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1 Introduction

1.1 Motivation

The Higgs mechanism [1–3] in the Standard Model [4] (SM) does an excellent job at param-

eterizing the mass spectrum of elementary particles in a consistent way, but leaves many

questions unanswered. We would like to understand why the Higgs mass is so low and to

explain the huge disparity among fermion masses.

One possible explanation of the lightness of the Higgs boson is to realize it as a (pseudo)

Nambu-Goldstone Boson (pNGB) of a broken global symmetry. This approach was pio-

neered in [5] and goes under the name of “Composite Higgs”. One way to deal with the

disparity of fermionic masses and, in particular, to explain the origin of the top quark

mass without reintroducing fine-tuning is to also have additional “partners” mixing with
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SM fermions. This new ingredient was introduced in [6] and goes under the name of

“Partial Compositeness”.

Much work has been done in this area using the effective field theory description based

on the CCWZ formalism [7, 8]. There was also a huge effort to realize these construction

using extra-dimensions. There are by now exhaustive reviews such as [9, 10] providing all

the necessary background to these subjects.

A much less studied approach is that of constructing UV completions for these models

using a strongly coupled “hypercolor” gauge theory with purely fermionic matter (“hyper-

quarks”). The philosophy behind this proposal is so old fashioned that it almost appears

new! Fermionic models of BSM go all the way back to the old technicolor idea and were

also tried in the context of composite Higgs and partial compositeness. The recent model

building activities try to combine the two. Few explicit proposals have been made so far:

[11, 12] and [13] and a partial classification of the available options was made in [14]. (For

earlier attempts using supersymmetry, see [15, 16]. Alternative avenues being explored are

found in [17–19].)

The LHC is now entering a phase where the potential for discovery is at its highest

point, due to the increase in luminosity and energy. It is thus timely to chart the various

scenarios implied by the above class models. In this work we are particularly interested

in presenting the underlying theories in detail and in identifying the broad features that

may allow one to discern one class of models from the others. We leave instead a detailed

phenomenological analysis for future work. For recent phenomenological work in the area

a surely incomplete list is [20–25].

1.2 Overview of the results

In a nutshell, the models we are considering are based on an asymptotically free gauge

theory with simple hypercolor group GHC and fermionic matter in two inequivalent irre-

ducible representations (irreps).1 The requirement of two different irreps arises from the

need to construct top-partners carrying both color and EW quantum numbers. With the

notable exception of a model by L. Vecchi [13], this requires at least two separate irreps;

one, generically denoted by ψ, carrying EW quantum numbers in addition to hypercolor,

the other, χ, carrying ordinary color as well as hypercolor.

At low energies, the theory is expected to confine after having spent a part of the RG

evolution in or near the conformal window, somewhat in the spirit of [26, 27]. This is the

main dynamical assumption needed for some of the operators in the theory to develop the

large anomalous dimensions required to solve the hierarchy problem. However, contrary to

the above-mentioned proposal, here we use fermionic operators [6] to generate the mass of

the top quark, eluding the potential problems with fine-tuning pointed out in [28, 29].

Here we are only interested in the behavior of the theory below the dynamically gen-

erated scale Λ, (expected to be of the order of 10 TeV, to fix the ideas). The conformal

behavior occurs above this scale, up to the “flavor” scale ΛUV > 104 TeV. In this range

1We work with Weyl fermions and count a complex irrep and its conjugate as one.
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the theory could have additional d.o.f./operators driving the conformal behavior and being

ultimately responsible for its ending at the scale Λ.

Below Λ, the strong IR dynamics of one of the two types of hyperquarks (ψ) induces

the symmetry breaking needed to realize the composite Higgs scenario. The three min-

imal cosets preserving custodial symmetry are SU(5)/SO(5), SU(4)/Sp(4), and SU(4) ×
SU(4)′/SU(4)D. The SM EW group is embedded into the unbroken symmetry. The vac-

uum is misaligned, inducing a Higgs v.e.v., by the combined action of the one loop potential

induced by the SM gauge bosons and the top quark as well as possible hyperquark bare

masses of UV origin.

The second irrep (χ) is needed to realize the QCD color group. Its dynamics may

or may not lead to additional pNGBs.2 Top partners arise as GHC invariant trilinear

combinations of the two types of hyperquarks. The top quark acquires a mass via a linear

coupling of these partners to the SM fields Q3
L ≡ (tL, bL) and u3R ≡ tR. The remaining

SM fields may instead be coupled bilinearly and acquire a mass via the more standard

mechanism. This hybrid solution, proposed in [12, 31, 32], has the extra advantage of

suppressing unwanted contributions to dipole moments or flavor violating operators and

could be realized at low energies via the mechanism explained in [33].

With the exception of the Wess-Zumino-Witten (WZW) term, we consider only SM

tree level couplings that preserve a parity symmetry, Pπ, changing sign to all the pNGBs

except for the Higgs itself. Heavier pNGBs thus decay into lighter ones plus a SM gauge

boson or a pair of SM fermions if the decay into a gauge boson is not kinematically allowed.

This parity symmetry is however broken in some cases by the anomaly encoded in the

WZW term, and this allows the lightest pGNBs to decay via di-bosons with a very narrow,

but still prompt, decay width. It is interesting to notice that [34], for the coset SU(4) ×
SU(4)′/SU(4)D, the decay of some of the pNGBs is forbidden by the existence of another

symmetry, Gπ, thus providing a possible Dark Matter candidate. For the scope of this paper

we only assume that in the SU(4)× SU(4)′/SU(4)D scenario the lightest pNGB odd under

this additional symmetry is collider stable, leading to the usual signatures- 6ET or highly

ionizing tracks depending on the charge. (The requirement of this pNGB being neutral is

necessary only in order to have a DM candidate, not simply a collider stable particle.)

The leading production mode for the pNGBs associated with the EW coset are Drell-

Yan production and vector boson fusion.

If the dynamic in the color sector also leads to symmetry breaking, (as we assume

through the paper for illustration purposes, since this case leads to additional interesting

phenomena), there will be additional colored pNGB with a mass higher than the EW ones

since it is due to gluon loops. All models have a neutral pNGB in the octet of color that

can be singly produced and decay via an anomalous coupling. Some models also include

additional charged and colored pNBGs in the triplet or sextet that, under the assumption

of Pπ-parity, decay to two jets and a lighter EW pNGB. Their charges are fixed by the

structure of the top partners.

2Note that the condensate 〈ψχ〉 would break the hypercolor group and cannot arise in vector-like theories

such as these [30].
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An universal feature of all of these models is the presence of two additional scalars

arising from the two spontaneously broken U(1) axial symmetries associated to the two

fermionic irreps. One of these bosons is associated to a GHC anomalous current and it

is thus expected to acquire a large mass just like the η′ in QCD. The remaining one is

instead naturally light in the absence of additional UV mechanisms such as bare hyperquark

masses. Both couple to gluons via the anomaly and could provide an explanation of the

current 750 GeV di-photon excess [35, 36]. Indeed, such an interpretation has already been

put forward in [37] for the case of the light U(1) boson. (More details about the role of

pNGBs in explaining the excess are given in [38].)

1.3 Organization of the paper

The paper is organized as follows: in section 2 we present the class of models of interest. We

then turn to study their different sectors beginning in section 3 with the pNGBs associated

to the EW coset. We study the generation of the potential, its symmetries, present a

couple of prototypical spectra, work out all the couplings of relevance for LHC physics

and briefly comment on the main phenomenological aspects. In section 4 we discuss the

colored objects in the different theories, pNGBs and top partners, show how their quantum

numbers are related and how this affects the phenomenology. In section 5 we comment on

the remaining two pNGBs universally present in this class of models.

Technical details are collected in the appendix. Appendix A lists all the gauge theories

having a composite higgs and a top partner under the requirements discussed in section 2

and 3 and discusses their IR properties. Appendix B contains the conventions for the

explicit construction of the EW cosets. Appendix C lists additional couplings (anomalous

and non) that did not find a place in the main text.

2 The models, streamlined classification

In this section we summarize the models of interest in this paper. We take the opportunity

to slightly expand and streamline the classification presented in [14].

We want to realize the “composite Higgs” coset by condensation of a set of fermionic

hyperquarks ψ transforming in some irrep of a simple hypercolor gauge group GHC. Recall

that the three basic cosets one can realize with fermionic matter depend on the type of irrep

to which the fermions belong. One possibility is to mimic ordinary QCD. Working with left-

handed (LH) fermions only, a set of n pairs of LH fermions (ψi, ψ̃
i) in a (R, R̄) irrep of GHC,

with R complex (C) and R̄ its conjugate, breaks the global symmetry SU(n) × SU(n)′ →
SU(n)D after condensation 〈ψ̃iψj〉 ∝ δij . (The U(1) factors will be studied separately

because of possible ABJ anomalies. Here we concentrate on the non-abelian factors.)

If, on the other hand, we consider just a single set of n LH fermions ψi in a real

(R) (respectively pseudo-real (PR)) irrep, the symmetry breaking is SU(n) → SO(n)

(resp. SU(n) → Sp(n)) since the condensate 〈ψiψj〉 turns out to be symmetric (resp.

anti-symmetric).

If we want to use such cosets to construct an EW sector for the composite Higgs, the

possible minimal custodial cosets of this type are SU(4) × SU(4)′/SU(4)D, SU(5)/SO(5)
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ψ ∈ R ψ ∈ PR ψ, ψ̃ ∈ C

χ ∈ R SU(5)
SO(5)

SU(6)
SO(6)U(1)u

SU(4)
Sp(4)

SU(6)
SO(6)U(1)u

SU(4)×SU(4)′

SU(4)D

SU(6)
SO(6)U(1)u

χ ∈ PR SU(5)
SO(5)

SU(6)
Sp(6) U(1)u

SU(4)
Sp(4)

SU(6)
Sp(6) U(1)u

SU(4)×SU(4)′

SU(4)D

SU(6)
Sp(6) U(1)u

χ, χ̃ ∈ C SU(5)
SO(5)

SU(3)×SU(3)′

SU(3)D
U(1)u

SU(4)
Sp(4)

SU(3)×SU(3)′

SU(3)D
U(1)u

SU(4)×SU(4)′

SU(4)D

SU(3)×SU(3)′

SU(3)D
U(1)u

��
���

���
�XXXXXXXX

��
���

���
�XXXXXXXXX

���
���

���
XXXXXXXXXX

Table 1. The possible minimal cosets realized in this class of models. The hyperquarks ψ and

χ transform under different irreps of GHC. ψ also carries EW quantum numbers, while χ carries

color. The three cases crossed out are those that do not give rise to top partners because the nature

of their congruency classes prevents the formation of singlets.

and SU(4)/Sp(4) for the three cases. For instance, SU(4)/SO(4) is not acceptable since

the pNGBs are only in the symmetric irrep (3,3) of SO(4) = SU(2)L × SU(2)R and thus

we do not get the Higgs irrep (2,2).

Since we want to obtain the top partners as fermionic trilinears, we also need to

embed the color group SU(3)c into the global symmetry of the composite theory. For this

purpose we introduce a second fermionic irrep χ coupling to color as well as hypercolor.

The minimal field content allowing an anomaly-free embedding of unbroken SU(3)c are

SU(3) × SU(3)′ → SU(3)D ≡ SU(3)c for the complex case, SU(6) → SO(6) ⊃ SU(3)c for

the real case and SU(6)→ Sp(6) ⊃ SU(3)c for the pseudoreal case.

In all of these cases we need 6 LH fermions altogether, to be divided into three pairs

(χ, χ̃) in the case of a complex irrep. Top-partners are constructed by GHC invariant

trilinears of type ψχψ or χψχ depending on the model as shown in appendix A.

All combinations of R, PR and C irreps are in principle possible. The minimal cosets

are shown in table 1. The three cases crossed out are those that do not give rise to top

partners. This can be easily seen e.g. for the case in which both irreps are pseudo-real since

the product of three pseudo-real irreps cannot contain a singlet. For each remaining case

one can look for possible hypercolor gauge groups and irreps that satisfy the remaining

constraint of asymptotic freedom. These are listed in appendix A for completeness. More

details can be found in [14].

Table 1 also shows a “ubiquitous” non-anomalous U(1)u factor arsing from the spon-

taneous breaking of the GHC-anomaly-free abelian chiral symmetry. This symmetry is

obtained by constructing the anomaly free linear combination of the two axial symmetries

U(1)ψA and U(1)χA rotating, respectively, all the ψ (or ψ, ψ̃) and χ (or χ, χ̃) by the same

phase. For each pair of complex irreps there is also one vector-like U(1)ψV or U(1)χV factor

which is both anomaly free and unbroken.

To understand the type of pNGBs arising in the various cases, we look at the decom-

position under SU(2)L×U(1)Y of the irrep of H under which the pNGB’s transform.3 The

decomposition is shown in table 2.

3We denote specific irreps either by their dimensionality or by the symbols F, Sn, An, Ad and Spin

for the fundamental, n−symmetric, n−antisymmetric, adjoint and spin.
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G/H irrep of H H → SU(2)L ×U(1)Y

SU(5)/SO(5) 14 ≡ S2 3±1(φ±)+30(φ0)+2±1/2(H)+10(η)

SU(4)/Sp(4) 5 ≡ A2 2±1/2(H)+10(η)

SU(4)× SU(4)′/SU(4)D 15 ≡ Ad 30(φ0)+2±1/2(H)+2′±1/2(H ′)+1±1(N±)+10(N0)+1′0(η)

Table 2. The decomposition under SU(2)L × U(1)Y ⊂ H of the pNGBs associated to the coset

G/H and transforming linearly under an irrep of H. Next to the charges we indicate the names

used throughout the paper. For uniformity of notation we denote all SU(2)L triplets by φ and

doublets by H. The fields N in SU(4)× SU(4)′/SU(4)D form a triplet of SU(2)R.

The EW cosets above have been studied in many previous papers, see e.g. [39–43]

for SU(4)/Sp(4), [34, 44] for SU(4)× SU(4)′/SU(4)D and [12, 40, 45–48] for SU(5)/SO(5).

General non-minimal cosets are discussed in [49].

As for the color cosets, arising when the χ also condense, a generic prediction is the

existence of an electrically neutral color octet pNGB. In addition, we have a pair of

electrically charged pNGBs in the (3,3) of SU(3)c for the SU(6)/Sp(6) case or in the (6,6)

for the SU(6)/SO(6) case. The charges are discussed in section 4.

Top partners can be broadly divided into two separate groups: those of type ψχψ

and those of type χψχ. (We are being schematic here, and only indicate the relative

number of ψ or χ-type hyperquarks, without indicating the specific Lorentz and hypercolor

contractions.) Top partners of the first type require coupling to top quark spurions in a

two index irrep, while partners of the second type give rise to single index irreps.

There is a sense in which models of type ψχψ are more promising than the others.

Top-partners of type χψχ force one to chose the fundamental irrep for the spurions. For

the SU(5) case this leads to the 5 that, although being compatible with the Z → bLb̄L
custodial symmetry [12, 50], gives rise to effective potentials that tend to break the usual

custodial symmetry [51]. The case of SU(4) × SU(4)′ leads to problems already at the

Z → bLb̄L level and we exclude these models from the list in appendix A. There are no

χψχ cases for the SU(4)/Sp(4) coset.

3 The electro-weak sector

3.1 The potential

The pNGBs acquire a mass from a loop-induced [52] potential that breaks the shift sym-

metry explicitly. We consider three kinds of contribution to the potential. The first one is

the contribution from the loop of gauge bosons, which is uniquely determined by the gauge

structure up to an overall dimensionless positive constant B. It can be written as4

Vg = B f4 tr(g2T aLUT
a∗
L U † + g′2T 3

RUT
3∗
R U †) (3.1)

4We chose to use the pNGB decay constant f as the only dimensionfull parameter. This simplifies

the notation but hides the scaling properties of the formulas. See appendix B for the conventions on the

generators and the non-linear pNGB matrix U .
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for the SU(4)/Sp(4) case and

Vg = −B f4 tr(g2T aLUT
a
LU
† + g′2T 3

RUT
3
RU
†) (3.2)

for SU(4) × SU(4)′/SU(4)D. For the SU(5)/SO(5) coset both expressions are equivalent

in our conventions from appendix B. Actually, for all three cases the formula could be

written in a uniform notation using the matrix Σ defined in appendix B instead of U , but

we choose to work with U because of its easier transformation properties under the full

symmetry group.

The constant B and related ones are the so-called low-energy-coefficients (LEC) (in

units of f) that encode the information about the spectrum of the strongly interacting the-

ory. Lacking direct experimental information, they could be estimated on the lattice. Some

work in this direction has already been done in the context of a specific model [53, 54]. (For

more general results on the lattice, see the review [55].) These models necessarily involve

representations of the hypercolor group other than the fundamental and pose additional

challenges. In the context of phenomenology they have also been used in e.g. [56–58]. For a

clear discussion of how they are generated and can be computed in the context of effective

theories of partial compositeness, we refer to [59] and references therein.

We also have the option of adding bare hyper-quark masses

Vm = −B′ f4 tr(µU + µ∗U∗) (3.3)

with µ a dimensionless matrix preserving the custodial symmetry and B′ some other di-

mensionless constant. For definitiveness we take µ = 1 if needed.

Lastly, we need to take into account the effect of the top quark, which leads to vacuum

misalignment [60]. This can be done introducing spurionic fields transforming under a

particular irrep of the unbroken flavor group. Here is one instance when having a candidate

UV completion helps in picking the particular irreps to consider.

We restrict to the case where only the Higgs acquires a v.e.v. since we want to preserve

the SM-like properties of the Higgs boson as well as the tree level mass relation m2
W =

cos2 θWm
2
Z . Since we are only allowing the Higgs direction to be turned on, the matrix

of v.e.v.s is easily exponentiated and we find it convenient to introduce a matrix Ω(ζ) for

all three cases denoting the vacuum misalignment and depending on v = 246 GeV through

sin ζ = v/f . In terms of the original Higgs field ĥ gaining a v.e.v. we have ζ = 〈ĥ〉/f . In

other words v = f sin(〈ĥ〉/f). The fields appearing into the effective lagrangian are always

the canonically normalized fields with zero v.e.v.. The expression for Ω and U is found in

appendix B.

It is then a straightforward matter to check which, among the irreps of G = SU(5),

SU(4), SU(4) × SU(4) with up to two indices, contains spurions for the third generation

quarks that preserve the custodial symmetry in the sense specified above. The decompo-

sition of G → SU(2)L × SU(2)R is useful at this point and it is reproduced in table 3 for

convenience.

Spurions containing a (2,2) are possible candidates for Q3
L and spurions containing

(1,1), (1,2) or (1,3) are candidates for tR. Spurions in the (2,1) should not be used

because they violate the extra custodial requirement [50].
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G SU(2)L × SU(2)R

SU(5) 1 → (1,1)

5,5 → (1,1) + (2,2)

10,10 → (2,2) + (1,3) + (3,1)

15,15 → 2× (1,1) + (2,2) + (3,3)

24 → (1,1) + 2× (2,2) + (1,3) + (3,1) + (3,3)

SU(4) 1 → (1,1)

4,4 → (1,2) + (2,1)

6 → 2× (1,1) + (2,2)

10,10 → (2,2) + (1,3) + (3,1)

15 → (1,1) + 2× (2,2) + (1,3) + (3,1)

SU(4)× SU(4)′ (1,1) → (1,1)

(1,4), . . . (4,1) → (1,2) + (2,1)

(1,6), (6,1) → 2× (1,1) + (2,2)

(1,10), . . . (10,1) → (2,2) + (1,3) + (3,1)

(1,15), (15,1) → (1,1) + 2× (2,2) + (1,3) + (3,1)

(4,4), . . . (4,4) → 2× (1,1) + 2× (2,2) + (1,3) + (3,1)

Table 3. Decompositions of the irreps of G to be used to identify candidate spurions.

The spurions irrep should be matched with the type of baryon arising in the UV

completion. If, in a particular model, the composite top partners arise from bound states of

type χψχ, then the spurions to be used are those in the one index irrep (the fundamental).

Vice-versa, if the top partners in a model are of type ψχψ, one should use two indices

irreps, to be further restricted to symmetric, anti-symmetric, adjoint or bi-fundamental if

required by the symmetries of the particular model. From table 5 in appendix A one can

reconstruct the requirements case by case.

A spurion S in a two-index irrep of SU(n) transforms as S → gSgT if in the S2 or A2

irrep and S → gSg† if in the Ad. In the SU(4) × SU(4)′/SU(4)D case one should instead

talk about (F,F) or (F,F), whereby S → gSg′T or S → gSg′†. Similarly (see appendix B)

the symmetry properties of the pNGB field U are U → gUgT for the SU(5)/SO(5) and

SU(4)/Sp(4) cosets and U → gUg′† for SU(4) × SU(4)′/SU(4)D. Thus, we see that, to

leading order, the potential for two-index representations is proportional to the expressions

in table 4. Spurions like (F,F) must couple to top partners containing one ψ and one ψ̃.

Spurions of the type (R,1) or (1, R′) such as (F,1), (A2,1) etc., do not give rise to a

non-trivial invariant since we need to multiply directly U and U †.

In the cases of SU(5)/SO(5) one could also consider spurions in the fundamental F

of SU(5). In this case the leading contribution to the potential is of forth order and

proportional to5

(S†US∗)(STU∗S) . (3.4)

5We ignore possible non factorizable contributions and refer again to [59] for details.
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S ∈ S2 S ∈ A2 S ∈ Ad

SU(5)/SO(5) tr(SU∗) tr(S∗U) 0 tr(SUS∗U∗)

SU(4)/Sp(4) 0 tr(SU∗) tr(S∗U) tr(SUS∗U∗)

S ∈ (F,F) S ∈ (F,F)

SU(4)× SU(4)′/SU(4)D tr(USTU∗S†) tr(SU†) tr(S†U)

Table 4. The spurion couplings at leading order for the two index irreps, to be associated to

models where the top partners are of type ψχψ. The zeros arise in the case when U and S have

opposite symmetry properties. Irreps of type (R,1) or (1, R′) such as (F,1), (A2,1) etc. for

SU(4)×SU(4)′/SU(4)D do not give rise to a non-trivial invariant since we need to multiply directly

U and U †.

The F for the coset SU(5)/SO(5) runs into trouble with the desire to have a vacuum that

preserves custodial symmetry. In this case, coupling generically the pNGBS to spurions in

the fundamental will induce a tadpole for the field φ−+− φ+− which should be suppressed in

order to avoid tree level corrections to the ρ-parameter. If we were to take this fact also

as a strict guideline, we would be led to exclude all the cases in appendix A giving top

partners of type χψχ, although this may be a bit too drastic at this stage.

In the above formulas S could carry a SU(2)L index in the case it corresponds to Q3
L.

This index is then also summed over in the obvious way. Notice that terms proportional

to tr(SU∗) + tr(S∗U) or (S†US∗) + (STU∗S) are not allowed due to the need to preserve

the spurionic U(1).

3.2 The parity transformations Pπ and Gπ

We are now in the position of defining more concretely the parity symmetries of relevance

for these models, starting with Pπ. For the scope of this paper we will think of Pπ as

an accidental symmetry of the non-anomalous pNGB Lagrangian coupled to the SM. Its

action changes sign to all the pNGB except the Higgs doublet(s) and can be realized in all

three cases as U → P̂πU
†P̂π with the matrix P̂π defined as

P̂π =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −1

 , P̂π =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , P̂π =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 (3.5)

for the three cosets SU(5)/SO(5), SU(4)× SU(4)′/SU(4)D and SU(4)/Sp(4) respectively.

To see that the transformation accomplishes its task note first that P̂πΩ∗ = ΩP̂π for

SU(5)/SO(5) and SU(4)/Sp(4) and P̂πΩ† = ΩP̂π for SU(4)× SU(4)′/SU(4)D. This allows

one to move the action of P̂π pass the vacuum misalignment matrix directly onto the pNGB

matrix Π (cf. appendix B) where its effect is to reverse the sign of the Higgs doublet(s).

This, together with the hermitian conjugation on U that reverses the sign of all pNGBs,
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has the desired combined effect. In all three cases Pπ leaves the vacuum invariant and

preserves the custodial symmetry group. In particular Dµ(P̂πU
†P̂π) = P̂π(DµU)†P̂π.

Note that the hermitian conjugation is necessary in all three cases. But it is known that

the WZW term breaks precisely this last transformation and thus Pπ can never be an exact

symmetry at the quantum level. Still, it is desirable for the Yukawa couplings to be left

invariant by such transformation since this prevents the generation of custodial symmetry

breaking v.e.v.s from the induced potential and greatly alleviates the constraints from flavor

physics, e.d.m. etc. This condition can be realized by imposing the invariance of the spurion

fields. In particular, for the two-index irreps in table 4 we require S = ±P̂πS†P̂π (either

sign) for the S2, A2 or (F,F) or S = ±P̂πST P̂π (either sign) for the Ad or (F,F). Some,

but not all, spurions obey these requirements. The spurions used in the next section to

generate an example of potential have been chosen to satisfy these invariance requirements.

The second transformation of interest, Gπ, is realized as U → ĜπU
T Ĝ†π and gives non

trivial results only for SU(4) × SU(4)′/SU(4)D since in the other two cases UT = ±U (see

appendix B). For the SU(4) × SU(4)′/SU(4)D case we choose, following [34]

Ĝπ = i


0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 . (3.6)

This transformation is interesting because it is also a symmetry of the WZW term and it

may be preserved at the quantum level in the UV theory. If so, the lightest neutral pNGBs

odd under it (a linear combination of φ0, N0, h
′ and A′) could be a Dark Matter candidate.

3.3 Mass spectrum

Now that we have seen what the main contributions to the potential are and how to compute

them, we present a couple of examples of mass spectrum based on a particular choice of

spurions. This is not in any way a prediction of the models, it is merely presented to make

the previous discussion more concrete and to show qualitatively how a mass spectrum could

look like. We consider potentials that depend on three of the dimensionless constants

Bi, to be specified below. We trade one linear combination for the misalignment angle

sin ζ = v/f , measuring the amount of fine-tuning in the model. A second combination

is fixed by imposing the mass of the Higgs boson to be at its measured value [61, 62] of

125 GeV. The third combination is left free and varying it gives possible examples for the

mass spectrum.

As a first example, consider the SU(5)/SO(5) model with a potential

V = −B1 f
4 tr(g2T aLUT

a
LU
† + g′2T 3

RUT
3
RU
†) +B2 f

4 tr(StRUS
∗
tR
U∗)

+B3 f
4 tr(StLUS

∗
tL
U∗ + SbLUS

∗
bL
U∗) (3.7)

where we have chosen the spurion for tR to be in the (1,1) component of the decomposition

of the Ad irrep and the spurion for (tL, bL) to be in one of the two (2,2) components with
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Figure 1. Prototypical spectrum for the SU(5)/SO(5) model with f = 800 GeV.
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Figure 2. Prototypical spectrum for the SU(5)/SO(5) model with f = 1600 GeV.

T 3
R = −1/2 in order for bL to obey the custodial relations TL(TL + 1) = TR(TR + 1) and

T 3
L = T 3

R

StR =
1

2
√

5


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −4

 , StL =
1

2
√

2


0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1− i
0 0 0 0 1− i
0 0 1 + i −1 + i 0

 ,

SbL =
1

2
√

2


0 0 0 0 1− i
0 0 0 0 −1− i
0 0 0 0 0

0 0 0 0 0

−1 + i 1 + i 0 0 0

 . (3.8)

Setting f = 800 GeV and f = 1600 GeV, solving the constraints and varying B1 we

obtain the spectra in figure 1 and 2 respectively.

Moving on to SU(4)×SU(4)′/SU(4)D, we chose to present the mass spectrum induced

by the following potential, consisting of the contributions from the gauge fields, some bare

masses and a LH third family, assumed to give the dominant contribution.

V = −B1 f
4 tr(g2T aLUT

a
LU
† + g′2T 3

RUT
3
RU
†)−B2 f

4 tr(U + U∗)

+B3 f
4
(

tr(S†tLU) tr(StLU
†) + tr(S†bLU) tr(SbLU

†)
)
. (3.9)
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Figure 3. Prototypical spectrum for the SU(4) × SU(4)′/SU(4)D model with f = 800 GeV.
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Figure 4. Prototypical spectrum for the SU(4) × SU(4)′/SU(4)D model with f = 1600 GeV.

The spurions for the LH quarks are chosen to belong to one of the (2,2) of SU(2)L×SU(2)R
found in the decomposition of (4,4)

StL =
1√
2


0 0 1 0

0 0 0 0

0 0 0 0

0 −1 0 0

 , SbL =
1√
2


0 0 0 0

0 0 −1 0

0 0 0 0

−1 0 0 0

 . (3.10)

The representative spectra for f = 800 GeV and f = 1600 GeV are given in in figure 3

and 4 respectively.

Not much needs to be done for the remaining SU(4)/Sp(4). The η is the only pNGB

particle other than the Higgs in our current approach its mass is essentially a free parameter.

A full discussion of this case is given in [42].

3.4 Couplings involving pNGBs

The trilinear vertex ππ′V between two generic EW pNGBs and an EW vector boson is

encoded in the structure of the currents. With the usual shorthand π∗1
←→
∂ µπ2 = π∗1∂µπ2 −

∂µπ
∗
1π2 we find, for SU(5)/SO(5) the coupling to the Z-boson6

L ⊃ ie

2swcw
Zµ
(
(c2w − cζ)φ

0
−
←→
∂ µφ

0
+ + (c2w + cζ)φ

−
0

←→
∂ µφ

+
0 + 2cζφ

−
+

←→
∂ µφ

+
− + 2c2wφ

−
−
←→
∂ µφ

+
+

)
(3.11)

6See again appendix B for notation on the field content of the theory. We set sζ = sin ζ, sw = sin θW etc.
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and that to the W±

L ⊃ e

2sw
W−µ

(
(1 + cζ)(φ

+
−
←→
∂ µφ

0
+ + φ00

←→
∂ µφ

+
0 − φ

0
−
←→
∂ µφ

+
+)

− (1− cζ)(φ
0
0

←→
∂ µφ

0
+ + φ−+

←→
∂ µφ

+
0 − φ

−
0

←→
∂ µφ

+
+)
)

+ h.c. (3.12)

For SU(4)× SU(4)′/SU(4)D we find instead, in agreement with the results of [34]

L ⊃ ie

2swcw
Zµ
(
(c2w − cζ)N−

←→
∂ µN+ + (c2w + cζ)φ−

←→
∂ µφ+ + c2wH

′
−
←→
∂ µH

′
+ + icζA

′←→∂ µh
′)

(3.13)

for the Z couplings, and

L ⊃ − ie

2sw
W−µ

(
(1− cζ)N0

←→
∂ µN+ + (1 + cζ)φ0

←→
∂ µφ+ − cζh

′←→∂ µH
′
+ + iA′

←→
∂ µH

′
+

)
+ h.c.

(3.14)

for the W± couplings. The electromagnetic coupling is of course always given by

ieqπA
µ π∗
←→
∂ µπ for any of the pNGBs π of charge qπ.

In all three cases the Higgs boson h does not mix with the other pNGBs and its

couplings to the vector bosons at tree level are:7

L =
1

4
g2fs2ζhW

+µW−µ +
1

8
(g2+g′2)fs2ζhZ

µZµ+
1

4
g2c2ζh

2W+µW−µ +
1

8
(g2+g′2)c2ζh

2ZµZµ .

(3.15)

The model SU(4)/Sp(4) only contains the η as an additional pNGB. Its trilinear

couplings vanish and at quartic level it can easily be written down:

L = −1

4
g2s2ζη

2W+µW−µ −
1

8
(g2 + g′2)s2ζη

2ZµZµ . (3.16)

For the quartic couplings in the remaining models we refer to appendix C.

The Pπ-parity odd pNGBs can decay to the transverse part of the vector bosons via the

anomaly term yielding a vertex πV V ′. This can be extracted from the WZW term [63, 64]

by considering the piece containing one pNGB and two vector bosons. The relevant term

is given in [65] in the elegant language of differential forms

SWZW ⊃
i dim(ψ)

48π2

∫
tr(dALALdUU

† +ALdALdUU
† + dARARU

†dU +ARdARU
†dU

− dALdUARU † + dARdU
†ALU) . (3.17)

For SU(4)/Sp(4) we set AL = A, AR = −AT = −ε0Aε0 and U = Ω exp(2
√

2iΠ/f)ε0Ω
T .

Expanding to first order in the pNGBs and integrating by parts yields

SWZW ⊃
dim(ψ)

16π2f
cζ

∫
η

(
g2 − g′2

2
ZµνZ̃

µν + gg′FµνZ̃
µν + g2W+

µνW̃
−µν
)

d4x . (3.18)

7For uniformity we have chosen to normalize all three cases according to mW = 1
2
gf sin ζ, implying

v = f sin ζ = 246 GeV. This is different from the normalization of f used in [12]. Our h is already shifted

to have zero v.e.v. and is canonically normalized.
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Figure 5. Production modes for the EW pNGBs. From left to right: Drell-Yan (DY), Vector

Boson Fusion pair production via a renormalizable quartic interaction (VBFr) and Vector Boson

Fusion via the anomaly (VBFa).

For SU(4) × SU(4)′/SU(4)D we set AL = AR = A and U = Ω exp(2
√

2iΠ/f)Ω. Ex-

panding to first order in the pNGBs and integrating by parts we find exactly the same

expression as (3.18). This was found in [34] and it is due to the extra symmetry Gπ, de-

fined in section 3.2, present in this case. In particular, no terms involving the pNGB φ and

N arise in this model.

On the contrary, for the coset SU(5)/SO(5), we need to set AL = A, AR = −AT = A

and U = Ω exp(2iΠ/f)ΩT . Here, no additional symmetry is present and all the pNGBs

other than the Higgs boson appear in the WZW action. In this case, the trilinear anomalous

couplings are presented in appendix C.

There are three possible production modes to be considered for these EW pNGBs, see

figure 5. Two of them are pair production modes, one by an off-shell vector boson in the

s-channel — Drell-Yan production (DY) — and the other by vector boson fusion via a

renormalizable four boson interaction (VBFr). The third one is a single production mode

by vector boson fusion via the anomaly (VBFa).

Perhaps surprisingly, VBFr tends to give a larger contribution than DY. Consider

the interesting case of the doubly charged pNGB φ++ present in SU(5)/SO(5). (A model in

which such a particle is present as an elementary object is the Georgi-Machacek model [66].)

The tree level production can be easily estimated with MadGraph and FeynRules [67, 68]

yielding, at 13 TeV for a mass of 500 GeV and f = 800 GeV: σDY(φ++φ
−
−) = 1.3 fb and

σVBFr(φ
+
+φ
−
−) = 3.0 fb.

The single production of the doubly charged pNGBs via VBFa is totally negligible

in this case: σVBFa(φ
+
+) = 2.3 × 10−5 fb. This last statement is no longer true for other

pNGBs. For instance, in the case of the η of SU(4)/Sp(4), (and a particle with exactly the

same couplings is present in SU(4)×SU(4)′/SU(4)D as well), with the same parameters as

before, the double production is now negligible: σDY(ηη) = 0 (impossible) and σVBFr(ηη) =

2.0× 10−2 fb, while σVBFa(η) is of the order of a few fb depending on the specific value of

the anomaly.

The reason for this different behavior is due to the fact that the VBF diagrams that

contribute the most are those where a photon is allowed to be present. For this same

reason, the single charge pNGBs have non negligible cross section for all processes and the
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Figure 6. After production, an EW pNGB Φ can be collider stable, decay to two vector bosons

V, V ′ via the anomaly, decay to a lighter pNGB φ′ plus a vector boson V or to a pair of fermions

f, f̄ ′ plus a lighter pNGB φ′.

single production mode becomes relevant at higher masses. We have not tried to pin down

the exact range of masses where one production mode is expected to be dominant with

respect to the others because this depends on the details of the models such as mixing,

which is not an issue for the η of SU(4)/Sp(4) or the φ++ of SU(5)/SO(5). However, given

that σVBFr(φ
+
+φ
−
−) and σVBFa(η) are roughly comparable for masses of 500 GeV, we expect

the cross-over region to be within the energy range of the LHC.

The phenomenology of the cosets SU(4)× SU(4)′/SU(4)D and SU(5)/SO(5) is poten-

tially very rich (some would say too rich. . . ). Once produced, the EW pNGBs chain decay

to lighter ones plus a SM vector boson, if kinematically allowed, or a pair of SM fermions.

In the SU(5)/SO(5) case, the lightest EW pNGB decays to two SM vector bosons via the

anomaly. (This may actually become the dominant decay mode for heavier pNGBs as

well if the spectrum is squeezed, ∆m . 10 GeV.) In the SU(4) × SU(4)′/SU(4)D case,

the lightest pNGB odd under Gπ is collider stable under our assumptions and thus leads

to missing energy or charged heavy tracks depending on its charge. If its decay into SM

fermions is totally forbidden, it could even be a dark matter candidate [34]. This is in the

spirit of [69] although their candidate for dark matter (the η of SU(4)/Sp(4)) is not viable

for our UV completions because it decays through the anomalous couplings. (For pNGB

dark matter see also [70]. Additional dark matter candidates have been conjectured to

arise from the topological structure of similar cosets [71].) A pictorial description of the

various possibilities is given in figure 6.

4 Top partners and colored mesons

We now turn to the discussion of objects carrying color, that is, bound states containing

some of the constituents χ.

As we mentioned in the introduction, top-partners are realized via fermionic tri-linears

in the hyperquarks. These can be of type ψχψ or χψχ depending on the type of model

under consideration, as shown in appendix A. So far we have been somewhat sloppy in

indicating the structure of these objects, now it is time to be more specific.

We need at least six new fermions “χ” in order to embed the color group into the

associated global symmetry group in an anomaly-free way. In the case of a complex irrep,

leading to SU(3) × SU(3)′/SU(3)D, the χs are already naturally divided into 3 χ and 3 χ̃
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transforming in conjugate irreps Rχ and Rχ of GHC as well as the 3 and 3 of color SU(3)c.

(As always, we are using Weyl LH notation.)

Even in the other two cases (real or pseudo-real irreps), it is still convenient to split the

6 fermions into a 3+3 of SU(3)c. In these cases we allow ourselves the following notational

ambiguity

χ ∈ 6 ≡

(
χ

χ̃

)
∈

(
3X
3−X

)
(4.1)

for ease of notation. Note that these fermions must carry not only the color quantum num-

bers but also the additional U(1)X charge needed to obtain the proper weak hypercharge

Y = X + T 3
R for the top partners. The allowed values of X can be found looking at the

construction of the top-partners as follows.

Consider the case where the top-partners are of type χψχ. Using the notation (4.1), we

can generally construct at most three types of LH objects transforming in the 3. They are

contained in the products χ̃ψχ̃, χ̃ψ†χ†, χ†ψχ†, where we used the fact that 3× 3 = 6 + 3.

Identifying the TL = TR = 0 component with the partner of tR we see that we must chose

X(χ) = −1/3 and B(χ) = −1/6 (baryon number) for the constituents χ.

Now, still within the χψχ case, if the GHC irrep for the χ in question is real, giving

rise to the coset SU(6)/SO(6), this leads to colored pNGBs χχ ∈ 6−2/3 of baryon number

1/3, as well as χ̃χ̃ ∈ 6+2/3 of baryon number −1/3 and the ever-present χ̃χ ∈ 80 of baryon

number 0. If the GHC irrep is pseudo-real, giving rise to the coset SU(6)/Sp(6), then the

pNGB mesons are χχ ∈ 3−2/3 etc. with the same baryon number assignments as before.

If instead the top partners are of type ψχψ, then the χ and χ̃ in (4.1) must be in the

3+2/3 + 3−2/3 of SU(3)c × U(1)Y with baryon number ±1/3, leading, for a real irrep, to

mesons χχ ∈ 64/3 of baryon number 2/3 and its complex conjugate plus the usual χ̃χ ∈ 80.

From appendix A we see that no pseudo-real cases exist when the top-partners are of type

ψχψ. The case in which the χ are in a complex irrep only leads to the neutral meson

χ̃χ ∈ 80 without baryon number.

The masses for these colored objects should be in the multi TeV range getting con-

tributions from gluon loops and possibly bare masses for χ but they could still be in the

discovery range of LHC. The octets decay mostly to two gluons via the anomaly term

LWZW ⊃
g2s dimχ

16π2fc
dABCΠAGBµνG̃

Cµν (4.2)

but there is no such term available for the triplet or the sextet. Preserving Pπ-parity, we

can let them cascade to the lighter EW pNGBs via interactions of type πqq′φ where q and

q′ are SM quarks and φ is an appropriate EW pNGB with the right quantum numbers.

If we allow for interactions violating Pπ-parity, we do not need this additional pNGB.

Summarizing, we have therefore the following three possibilities, in addition to the octet:

• Case a) χ in a real irrep and top-partners of type χψχ. This gives rise to mesons π

in the 6−2/3 of SU(3)c×U(1)Y of baryon number −1/3. They can decay via ∆B = 1

couplings

π∗abQLaQLbφ , π∗abuRauRbφ , π∗abdRauRbφ , π∗abdRadRbφ (4.3)
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Figure 7. Pair production and decay of color octets (left) and triplet/sextet (right). The octet

can also be singly produced by the anomalous coupling via gluon fusion.

where we denoted explicitly only the color index. The various EW pNGBs φ ap-

pearing in the vertex must be such that the particular vertex is invariant under the

full SM gauge group. In the case of QLQL coupling, we have the option of coupling

to a SU(2)L triplet or a singlet, making the quark flavor indices symmetric or anti-

symmetric respectively. In all gory details for the triplet: π∗abQ
αfi
La Q

f ′j
Lbαφij , symmetric

in the exchange of ff ′. In the absence of Pπ-parity we could also consider the term

π∗abdRadRb, symmetric in the flavor indices.

• Case b) χ in a real irrep and top-partners of type ψχψ. This gives rise to mesons

π in the 64/3 of SU(3)c × U(1)Y of baryon number 2/3. They can decay via same

couplings as case a) but now these couplings are baryon number preserving. Without

Pπ-parity one can only make the vertex π∗abuRauRb, symmetric in flavor.

• Case c) χ in a pseudo-real irrep and top-partners of type χψχ. The extra mesons

are now in the 32/3 of baryon number 1/3 and decay via the ∆B = 1 interactions

εabcπaQLbQLcφ , εabcπauRbuRcφ , εabcπadRbuRcφ , εabcπadRbdRcφ (4.4)

with the appropriate EW pNGB. Without Pπ-parity one can construct εabcπadRbdRc
asymmetric in the flavor indices.

For all EW cosets there are some pNGBs that can be used to construct some of

the couplings, so all the colored sextets and triplets can decay into two jets and an EW

pNGB. Note that proton stability is assured since we preserve lepton number. However, the

presence of ∆B = 1 interactions raises the interesting possibility of neutron-anti-neutron

oscillations. (See [72] for a recent discussion in the context of RPV-SUSY. Similar scalars

objects have been discussed in e.g. [73, 74].) The situation is summarized in figure 7.

As far as fermionic colored objects go these models predict a slew of additional reso-

nances but all of them, with the possible exception of the top partners, should be out of

reach at LHC.

Exotic fermions of higher electric charge also need be taken into consideration. For the

almost ubiquitous charge 5/3 state X, the main decay mode targeted by experiments so far

is X →W t [75], but the existence of possible additional charged pNGBs opens alternative
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channels such as X → t φ+0 . The presence of doubly charged pNGBs in some constructions

might even allow for X → b φ++.

The operator creating the fermionic resonance should acquire a large negative anoma-

lous dimension in the running from ΛUV to Λ. This has been investigated at the perturba-

tive level in [76] for the class of models in [12]. More recently [77] summarized the results

for the QCD case, also within perturbation theory.

5 Two more pNGBs/ALPs

A universal feature of all of these models, simply due to the fact that they are constructed

out of two different types of fermions, is the existence of two additional neutral pNGBs

associated to the abelian axial currents from the axial U(1)ψ and U(1)χ. One linear combi-

nation of these currents can be taken to be free of GHC anomalies. The associated pNGB,

to be denoted by a, will be naturally light and, in absence of further interactions would

essentially be a composite axion [78] coupling to both gluons and EW gauge bosons via

the anomaly

L =
g2sNs

16π2fa
aGAµνG̃

Aµν +
g′2NB

16π2fa
aBµνB̃

µν +
g2NW

16π2fa
aW i

µνW̃
iµν . (5.1)

Since the associated decay constant fa is much smaller than the possible window of values

allowed by the “invisible-axion” solution, we must give this particle a mass to avoid the

usual constraints. As in technicolor models [79], a mass can be obtained from e.g. the

four-fermi terms arising at the ΛUV scale of the type (ci = O(1))

H ′ = −L4f =
1

Λ2
UV

(c1χ
2χ̃2 + c2ψ

4 + . . . ) . (5.2)

For typical values of the parameters, using Dashen’s formula [80] we estimate

m2
a =

1

f2
〈[Q, [Q,H ′]]〉 ≈ Λ6

f2Λ2
UV

≈ (5× 103 GeV)6

(800 GeV)2(108 GeV)2
≈ (1.6 GeV)2 (5.3)

but a fairly large range of masses is possible. For instance, Naive Dimensional Analysis

would lead to a lower estimate m2
a ≈ Λ2f2/Λ2

UV ≈ (40.MeV)2. This value needs to be raised

at least by roughly a factor ≈ 3 in order not to conflict with the bounds on the visible

axion, coming from beam dump experiments (discussed in [81]) or K → πa searches [82].

(See also [83] for cosmological bounds for ALPS at much higher scale f .) This however

is easily achieved. In fact, in [37] the exciting possibility has been raised that this object

is responsible for the 750 GeV bump in the di-photon signal recently reported by ATLAS

and CMS [35, 36]. Such a large mass could be obtained by e.g. adding bare masses for the

colored hyperquarks.

The remaining linear combination, to be denoted by η′, corresponds to the GHC anoma-

lous current and its associated “would-be” Goldstone boson acquires a mass via the ’t Hooft

mechanism [84]. The η′ mass is given the Veneziano-Witten formula [85, 86] (N ≈ 10, Ξ

the topological susceptibility)

m2
η′ =

2N

f2
Ξ (5.4)
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Figure 8. The main production mode of the two ALPs is via anomalous gluon fusion. Barring large

mixing with other pNGBs, they subsequently decay into a pair of vector bosons with computable

Branching Ratios.

that can be naively estimated to be of the same order of a typical resonance. However,

subtleties may arise that lower the mass of this object and also make it within reach of

the LHC.

Regardless of their mass, these objects are singly produced mostly by gluons via the

anomaly and decay to di-bosons also via the anomaly (figure 8) with calculable branching

ratios. This makes them a good window into UV physics since the branching ratios are

related to the type of UV d.o.f. of the underlying theory. It would also be interesting to

investigate in detail the mixing of these scalars with the other fields in the EW coset, as

done recently in [87] in the context of the model [66]. This could lead to an enhancement

in the cross-section for the EW pNGBs.
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A All models of partial compositeness satisfying the requirements in the

text

In this appendix we list all models of partial compositeness satisfying the requirements in

the text. The main requirements are a simple hypercolor gauge group GHC and two irreps

ψ and χ giving rise to a custodial EW coset and top partners. In addition, we require the

theory to be asymptotically free and of course free of gauge anomalies.

Comparing with [14] we have removed a few models that do not seem promising. Some

are based on spinorial irreps of the orthogonal group for which, as discussed in [14], the

MAC hypothesis leads to the wrong symmetry breaking pattern. Others are those having

baryons of type χψχ with ψ in a complex irrep. This leads to top partners in the (2,1)

violating the custodial symmetry [50].
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GHC ψ χ Restrictions Top-partners

Real Real

SO(NHC) 5× S2 6× F NHC ≥ 55 χψχ

SO(NHC) 5×Ad 6× F NHC ≥ 15 χψχ

SO(NHC) 5× F 6× Spin NHC = 7, 9 χψχ

SO(NHC) 5× Spin 6× F NHC = 7, 9 ψχψ

Real Pseudo-Real

Sp(2NHC) 5×Ad 6× F 2NHC ≥ 12 χψχ

Sp(2NHC) 5×A2 6× F 2NHC ≥ 4 χψχ

SO(NHC) 5× F 6× Spin NHC = 11, 13 χψχ

Real Complex

SU(NHC) 5×A2 3× (F,F) NHC = 4 χψχ

SO(NHC) 5× F 3× (Spin,Spin) NHC = 10, 14 χψχ

Pseudo-Real Real

Sp(2NHC) 4× F 6×A2 2NHC ≤ 36 ψχψ

SO(NHC) 4× Spin 6× F NHC = 11, 13 ψχψ

Complex Real

SO(NHC) 4× (Spin,Spin) 6× F NHC = 10 ψχψ

SU(NHC) 4× (F,F) 6×A2 NHC = 4 ψχψ

Complex Complex

SU(NHC) 4× (F,F) 3× (A2,A2) NHC ≥ 5 ψχψ

SU(NHC) 4× (F,F) 3× (S2,S2) NHC ≥ 5 ψχψ

SU(NHC) 4× (A2,A2) 3× (F,F) NHC = 5 ψχψ

Table 5. All models obeying the consistency requirements discussed in appendix A. This list

contains both conformal and confining theories. See text for a discussion of their IR properties.

If the di-photon excess [35, 36] will be confirmed with properties roughly in agreement

with the 2015 data, only a fraction of models [37] will be able to fit the data. Further

restrictions [88] could arise from imposing ’t Hooft anomaly matching [89].

The list of models presented in table 5 contains both conformal and confining theories.

It is unfortunately not yet possible to exactly identify the conformal region in non-

supersymmetric gauge theories. However, one can use some heuristic arguments to get

indications on their behavior and it turns out that most of the models are rather clear-cut

cases. Consider for instance the two-loop beta-function β(α) = β1α
2 + β2α

3. (β1 < 0

always.) A formal solution α∗ to β(α∗) = 0 exists for β2 > 0 and, if not to large, it can

be trusted and the theory can be assumed to be in the conformal regime. If β2 < 0 or

α∗ is out of the perturbative regime, the model is likely to be confining. In between there

is a region, difficult to characterize precisely, where the theory is conformal but strongly

coupled.
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GHC ψ χ Restrictions G/H

SO(NHC) 5× F 6× Spin NHC = 7, 9
SU(5)
SO(5)

SU(6)
SO(6)U(1)

SO(NHC) 5× Spin 6× F NHC = 7, 9

Sp(2NHC) 5×A2 6× F 2NHC = 4 SU(5)
SO(5)

SU(6)
Sp(6) U(1)

SU(NHC) 5×A2 3× (F,F) NHC = 4
SU(5)
SO(5)

SU(3)×SU(3)′

SU(3)D
U(1)

SO(NHC) 5× F 3× (Spin,Spin) NHC = 10

Sp(2NHC) 4× F 6×A2 2NHC = 4
SU(4)
Sp(4)

SU(6)
SO(6)U(1)

SO(NHC) 4× Spin 6× F NHC = 11

SO(NHC) 4× (Spin,Spin) 6× F NHC = 10
SU(4)×SU(4)′

SU(4)D

SU(6)
SO(6)U(1)

SU(NHC) 4× (F,F) 6×A2 NHC = 4

SU(NHC) 4× (F,F) 3× (A2,A2) NHC = 5, 6 SU(4)×SU(4)′

SU(4)D

SU(3)×SU(3)′

SU(3)D
U(1)

Table 6. Subclass of models that is likely to be outside of the conformal window, together with

the coset they give rise to after spontaneous symmetry breaking.

In table 6 we list the subset of models that are likely to be outside of the conformal

window. These models also obey the heuristic bound 11C(G) > 4
(
NψT (ψ) + NχT (χ)

)
proposed in [90, 91] as well as the rigorous bounds from the a-theorem [92–94] aUV > aIR.

The use of these models for BSM physics depends on their IR behavior. The simplest

application would be to restrict oneself to the models in table 6. These models can be easily

brought into the conformal window from the strong coupling side by adding additional

matter. The most straightforward way of achieving this is to have additional fermions,

possibly in the same irreps, with masses at the scale Λ. In this case one has a concrete

way to put the theory in the “strongest possible” conformal point where the anomalous

dimensions of the top-partners may be large enough. The theory then exits the conformal

point at the scale Λ, where the additional d.o.f. decouple. However, models outside of this

class might still be amenable to other applications and we decided to keep them in the full

classification of table 5.

B Group theory conventions for the three cosets

In this appendix we collect the conventions for the explicit constructions of the three EW

cosets studied in the text.

B.1 Notation for the SU(5)/SO(5) coset

In this case we realize the Lie algebra of the unbroken group SO(5) as the subset of

antisymmetric imaginary generators of SU(5). This is just a particular choice of basis; a

more general way of doing the decomposition is to introduce a symmetric matrix δ0 and

define the broken/unbroken generators as Tδ0∓ δ0T T = 0 respectively. We chose not to do

this, and set δ0 = 1 from the onset but comment below on the general form of the pNGB
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matrix in the general case. The generators of the custodial SU(2)L × SU(2)R are chosen

to be

T 1
L =


0 0 0 − i

2 0

0 0 − i
2 0 0

0 i
2 0 0 0

i
2 0 0 0 0

0 0 0 0 0

 , T 2
L =


0 0 i

2 0 0

0 0 0 − i
2 0

− i
2 0 0 0 0

0 i
2 0 0 0

0 0 0 0 0

 , T 3
L =


0 − i

2 0 0 0
i
2 0 0 0 0

0 0 0 − i
2 0

0 0 i
2 0 0

0 0 0 0 0

 ,

T 1
R =


0 0 0 i

2 0

0 0 − i
2 0 0

0 i
2 0 0 0

− i
2 0 0 0 0

0 0 0 0 0

 , T 2
R =


0 0 i

2 0 0

0 0 0 i
2 0

− i
2 0 0 0 0

0 − i
2 0 0 0

0 0 0 0 0

 , T 3
R =


0 − i

2 0 0 0
i
2 0 0 0 0

0 0 0 i
2 0

0 0 − i
2 0 0

0 0 0 0 0

 . (B.1)

The broken generators are the real symmetric traceless generators of SU(5). We write

the pNGBs as

H =


0 0 0 0 −iH+/

√
2

0 0 0 0 H+/
√

2

0 0 0 0 iH0/
√

2

0 0 0 0 H0/
√

2

−iH+/
√

2 H+/
√

2 iH0/
√

2 H0/
√

2 0

 (B.2)

Φ0 =


φ00/
√

2 0 i(φ−0 − φ
+
0 )/2 (φ−0 + φ+0 )/2 0

0 φ00/
√

2 (φ−0 + φ+0 )/2 −i(φ−0 − φ
+
0 )/2 0

i(φ−0 − φ
+
0 )/2 (φ−0 + φ+0 )/2 −φ00/

√
2 0 0

(φ−0 + φ+0 )/2 −i(φ−0 − φ
+
0 )/2 0 −φ00/

√
2 0

0 0 0 0 0

 (B.3)

Φ+ =


φ++/
√

2 iφ++/
√

2 iφ0+/2 φ0+/2 0

iφ++/
√

2 −φ++/
√

2 −φ0+/2 iφ0+/2 0

iφ0+/2 −φ0+/2 φ−+/
√

2 −iφ−+/
√

2 0

φ0+/2 iφ0+/2 −iφ−+/
√

2 −φ−+/
√

2 0

0 0 0 0 0

 (B.4)

E =



η√
10

0 0 0 0

0 η√
10

0 0 0

0 0 η√
10

0 0

0 0 0 η√
10

0

0 0 0 0 −2
√

2
5η


(B.5)

In this way with our conventions φn∗m = φ−n−m the full matrix of pNGBs is real symmetric:

Π = H +H† + Φ0 + Φ+ + Φ†+ + E . (B.6)
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The vacuum misalignment is described by the following unitary matrix obtained by

exponentiating (half of) the Higgs v.e.v.

Ω =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 cos ζ i sin ζ

0 0 0 i sin ζ cos ζ

 . (B.7)

Ω preserves the custodial symmetry SU(2)D generated by T iL + T iR and we write the non-

linear realization of the pNGBs as a symmetric and unitary matrix

U = Ω exp(2iΠ/f)ΩT . (B.8)

All the fields in Π have zero v.e.v. and in the unitary gauge H+ = 0 and H0 = h/
√

2.

Notice that with our choice of basis, Ω = ΩT . Had we chosen a more general δ0, we

would have obtained

U = Ω exp(2iΠ/f)δ0Ω
T = Ω exp(2iΠ/f)Ωδ0 ≡ Σδ0 (B.9)

where the last identity defines Σ. The matrix Σ has the advantage of making some formulas

look more uniform in all three cases but the disadvantage of not transforming uniformly

under SU(5) and we chose not to use it. The covariant derivative is

DµU = ∂µU − igW i
µ(T iLU + UT iTL )− ig′Bµ(T 3

RU + UT 3T
R ) (B.10)

and in our convention can be written in terms of commutators. Finally, the kinetic term is

Lkin =
f2

16

∫
tr(DµU

†DµU) . (B.11)

B.2 Notation for the SU(4)/Sp(4) coset

We pick the symplectic matrix

ε0 =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 . (B.12)

The unbroken generators satisfy T iε0+ε0T
iT = 0. In particular, the generators of SU(2)L×

SU(2)R are chosen to be

T 1
L =


0 1

2 0 0
1
2 0 0 0

0 0 0 0

0 0 0 0

 , T 2
L =


0 − i

2 0 0
i
2 0 0 0

0 0 0 0

0 0 0 0

 , T 3
L =


1
2 0 0 0

0 −1
2 0 0

0 0 0 0

0 0 0 0

 ,

T 1
R =


0 0 0 0

0 0 0 0

0 0 0 1
2

0 0 1
2 0

 , T 2
R =


0 0 0 0

0 0 0 0

0 0 0 − i
2

0 0 i
2 0

 , T 3
R =


0 0 0 0

0 0 0 0

0 0 1
2 0

0 0 0 −1
2

 (B.13)
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and the pNGBs can be represented as

H =


0 0 iH0

∗

2
iH+

2

0 0 − iH+
∗

2
iH0
2

0 0 0 0

0 0 0 0

 , E =


η

2
√
2

0 0 0

0 η

2
√
2

0 0

0 0 − η

2
√
2

0

0 0 0 − η

2
√
2

 (B.14)

Π = H +H† + E . (B.15)

Notice that Πε0 − ε0ΠT = 0.

The matrix describing vacuum misalignment and preserving the custodial symmetry is

Ω(θ) =


cos ζ2 0 − sin ζ

2 0

0 cos ζ2 0 − sin ζ
2

sin ζ
2 0 cos ζ2 0

0 sin ζ
2 0 cos ζ2

 , (B.16)

in terms of which the non-linear realization can be expressed as an anti-symmetric and

unitary matrix

U = Ω exp(2
√

2iΠ/f)ε0Ω
T . (B.17)

Also in this case, the fields in Π have zero v.e.v. and in the unitary gauge H+ = 0 and

H0 = h/
√

2. The covariant derivative reads as in the previous case (B.10) but the kinetic

term is normalized differently

Lkin =
f2

8

∫
tr(DµU

†DµU) . (B.18)

Even in this case one has the option of using ε0Ω
T = Ωε0 and of introducing a matrix

Σ through the identity U = Σε0 in an analogous way as for the previous coset, but we do

not use it for the same reasons as above.

B.3 Notation for the SU(4) × SU(4)′/SU(4)D coset

In this case, the SU(2)L × SU(2)R subgroup is embedded in the unbroken SU(4)D by

choosing

T 1
L =


0 1

2 0 0
1
2 0 0 0

0 0 0 0

0 0 0 0

 , T 2
L =


0 − i

2 0 0
i
2 0 0 0

0 0 0 0

0 0 0 0

 , T 3
L =


1
2 0 0 0

0 −1
2 0 0

0 0 0 0

0 0 0 0

 ,

T 1
R =


0 0 0 0

0 0 0 0

0 0 0 1
2

0 0 1
2 0

 , T 2
R =


0 0 0 0

0 0 0 0

0 0 0 − i
2

0 0 i
2 0

 , T 3
R =


0 0 0 0

0 0 0 0

0 0 1
2 0

0 0 0 −1
2

 . (B.19)
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The pNGBs are parameterized as follows

H =


0 0 −1

2 i
(
H∗0 + iH ′∗0

)
−1

2 i
(
H+ + iH ′+

)
0 0 1

2 i
(
H∗+ + iH ′∗+

)
−1

2 i (H0 + iH ′0)

0 0 0 0

0 0 0 0

 , E =


1
2
η√
2

0 0 0

0 1
2
η√
2

0 0

0 0 −1
2
η√
2

0

0 0 0 −1
2
η√
2



Φ =


1
2φ0

1√
2
φ+ 0 0

1√
2
φ− −1

2φ0 0 0

0 0 0

0 0 0

 , N =


0 0 0 0

0 0 0 0

0 0 1
2N0

1√
2
N+

0 0 1√
2
N− −1

2N0

 , (B.20)

where φ∗+ = φ− and N∗+ = N−. In the unitary gauge we have as usual H+ = 0, H0 = h/
√

2,

having chosen to rotate the v.e.v. into the first of the two doublets. The neutral component

of the second doublet is thus physical and can be written as a CP even plus CP odd part:

H ′0 = (h′ + iA′)/
√

2. Finally we set

Π = H +H† +N + Φ + E (B.21)

and, for the vacuum misalignment matrix we obtain

Ω(θ) =


cos ζ2 0 sin ζ

2 0

0 cos ζ2 0 sin ζ
2

− sin ζ
2 0 cos ζ2 0

0 − sin ζ
2 0 cos ζ2

 . (B.22)

In this case, the non linear realization of the pNGBs is given by the unitary matrix

U = Ω exp(2
√

2iΠ/f)Ω . (B.23)

The covariant derivative is obtained by the usual commutator

DµU = ∂µU − igW i
µ[T iL, U ]− ig′Bµ[T 3

R, U ] (B.24)

and the kinetic term is normalized as

Lkin =
f2

8

∫
tr(DµU

†DµU) . (B.25)
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C Additional three and four bosons couplings for the models in the text

Additional (i.e. other than those involving h) quartic couplings for SU(4)×SU(4)′/SU(4)D
are shown in (C.1) (in agreement with [34]).

L ⊃ e2AµAµ(N−N+ + φ−φ+ +H ′−H
′
+)

+
e2

swcw
ZµA

µ
(
(c2w − cζ)N−N+ + (c2w + cζ)φ−φ+ + c2wH

′
−H

′
+

)
+

e2

16s2wc2w
ZµZ

µ
(
2c2ζh

′h′ + 2(c4w + 3c2ζ − 4c2wcζ)N−N+ + 2(c4w + 3c2ζ + 4c2wcζ)φ−φ+

− 2s2ζN+φ− − 2s2ζφ+N− − s2ζN0N0 + 2s2ζN0φ0

− s2ζφ0φ0 + 2c2ζA
′A′ − 2s2ζηη + 4c22wH

′
+H

′
−
)

+
e2

8s2w
W−µ W

+µ
(
2c2ζh

′h′ − 4(1−cζ)cζN−N+ + 4(1+cζ)cζφ−φ+ + (1−cζ)(1−3cζ)N0N0

− 2s2ζN0φ0 + (1 + cζ)(1 + 3cζ)φ0φ0 + 2A′A′ − 2s2ζηη + 4c2ζH
′
+H

′
−
)

+
e2

2sw
AµW

−µ(−(1− cζ)N0N+ − (1 + cζ)φ0φ+ − iA′H ′+ + cζh
′H ′+

)
− e2

4s2wcw
ZµW

−µ((1− cζ)(c2w − cζ)N0N+ − s2ζφ0N+ − s2ζφ+N0

+ (1 + cζ)(c2w + cζ)φ+φ0 + i(c2w − c2ζ)A
′H ′+ + 2cζs

2
wh
′H ′+

)
− e2

8s2w
W−µ W

−µ((1− cζ)
2N+N+ − 2s2ζN+φ+ + (1 + cζ)

2φ+φ+ − 2s2ζH+H+

)
+ hermitian conjugates of the terms involving AW−, ZW−, W−W−. (C.1)

The anomalous cubic couplings for SU(5)/SO(5) are shown in table 7. Each coupling

should be multiplied by e2 dim(ψ)/(48π2f).

Finally, we present in eq. (C.2) the additional (i.e. other than those involving h) quartic

couplings for SU(5)/SO(5).

Of course, the generation of masses by the potential introduces a mixing between these

gauge eigenstates. This depends on the specific nature of the mass matrix and in many

cases it could be handled by the mass insertion approximation. Throughout the paper we

work with gauge eigenstates. Also note that one could use the Clebsch-Gordan coefficients

to express the gauge eigenstates as eigenstates of the diagonal custodial symmetry group

SU(2)D ⊂ SU(2)L × SU(2)R as done in [46]. An even deeper difference with the model

in [46] is that they used an additional U(1) gauge field to induce vacuum-misalignment
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Fields Couplings Fields Couplings Fields Couplings

ηFµν F̃
µν 3

√
2
5 φ00FµνZ̃

µν 6
√

2c2w/s2w φ0+FµνW̃
−µν 3i(cζ−1)√

2sw

ηFµνZ̃
µν 6

√
2
5c2w/s2w φ00ZµνZ̃

µν (−5c2ζ+6c4w−1)
2
√
2s22w

φ0+ZµνW̃
−µν − i(1−cζ)(2cζ+3c2w−1)

2
√
2s2wcw

ηZµνZ̃
µν 3(3c2ζ+c4w)

4
√
10c2ws2w

φ00W
+
µνW̃

−µν s2ζ
2
√
2s2w

φ+0 FµνW̃
−µν 3i(cζ+1)√

2sw

ηW+
µνW̃

−µν 3(3c2ζ+5)

4
√
10s2w

φ−+ZµνZ̃
µν s2ζ√

2s22w
φ+0 ZµνW̃

−µν − i(1+cζ)(2cζ−3c2w+1)

2
√
2s2wcw

φ00Fµν F̃
µν 3

√
2 φ−+W

+
µνW̃

−µν 3s2ζ
2
√
2s2w

φ++W
−
µνW̃

−µν − s2ζ√
2s2w

Table 7. Anomalous couplings for SU(5)/SO(5), to be multiplied by e2 dim(ψ)/(48π2f).

instead of top coupling.

L ⊃ e2AµAµ(φ0−φ
0
+ + φ−0 φ

+
0 + 4φ−−φ

+
+)

+
e2

swcw
ZµA

µ
(
(c2w − cζ)φ

0
−φ

0
+ + (c2w + cζ)φ

−
0 φ

+
0 + 4c2wφ

−
−φ

+
+

)
+

e2

16s2wc2w
ZµZ

µ
(
− 5s2ζηη + 2

√
5s2ζηφ

0
0 − 2

√
5s2ζηφ

+
− − 2

√
5s2ζηφ

−
+

+ 2s2ζφ
0
0φ

+
− + 2s2ζφ

0
0φ
−
+ − s2ζφ

0
0φ

0
0

+ (6 + 10c2ζ)φ
+
−φ
−
+ + (2c4w − 8cζc2w + 6c2ζ)φ

0
+φ

0
− + 2s2ζφ

0
+φ
−
0

+ (2c4w + 8cζc2w + 6c2ζ)φ
+
0 φ
−
0 + 2s2ζφ

0
−φ

+
0 + 16c22wφ

+
+φ
−
−
)

+
e2

16s2w
W−µ W

+µ
(
−10s2ζηη − 4

√
5s2ζηφ

0
0 +(11+5c2ζ)φ

0
0φ

0
0 +(12+4c2ζ)φ

+
−φ
−
+− 8s2ζφ

0
0φ

+
−

− 8s2ζφ
0
0φ
−
+ − 8s2ζφ

+
0 φ

0
− + (16 + 8cζ + 8c2ζ)φ

0
+φ

0
− − 8s2ζφ

0
+φ
−
0

+ (16− 8cζ + 8c2ζ)φ
−
0 φ

+
0 + 16c2ζφ

−
−φ

+
+

)
− ie2

2sw
AµW

−µ((1 + cζ)φ
+
−φ

0
+ − (1− cζ)φ

0
0φ

0
+ − (1− cζ)φ

−
+φ

+
0 + (1 + cζ)φ

0
0φ

+
0

− 3(1 + cζ)φ
+
+φ

0
− + 3(1− cζ)φ

+
+φ
−
0

)
− ie2

4s2wcw
ZµW

−µ(√5s2ζηφ
0
+ + (1 + cζ)(1 + c2w − 4cζ)φ

+
−φ

0
+ + (1− cζ)(cζ − c2w)φ00φ

0
+

−
√

5s2ζηφ
+
0 + (1 + cζ)(c2w + cζ)φ

+
0 φ

0
0 − (1− cζ)(1 + c2w + 4cζ)φ

+
0 φ
−
+

− (1 + cζ)(1 + 3c2w − 2cζ)φ
+
+φ

0
− + (1− cζ)(1 + 3c2w + 2cζ)φ

+
+φ
−
0

)
+

e2

8s2w
W−µ W

−µ((1− cζ)
2φ0+φ

0
+ + (1 + cζ)

2φ+0 φ
+
0 − 6s2ζφ

+
0 φ

0
+ − 2

√
5s2ζηφ

+
+

+ 2(1 + cζ)
2φ+−φ

+
+ + 2(1− cζ)

2φ−+φ
+
+ − 6s2ζφ

0
0φ

+
+

)
+ hermitian conjugates of the terms involving AW−, ZW−, W−W−. (C.2)
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[65] Ö. Kaymakcalan, S. Rajeev and J. Schechter, Non-Abelian anomaly and vector-meson

decays, Phys. Rev. D 30 (1984) 594 [INSPIRE].

[66] H. Georgi and M. Machacek, Doubly charged Higgs bosons, Nucl. Phys. B 262 (1985) 463

[INSPIRE].

[67] J. Alwall et al., The automated computation of tree-level and next-to-leading order

differential cross sections and their matching to parton shower simulations,

JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

[68] A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a

complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250

[arXiv:1310.1921] [INSPIRE].

[69] M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter,

JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].

[70] M. Kim, S.J. Lee and A. Parolini, WIMP dark matter in composite Higgs models and the

dilaton portal, arXiv:1602.05590 [INSPIRE].

[71] A. Joseph and S.G. Rajeev, Topological dark matter in the little Higgs models,

Phys. Rev. D 80 (2009) 074009 [arXiv:0905.2772] [INSPIRE].

[72] L. Calibbi, G. Ferretti, D. Milstead, C. Petersson and R. Pöttgen, Baryon number violation
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