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(FFs), evolved to the jet energy scale, with perturbatively calculable matching coefficients.

Renormalization group equations are used to provide resummed calculations with next-to-

leading logarithm prime (NLL’) accuracy. We apply this formalism to two-jet events in

e+e− collisions with B mesons in the jets, and three-jet events in which a J/ψ is produced

in the gluon jet. In the case of B mesons, we use a phenomenological FF extracted from

e+e− collisions at the Z0 pole evaluated at the scale µ = mb. For events with J/ψ, the

FF can be evaluated in terms of Non-Relativistic QCD (NRQCD) matrix elements at the

scale µ = 2mc. The z and τa distributions from our NLL’ calculations are compared with

predictions from monte carlo event generators. While we find consistency between the

predictions for B mesons and the J/ψ distributions in τa, we find the z distributions for

J/ψ differ significantly. We describe an attempt to merge PYTHIA showers with NRQCD

FFs that gives good agreement with NLL’ calculations of the z distributions.
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1 Introduction

The study of jets and heavy flavor continues to play an important role at the Large Hadron

Collider (LHC) and many other high energy and nuclear experiments. Such studies are

essential for testing our understanding of Quantum Chromodynamics (QCD) and for cal-

culating backgrounds in searches for new physics. In this paper we calculate cross sections

for e+e− to jets, where one of the jets contains a hadron with either open or hidden heavy

flavor. In particular, we will derive factorization theorems and perform analytical Next-

to-Leading-Log prime (NLL’) resummation1 for these cross sections using renormalization

group (RG) techniques. We will also compare our results with monte carlo simulations of

the same cross sections.

Recently, there has been considerable interest in cross sections of this type [2–11].

Ref. [2] demonstrated that the cross section for producing a jet with an identified hadron

can be determined using a distribution function called the fragmenting jet function (FJF).

FJFs are in turn related to the more commonly studied fragmentation functions (FFs) by

a matching calculation at the jet energy scale. This implies that cross sections for jets

with an identified hadron provide a new arena to measure FFs, which are more commonly

extracted from the semi-inclusive cross section e+e− → H + X. Especially important is

that this provides an opportunity to extract gluon FFs [10, 11], since quark FFs are more

1NLL’ includes NLL resummation for each function in the factorization theorem, where all functions are

computed to NLO [1].

– 1 –



J
H
E
P
0
6
(
2
0
1
6
)
1
2
1

readily studied in e+e− → H + X. In addition, it was recently shown in ref. [9] that

since the FFs for quarkonia production can be calculated in the Non-Relativistic Quantum

Chromodynamics (NRQCD) factorization formalism [12], FJFs can be used to make novel

tests of quarkonium production theory.

The FJF was first introduced in ref. [2] whose main results can be summarized as

follows:

• A factorization theorem for a jet with an identified hadron, H, is obtained from the

factorization theorem for a jet cross section by the replacement

Ji(s, µ)→ 1

2(2π)3
GHi (s, z, µ)dz, (1.1)

where Ji(s, µ) is the jet function for a jet with invariant mass s initiated by parton

i, and the renormalization scale is µ. The FJF, denoted GHi (s, z, µ), additionally

depends on the fraction z of the jet energy that is carried by the identified hadron.

These functions implicitly depend on the jet clustering algorithm and cone size R

used to define the jets. It is also possible to define jet functions and FJFs that

depend on the total energy of the jet rather than the invariant mass [6].

• The FJFs, GHi (s, z, µ), are related to the well-known FFs, DH
i (z, µ), by the formulae

GHi (s, z, µ) =
∑
j

∫ 1

z

dz′

z′
Jij(s, z′, µ)DH

j (z/z′, µ) +O
(
Λ2

QCD/s
)
, (1.2)

where the coefficients Jij(s, z, µ) are perturbatively calculable matching coefficients

whose large logs are minimized at the jet scale, s, and are calculated to NLO in

ref. [4]. For heavy quarks the Jij(s, z, µ) have been calculated to O(α2
s) in ref. [8].

• These matching coefficients obey the sum rule

Ji(s, µ) =
1

2(2π)3

∑
j

∫ 1

0
dzzJij(s, z, µ) . (1.3)

The properties of FJFs were further studied in refs. [3–7]. These papers focused on the

FJFs for light hadrons such as pions. FJFs for particles with a single heavy quark were

studied in ref. [8] and FJFs for quarkonia were calculated in ref. [9].

One important goal of this work is to generalize FJFs to jets in which the angularity

is measured. The angularity, denoted τa, is defined as [13]

τa =
1

ω

∑
i

(p+
i )1−a/2(p−i )a/2 , (1.4)

where the sum is over all the particles in the jet, and ω =
∑

i p
−
i is the large light-like

momentum of the jet. The angularity should be viewed as a generalization of the invariant

mass squared of the jet since s = ω2τ0. We calculate the matching coefficients appropriate

for jets in which the angularity has been measured, denoted Jij(τa, z, µ), and verify the

s→ τa generalization of the sum rules in eq. (1.3) in appendix B of this paper. The other

goal of this work is to study the z and τa dependence of the cross section for jets with

identified heavy hadrons in e+e− collisions and compare our analytical results to monte

carlo simulations. We will do this for two-jet events in which e+e− → bb̄ is followed by
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fragmentation to B mesons. We will also study three-jet events with e+e− → bb̄g followed

by the gluon fragmenting to a jet with a J/ψ. At the LHC we expect high energy gluons

fragmenting to a jet with J/ψ to be an important production mechanism of J/ψ at high

pT and ref. [9] showed this process is sensitive to the mechanisms underlying quarkonium

production. The study in this paper will allow comparison of analytic calculations with

monte carlo simulations of gluons fragmenting to J/ψ in jets. In order for this cross section

to be physically observable one would either include quarks and antiquarks fragmenting

to jets with J/ψ or one would have to ensure experimentally that the J/ψ came from the

gluon jet in the three-jet event, which could be possible if the other jets are b-tagged.

In section 2, we discuss the basics of FJFs for events containing jets where the an-

gularity of the one of the jets is probed. We review various properties of FJFs and their

relationship with the more commonly studied FFs. We also present our results for the

matching coefficients Jij(τa, z, µ) for jets with measured angularities. Further details of

that calculation can be found in appendix B. In section 3, we present our results for the

NLL’ cross section for e+e− → 2 jets where one of the jets contains a B meson and the

angularity of that jet is measured. We find reasonable agreement in both z and τa dis-

tributions between our analytic calculations and monte carlo simulations performed using

Madgraph [14] + PYTHIA [15, 16] and Madgraph + HERWIG [17]. In section 4, we

show similar comparisons of analytic versus monte carlo calculations for the cross section

for e+e− → 3 jets where one of the jets contains a J/ψ created via gluon fragmenta-

tion. In this case the τa distributions for the jet are in good agreement, but the monte

carlo predictions for the z distributions are inconsistent. We believe that this is due to

PYTHIA’s modeling of radiation from color-octet states that produces a harder z distribu-

tion than the analytic calculations. In an effort to improve the consistency between NLL’

and monte carlo calculations, we turn off hadronization in PYTHIA and then convolve

the distribution of momenta of the gluons within a jet with the NRQCD color-octet FF

at the scale 2mc. This ad-hoc procedure brings monte carlo calculations into much better

agreement with analytic NLL’ calculations. This suggests that if NRQCD fragmentation

could be properly implemented in PYTHIA, consistency with NLL’ calculations would be

obtained, though more work needs to be done on this problem. In section 5 we give our

conclusions. Appendix A summarizes the renormalization group evolution (RGE) needed

for NLL’ calculations and also gives the profile functions that are used when computing

the scale variation in the NLL’ calculations. Appendix B describes the calculation of the

matching coefficients and checks that they satisfy the required sum rules that relate them

to the jet function.

2 Fragmenting jet functions with angularities

In this section we extend the calculation of ref. [4] to FJFs with measured angularities.

We will follow the terminology of ref. [18], in which a jet whose angularity is measured is

referred to as a “measured” jet, while a jet for whom only the total energy is measured

but the angularity is not is called an “unmeasured” jet. Here we consider the case of

two particles as this is the most that will appear in a one-loop calculation. In ref. [4] the
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measurement operator in the definition of FJFs forces the mass squared of the jet to be s.

The measurement operator takes the form

δ(ω(k+ − l+ − p+)) = δ(s− ω(l+ + p+)), (2.1)

where kµ is the parent parton’s momentum and lµ and pµ are the momenta of the partons

carrying large lightcone components l− = (1− z)k− and p− = zk− of the parent’s momen-

tum, respectively. The operator definition of the FJF with measured angularities is given by

Ghi (τa, z, µ) =

∫
dk+dp+

h

2π

∫
d4y e−ik

+y−/2 (2.2)

×
∑
X

1

4NC
tr

[
n/

2
〈0|χn,ω(y)δ(τa − τ̂a)|Xh〉〈Xh|χ̄n,ω(0)|0〉

]

where at O(αs) the operator τ̂a takes the form (cf. eq. (1.4))

δ(τa − ((l+)1−a/2(l−)a/2 − (p+)1−a/2(p−)a/2)/ω) . (2.3)

Other than replacing eq. (2.1) with eq. (2.3), the integrals of all diagrams are the same as

in ref. [4]. However, rather than using the δ-regulator and a gluon mass, we will use pure

dimensional regularization to regulate all divergences. In this limit, it is possible to show

that the one-loop evaluation of the FF yields

Di→j(z) = δijδ(1− z) + Tij
αs
2π
Pij(z)

(
1

εUV
− 1

εIR

)
, (2.4)

where Tij are the color structures, Tqq = CF , Tgg = CA, Tqg = CF , Tgq = TR. Addi-

tionally, we have verified that the same 1/εIR poles appear in the calculation of FJFs and

appropriately cancel in the matching between the FJFs and FFs for all values of a < 1.

This justifies the formula

Ghi (τa, z, µ) =
∑
j

∫ 1

z

dx

x
Jij(τa, x, µ)Dj→h

( z
x
, µ
)
, (2.5)

which is the analog of eq. (1.1) for FJFs that depend on the angularities.

Since the matching coefficients Jij(τa, z, µ) are free of IR divergences, we can simplify

the matching calculation by using pure dimensional regularization, setting all scaleless

integrals to zero and interpreting all 1/ε poles as UV. A detailed calculation of the renor-

malized finite terms of Jij(τa, z, µ) can be found in appendix B, the results of which are

shown below. We parametrize the matching coefficients Jij(τa, z, µ) as

Jij(τa, z, µ)

2(2π)3
= δijδ(1− z)δ(τa) (2.6)

+ Tij
αs
2π

[
cij0 (z, µ)δ(τa) + cij1 (z, µ)

(
1

τa

)
+

+ c2δijδ(1− z)

(
ln τa
τa

)
+

]
,
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where

cij0 (z, µ) =
1− a/2
1− a

δijδ(1− z)

[
ln2 µ

2

ω2
− π2

6

]
+ cij(z)

− P̄ji

[
ln
µ2

ω2
+

1

1− a/2
ln

(
1 +

(
1− z
z

)1−a
)

+ (δij − 1)
1− a

1− a/2
ln(1− z)

]
,

cij1 (z, µ) = − 2

1− a
δijδ(1− z) ln

µ2

ω2
+

1− a
1− a/2

P̄ij ,

c2 =
2

(1− a)(1− a/2)
, (2.7)

with

cqq(z) = 1− z +
1− a

1− a/2
(1 + z2)

(
ln(1− z)

1− z

)
+

,

cgg(z) =
1− a

1− a/2
2(1− z + z2)2

z

(
ln(1− z)

1− z

)
+

,

cqg(z) = z ,

cgq(z) = 2z(1− z) , (2.8)

and where the P̄ij are the splitting functions of ref. [4] except for the case i = j = q,

P̄qq = Pqq −
3

2
δ(1− z) =

1 + z2

(1− z)+
,

P̄gg = Pgg = 2
(1− x+ x2)2

x(1− x)+
,

P̄qg = Pqg = x2 + (1− x)2 ,

P̄gq = Pgq =
1 + (1− x)2

x
.

(2.9)

Notice that our results for the matching coefficients Jij(τa, z, µ) are independent of the jet

algorithm and the jet size parameter R. To include modifications of the Jij(τa, z, µ) that

come from these effects, one would have to multiply the measurement operator in eq. (2.3)

by an additional Θ-function that imposes the phase space constraints required by the jet

algorithm. However, for jets with measured angularities, it was shown in ref. [18] that

jet-algorithm dependent terms for cone and kT -type algorithms are suppressed by powers

of τa/R
2. Inuitively, this is because as τa → 0 all the particles in the jet lie along the jet

axis so the result must be insensitive to which algorithm is used and to the value of R in

this limit. For the values of τa and R considered in this paper, τa/R
2 is negligible and we

will drop these corrections.

As a non-trivial check of our results we show in appendix B that our Jij(τa, z, µ) satisfy

the following identities and sum rules,

lim
a→0
Jij(τa, z, µ) = ω2Jij(s, z, µ) , (2.10)
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and

Ji(τa, µ) =
1

2(2π)3

∑
j

∫ 1

0
dz z Jij(τa, z, µ) , (2.11)

where Jij(s, z, µ) are the matching coefficients for measured jet invariant mass found in

ref. [4] and Ji(τa, µ) are the jet functions for measured jets that can be found in ref. [18].

3 e+e− → 2 jets with a B meson

In this section we present an analytic calculation of the cross section for e+e− to two

b jets in which the B meson is identified in a measured jet. Following the analysis of

ref. [18], the factorization theorem for the cross section for one measured b jet and one

unmeasured b̄ jet is

1

σ0

dσ

dτa
= H2(µ)× Sunmeas(µ)× J (b̄)

n̄ (µ)×
[
Smeas(τa, µ)⊗ J (b)

n (τa, µ)
]
, (3.1)

where H2(µ) is the hard function, Sunmeas(µ) and Smeas(τa, µ) are the unmeasured and

measured soft functions, J
(b̄)
n̄ (µ) is the unmeasured jet function containing the b̄ quark

and J
(b)
n (τa, µ) is the measured jet function containing the b quark. These describe the

short-distance process, surrounding soft radiation, and radiation collinear to unmeasured

and measured jets, respectively. At NLO the τa-independent functions are given by

H2(µ) = 1− αs(µ)CF
2π

[
8− 7π2

6
+ ln2 µ

2

ω2
+ 3 ln

µ2

ω2

]
,

Sunmeas(µ) = 1 +
αs(µ)CF

2π

[
ln2 µ2

4Λ2
− ln2 µ2

4Λ2r2
− π2

3

]
,

J
(b̄)
n̄ (µ) = 1 +

αs(µ)CF
2π

Jqalg(µ) ,

(3.2)

where Λ is a veto on out-of-jet energy, r = tan (R/2) and Jqalg(µ) is a function that depends

on the algorithm used (and we will use the cone algorithm below) and is given in eq. (A.18)

of ref. [18]. We note that unlike measured jets, algorithm dependent contributions to the

unmeasured jet are not power suppressed. We also note that, beginning at O(α2), non-

global logarithms of the ratio Qτa/(2Λr2) begin to appear in the cross-section [19]. For

the values of the parameters we consider, these ratios are such that we can treat these

logarithms as O(1) and thus these would enter as fixed order corrections needed at NNLL’

accuracy, which is beyond the scope of this work.

We suppress the dependence of all these functions on scales other than the renormal-

ization scale µ. Measured functions are convolved according to

f(τ)⊗ g(τ) =

∫
dτ ′ f(τ − τ ′)g(τ ′). (3.3)

To calculate the differential cross section for a measured jet with an identified B hadron,

we apply the analogous replacement rule in eq. (1.1) to eq. (3.1) and use the expression for

– 6 –
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the FJF in eq. (2.5) to obtain

1

σ0

dσ(b)

dτadz
= H2(µ)×Sunmeas(µ)×J (b̄)

n̄ (µ)×
∑
j

Smeas(τa, µ)⊗
J (b)
bj (τa, z, µ)

2(2π)3

•Dj→B(z)

,
(3.4)

where

G(z) • F (z) = F (z) •G(z) ≡
∫ 1

z

dx

x
F (x)G

( z
x

)
. (3.5)

To obtain an NLL’ resummed formula for the cross section, we evaluate each function

in the factorization theorem in eq. (3.4) at its “characteristic” scale (where potentially

large logarithms are minimized) and, using renormalization group techniques, evolve each

function to a common scale, µ, which we will choose to be equal to the hard scale. The

details of this evolution are discussed in appendix A.

The convolutions in eq. (3.4) must be performed over angularity over Smeas, Jij , and

factors arising from RG equations. Since such RG factors are distributions (δ or plus-

distributions) in the angularity our final answer is written in terms of distributions that

can be computed analytically using eqs. (A.18)–(A.20). Upon performing convolutions and

resummation to NLL’ accuracy we find for the cross section

dσ(τa, z)≡ 1

σ0

dσ(b)

dτadz
= H2(µH)× Sunmeas(µΛ)× J (b̄)

n̄ (µJn̄)× (3.6)

×
∑
j

{(
Θ(τa)

τ1+Ω
a

)[
δbjδ(1−z) (1+fS(τa, µSmeas))+f bjJ (τa, z, µJn)

]
•
Dj→B(z, µJn)

2(2π)3

×Π(µ, µH , µΛ, µJn̄ , µJn , µSmeas)

}
+

,

where the ‘+’ distribution is defined in eq. (A.15) (and acts on all τa-dependent quan-

tities, including any implicit dependencies arising from the choice of scales µF ) and

Ω(µJn , µSmeas) = ωJn(µ, µJn) + ωSmeas(µ,µSmeas), the functions ωJn and ωSmeas are given

in appendix A, the function fS is given by [18]

fS(τ, µ) = −αs(µ)CF
π

1

1− a


[

ln
µ tan1−a R

2

ωτ
+H(−1− Ω)

]2

+
π2

6
− ψ(1)(−Ω)

 , (3.7)

and f ijJ are written in terms of the coefficients cij0 , cij1 and c2 presented in eq. (2.7) as

f ijJ (τ, z, µ) = Tij
αs(µ)

2π

(
cij0 (z, µ) + cij1 (z, µ)

(
ln τ −H(−1− Ω)

)
+ c2δijδ(1− z)

(
(ln τ −H(−1− Ω))2 + π2/6− ψ(1)(−Ω)

2

))
.

(3.8)
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Function (F ) H2 J b̄n̄ Sunmeas J (τ, z) Smeas(τ)

Scale (µF ) Ecm ωn̄r 2Λr1/2 ωnτ
1/(2−a)(1− z)(1−a)/(2−a) ωnτ/r

1−a

mF ω wn̄r 2Λr1/2 ωn ωn/r
1−a

jF 1 1 1 2− a 1

Table 1. Characteristic scales of the different functions in the factorization theorem of eq. (3.1).

The evolution kernel Π is given in terms of KF (µ, µ0) and ωF (µ, µ0) (cf. appendix A),

Π(µ, µH , µΛ, µJn̄ , µJn , µSmeas) =
∏

F=H,Jn̄,Sunmeas

exp(KF (µ, µF ))

(
µF
mF

)ωF (µ,µF )

(3.9)

× 1

Γ(−Ω(µJn , µSmeas))
×

∏
F=Jn,Smeas

exp(KF (µ, µF ) + γEωF (µ, µF ))

(
µF
mF

)jFωF (µ,µi)

,

where µF , mF and jF are given in table 1. Because they involve FFs (cf. appendix B),

the z convolutions must be evaluated numerically. For the fragmentation of the b quark we

use a two-parameter power model FF introduced in ref. [20], in which Db→B(z, µ = mb =

4.5 GeV) is proportional to zα(1−z)β . Values for the parameters α = 16.87 and β = 2.628

with χ2
d.o.f. = 1.495 were determined using a fit to LEP data in ref. [21] for the inclusive

process e+e− → B + X. Errors in these parameters were not quoted in ref. [21], so we

cannot quantify errors associated with the extracted FF in our calculation. Additionally,

we neglect the contribution from the fragmentation of other partons for our e+e− collider

studies as in ref. [21]. In proton-proton collisions at the LHC, gluon FJFs must also be

included since the dijet channel gg → gg gives a significant contribution to the production

of jets with heavy flavor [11]. For the evolution of the FF up to the jet scale we solve the

DGLAP equation using an inverse Mellin transformation as done in ref. [9].

Figure 1 shows the z distributions from dσ(τ0, z) for τ0 = (1.5, 2.0, 2.5) × 10−3

of our analytic NLL’ calculation (green) and monte-carlo simulations using Madgraph +

PYTHIA (black) and Madgraph + HERWIG (red). For each monte carlo and for each NLL’

calculation, the graphs are independently normalized to unit area. For plots with fixed τa
we use a z-bin of ± 0.1 and for plots with fixed z we use a τa bin of size ± 2× 10−4. Jets

are reconstructed in PYTHIA using the Seedless-Infared-Safe Cone (SISCONE) algorithm

in the FastJets package [22] with R = 0.6, which will be used throughout this work.

We produced simulated dijet events at Ecm = 250 GeV in which each jet has an energy

of at least (Ecm − Λ)/2 where Λ = 30 GeV.2 The central green line corresponds to the

NLL’ calculation with the various functions in the factorization theorem evaluated at their

characteristic values shown in table 1, and the green band corresponds to the estimate

of theoretical uncertainty obtained by varying the scales of the unmeasured functions by

±50%, and using profile functions [23–25] to estimate the uncertainty of the measured

functions. Profile functions allow us to introduce an angularity dependent scale variation

that freezes at the characteristic scale for high values of τa where the factorization theorem

2This is different than simply placing a cut Λ on energy outside the jets (which is what is assumed in

our analytical results), but this difference only appears at O(α2
s) in the soft function, which is higher order

than we work in this paper.
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Figure 1. The z distributions for dσ(τ0, z) at τ0 = (1.5, 2.0, 2.5) × 10−3 for analytic calcula-

tions with theoretical uncertainty are shown in green. Monte carlo simulations using Madgraph +

PYTHIA and Madgraph + Herwig are shown in black and red, respectively.

breaks down and at a fixed scale for small values of τa where we reach the non-perturbative

regime. This method for estimating theoretical uncertainties is used throughout this work.

Additional details on the profile functions we use can be found in appendix A.

The blue curves in figure 2 show the differential cross section as a function of z for

fixed τ0 where µJ(τ) = µJ(τ, z = 0) = ωτ1/(2−a) is chosen as the characteristic scale of

the measured jet function, and the error band is obtained the same way as for figure 1.

As in figure 1, the green curves show the cross section for a measured jet scale µJ(τ, z) =

ωτ1/(2−a)(1− z)(1−a)/(2−a). The reorganization of logarithms of (1− z) shown in eq. (A.24)

suggests that we can improve the accuracy of our calculations for z → 1 by choosing the

characteristic value of the measured jet scale to be µJ(τ, z). This improvement is clearly

seen in figure 2 which shows the scale variation for the choices µJ(τ) and µJ(τ, z), the

latter choice gives smaller scale variation near the peak in the z distribution.

In figure 3 we present the results for the τ0 distributions of the differential cross section

dσ(τa, z) for z = 0.4, 0.6, and 0.8. The color and normalization schemes match those in

figure 1. We see that for higher values of z the distributions of τ0 are shifted towards

smaller values. This is expected since the majority of the energy of the jet is carried by the

B meson which results in narrower jets. Figures 1 and 3 show that our results are consistent

within the monte carlo uncertainty that is suggested by the difference between PYTHIA

and HERWIG predictions. This gives us confidence that the FJF formalism combined
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Figure 2. Analytic results for the z distributions of dσ(τ0, z) at τ0 = (1.5, 2.0, 2.5) × 10−3. The

blue curve is calculated with a measured jet scale that does not depend on z whereas the green

curve uses a scale that does depend on z (as in figure 1).

with NLL’ resummation can be used to correctly calculate both the substructure and the

identified hadron’s energy fraction within a jet.

4 e+e− → 3 jets with the gluon jet fragmenting to J/ψ

We can also use the FJF formalism to calculate the cross section for e+e− → 3 jets with

a J/ψ. As we expect gluon fragmentation to be the dominant production channel at the

LHC, we focus on the case where J/ψ is found within a gluon jet. In addition, we assume

that the angularity of this jet is also measured. To obtain a physical observable, one

must also include contributions from all jets fragmenting to J/ψ, however, we expect the

contribution from quark jets to be smaller. It is theoretically possible to isolate the J/ψ

coming from gluon jets in experiments by b-tagging the other two jets in the event, so we

will focus on the process e+e− → bb̄g followed by gluon fragmentation to J/ψ.

The analytic expression for this cross section is

1

σ0

dσ(g)

dτadz
= H3(µH)× Sunmeas(µΛ)× J (b̄)

n1
(µJn1

)× J (b)
n2

(µJn2
)

×
∑
i

{(
Θ(τa)

τ1+Ω
a

)[
δgiδ(1−z)(1+fS(τa, µSmeas))+fgiJ (τa, z, µJn3

)
]
•
Di→J/ψ(z, µJn3

)

2(2π)3

×Π(µ, µH , µΛ, µJn1
, µJn2

, µJn3
, µSmeas)

}
+

, (4.1)
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Figure 3. Angularity distributions of dσ(τa, z) for a = 0 at z = 0.4, 0.6, 0.8. Analytic results are

shown as green bands. Monte carlo results are shown as black lines for Madgraph + PYTHIA and

red lines for Madgraph + HERWIG.

where Ω ≡ Ω(µJn3
, µSmeas) = ωJn(µ, µJn3

)+ωSmeas(µ,µSmeas), the b-quark initiated jets J
(b)
n1

and J
(b̄)
n2 are unmeasured, the expression for fS is the same as eq. (3.7) with CF replaced

by CA, and our expressions for f ijJ are given in terms of the coefficients cij0 , cij1 and c2

given in eq. (2.7). Here σ0 is the LO cross section for e+e− → bb̄g. We will focus on the

Mercedes Benz configuration in which all three jets have (approximately) the same energy,

and consider jets with energies large enough that the mass of b-quark can be neglected.

Here, H3(µ) is 1 + O(αs) where the O(αs) comes from the NLO virtual corrections to

e+e− → bb̄g. We do not include this correction. The primary effect of its omission will be

on the normalization of the cross section, which is not important for our discussion of the

distributions we show below, and to increase the scale uncertainty associated with varying

µH ; however this is not a very important source of uncertainty in our calculations.

While the calculation for B mesons requires a phenomenological FF, the FFs for J/ψ

production can be calculated in NRQCD [12]. Refs. [26–29] showed that a J/ψ FF can

be calculated in terms of analytically calculable functions of αs(2mc) and z multiplied by

nonperturbative NRQCD long-distance matrix-elements (LDMEs). In J/ψ production, the

most important production mechanisms are the color-singlet mechanism, in which the cc̄

is produced perturbatively in a 3S
(1)
1 state, and the color-octet mechanisms, in which the

cc̄ is produced perturbatively in a 1S
(8)
0 , 3S

(8)
1 , or 3P

(8)
J state. Here 2S+1L

(1,8)
J refers to the

angular momentum and color quantum numbers of the cc̄. The numerical values for the
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〈OJ/ψ(3S
(1)
1 )〉 〈OJ/ψ(3S

(8)
1 )〉 〈OJ/ψ(1S

(8)
0 )〉 〈OJ/ψ(3P

(8)
J )〉/m2

c

1.32 GeV3 2.24 ×10−3 GeV3 4.97× 10−2 GeV3 −7.16× 10−3 GeV3

Table 2. LDMEs for NRQCD production mechanisms. We use central values taken from global

fits in refs. [30, 31].

corresponding LDMEs are taken to be the central values from the global fits performed in

refs. [30, 31], and are shown in table 2. The color-singlet LDME scales as v3, where v is the

typical relative velocity of the cc̄ in the J/ψ, while the color-octet LDMEs scale as v7 [12].

This v4 suppression is clearly seen in the numerical values of the LDMEs in table 2. In the

calculation of the gluon FF, this v suppression is compensated by powers of αs since the

leading color-octet contributions are O(α2
s) in the 1S

(8)
0 and 3P

(8)
J channels and O(αs) in

the 3S
(8)
1 channel, while the color-singlet contribution is O(α3

s). In this work we focus on

the gluon FJF, GJ/ψg , and separately compute each of the four NRQCD contributions to

GJ/ψg . To calculate GJ/ψg , we evolve each FF from the scale µ = 2mc to the characteristic

scale of the measured jet µJn3
(τa) = ωτ

1/(2−a)
a using the DGLAP evolution equations. For

most values of z considered in this section, we do not expect that using a z dependent

scale will result in significant improvement in the scale variation. In addition, using a z

dependent scale in the 3P
(8)
J channel yields unphysical results, such as negative values for

the FF. After evolution, we perform the convolution [D • fJ ] (z) in z with the matching

coefficients derived in section 3.

Before discussing the comparison of our results with monte carlo, we briefly review

how the Madgraph + PYTHIA monte carlo handles color-singlet and color-octet quarko-

nium production. We produce quarkonia states in Madgraph from the following processes:

e+e− → bb̄ggcc̄[3S
(1)
1 ], e+e− → bb̄gcc̄[1S

(8)
0 ], and e+e− → bb̄cc̄[3S

(8)
1 ]. The quantum num-

bers 2S+1L
(1,8)
J are for the cc̄ produced in the event. We only include diagrams in which

the virtual photon couples to the bb̄ so in all cases the cc̄ plus any additional gluons come

from the decay of a virtual gluon. We did not simulate production in the 3P
(8)
J chan-

nel in e+e− → bb̄g → bb̄cc̄g because IR divergences in the matrix elements require much

longer running times to get the same number of events. We then perform showering and

hadronization on these hard processes using PYTHIA. Analysis is done using RIVET [32].

During PYTHIA’s showering phase, color-singlet J/ψ do not radiate gluons. Thus if these

J/ψ are produced within a jet, all surrounding radiation is due to the other colored par-

ticles in the event [15, 16]. We require that after showering there are only three jets in

the event, two from the b-quarks and one from a gluon that contains the J/ψ. We sim-

ulate three-jet events at Ecm = 250 GeV in the Mercedes-Benz configuration by requiring

the jets each have energies Ejet > (Ecm − Λ)/3 with Λ = 30 GeV, analagous to what was

done in section 3.

For cc̄ produced in a color-octet state PYTHIA allows the color-octet cc̄ to emit gluons

with a splitting function 2Pqq(z). Since Pqq(z) is peaked at z = 1, the color-octet cc̄ pair

typically retains most of its energy after these emissions. This model of the production

mechanism is very different than the physical process implied by the NLL’ calculation. In
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the NLL’ calculation, the FF is calculated at the scale 2mc, then evolved up to the jet

energy scale using Altarelli-Parisi evolution equations. Since this is a gluon FF, the most

important splitting kernel in this evolution is Pgg(z). We find that the FFs obtained at the

jet energy scale are not significantly changed if we use only this evolution kernel and ignore

mixing with quarks. Thus the production process implied by the NLL’ calculation is that

of a highly energetic gluon produced in the hard process with virtuallity of order the jet

energy scale, which then showers by emitting gluons until one of the gluons with virtuality

of order 2mc hadronizes into the J/ψ. Because Pgg(z) is peaked at z = 0 and z = 1

the resulting J/ψ distribution in z is much softer than the model employed by PYTHIA.

PYTHIA does not allow one to change the actual splitting function, only to modify the

color-factor. Therefore, in order to get a softer z distribution we changed the coefficient

of PYTHIA’s splitting kernel for a gluon radiating off a color-octet cc̄ pair from 2Pqq to

CAPqq = 3Pqq. This results in a slighter softer z distribution than default PYTHIA, but is

still inconsistent with the NLL’ calculation. This change does not have significant impact

on the τa distributions. The τa distributions are generally in better agreement. The variable

τa depends on all of the hadrons in the jet and is therefore less sensitive to the behavior of

the J/ψ, especially when the J/ψ carries a small fraction of the jet energy. In that case,

τa distributions in the NLL’ calculation look similar for all color-octet mechanisms.

In an attempt to see if PYTHIA can be modified to reproduce the z distributions

obtained in our NLL’ calculations, and confirm the physical picture of the NLL’ calculation

described above, we generate e+e− → bb̄g events in Madgraph and allow PYTHIA to

shower but not hadronize the events. If we allow the shower to evolve to a scale where

the typical invariant mass of a gluon is 2mc and then convolve the gluon distribution with

the NRQCD FFs at this scale, we expect that the resulting z distributions should mimic

our NLL’ calculation. The lower cutoff scale in PYTHIA’s parton shower is set by the

parameter TimeShower:pTmin, which is related to the minimal virtuality of the particles

in the shower, and whose default value is 0.4 GeV. We change this parameter to 1.6 GeV,

which corresponds to a virtuality of ∼ 2mc, then obtain a z distribution for the gluons

by randomly choosing a gluon from the gluon initiated jet. We then numerically convolve

this z distribution with the analytic expression for the NRQCD FF. This procedure, which

we will refer to as Gluon Fragmentation Improved PYTHIA (GFIP), yields z distributions

that are consistent with our NLL’ result, as we will see below. We tested an analogous

procedure for two-jet events with B mesons by showering e+e− → bb̄ with PYTHIA with

hadronization turned off. We then convolved the resulting b quark distribution with the

b-quark FF at the scale 2mb, and found results for B mesons that are consistent with our

NLL’ calculations. Note that PYTHIA treats the radiation coming from the octet cc̄ pair

the same regardless of the angular momentum quantum numbers. In contrast, GFIP like

the NLL’ calculation gives different results for all three channels by applying different FFs

at the end of the parton shower phase. Also GFIP can be applied to all four NRQCD

production mechanisms, since convergence issues for the 3P
(8)
J channels are absent.

Figure 4 shows our NLL’ calculation and Madgraph + PYTHIA results for the distri-

bution of τ0 for various fixed values of z for the 3S
(8)
1 (red) and 1S

(8)
0 (green) channels. We

see fairly good agreement between analytic and Monte Carlo results in the peak regions
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Figure 4. Angularity distributions of dσ(τa, z) for a = 0 at z = 0, 1, 0.3, 0.5, 0.7. Analytic

calculations are shown as red (green) bands for the 3S
(8)
1 (1S

(8)
0 ) production mechanisms. Results

from Madgraph + PYTHIA are shown as red (green) dashed lines for the same mechanisms.

for smaller values of z and notice some qualitative differences in the tail regions, especially

for the 1S
(8)
0 channel. At higher values of z where the number of final state particles is

small, differences in the τ0 distributions could be attributed to the increasing influence of

Pythia’s unrealistic model of quarkonium production. As z → 0, we also see similar τ0

dependence for the two color-octet channels in our analytic results. This suggests that in

the small z region, the jet substructure is independent of the production mechanism. Thus,

attempts to use angularity distributions to extract the various LDMEs should focus on the

range 0.3 < z < 0.7.

In figure 5, we show the angularity distributions (without uncertainties) for the 1S
(8)
0

and 3S
(8)
1 mechanisms for a = +1/2, 0, −1/2, −1. These are computed analytically and

using monte carlo and we again see reasonable agreement. As a is decreased, we see less

discrimination between the two production mechanisms. Thus extraction of LDMEs should

ideally be done with larger values of a, for a < 1 where factorization in SCETI holds, with

the caveat that there is a trade-off since the predictability of the analytical results is limited

for a too close to 1 since power corrections grow as 1/(1− a) [33].

In contrast to the angularity distributions, figure 6 shows that analytic and monte carlo

calculations of the z distributions using Madgraph + PYTHIA yield strikingly different

results, with Madgraph+PYTHIA yielding a much harder z-distribution. Figure 6 also

shows the z distributions using GFIP. The GFIP modification yields significantly different

results for the z distributions that align more closely with NLL’ calculation. While this
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Figure 5. Angularity distributions of dσ(τa, z) for a = +1/2, 0, −1/2, −1 at z = 0.5. Analytic

calculations are shown as red (green) solid lines for the 3S
(8)
1 (1S

(8)
0 ) production mechanisms. Results

from Madgraph + PYTHIA are shown as red (green) dashed lines for the same mechanisms.

is far from a proper modification of PYTHIA, it shows us that implementing the missing

g → J/ψ fragmentation yields encouraging similarities to our analytical calculations using

the FJF formalism with NRQCD FFs. This also suggests that if monte carlo is modified

to properly include NRQCD FFs at the scale 2mc it will yield results that are consistent

with FJFs combined with NLL’ resummation. Correct monte carlo implementation of the

NRQCD FFs is important because the GFIP modification can only be used to calculate

the z distribution. There are many other jet shape observables, such as N -subjettiness

or ∆R (where ∆R is the angle between the J/ψ and the jet axis), that should be able to

discriminate between NRQCD production mechanisms, and many of these are most easily

predicted using monte carlo.

5 Conclusion

The study of hadrons within jets provides new tests of perturbative QCD dynamics. The

distribution in z (the fraction of jet energy carried by the identified hadron) can be calcu-

lated as a convolution of the well-known fragmentation functions (FFs) for that hadron with

perturbative matching coefficients that are calculable at the jet energy scale, which is typi-

cally well above ΛQCD. At hadron colliders this provides a new way to extract FFs and will

be especially important for pinning down gluon FFs, which are of subleading importance
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Figure 6. z distributions of dσ(τa, z) for NLL’ analytic calculations (bands), PYTHIA (dashed

lines), and GFIP (solid lines) for fixed values of τ0 = (4, 5, 6)× 10−3.

in e+e− colliders where FFs are usually measured. The production of heavy quarkonia

within high energy jets in collider experiments also provides new tests of NRQCD.

In this paper, we studied cross sections for jets with heavy mesons as a function of

z and the substructure variable angularity, τa. We provided for the first time the NLO

matching coefficients for jets with measured τa, and used these along with the known

RGE for the hard, jet, and soft functions to obtain NLL’ accuracy calculations of cross

sections for jets with heavy mesons. We considered the production of B mesons in two-

jet events in e+e− collisions at Ecm = 250 GeV as well as J/ψ production in three-jet

events at the same energies. Though not relevant to any experiment, this is useful for

comparing NLL’ calculations with monte carlo simulations of fragmenting jets whose energy

is comparable to those measured at the LHC. In the simulations of quarkonia production,

the underlying hard process was generated using Madgraph and then PYTHIA was used

to shower and hadronize the events. In the simulations involving B meson production we

also used HERWIG.

– 16 –



J
H
E
P
0
6
(
2
0
1
6
)
1
2
1

For B mesons, we find that the z and τa distributions computed using monte carlo

and NLL’ are in excellent agreement, giving us confidence in our analytic approach. In

the case of J/ψ, we considered three-jet events in which the jets all had the same energy

and the J/ψ in both simulation and NLL’ calculations was required to come from the

gluon jet. This allowed us to study J/ψ production via the fragmentation of high energy

gluon initiated jets, which we expect to be an important mechanism at the LHC. Earlier

studies of gluon FJFs in ref. [9] indicated that the z and E dependence of these jets could

discriminate between various NRQCD production mechanisms. The analytic NLL’ studies

of this paper are consistent with ref. [9]; we also find that the τa and z distributions can

discriminate between different various NRQCD production mechanisms.

For monte carlo simulations, we used Madgraph to calculate e+e− → bb̄g followed by

the gluon fragmenting into a a cc̄ pair in either a 3S
(8)
1 , 1S

(8)
0 , or 3S

(1)
1 state. As explained

earlier we do not simulate events in the 3P
(8)
J channel. The events were then showered and

hadronized using PYTHIA. While the τa distributions are similar to analytical calculations,

the z distributions are much harder and their shape looks nothing like the NLL’ calculation.

We attribute this to a naive model that PYTHIA uses for simulating the radiation of gluons

from color-octet cc̄ pairs.

We then considered an alternative simulation approach where e+e− → bb̄g events are

generated using Madgraph, then PYTHIA is used to shower the event to a low scale near

2mc without hadronization. The resulting gluon distribution is then convolved with the

analytically calculated NRQCD FFs calculated at the scale 2mc. This procedure yields z

distributions that are in much better agreement with our NLL’ calculations.

Future work will focus on extending the NLL’ calculations to hadron colliders, where

the unmeasured jet and soft function recently calculated in ref. [25] must be combined

with the FJFs of this paper. It would be of great interest to compare the results of these

calculations with data from the LHC on high energy jets with heavy mesons and quarkonia.

Finally, there needs to be more work on improving the understanding of the differences

between NLL’ and monte carlo simulations. Monte carlo simulations that can properly

simulate the production of quarkonia within jets will be essential for calculating other jet

observables for which NLL’ calculations are either unavailable or impractical.
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A Renormalization group and resummation

A.1 Evolution of measured and unmeasured functions

The RGEs satisfied by the elements of the factorization theorem are separated into two

categories; terms that do depend on the variable τa and terms that do not. The latter

satisfy the following RGE

µ
d

dµ
f(µ) = γf (µ)f(µ) , (A.1)

where γF (µ) is the anomalous dimension

γF (µ) = − 1

ZF (µ)
µ
d

dµ
ZF (µ) = ΓF (αs) ln

(
µ2

m2
F

)
+ γF (αs) , (A.2)

where mF is related to the characteristic scale for the particular function, and ZF (µ) is

the renormalization function for F (µ). The coefficient ΓF (αs) is proportional to the cusp

anomalous dimension, Γcusp(αs), which can be expanded in αs

Γcusp(αs) =
∞∑
n=0

(αs
4π

)1+n
Γnc , (A.3)

and ΓF = (Γ0
F /Γ

0
c)Γcusp. The non-cusp part, γF (αs), has a similar expansion

γF (αs) =
∞∑
i=0

(αs
4π

)1+i
γiF . (A.4)

The solution to RGE is given by

F (µ) = exp (KF (µ, µ0))

(
µ0

mF

)ωF (µ,µ0)

F (µ0) , (A.5)

where the exponents KF and ωF are given in terms of the anomalous dimension,

KF (µ, µ0) = 2

∫ α(µ0)

α(µ)

dα

β(α)
ΓF (α)

∫ α

α(µ0)

dα′

β(α′)
+

∫ α(µ0)

α(µ)

dα

β(α)
γF (α), (A.6)

ωF (µ, µ0) = 2

∫ α(µ0)

α(µ)

dα

β(α)
ΓF (α), (A.7)

and for up to NLL and NLL’ accuracy are given by

KF (µ, µ0) = −
γ0
F

2β0
ln r −

2πΓ0
F

(β0)2

[
r − 1 + r ln r

αs(µ)
+

(
Γ1
c

Γ0
c

− β1

β0

)
1− r + ln r

4π
+

β1

8πβ0
ln2 r

]
,

(A.8)

ωF (µ, µ0) = −
Γ0
F

jFβ0

[
ln r +

(
Γ1
c

Γ0
c

− β1

β0

)
αs(µ0)

4π
(r − 1)

]
, (A.9)

where r = α(µ)/α(µ0) and βn are the coefficients of the QCD β-function,

β(αs) = µ
dαs
dµ

= −2αs

∞∑
n=0

(αs
4π

)1+n
βn . (A.10)
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The RGEs for functions that depend on the variable τa are of the form

µ
d

dµ
F (τa, µ) = [γF (µ)⊗ F (µ)] (τa) , (A.11)

where

γF (τa, µ) = −
[
Z−1
F (µ)⊗ µ d

dµ
ZF (µ)

]
(τa)

= ΓF (αs)

(
ln

µ2

m2
F

− 2

jF

(
Θ(τa)

τa

)
+

)
+ γF (αs)δ(τa) ,

(A.12)

and the solution to this equation is given by

F (τa, µ) = exp (KF + γEωF )
1

Γ(−ωF )

(
µ0

mF

)jFωF [( Θ(τa)

(τa)1+ωF

)
+

⊗ F (τa, µ0)

]
. (A.13)

A.2 Plus-distribution identities

We begin with the equation∫
dτ ′′

[
Θ(τ − τ ′′)

(τ − τ ′′)1+ω1

]
+

[
Θ(τ ′′ − τ ′)

(τ ′′ − τ ′)1+ω2

]
+

=
Γ(−ω1)Γ(−ω2)

Γ(−ω1 − ω2)

[
Θ(τ − τ ′)

(τ − τ ′)1+ω1+ω2

]
+

,

(A.14)

which can be easily proven using Laplace transforms and the defining equation of the plus

distribution,

[f(τ)]+ ≡ lim
β→0

d

dτ
[θ(τ − β)F (τ)] , (A.15)

where F (τ) is defined as

F (τ) ≡
∫ τ

1
dτ ′f(τ ′) , (A.16)

which yields

L

{(
1

τ1+ω

)
+

}
= sωΓ(−ω) . (A.17)

The following equations can be derived by setting τ ′ → 0 in eq. (A.14), expanding in ω2

both sides and matching powers:∫
dτ ′
[

Θ(τ − τ ′)
(τ − τ ′)1+ω

]
+

δ(τ ′) =

[
Θ(τ)

τ1+ω

]
+

, (A.18)∫
dτ ′
[

Θ(τ − τ ′)
(τ − τ ′)1+ω

]
+

[
Θ(τ ′)

τ ′

]
+

=

[
Θ(τ)

τ1+ω

]
+

(ln τ −H(−1− ω)) , (A.19)∫
dτ ′
[

Θ(τ − τ ′)
(τ − τ ′)1+ω

]
+

[
Θ(τ ′) ln τ ′

τ ′

]
+

=

[
Θ(τ)

τ1+ω

]
+

(ln τ −H(−1− ω))2+π2/2− ψ(1)(−ω)

2
,

(A.20)

where we used [18] [
Θ(τ)

τ1+ω

]
+

= − 1

ω
δ(τ) +

∞∑
n=0

(−ω)n
[

Θ(τ) lnn τ

τ

]
+

. (A.21)
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A.3 Reorganization of logarithms of (1− z)

The convolutions in the variable z need to be performed numerically since they involve the

evolved FFs, which are evaluated by solving the DGLAP equation using Mellin transfor-

mations. For this reason we expand the plus-distributions using the following relations∫ 1

z

dx

x

(
1

1−x

)
+

f
( z
x

)
=

∫ 1

z
dx

1

1−x

(
1

x
f
( z
x

)
−f(z)

)
+f(z) ln(1−z), (A.22)∫ 1

z

dx

x

(
ln(1−x)

1−x

)
+

f
( z
x

)
=

∫ 1

z
dx

ln(1−x)

1−x

(
1

x
f
( z
x

)
−f(z)

)
+f(z)

1

2
ln2(1−z). (A.23)

Thus for every function D(z) the convolution with f ijJ (τ, z, µ) gives

1

Tij

2π

αs(µ)
f ijJ (τ, z, µ) •D(z)

= δij f1(τ, z, µ) D(z)−
∫ 1

z
dx f2(τ, x, µ)

( P̄ji(x)

x
◦D

( z
x

))
+

∫ 1

z
dx

[
cij(x)− 1

1− a/2
ln

(
1 +

(
1− x
x

)1−a
)
P̄ji(x)

x

]
◦D

( z
x

)
, (A.24)

where

f2(τ, z, µ) = 2 ln

(
µ

µJ(τ, z)

)
+

1

1− a/2
H(−1− Ω) , (A.25)

with

µJ(τ, z) = ωτ1/(2−a)(1− z)(1−a)/(2−a), (A.26)

f1(τ, z, µ) =
1− a/2
1− a

(
f2(τ, z, µ)

)2
+

a(1− a/4)

(1− a)(1− a/2)

π2

6
− 1

(1− a)(1− a/2)
ψ(1)(−Ω),

cqq(z) =
1− z
z

,

cgg(z) = 0,

cgq(z) = 2(1− z),

cqg(z) = 1,

and

f(x) ◦ g(x) = f(x)g(x) ,

[f(x)(h(x))+] ◦ g(x) = h(x)[f(x)g(x)− f(1)g(1)] .

A.4 Profile functions

Here, we write down the profile functions used to perform scale variations for our measured

soft and measured jet functions. We use profile functions to introduce a τa-dependent scale

variation that freezes at the characteristic scale for high values of τa where the factorization
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Figure 7. Profile functions for µPF
S (τ0) and µPF

J (τ0), the τ0-dependent renormalization scales that

we use in the scale variations of our measured soft function and measured jet function. Also shown

are traditional scale variations done by varying µ by ±50%.

theorem breaks down and at a fixed scale for small values of τa where we reach the non-

perturbative regime. The profile function for the measured soft function, µPF
S (τ0), and the

profile function for the measured jet function, µPF
J (τ0), are plotted in figure 7 (for the case

a = 0). The analytic formulae for these functions are

µPF
S (τa) =

[
1 + εS

g(τa)

g(1)

]
×

{
µmin + ατβa 0 < τa < τmin

ωτa/r
(1−a) τmin ≤ τa

, (A.27)

µPF
J (τa) =

[
1 + εJ

g(τa)

g(1)

]
×

{
(ωr)(1−a)/(2−a)(µmin + ατβa )1/(2−a) 0 < τa < τmin

ωτ
1/(2−a)
a τmin ≤ τa

,

where we have defined

g(τ) =
1

exp
(

1.26(τmin − τ)/τmin

)
+ 1

, (A.28)

and where α and β are defined to be

β =
τmin

τmin − µminr(1−a)/ω
and α =

ω

βτβ−1
min r

(1−a)
. (A.29)

These choices for α and β ensure that the profile functions and their first derivatives are

continuous. We use the following values for the parameters

τmin = 2µminr
1−a/ω

µmin = 0.3 GeV . (A.30)
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We define our scale variations via

εS/J = 1/2 → + 50% variation,

εS/J = −1/2 → − 50% variation,

εS/J = 0 → Canonical scale ,

and take the final scale variation bands as the envelope of the set of bands from the

individual variations.

B Matching coefficients and consistency checks

B.1 Evaluation of matching coefficients

In pure dimensional regularization all diagrams contributing to the FFs vanish, and the

only diagrams that contribute to the angularity FJF for quarks are figures 3a) and 3b) of

ref. [4]. For figure 3a) we get

CFαs
2π

(4πµ2)ε(1− ε)
Γ[1− ε]

1− z
1− a/2

ω2aε/(2−a)(1− z)−2(1−a)ε/(2−a)

×
(

1 +
(1− z)1−a

z1−a

)2ε/(2−a)
1

s
1+2ε/(2−a)
a

, (B.1)

and for figure 3b) we get

CFαs
2π

2z

1− a/2
(4πµ2)ε

Γ[1− ε]
ω2aε/(2−a) 1

(1− z)1+2(1−a)ε/(2−a)

×
(

1 +
(1− z)1−a

z1−a

)2ε/(2−a)
1

s
1+2ε/(2−a)
a

. (B.2)

The first expression is singular as τa → 0 the second is singular as z → 1 and τa → 0, but

the singularities are regulated by dimensional regularization. Employing the distributional

identity
1

(1− z)1+ε
= −1

ε
δ(1− z) +

(
1

1− z

)
+

− ε
(

ln(1− z)

1− z

)
+

+ . . . , (B.3)

and similarly for τa we find for the divergent terms

CFαs
2π

(
δ(sa)δ(1− z)

[
2− a
1− a

1

ε2
+

2− a
1− a

1

ε
ln

(
µ2

ω2

)
+

3

2ε

]

− 1

1− a
2

ε
δ(1− z)

1

ω2

[
1

τa

]
+

− δ(sa)
1

ε
Pqq(z)

)
, (B.4)

where Pqq is defined in eq. (2.9). The first four terms in this expression are the expected

UV poles for the angularity jet function (multiplied by δ(1− z)), see eq. (3.37) of ref. [34].

In order to simplify this expression we have redefined 4πe−γEµ2 → µ2, i.e., we are working

in the MS scheme. The last term is the expected UV pole in the perturbative evaluation of
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the QCD fragmentation function. Since Gi(τa, z, µ) is expected to evolve like the angularity

jet function, this is the correct structure of UV divergences implied by eq. (1.2). The finite

pieces are given by

1

ω2

Jqq(τa, z, µ)

2(2π)3
=
CFαs

2π

1

ω2

{
δ(τa)δ(1− z)

2− a
1− a

(
−π

2

12
+

1

2
ln2

(
µ2

ω2

))
+ δ(τa)

(
1− z −

[
ln

(
µ2

ω2

)
+

1

1− a/2
ln

(
1 +

(1− z)1−a

z1−a

)]
1 + z2

(1− z)+

+
1− a

1− a/2
(1 + z2)

(
ln(1− z)

1− z

)
+

)
+

[
1

τa

]
+

(
1

1− a/2
1 + z2

(1− z)+
− δ(1− z)

2

1− a
ln

(
µ2

ω2

))
+

2δ(1− z)

(1− a)(1− a/2)

[
ln τa
τa

]
+

}
. (B.5)

In the limit a→ 0 this becomes

1

ω2

Jqq(τ0, z, µ)

2(2π)3
=
CFαs

2π

{
δ(s)δ(1− z)

(
−π

2

6
+ ln2

(
µ2

ω2

))
(B.6)

+ δ(s)

(
1−z−ln

(
µ2

ω2

)
1+z2

(1−z)+
+ln z Pqq(z) + (1 + z2)

(
ln(1− z)

1− z

)
+

)
+

1

ω2

[
1

τ0

]
+

(
1 + z2

(1− z)+
− 2δ(1− z) ln

(
µ2

ω2

))
+ 2δ(1− z)

1

ω2

[
ln τ0

τ0

]
+

}
,

where we have used δ(τ0)/ω2 = δ(s). Using the following distributional identities

1

ω2

[
1

τ0

]
+

=
1

ω2

[
ω2

s

]
+

=
1

µ2

[
µ2

s

]
+

+ ln

(
µ2

ω2

)
δ(s) , (B.7)

1

ω2

[
ln τ0

τ0

]
+

=
1

ω2

[
ln(s/ω2)

s/ω2

]
+

=
1

µ2

[
ln(s/µ2)

s/µ2

]
+

+
ln(µ2/ω2)

µ2

[
µ2

s

]
+

+
1

2
ln

(
µ2

ω2

)
δ(s) ,

which are readily verified by integrating both sides over s, one finds that in the a→ 0 limit

the finite piece is given by

Jqq(s, z, µ)

2(2π)3)
=
CFαs

2π

{
δ(s)

(
1− z + ln z Pqq(z) + (1 + z2)

(
ln(1− z)

1− z

)
+

− π2

6
δ(1− z)

)
+

1

µ2

[
µ2

s

]
+

1 + z2

(1− z)+
+ 2δ(1− z)

1

µ2

[
ln(s/µ2)

s/µ2

]
+

}
, (B.8)

which agrees with the matching coefficient found in eq. (2.32) of ref. [4].

Next we calculate Jqg(τa, z, µ). Naively this is related to Jqq(τa, z, µ) by the replace-

ment z → 1− z. However, because in the convolution integral of eq. (1.2) the argument of

Jij(τa, z/z′, µ) is never zero, there is no need to regulate poles of z. Therefore, a divergent

factor of (1− z)−1−ε in Jqq(τa, z, µ) becomes in Jqg(τa, z, µ)

1

z1+ε
=

1

z
− ε ln z

z
+O(ε2) . (B.9)
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Thus, Jqg(τa, z, µ) is obtained by making the substitution z → 1 − z and then dropping

all δ(z) and plus prescriptions. This is true for the Jqg(s, z, µ) calculated in ref. [4] and

remains true for Jqg(τa, z, µ). We thus find for the divergent terms

1

ω2

J div
qg (τa, z, µ)

2(2π)3
= − 1

ω2

CFαs
2π

1

ε
δ(τa)Pgq(z) , (B.10)

where Pgq is given in eq. (2.9). For the finite pieces we get

1

ω2

Jqg(τa, z, µ)

2(2π)3
=
CFαs

2π

1

ω2

{
δ(τa)

(
z +

[
1

1− a/2
ln

(
z1−a(1− z)1−a

z1−a + (1− z)1−a

)

− ln

(
µ2

ω2

)]
Pgq(z)

)
+

1

1− a/2

[
1

τa

]
+

Pgq(z)

}
.

(B.11)

Again, these reproduce the matching coefficients of ref. [4] in the a→ 0 limit.

For the divergent contributions to Jgg(τa, z, µ) we get (from the diagrams in figure 4

of ref. [4])

1

ω2

J div
gg (τa, z, µ)

2(2π)3
=
CAαs

2π

1

ω2

(
δ(τa)δ(1− z)

[
2− a
1− a

1

ε2
+

2− a
1− a

1

ε
ln

(
µ2

ω2

)
+

β0

2CA

1

ε

]

− 1

1− a
2

ε
δ(1− z)

[
1

τa

]
+

)
− αs

2π

1

ω2
δ(τa)

1

ε
P̃gg(z) , (B.12)

where the P̃gg(z) is the full QCD splitting function that includes the term proportional to

β0δ(1− z). For the finite parts of Jgg(τa, z, µ) we find

1

ω2

Jgg(τa, z, µ)

2(2π)3
=
CAαs

2π

1

ω2

{
δ(τa)δ(1− z)

2− a
1− a

(
−π

2

12
+

1

2
ln2

(
µ2

ω2

))
+ δ(τa)

(
−Pgg(z)

[
ln

(
µ2

ω2

)
+

1

1− a/2
ln

(
1 +

(1− z)1−a

z1−a

)]
+

1− a
1− a/2

2(1− z + z2)2

z

(
ln(1− z)

1− z

)
+

)
+

[
1

τa

]
+

(
1

1− a/2
Pgg(z)− δ(1− z)

2

1− a
ln

(
µ2

ω2

))
+

2δ(1− z)

(1− a)(1− a/2)

[
ln τa
τa

]
+

}
, (B.13)

where Pgg is given in eq. (2.9). In the limit a → 0, this expression reduces to

Jgg(s, z, µ)/(16π3) found in eq. (2.33) of ref. [4].

For the divergent contributions to Jgq(τa, z, µ) we find

1

ω2

J div
gq (τa, z, µ)

2(2π)3
= − 1

ω2

αsTR
2π

1

ε
δ(τa)Pqg(z) . (B.14)
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For the finite parts we get

1

ω2

Jgq(τa, z, µ)

2(2π)3
=
αsTR

2π

1

ω2

{
1

1− a/2

[
1

τa

]
+

Pqg(z) + δ(τa)2z(1− z) (B.15)

+δ(τa)Pqg(z)

[
1

1− a/2
ln

(
z1−a(1− z)1−a

z1−a + (1− z)1−a

)
− ln

(
µ2

ω2

)]}
,

where Pqg is again given in eq. (2.9). In the limit a → 0, this expression reduces to

Jgq(s, z, µ)/(16π3) in eq. (2.33) of ref. [4].

B.2 Sum rules

The sum rules,

Ji(τa) =
1

2(2π)3

∑
j

∫ 1

0
dz z Jij(τa, z) , (B.16)

can be checked for i = q by performing the integral

Jq(τa) =
1

2(2π)3

∑
j

∫ 1

0
dz z Jqj(τa, z) (B.17)

=
1

2(2π)3

∫ 1

0
dz z (Jqq(τa, z) + Jqg(τa, z)) (B.18)

=
1

2(2π)3

∫ 1

0
dz z (Jqq(τa, z) + Jqq(τa, 1− z)) (B.19)

=
1

2(2π)3

∫ 1

0
dz Jqq(τa, z), (B.20)

where in the last line we changed variables to z → 1 − z in the 2nd term. Inserting the

expression in eq. (B.5) into this integral yields the Jq(τa) found in eq. (3.35) of ref. [34].

In the case of the i = g we have

Jg(τa) =
1

2(2π)3

∫ 1

0
dz z (Jgg(τa, z) + Jgq(τa, z))

=
1

2(2π)3

∫ 1

0
dz
Jgg(τa, z) + Jgq(τa, z)

2
, (B.21)

because both Jgg(τa, z) and Jgq(τa, z) are symmetric under z → 1 − z. The sum rule

is easiest to verify by writing the d-dimensional expressions for Jgg(τa, z) and Jgq(τa, z)

before expanding in ε = (4− d)/2. We find

1

ω2

Jgg(τa, z, µ)

2(2π)3
=

1

ω2

(
4πµ2

ω2

)ε
CAαs

2π

1

Γ[1− ε]
1

1− a/2
(za−1 + (1− z)a−1)

2ε
2−a

(
1

τa

)1+ 2ε
1−a

×
(

2z

1− z
+

2(1− z)

z
+ 2z(1− z)

)
(B.22)

1

ω2

Jgq(τa, z, µ)

2(2π)3
=

1

ω2

(
4πµ2

ω2

)ε
TRαs

2π

1

Γ[1− ε]
1

1− a/2
(za−1 + (1− z)a−1)

2ε
2−a

(
1

τa

)1+ 2ε
1−a

×
(

1− 2

1− ε
z(1− z)

)
. (B.23)

Inserting these two expressions into eq. (B.21) one obtains exactly the integral expression

for the d-dimensional Jg(τa) found in eq. (4.22) of ref. [18].
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