invariants, counting maps, in an appropriate sense, from

Riemann surfaces with boundary to a Calabi-Yau manifold X with branes on which these

boundaries are constrained to lie. We will call this partition function ZGW
top,open = expFGW

top,open.

When X is a toric Calabi-Yau manifold, this notion can be refined [46, 47], and leads to a

formal series in two expansion parameters ε1 and ε2.

7A subtle shift in the mirror map is required at non-vanishing B-field [24]. In the case of local P1 × P1

that we consider in section 4, B = 0, hence this shift does not arise.
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Beginning with [12], it has been gradually understood [14, 15] that the monodromy

of the open topological string partition function is intimately related to the corresponding

closed topological string partition function. The mirror curve C to the toric Calabi-Yau X

is identified as the open string moduli space [10, 11], such that FGW
top,open becomes a function

on C. The leading order contribution to FGW
top,open in an ε1,2 expansion is then given by

FGW
top,open ∼

∫ x

λ , (3.13)

where λ is the meromorphic 1-form introduced in section 3.1. Thus, the monodromy of

this leading contribution around the A- and B-cycles of the mirror curve coincide with the

periods of λ. These determine the prepotential F0 of X via the special geometry relations

Ti(z) =
∮
Ai
λ

TD,i(z) =
∮
Bi
λ

}
TD,i(z(T )) =

∂

∂Ti
F0(T ) . (3.14)

In refined topological string theory, F0 is the leading contribution in the formal expansion

of Ftop in ε1 and ε2. It was argued in [15], based on insights from [12–14], that the higher

order corrections to Ftop in the NS limit8 ε2 → 0, should arise as the monodromy of FGW,NS
top,open,

given by

FGW,NS
top,open ∼

∫ x

λq , (3.15)

with λq identified with the exponent S of the WKB ansatz discussed in section 2. The

special geometry relation (3.14) now takes the form

Ti(z) =
∮
Ai
λq

TD,i(z) =
∮
Bi
λq

}
TD,i(z(T )) =

∂

∂Ti
FNS(T ) . (3.16)

This proposal was checked explicitly in [14] for pure 4d SU(2) gauge theory. In the frame-

work of the AGT correspondence [48], the necessity to take the NS limit to relate Ftop,open

to λq becomes particularly transparent, see [49]. Eq. (3.16) was further checked in both

the 4d and 5d setting in [8, 39, 50]. It was shown to follow from the AGT correspondence

in [51] for N = 2∗ gauge theory.

The refined open topological string partition function on toric geometries can also be

defined as an index. In this incarnation, it takes the form [46, 47]

FBPS
top,open(q, t,Q, x) = −

∞∑
n=0

∑
s1,s2,d

∑
m 6=0

Ds1,s2
m,d

qns1t−ns2

n(1− qn)
Qndemnx̂ (3.17)

in an expansion in the appropriate exponentiated coordinates on the open and closed string

moduli space. x̂ denotes the open string modulus encoding the position of the brane and

the value of a U(1) Wilson line along the boundary of the topological string worldsheet.

Q = (Q1, . . . , Qn) are the exponentials of the flat closed string moduli t appearing in (3.16),

8This corresponds to the expansion of Ftop in s = (ε1 + ε2)2 at leading order in g2s = ε1ε2. In this limit,

it has become conventional to denote ε1 = ~, as we have done in section 3.1.
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and q = eiε1 , t = e−iε2 . The ˆ over the open string modulus is to indicate that a naive choice

of this coordinate must be modified by factors of closed string moduli in order to obtain

integer open string invariants Ds1,s2
m,d . The need for such so-called flat open coordinates

was first exposed in [10, 11] (see also [52], where an alternate algorithm was proposed to

compute these coordinates). In the Nekrasov-Shatashvili limit t→ 1, we set

Ds1
m,d =

∑
s2

Ds1,s2
m,d . (3.18)

The expansion of FGW
top,open in open and closed string moduli coincides with that of

FBPS
top,open in ε1 and ε2, giving rise to the conjecture that an underlying function Ftop,open

should exist from which both descend. We hence ask to what extent the relation between

the monodromy of the open topological string and Ftop persists in the expansion FBPS
top,open.

For simplicity, let us restrict the discussion to the case of genus 1 mirror curves C. The

A-cycle in these geometries is given by the phase of the open string modulus X = exp(x).

The B-cycle is encoded in the branch cut structure of λ as a function of X. FBPS
top,open clearly

does not contribute to the A-monodromy of Ftop,open under x → x + 2πi. Indeed, this

monodromy is due to a contribution F lin
top,open to Ftop,open which is linear in x, and which can

easily be computed from the quantum curve OC [15, 39]. Thus, in an X expansion,

Ftop,open ∼X F lin
top,open + FBPS

top,open , (3.19)

with the A-monodromy due exclusively to the first term on the r.h.s. As the B-monodromy

is due to the branch cut structure in X, it is not visible upon expanding in X. This can be

seen at leading order in ε by studying
∫ x

λ. Hence, the B-monodromy should be determined

after combining the two terms in (3.19) by first summing the infinite series in exp(x) of

their x derivative.

3.2.1 The dependence on ~

The convergence of the sums in (3.17) over d and m depends on the growth properties of the

constants Ds1,s2
m,d . But already the sum over multi-wrappings n is problematic: for ~

2π ∈ Q,

the summand diverges for infinitely many n. FBPS
top,open as presented in (3.17) hence exhibits

poles at a dense set of points on the unit circle in the q-plane. This is the open string

analogue of the behavior of the closed topological string amplitude discussed in section 3.1.

To study this phenomenon, we will begin by considering the quantum dilogarithm [53]. For

|X| < 1, this function can be defined via the exponential of an infinite sum,

(X; q)∞ = exp

[
−
∞∑
k=1

Xk

k

1

1− qk

]
, (3.20)

which takes the product form

(X; q)∞ =


∏∞
n=0(1−Xqn) if |q| < 1 ,∏∞
n=0

1
(1−Xq−(n+1))

if |q| > 1 .
(3.21)
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(X; q) converges uniformly inside and outside the unit circle on the q-plane, but is ill-defined

on a dense subset of the unit circle itself. To address this problem, Faddeev introduced

what he called the modular quantum dilogarithm in [54], by considering the quotient (in

our notation)

γ(x, ~) =
(X; q)∞

(X
2π
~ ; q−

4π2

~2 )∞

=
(ex; ei~)∞

(e
2πx
~ ; e−

4π2i
~ )∞

. (3.22)

The denominator is chosen to cancel the poles of the numerator. To see the mechanism

at work, consider such a pole at ~
2π = r

s . The sum entering in the dilogarithm in the

numerator has a summand at k = ms that exhibits a pole with residue

− Xk

k

1

1− qk
∼ −X

ms

ms

1

−ims(~− 2π rs)
. (3.23)

A corresponding term in the denominator which cancels this contribution stems from the

summand at k = mr, with residue

− X
2πk
~

k

1

1− q−
4π2k
~2
∼ −X

ms

mr

1

− imr
( r
s
)2

(~− 2π rs)
. (3.24)

By re-ordering the two formal infinite sums that occur in the exponentials of (3.22), we

obtain a function defined everywhere on the q-plane which coincides with the product (3.22)

for q off the unit circle.

Note that the pole cancellation mechanism works for any sum of the form∑
k

fk(q
k, tk,Qk, Xk)

k(1− qk)
, (3.25)

for fk a rational function of its arguments, by subtracting a contribution

∑
k

fk(q
− 4πk

~2 , t
2πk
~ ,Q

2πk
~ , X

2πk
~ )

k(1− q−
4πk
~2 )

, (3.26)

i.e. as long as all parameters aside from q in the correction term are evaluated to the

power of 2π
~ . Returning to the exp(x) expansion of the open topological string partition

function (3.17), we note that ZBPS
top,open is almost of the form (3.25), up to the fact that q and

t are evaluated to half-integer powers. Running through the pole cancellation argument

for this case, we see that half-integer powers of q lead to a sign factor at ~ = 2π rs , k = ms,

qks1 = (−1)2s1mr , (3.27)

and likewise in the correction term,

q−
4π2

~2 ks1 = (−1)2s1ms (3.28)

at k = mr. For the cancellation mechanism to work, we can shift the Kähler parameters

by a B-field that satisfies

(−1)2s1+B·d = 1 (3.29)

for all s1 for which Ds1,s2
m,d 6= 0.
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3.2.2 Specifying the domain F x,~ of OC

As reviewed in section 3.1, ZNS
top,open is conjectured to be annihilated by the operator OC .

The simplest instance of this behavior can be observed for the open topological string

partition function on C3, which is given by the quantum dilogarithm introduced above. It

satisfies the difference equation

[(1− ex)− ep] (ex; ei~)∞ = 0 . (3.30)

Note that a difference equation of the form

OCΨ(x) = 0 (3.31)

does not have a unique solution. In particular, given a function Ψ(x) in the kernel of the

operator OC , χ(x) × Ψ(x) for any function χ(x) of periodicity i~ will also be annihilated

by this operator. In the case of X = C3, the modular quantum dilogarithm (3.22) is hence

also annihilated by the operator on the l.h.s. of (3.30).

We know three methods to determine an element in the kernel of OC . The first

proceeds via the WKB ansatz

ψWKB(x) = exp

∫ x

S , S =
1

ε
S−1 +

∞∑
n=0

Snε
n (3.32)

we discussed in section 2, with ε = i~. Substituting (3.32) into (3.31) allows us to recursively

solve for the coefficients Sn. The formal power series thus obtained, which we have called

ψWKB, should coincide, up to the ambiguity discussed above, with FGW,NS
top,open. The second

method is based on rewriting (3.31) as an equation for

Ξ(x) =
Ψ(x− i~)

Ψ(x)
, (3.33)

which can then be solved recursively and yields an expansion of Ξ(x) in the closed moduli

parameters zi. We can extract Ψ(x) from Ξ(x) up to the ambiguity discussed. Expressing

the moduli zi in Ξ(x) in terms of flat coordinates Ti, this should coincide with ZBPS,NS
top,open.

We therefore refer to this formal series in zi (upon a choice of the ambiguity) as ψBPS. We

will apply both methods to the example of local P1 × P1 in section 4.

The ambiguity of multiplying Ψ(x) via a periodic function in x can be reduced by

specifying the function space on which the operator OC acts. Aside from the behavior in

x, the dependence on the parameters q and z needs to be specified. The third method

of computing Ψ(x) explicitly depends on this choice of function space. It proceeds by

specifying a basis for this space, expressing OC as a matrix ONC in a truncation of this

basis to N elements. The values of z for which the kernel of ONC is non-empty can then

be determined by solving detONC = 0, upon which the kernel in the approximation of this

truncation easily follows.

The choice of function space made in [18, 23, 24] is the L2(R) space spanned by the

eigenstates of the harmonic oscillator,

ψn(x) =
1√

2nn!

(mω
π~

) 1
4
e−

mωx2

2~ Hn

(√
mω

~
x

)
, n ∈ N0 . (3.34)
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The Hn(x) are the Hermite polynomials, and ω and m are physical parameters which will

play no role for our purposes and will be set to convenient values in the following. Upon

computing the matrix elements of the monomials generated by ex and ep = e−i~
∂
∂x ,

〈k|eaxebp|l〉 = 2
k+l
2

√
k!l!e|ζ|

2+iab~
2 ζkζ̄ l

min{k,l}∑
n=0

2n

n!(k − n)!(l − n)!

1

(2|ζ|)2n
, (3.35)

where

ζ =
1

2

(
~
mω

) 1
2

(a+ imωb) , (3.36)

the matrix elements of operators OC in this basis can easily be determined. By making

the choice of basis (3.34), we are committing to a certain type of ~ dependence. The

states (3.34) depend continuously on ~ (up to branch cuts) and are defined for any value

~ ∈ C∗. They are elements of L2(Rx) for Re (~) > 0. The kernel of ONC is determined

by solving a system of N linear equations with coefficients the matrix elements (3.35).

The solution will be a linear combinations of the harmonic oscillator eigenstates (3.34)

with coefficients that are rational functions of these matrix elements. We will call F x,~ the

space of functions of the variables (~, x) of this form. The quantization condition presented

in section 3.1 is to yield the tuples z for which the kernel of the operator OC has non-zero

intersection with this function space.

3.2.3 Consequences of imposing Ψ ∈ F x,~

Let us assume that ψWKB, the formal power series in ε = i~ defined in (3.32), can be

Borel resummed to a function ΨWKB away from q = 1. For ΨWKB to be an element of

F x,~, it must be single-valued as a function of x. We have argued in section 2 that the

monodromy along a path C is given by exp ΠC , with ΠC the Borel resummation of the

integral πC =
∮
C S, and S defined in (3.32). When C coincides with the Bi-cycle of the

geometry, the NS conjecture (3.16) identifies πC with ∂tiFNS. The monodromy is thus of

the form exp[φpert(z, q) + φBPS(z, q)]. The condition for single-valuedness of ΨWKB around

the cycle Bi is hence

φpert(z, q) + φBPS(z, q) = 2πi n , n ∈ Z . (3.37)

In a zi expansion, ψWKB reproduces the ~ expansion of ψBPS, which was defined below (3.33).

While for real ~
2π /∈ Q, it has been noted [55, 56] that the Borel resummation of ψWKB is

locally smooth in ~, there exists no argument that Borel resummation at complex ~ will

eliminate the poles in q plaguing ψBPS. If this indeed does not occur, ΨWKB /∈ F x,~.

To proceed, we will assume that ψBPS is also Borel summable, in its expansion pa-

rameters z, to the function ΨBPS. To enforce smooth behavior upon approaching the unit

q-circle, we take our cue from the discussion in 3.2.1 and consider the quotient

Ψ =
ΨWKB(x)

ΨBPS

(
X

2π
~ , z(Q

2π
~ ), q−

4π2

~2

) . (3.38)
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Due to the periodicity of the denominator under x 7→ x+ i~, this is still a solution to the

difference equation (3.31).9 The condition for the single-valuedness of Ψ upon circumnav-

igating the cycle Bi is given by

φpert(z(Q), q) + φBPS(z(Q), q) = 2πim+ κ , φBPS(z
(
Q

2π
~ ), q−

4π2

~2
)

= 2πin+ κ , (3.39)

for m,n ∈ Z, and arbitrary κ ∈ C, or equivalently,

φpert(z(Q), q) + φBPS(z(Q), q)− φBPS

(
z(Q

2π
~ ), q−

4π
~2
)

= 2πi(m− n) . (3.40)

We are here assuming that the perturbative contribution φpert(z(Q), q) to the quantization

condition arises upon combining ΨBPS with an additional contribution, as in (3.19), and is

not modified by the denominator of (3.38). We will argue in section 4.4 that the half-integer

shift on the r.h.s. of (3.12) is due to φpert containing a contribution φpert = πi + . . .. This

explanation of the quantization condition predicts a relation between the closed invariants

Nd
jL,jR

and the open invariants Ds1
m,d based on the two conditions (3.11) and (3.29).

4 Example: local P1 × P1

In this section, we will apply our analysis to the geometry X = O(−K) → P1 × P1. This

geometry has been studied extensively in the literature with regard to its closed string

invariants [40, 58, 59], and in the context of the quantization condition (3.12) for real

~ [19]. Here, we will be interested in the WKB analysis of the difference equation (3.31)

for this geometry. As our analysis in section 3.2.3 relies on complex ~, we will extend the

study of (3.12) to this case.

In passing, we will also compute some open string invariants of this geometry and verify

their integrality upon appropriate choice of flat open variables and invoking the quantum

mirror map.

4.1 The mirror curve and classical periods via Picard-Fuchs

The toric grid diagram describing the local P1 × P1 geometry is depicted in figure 3, with

vertices corresponding to one dimensional cones of the fan enumerated from 0 to 4. The

diagram exhibits one interior point and one boundary point beyond three. The underlying

geometry is therefore described by one modulus and one mass parameter, in the terminology

introduced in section 3.1. Following the standard algorithm [38], each independent relation

l(1) = (−2 1 0 1 0) (4.1)

l(2) = (−2 0 1 0 1) (4.2)

among the one dimensional cones is assigned a parameter zi, and the equation for the

mirror curve C is obtained as

PC(ex, ep, e−x, e−p) = ep + z1e
−p + ex + z2e

−x + 1 = 0 . (4.3)

9Note that the conditions of periodicity and pole cancellation do not fix the modification uniquely.

Indeed, after the first version of this paper was submitted to the arXiv, we were informed of work in

progress [57] suggesting a different completion.
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Figure 3. The toric grid diagram for local P1 × P1.

Flat coordinates t1 and t2 on the complexified Kähler moduli space of X, encoding the

size of the two P1 curves respectively, are identified as the logarithmic solutions of the

corresponding Picard-Fuchs system. These can be determined at small z1, z2 (the large

radius regime on X) via the Frobenius method [38] to be

−t1 = log z1 + 2(z1 + z2) + 3(z21 + 4z1z2 + z2)
2 +

20

3
(z31 + 9z21z2 + 9z1z

2
2 + z32) + . . . ,

−t2 = log z2 + 2(z1 + z2) + 3(z21 + 4z1z2 + z2)
2 +

20

3
(z31 + 9z21z2 + 9z1z

2
2 + z32) + . . . .

(4.4)

As above, we will also introduce exponentiated coordinates Qi = exp(−ti), such that small

zi corresponds to large ti and small Qi. The quotient zm = z2
z1

= Q2

Q1
is an algebraic function

in the exponentials of the flat coordinates, identifying it as a mass parameter.

By inverting (4.4), we obtain the so-called mirror map

z1 = Q1

(
1− 2(Q1 +Q2) + (3Q3

1 − 4Q2
1Q2 − 4Q1Q

2
2 + 3Q3

2) + . . .
)
. (4.5)

The doubly logarithmic solutions of the Picard-Fuchs system can also be determined via

the Frobenius method at large radius, and allow the computation of the prepotential F0 in

this regime. Introducing coordinates T = t1, Tm = t2 − t1 to distinguish between modulus

and mass parameter and expressing the doubly logarithmic solutions in terms of these, an

appropriate linear combination of them yields ∂TF0. The correct linear combination can

be determined e.g. by matching some low lying Gromov-Witten invariants (obtained e.g.

by geometric means, or via the topological vertex).

4.2 The quantum mirror curve and FNS
top,open via recursion

Following our discussion in section 3.2.2, we introduce the function Ξ(x) = Ψ(x− i~)/Ψ(x)

and rewrite the difference equation (3.31) as an equation for Ξ(x),

Ξ(x) +
z1

Ξ(x+ i~)
+ ex + z2e

−x + 1 = 0 . (4.6)

This equation can be solved recursively, yielding a formal series in zi which we call ξ(x).

Expressing z1 and z2 in terms of Q1 and Q2 via the quantum mirror map which we discuss

below, we find

log ξ(x) = ζconst + ζBPS,+ + ζBPS,- , (4.7)
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m d2 \ d1 0 1 2

0 (2) 1 (3) 1

1 1 (2) 1 (3) 1 (1) 1 (2) 1 (3) 3 (4) 4 (5) 1

2 (2) 1 (3) 1 (4) 1 (0) 2 (1) 4 (2) 4 (3) 8 (4) 11 (5) 11 (6) 4 (7) 1

0 (3) 1 (4) 1 (5) 1

2 1 (3) 1, (4) 1 (2) 1 (3) 1 (4) 4 (5) 6 (6) 3 (7) 1

2 (3) 1 (4) 1 (5) 1 (1) 2 (2) 4 (3) 4 (4) 9 (5) 15 (6) 15 (7) 9 (8) 3 (9) 1

Table 1. Some open string invariants Ds1
m,d1,d2

for local P1 × P1. The number in parentheses

preceding the entry indicates the spin s1.

where

ζconst = Q1 , (4.8)

and ζBPS,+, ζBPS,- are of the form

ζBPS,+(x, q) =
∞∑
n=0

∑
d1,d2,s1

∞∑
m=1

Ds1
m,d1,d2

qns1

n

1− q−mn

1− qn
Qnd11 Qnd22 emnx̂ , (4.9)

ζBPS,-(x, q) = ζBPS,+(−x+ logQ2, 1/q) . (4.10)

with integer coefficients Ds1
m,d1,d2

.10 x̂ designates the flat open string modulus. It is given

by [10, 52]

ex̂ = −
√
Q2

z2
ex . (4.11)

Some invariants Ds1
m,d1,d2

for low m and d1 + d2 are given in table 1.

As Ds1
m,d1,d2

6= 0 only for integer s1, we can choose B = 0 in (3.29). It is argued in [23]

that this is also a valid choice in (3.11).

4.3 The quantum mirror curve and quantum periods

The analytic structure of the mirror curve (4.3) becomes clearer if we redefine variables by

setting

x̃ = x− 1

2
log z2 , p̃ = p− 1

2
log z1 . (4.12)

This gives rise to the curve

cosh p̃+

√
z2
z1

cosh x̃+
1

2
√
z1

= 0 . (4.13)

Note that x̃ is essentially the flat coordinate on the open string moduli space give in (4.11).

The question of the appropriate coordinates on this moduli space to achieve integrality

of the expansion coefficients in (3.17) is thus mapped to the question of the appropriate

parametrization of the mirror curve. The relation (4.10) is a reflection of the symmetry

of (4.13) under x̃↔ −x̃.

Upon quantization, the shifts in (4.12) preserve the canonical commutation conditions

[x, p] = i~ ⇒ [x̃, p̃] = i~ . (4.14)

10We have checked this structure up to m = 6 and combined order 6 in Q1 and Q2.
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Figure 4. The sheet structure of the mirror curve for local P1 × P1.

The kernels of the quantization of the curves (4.3) and (4.13) are related via[
cosh p̃+

√
z2
z1

cosh x̃+
1

2
√
z1

]
Ψ̃(x̃) = 0 (4.15)

⇔ e
−ix log z1

2~
[
ep + z1e

−p + ex + z2e
−x + 1

]
e
ix log z1

2~ Ψ̃

(
x− 1

2
log z2

)
= 0 . (4.16)

Equation (4.15) expresses the quantum mirror curve in the appropriate form to map the

equation (1.1) to a spectral problem of the form (1.2), with

ÕC = cosh p̃+

√
z2
z1

cosh x̃ . (4.17)

As the leading contribution S−1 to the WKB ansatz (3.32) coincides with the solution

of (4.15) for p̃, the analytic structure of this curve is captured by

S−1(x̃) = ±arccosh

(
1

2
√
z1

(1 + 2
√
z2 cosh x̃)

)
+ πi . (4.18)

The dependence of S−1 on x̃ is via cosh x̃, a fundamental domain of the function hence lies

between Im x̃ = −π and Im x̃ = π. Within this interval, S−1 requires two branch cuts, in

accord with the discussion of the sheet structure of the arccosh function in section 2.2.1.

We have sketched this sheet structure in figure 4. Following the discussion of section 2.2.1,

both branch cuts are divided into two segments: the initial segment is the preimage of the

interval [−1, 1] under the argument of the arccosh. Crossing this branch cut changes the

sign of the function; it is associated to a branch point of order 2. Crossing the branch cut

beyond this point takes one to a sheet with imaginary part shifted by 2π; it is associated

to a branch point of order infinity. We can define two conjugate cycles on this geometry,

labeled by A and B in figure 4. The A-cycle reflects the periodicity of cosh x̃. The B-cycle

passes through the order 2 segment of the branch cuts.
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The quantum mirror map [15] is obtained by defining the A-cycle integral of the WKB

exponent S(x) as a flat coordinate. By our discussion in section 3.2, this coincides with the

conventional mirror map to leading order in ε = i~. It is possible to compute this integral

to all orders in ~ in a zi expansion by noting

log ξ(x) ∼ε
∫ x (

S(x′ − i~)− S(x′)
)
dx′ = −i~S(x) +

∞∑
n=1

S(n)(x)
(−i~)n+1

(n+ 1)!
. (4.19)

The integrand on the r.h.s. is understood in an expansion in zi. The integral of log ξ(x)

along the A-cycle is easy to perform. Only ζconst in (4.7) contributes, and yields [15, 39]

ΠA =− 1

2πi

∫ x0+πi

x0−πi
ζconst dx =

−
(

1

2
log z1 + (z1 + z2) +

3qz21 + 2z1z2 + 8qz1z2 + 2q2z1z2 + 3qz22
2q

+ . . .

)
. (4.20)

Comparing to the result (4.4) obtained via the Picard-Fuchs equation at leading order in

~ allows us to fix the normalization for the quantum corrected period to be

T1 = −2ΠA . (4.21)

Inverting this relation yields the quantum mirror map, the first terms of which are

z1 = Q1

(
1− 2(Q1 +Q2) + 3Q2

1 − 2
(1− q)2

q
Q1Q2 + 3Q2

2 + . . .

)
. (4.22)

This expression is used to obtain the expansion of ζBPS,+ in Qi in (4.9).

The integral along the B-cycle is more difficult to perform directly, as the branch cuts

degenerate in the limit of vanishing z1 and z2. The non-logarithmic contributions to this

period can be obtained from log ξ by performing the indefinite integral over x order by

order in a zi expansion, and extracting the finite contribution at x→ −∞ [15, 39]. A more

elegant computation of the period is clearly desirable. Note that an expansion in exp(x),

as has been performed to obtain the form (3.17), does not commute with this integration.

4.4 Exact WKB analysis

To perform a WKB analysis along the lines of section 2.2.1, we consider the curve in the

form (4.15), allowing us to identify

−Q(x̃) =

√
z2
z1

cosh x̃+
1

2
√
z1
. (4.23)

This yields the WKB expansion coefficients

S−1(x̃) = arccosh

(√
z2
z1

cosh x̃+
1

2
√
z1

)
+ iπ , (4.24)

S0(x̃) = −1

4

d

dx
log

[(√
z2
z1

cosh x̃+
1

2
√
z1

)2

− 1

]
, (4.25)

. . . .
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Figure 5. Flow lines for S−1 = arccosh(z− coshx). The branch cuts are drawn in red and green.

The red sections are of order 2, the green sections of order ∞.

Performing an expansion around vanishing z1 and z2 yields

S−1(x̃) = πi− 1

2
log z1 + 2

√
z2 cosh(x̃)−

(
z1 + 2z2 cosh2(x̃)

)
+ . . . , (4.26)

S0(x̃) = −2z1
√
z2 sinh(x̃) + 6z1z2 cosh(x̃) sinh(x̃) . . . , (4.27)

. . . .

This coincides with the ~ expansion of the results obtained by solving (4.6) via recursion.

The Stokes graphs of the difference equation are determined by (4.24). There are two

turning points in the range Im x ∈ {−π, π}, at
√

z2
z1

cosh x̃+ 1
2
√
z1

= 1. Figure 5 shows the

flow lines for S−1, together with convenient choices for the branch cuts emanating from

the turning points. The curves c(t) passing through the turning points for which

eiθS−1dx · ∂t ∈ R , (4.28)

for a given choice of θ and z1, z2, are depicted in figure 6. By our analysis of the previous

section, these are the Stokes lines governing the monodromy behavior of Ψ±WKB, at least

close to the turning points: they pick up the monodromy − exp[±
∮
Sodddx] along a path

circling the two turning points, with the integration performed along this path.

Note that the sign in front of the exponential in the monodromy is due to the fourth

root arising from the S0 contribution in (2.25). As the branch cut is not visible in an

expansion of this term in X = exp(x), we attribute the sign to φpert in the notation of

section 3.2.3.

4.5 Testing the quantization conjecture for complex ~

Much numerical evidence has been provided for the quantization condition (3.12) in the case

of local P1×P1 for real ~ [19]. This in particular is the geometry that features prominently
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Figure 6. The Stokes graphs for local P1 × P1.

in the analysis of the ABJM matrix model in [60] and related works. In this section, we will

extend this study to complex ~. Note that the operator OC obtained from quantization of

PC in (4.3) is invariant under the conjugation ~→ ~̄, as is the quantization condition (3.12).

Every study at complex ~ hence tests the quantization condition simultaneously inside and

outside the q unit circle.

To determine the eigenvalues numerically, we use the formula (3.35) to compute the

matrix elements of the operator ÕC given in (4.17) in the basis (3.34) of harmonic oscil-

lator eigenstates up to a fixed level n, and then diagonalize the matrix numerically. The

dependence on the choice of ω and m in (3.34) decreases with increasing matrix size.

To evaluate the quantization condition, we first compute the refined topological string

partition function on local P1 × P1 using the refined topological vertex [2, 61]. This com-

putation is detailed in [23] for the general case of An singularities fibered over P1, and will

not be reviewed here. The vertex formalism computes the series coefficients an in

Ztop ∼Q1

∑
n

an(q, t,Q2)Q
n
1 (4.29)

as rational function in the variables Q2, q = eiε1 , and t = e−iε2 . The ε1 → −ε2 limit

reproduces the conventional topological string partition function, as computed in [62, 63],

with modulus Q = Q1 and mass parameter Qm = Q2/Q1. The limit

lim
ε2→0

ε2 logZtop = FNS
top,closed (4.30)

yields the NS limit of the topological string amplitude that enters into the quantization

condition. The first few terms are given by

FNS
top,closed ∼Q1,Q2

q + 1

q − 1
Q2 −

q(q + 1)

(q − 1)(q −Q2)(qQ2 − 1)
Q1 + . . . . (4.31)
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Figure 7. The largest coefficient dn,k plotted against n.

Here, the first term is the leading contribution in a series in Q2 of Q1 independent terms,

and the second is the order 1 term in a Q1 expansion.

The choice of ~ for which we can test the quantization condition must satisfy several

constraints. As the quantization condition is implemented as a truncated series in Qi and

Q
2π
~
i , we need to ensure that the solution to the quantization condition lies at sufficiently

small values of Q such that both expansion parameters are small. Also, values of ~ for

which either |ei~| or |e
4π2i
~ | are large (order 100 or more) lead to unstable numerics.

We first consider the eigenvalue problem at z1 = z2, i.e. Q = Q1 = Q2, Qm = 1. Upon

expansion of FNS
top,closed as

FNS
top,closed ∼Q

∑
n

bn(q)Qn , (4.32)

we find the coefficients bn(q) to be rational functions of the form

bn(q) =

∑
cn,k cos(dn,k ~)

sin(n2 ~)
, cn,k ≥ 1 , (4.33)

where maxk dn,k grows faster than linearly in n, see figure 7. It follows that for complex

~, |bn(q)| is unbounded and the series (4.32) that enters into the quantization condition

does not converge. We see this behavior reflected in table 2, where we have evaluated

the quantization condition at successive orders in Q. Had FNS
top,closed been convergent, we

would have expected an increasing number of digits of z to stabilize with increasing order.

Instead, we see that the result appears to stabilize to a certain number of digits, but then

oscillates around this value.

Never the less, the prediction of the quantization condition, evaluated at optimal trun-

cation in the expansion in Q, reproduces the result obtained for z via numerical diagonal-

ization to numerous significant digits, see table 3.

For the examples that we consider, it turns out that the solutions of (3.12) for Q at

larger n, i.e. for higher lying eigenvalues, have smaller absolute value. This explains the

improved accuracy of the results at larger n in table 3. In fact, beyond n = 0, the results

via the quantization condition stabilize to more significant digits than those from numerical

diagonalization up to matrix size 500 × 500.
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order in Q z via quantization condition

1 7.8881124 + 2.03196930 i

2 8.1353674 + 1.96234286 i

3 8.1238152 + 1.97363235 i

4 8.1242759 + 1.97257505 i

5 8.1242830 + 1.97266253 i

6 8.1242794 + 1.97265470 i

7 8.1242805 + 1.97265560 i

8 8.1242800 + 1.97265549 i

9 8.1242805 + 1.97265566 i

10 8.1242795 + 1.97265546 i

11 8.1242819 + 1.97265761 i

12 8.1242664 + 1.97267005 i

13 8.1242882 + 1.97280531 i

Table 2. The quantization condition evaluated at ~ = 3 + i.

~ n z via diagonalization z via quantization condition

0 8.12428024641619 + 1.97265543644422 i 8.124280 + 1.972655 i (9)

3 + i 1 19.06647674202373 + 8.65025419938627 i 19.06647674202373 + 8.65025419938627 i (12)

2 36.171976898401704 + 22.4710366010966 i 36.171976898401704536102 + 22.4710366010966616226996 i (13)

0 32.59048527302 + 24.768795735781 i 32.590485 + 24.76879 i (5)

10 + 3 i 1 149.88891552236 + 180.10000255910 i 149.88891552236089 + 180.100002559106430 i (7)

2 429.46307908 + 757.2311848397 i 429.46307908198397242150 + 757.23118483976591204907 i (7)

Table 3. Numerical diagonalization with matrix size 500×500, best approximation via quantization

condition is given, with the order at which the approximation is attained indicated in parentheses

When more digits stabilize up to the maximal order (13) considered via the quantization condition

than via diagonalization, these are indicated, even though the stabilization will be lost at higher

order.

zm n z via diagonalization z via quantization condition

0 6.55723612994535 + 7.20861330852542 i 36.55723 + 7.20861 i (7)

10 1 75.8984079656015 + 31.385294436428 i 75.8984079656015 + 31.38529443642880 i (9)

2 137.8896673007909 + 80.706970674681 i 137.889667300790980981 + 80.7069706746815527222 i (9)

0 21.21608102907488235 + 7.855443627204370422 i 21.21608 + 7.85544 i (6)

5 + i 1 45.53184055833938617 + 26.8836637285323608 i 45.531840558339 + 26.88366372853 i (8)

2 82.8551978931157334 + 64.5662794096170074 i 82.855197893115733449488 + 64.56627940961700744288(9) i

Table 4. These results are obtained at ~ = 3 + i. Numerical diagonalization with matrix size

500× 500. Same conventions as in table 3.

We can also check the quantization condition away from the Q1 = Q2 locus. To this

end, we diagonalize the operator (4.15) at a fixed value of zm, and evaluate the quantization

condition at Q2 = zmQ1. Note that FNS,BPS
top,closed as determined by the refined vertex is exact

in Q2. The quantum mirror map however is only known in an expansion in this parameter.

For consistency, we hence also expand FNS,BPS
top,closed in Q2 before evaluation.

The results for two choices of zm are recorded in table 4.
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5 Conclusions

We have argued that the rules of exact WKB analysis carry over to difference equations,

and used these to determine the monodromy behavior of WKB solutions. The quantization

condition (3.12) then reduces to a question regarding the monodromy of the elements

of the kernel of the quantized mirror curve OC . We have argued that the contribution

non-perturbative in ~ to the quantization condition (3.12) proposed in [24] arises when

requiring that the kernel of the quantum mirror curve OC have non-trivial intersection

with a particular function space F x,~ defined in section 3.2.2.

The analysis performed in this paper should be enhanced in several directions:

To accumulate evidence for the exact WKB rules as applied to difference equations, or

to discover their limitations, they should be tested in the case of difference equations with

known exact solutions.

The relation between the quantum B-period and FNS
top,closed which enters centrally in

the quantization condition (3.12) relies on the Nekrasov-Shatashvili conjecture (3.16). It

would be important to have a proof of this conjecture, perhaps along the lines of the proof

in [51] in the case of N = 2∗ 4d gauge theory. This might help clarify the required B-field

dependent shift in the quantum mirror map alluded to in footnote 7.

The numerical manifestation of the quantization of the complex structure parameters

zi in the higher genus case should be clarified.

We have emphasized the need of specifying the function space F x,~ on which the

equation OCΨ = 0 is to be solved. The possibility has been raised in the literature that

the Borel resummation of the naive WKB solution automatically imposes ΨWKB ∈ F x,~ [64].

In the case of real ~, evidence was presented in [55] that the Borel-Padé resummation of

the ~ expansion of FNS
top,closed on local P1×P1 at real ~ is smooth. See also [56] for an analysis

of the conifold geometry for real ~. This issue merits further study for general ~.

The relationship between flat open coordinates and distinguished forms of the operator

OC should be further explored. Also, the correlation between the B-field required for the

pole cancellation mechanism in the open and the closed case deserves further study. For a

recent study linking open to closed string invariants, see [65].

Very recently, an article [66] appeared on the arXiv studying the monodromy of dif-

ference equations in very different language from that employed in this paper. It would be

interesting to see how the two analyses are related.
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