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1 Introduction

A number of impressive exact results [1–9] obtained in recent years via supersymmetric

localisation have motivated a more systematic exploration of quantum field theories with

rigid supersymmetry in curved space. A critical feature in many of these calculations

is the non-trivial rôle played by certain non-minimal curvature couplings which regulate

correlation functions, so a clear understanding of the general nature of such couplings would

be extremely useful.

Several isolated examples of curved backgrounds which support rigid supersymmetry,

like spheres and anti-de Sitter spaces (also various products thereof), have been known for

some time [10, 11]. Beyond these examples, the most systematic strategy for identifying

curved backgrounds which support some amount of rigid supersymmetry has hereto been

that pioneered by Festuccia and Seiberg in [12]. In four dimensions, they described how a

large class of rigid supersymmetric non-linear sigma-models in curved space can be obtained

by taking a decoupling limit (in which the Planck mass goes to infinity) of the corresponding

locally supersymmetric theory coupled to minimal off-shell supergravity. In this limit, the

gravity supermultiplet is effectively frozen out, leaving only the fixed bosonic supergravity

fields as data encoding the geometry of the supersymmetric curved background. Follow-

ing this paradigm, several other works explored the structure of rigid supersymmetry for

field theories in various dimensions on curved manifolds in both Euclidean and Lorentzian

signature [13–19].

A well-established feature of supersymmetric supergravity backgrounds is that they

possess an associated rigid Lie superalgebra [20–34] that we shall refer to as the Killing

superalgebra of the background. Indeed, with respect to an appropriate superspace formal-

ism, the construction described in ([20], section 6.4) (and reviewed in [34]) explains how this

Killing superalgebra may be construed in terms of the infinitesimal rigid superisometries of

a given background supergeometry. The even part of the Killing superalgebra contains the

Killing vectors which preserve the background, whereas the odd part is generated by the

rigid supersymmetries supported by the background. The image of the odd-odd bracket

for the Killing superalgebra spans a Lie subalgebra of Killing vectors which preserve the

background. This Lie subalgebra, together with the rigid supersymmetries, generate an

ideal of the Killing superalgebra, which we call the Killing ideal of the background. The

utility of this construction is that it often allows one to infer important geometrical prop-

erties of the background directly from the rigid supersymmetry it supports. For example,

in dimensions six, ten and eleven, it was proved in [35, 36] that any supersymmetric su-

pergravity background possessing more than half the maximal amount of supersymmetry

is necessarily (locally) homogeneous.

As a rule, the interactions in a non-linear theory with a local (super)symmetry may be

constructed unambiguously by applying the familiar Noether procedure to the linearised

version of the theory. Indeed, this is the canonical method for deriving interacting gauge

theories in flat space, supergravity theories and their locally supersymmetric couplings

to field theory supermultiplets. However, depending on the complexity of the theory in

question, it may not be the most wieldy technique and it is sometimes preferable to proceed
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with some inspired guesswork, perhaps based on the assumption of a particular kind of

symmetry (e.g., conformal coupling in a conformal field theory). Either way, the guiding

principle is to deform (in some sense) the free theory you know in the most general way

that is compatible with the symmetries you wish to preserve.

One way to motivate the construction we shall describe in this paper is as an attempt

to streamline the procedure for deducing which curved backgrounds support rigid super-

symmetry directly in terms of their associated Killing superalgebras. Instead of applying

the Noether method to obtain some complicated local supergravity coupling, taking a rigid

limit, looking for supersymmetric backgrounds and then computing the Killing superal-

gebras of those backgrounds, our strategy will be to simply start with the unextended

Poincaré superalgebra (without R-symmetry) and obtain all the relevant Killing superal-

gebras directly as filtered deformations (see below for the definition) of its subalgebras.

As expected for the deformation problem of an algebraic structure, there is a cohomol-

ogy theory which governs the infinitesimal deformations. In this case this is a generalised

Spencer cohomology theory, studied in a similar context by Cheng and Kac in [37, 38]. In

the present work, we shall apply this philosophy to the unextended Poincaré superalgebra

on R1,3, following a similar analysis on R1,10 pioneered in [39, 40] which yielded what might

be considered a Lie-algebraic derivation of eleven-dimensional supergravity.

Let us describe more precisely the problem we set out to solve. Let (V, η) denote the

Lorentzian vector space on which four-dimensional Minkowski space is modelled, so(V )

the Lie algebra of the Lorentz group and S its spinor representation. The associated N=1

Poincaré superalgebra p has underlying vector space so(V ) ⊕ S ⊕ V and Lie brackets, for

all A,B ∈ so(V ), s ∈ S and v, w ∈ V , given by

[A,B] = AB −BA [A, s] = σ(A)s [A, v] = Av and [s, s] = κ(s, s) , (1.1)

where σ is the spinor representation of so(V ) and κ : ⊙2S → V is such that κ(s, s) ∈ V is

the Dirac current of s. (This and other relevant notions are defined in the appendix.) The

Poincaré superalgebra is Z-graded by assigning degrees 0, −1 and −2 to so(V ), S and V ,

respectively and the Z2 grading is compatible with the Z grading, in that the parity is the

degree mod 2. More precisely, the even subalgebra is the Poincaré algebra p0̄ = so(V )⊕ V

and the odd subspace is p1̄ = S. By a Z-graded subalgebra a of p we mean a Lie subalgebra

a = a0 ⊕ a−1 ⊕ a−2, with ai ⊂ pi.

Now recall that a Lie superalgebra g is said to be filtered, if it is admits a vector space

filtration

g• : · · · ⊃ g−2 ⊃ g−1 ⊃ g0 ⊃ · · · ,

with ∪ig
i = g and ∩ig

i = 0, which is compatible with the Lie bracket in that [gi, gj ] ⊂

gi+j . Associated canonically to every filtered Lie superalgebra g• there is a graded Lie

superalgebra g• =
⊕

i gi, where gi = gi/gi+1. It follows from the fact that g• is filtered

that [gi, gj ] ⊂ gi+j , hence g• is graded.

We say that a Lie superalgebra g is a filtered deformation of a < p if it is filtered and

its associated graded superalgebra is isomorphic (as a graded Lie superalgebra) to a. If

we do not wish to mention the subalgebra a explicitly, we simply say that g is a filtered

subdeformation of p.

– 3 –
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The problem we address in this note is the classification of filtered subdeformations g

of p for which g−1 = S (and hence g−2 = V ).

This paper is organised as follows. In section 2 we define and calculate the Spencer

cohomology group H2,2(p−, p) of the Poincaré superalgebra. This is the main cohomolog-

ical calculation upon which the rest of our results are predicated. In particular we use it

to extract the equation satisfied by the Killing spinors, recovering in this way the form

of the (old minimal off-shell) supergravity Killing spinor equation. We will also use this

cohomological calculation as a first step on which to bootstrap the calculation of infinites-

imal subdeformations of the Poincaré superalgebra. We give two proofs of the main result

in section 2 (Proposition 3): a traditional combinatorial proof using gamma matrices and

a representation-theoretic proof exploiting the equivariance under so(V ). In section 3 we

prove that the (minimal off-shell) supergravity Killing spinors generate a Lie superalge-

bra, and that this Lie superalgebra is a filtered subdeformation of p. These results are

contained in Theorem 7 in section 3.2 and Proposition 8 in section 3.3, respectively. In

section 4 we classify, up to local isometry, the geometries admitting the maximum number

of Killing spinors. We do this by solving the zero curvature equations for the connection

relative to which the Killing spinors are parallel, and this is done by first solving for the

vanishing of the Clifford trace of the curvature: this simplifies the calculation and might be

of independent interest. Section 4.4 contains the result of the classification of maximally

supersymmetric backgrounds up to local isometry: apart from Minkowski space and AdS4,

we find the Lie groups admitting a Lorentzian bi-invariant metric. In section 5 we finish

the determination of maximally supersymmetric filtered subdeformations of p and recover

in this way the Killing superalgebras of the maximally supersymmetric backgrounds found

in section 4.4. In the case of a Lie group with bi-invariant metric, we note that the Killing

ideal is a filtered deformation of a = S ⊕ V and also explicitly describe all other associ-

ated maximally supersymmetric filtered subdeformations of p. The main result there is

Theorem 14 in section 5.4. Finally, in section 6, we offer some conclusions.

Given the nature of this problem, it is inevitable that we shall recover some known

results and observations which it would be remiss of us not to contextualise. In particular,

in addition to R1,3, our classification of Killing superalgebras for maximally supersym-

metric backgrounds yields, up to local isometry, the following conformally flat Lorentzian

geometries:

• AdS4;

• AdS3×R, with AdS3 identified with SL(2,R) with its bi-invariant metric;

• R × S3, with S3 identified with SU(2) with its bi-invariant metric; and

• NW4, a symmetric plane wave isometric to the Nappi-Witten group with its bi-

invariant metric.

We prove that the geometries above are indeed realised as the maximally supersymmetric

backgrounds of minimal off-shell supergravity in four dimensions, in Lorentzian signature.

That is, we do not assume the form of the supergravity Killing spinor equation from the
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outset — we actually derive it via Spencer cohomology! It therefore follows that the first

three geometries above are precisely the maximally supersymmetric backgrounds obtained

in [12]. Indeed, the classification of maximally supersymmetric backgrounds of minimal

off-shell supergravity in four dimensions has been discussed in various other contexts in

the recent literature, e.g., see [18] (section 2.1), [41] (sections 4.2–3), [34], [42] (p. 2), [43]

(pp. 12–13). The NW4 background is rarely mentioned explicitly — perhaps because,

unlike the other maximally supersymmetric Lorentzian backgrounds, it has no counterpart

in Euclidean signature — but it is noted in ([42] p. 2) as a plane wave limit, albeit in

the context of N = 2 supergravity backgrounds. It is also worth pointing out that ([18]

section 2.1) contains several useful identities (e.g., integrability conditions and covariant

derivatives of Killing spinor bilinears) that we also encounter in our construction of the

Killing superalgebra for minimal off-shell supergravity backgrounds.

2 Spencer cohomology

In this section we define and calculate the (even) Spencer cohomology of the Poincaré

superalgebra. This calculation has two purposes. The first is to serve as a first step in the

classification of filtered subdeformations of the Poincaré superalgebra which is presented

in section 5. The second is to derive the equation satisfied by the Killing spinors which, as

we show in section 3, generate the filtered subdeformation. The main result, whose proof

takes the bulk of the section, is Proposition 3.

2.1 Preliminaries

Let p = p−2 ⊕ p−1 ⊕ p0, where p−2 = V , p−1 = S and p0 = so(V ), be the Poincaré

superalgebra and p− = p−2 ⊕ p−1 the negatively graded part of p. We will now determine

some Spencer cohomology groups associated to p. We recall that the cochains of the

Spencer complex of p are linear maps ∧pp− → p or, equivalently, elements of ∧pp∗− ⊗ p,

where ∧• is meant here in the super sense, and that the degree in p is extended to the

space of cochains by declaring that p∗p has degree −p. The spaces in the complexes of even

cochains of small degree are given in table 1, although for d = 4 there are cochains also for

p = 5, 6 which we omit.

Let Cd,p(p−, p) be the space of p-cochains of degree d. The Spencer differential

∂ : Cd,p(p−, p) → Cd,p+1(p−, p)

is the Chevalley-Eilenberg differential for the Lie superalgebra p− relative to its module p

with respect to the adjoint action. For p = 0, 1, 2 and d ≡ 0 (mod 2) it is explicitly given

by the following expressions:

∂ : Cd,0(p−, p) → Cd,1(p−, p)

∂ζ(X) = [X, ζ] ,
(2.1)

∂ : Cd,1(p−, p) → Cd,2(p−, p)

∂ζ(X,Y ) = [X, ζ(Y )]− (−1)xy[Y, ζ(X)]− ζ([X,Y ]) ,
(2.2)

– 5 –
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p

deg 0 1 2 3 4

0 so(V )
S → S

V → V
⊙2S → V

2 V → so(V )

∧2V → V

V ⊗ S → S

⊙2S → so(V )

⊙3S → S

⊙2S ⊗ V → V
⊙4S → V

4 ∧2V → so(V )

⊙2S ⊗ V → so(V )

∧2V ⊗ S → S

∧3V → V

⊙4S → so(V )

⊙3S ⊗ V → S

Table 1. Even p-cochains of small degree.

∂ : Cd,2(p−, p) → Cd,3(p−, p)

∂ζ(X,Y, Z) = [X, ζ(Y, Z)] + (−1)x(y+z)[Y, ζ(Z,X)] + (−1)z(x+y)[Z, ζ(X,Y )]

− ζ([X,Y ], Z)− (−1)x(y+z)ζ([Y, Z], X)− (−1)z(x+y)ζ([Z,X], Y ) ,

(2.3)

where x, y, . . . are the parity of elements X,Y, . . . of p− and ζ ∈ Cd,p(p−, p) with p = 0, 1, 2

respectively.

In this section we shall be interested in the groups Hd,2(p−, p) with d > 0 and even. We

first recall some basic definitions. A Z-graded Lie superalgebra a =
⊕

ap with negatively

graded part a− =
⊕

p<0 ap is called fundamental if a− is generated by a−1 and transitive

if for any X ∈ ap with p ≥ 0 the condition [X, a−] = 0 implies X = 0.

Lemma 1. The Poincaré superalgebra p = p−2 ⊕ p−1 ⊕ p0 is fundamental and transitive.

Moreover Hd,2(p−, p) = 0 for all even d > 2.

Proof. The first claim is a direct consequence of the fact that κ(S, S) = V and that the

natural action of so(V ) on V is faithful. For any ζ ∈ C4,2(p−, p) = Hom(∧2V, so(V ))

one has

∂ζ(s1, s2, v1) = −ζ(κ(s1, s2), v1)

∂ζ(v1, v2, s1) = −σ(ζ(v1, v2))s1

∂ζ(v1, v2, v3) = −ζ(v2, v3)v1 − ζ(v3, v1)v2 − ζ(v1, v2)v3

where s1, s2 ∈ S and v1, v2, v3 ∈ V . The first equation implies Ker ∂|C4,2(p−,p) = 0, since p

is fundamental, and therefore H4,2(p−, p) = 0. Finally Cd,2(p−, p) = 0 and Hd,2(p−, p) = 0

for degree reasons, for all even d > 4.

Note that the space of cochains Cd,p(p−, p) is an so(V )-module and the same is true

for the spaces of cocycles and coboundaries, as ∂ is so(V )-equivariant. This implies that

each cohomology group Hd,p(p−, p) is an so(V )-module, in a natural way. It remains to

compute

H2,2(p−, p) =
ker ∂ : C2,2(p−, p) → C2,3(p−, p)

∂C2,1(p−, p)

– 6 –



J
H
E
P
0
6
(
2
0
1
6
)
1
0
6

and, in particular, to describe its so(V )-module structure. We consider the decomposition

C2,2(p−, p) = Hom(∧2V, V )⊕Hom(V ⊗ S, S)⊕Hom(⊙2S, so(V ))

into the direct sum of so(V )-submodules and write any ζ ∈ C2,2(p−, p) accordingly; i.e.,

ζ = α+ β + γ with

α ∈ Hom(∧2V, V )

β ∈ Hom(V ⊗ S, S)

and γ ∈ Hom(⊙2S, so(V )) .

We denote the associated so(V )-equivariant projections by

πα : C2,2(p−, p) → Hom(∧2V, V )

πβ : C2,2(p−, p) → Hom(V ⊗ S, S)

and πγ : C2,2(p−, p) → Hom(⊙2S, so(V )) .

(2.4)

Lemma 2. The component ∂α = πα ◦ ∂ : Hom(V, so(V )) −→ Hom(∧2V, V ) of the Spencer

differential ∂ is an isomorphism. In particular, ker ∂|C2,2(p−,p) = ∂Hom(V, so(V ))⊕ H 2,2,

where H 2,2 is the kernel of ∂ acting on Hom(V ⊗ S, S) ⊕ Hom(⊙2S, so(V )), and every

cohomology class [α+ β + γ] ∈ H2,2(p−, p) has a unique cocycle representative with α = 0.

Proof. The image of ψ ∈ Hom(V, so(V )) under ∂α is given by

∂αψ(v1, v2) = ψ(v1)v2 − ψ(v2)v1

where v1, v2 ∈ V and the first claim of the lemma follows from classical arguments (see [44];

see also e.g., [39, 45]).

Now for any given α ∈ Hom(∧2V, V ), there is a unique ψ ∈ Hom(V, so(V )) such

that ∂ψ = α + β̃ + γ̃, for some β̃ ∈ Hom(V ⊗ S, S) and γ̃ ∈ Hom(⊙2S, so(V )). Hence,

given any cocycle ζ = α + β + γ, we may add the coboundary ∂(−ψ) without changing

its cohomology class and resulting in the cocycle (β − β̃) + (γ − γ̃), which has no com-

ponent in Hom(∧2V, V ). This proves the last claim of the lemma. The decomposition

ker ∂|C2,2(p−,p) = ∂Hom(V, so(V ))⊕ H 2,2 is clear.

2.2 The cohomology group H2,2(p−, p)

Lemma 2 gives a canonical identification H2,2(p−, p) ∼= H 2,2 of so(V )-modules. Further-

more it follows from equation (2.3) that β + γ is an element of H 2,2 if and only if the

following pair of equations are satisfied:

γ(s, s)v = −2κ(s, β(v, s)) ∀ s ∈ S, v ∈ V , (2.5)

and

σ(γ(s, s))s = −β(κ(s, s), s) ∀ s ∈ S . (2.6)

Note that (2.5) fully expresses γ in terms of β, once the integrability condition that γ takes

values in so(V ) has been taken into account. The solution of the integrability condition

and of equation (2.6) is the content of the following

– 7 –
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Proposition 3. Let β + γ ∈ Hom(V ⊗ S, S) ⊕ Hom(⊙2S, so(V )). Then ∂(β + γ) = 0 if

and only if there exist a, b ∈ R and ϕ ∈ V such that

(i) β(v, s) = v · (a+ b vol) · s− 1
2(v · ϕ+ 3ϕ · v) · vol ·s,

(ii) γ(s, s)v = −2κ(s, β(v, s)),

for all v ∈ V and s ∈ S. In particular there is a canonical identification

H2,2(p−, p) ≃ H
2,2 ≃ 2R ⊕ V

of so(V )-modules.

Proof. We find it convenient to work relative to an η-orthonormal basis (eµ) for V . In par-

ticular the formalism of section A.2.1 is in force, as is the Einstein summation convention.

Let us contract the cocycle condition (2.5) with w ∈ V . The left-hand side becomes

η(w, γ(s, s)(v)) = γ(s, s)µνw
µvν , (2.7)

whereas the right-hand side becomes

− 2η(w, κ(s, β(v, s))) = −2 〈s, w · β(v, s)〉 = −2wµvνsΓµβνs , (2.8)

where we have introduced βµ = β(eµ,−). In summary, the first cocycle condition becomes

wµvν (γ(s, s)µν + 2sΓµβνs) = 0 , (2.9)

which must hold for all v, w ∈ V , so that they can be abstracted to arrive at

γ(s, s)µν + 2sΓµβνs = 0 . (2.10)

Symmetrising (µν) we obtain the “integrability condition”

sΓ(µβν)s = 0 , (2.11)

whereas skew-symmetrising [µν] and using that γ(s, s)µν = −γ(s, s)νµ, we arrive at

γ(s, s)µν = −2sΓ[µβν]s . (2.12)

Notice that, as advertised, this last equation simply expresses γ in terms of β. Acting on

s ∈ S,

σ(γ(s, s))s = −1
4γ(s, s)µνΓ

µνs

= 1
2(sΓµβνs)Γ

µνs ,
(2.13)

and inserting this equation into the second cocycle condition (2.6), we arrive at

(sΓµs)βµs+
1
2(sΓµβνs)Γ

µνs = 0 . (2.14)

So we must solve equations (2.11) and (2.14) for β.

– 8 –
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Since End(S) ∼= Cℓ(V ) ∼= ∧•V (where the first isomorphism is one of algebras and the

second one of vector spaces), we may write

βµ = β(0)
µ 1 + β(1)

µν Γ
ν + 1

2β
(2)
µνρΓ

νρ + β(3)
µν Γ

νΓ5 + β(4)
µ Γ5 , (2.15)

with β
(i)
µ ∈ ∧iV so that

sΓµβνs = β(0)
ν sΓµs+ β(1)

ν
ρsΓµρs− β(2)

νµρsΓ
ρs+ 1

2ǫµστρβ
(3)
ν

ρsΓστs , (2.16)

where we have used the last of the duality equations (A.19) and the symmetry rela-

tions (A.11).

Inserting this into equation (2.11), which must be true for all s ∈ S, we get that

the terms which depend on sΓρs and sΓρσs must vanish separately and we arrive at two

equations:

β(0)
µ ηνρ + β(0)

ν ηµρ − β(2)
µνρ − β(2)

νµρ = 0 , (2.17)

and

ηµρβ
(1)
νσ + ηνρβ

(1)
µσ − ηµσβ

(1)
νρ − ηνσβ

(1)
µρ + β(3)

µ
τ ǫντρσ + β(3)

ν
τ ǫµτρσ = 0 . (2.18)

Tracing this last equation with ηµν , we learn that

β
(1)
[ρσ] = −1

2β
(3)µνǫµνρσ , (2.19)

whereas tracing (2.18) with ηνσ and using (2.19), results in

β(1)
µρ = aηµρ and β

(3)
[µρ] = 0 , (2.20)

for a = 1
4η

µνβ
(1)
µν ∈ R.

Substituting the expressions above back into equation (2.18), we find

β(3)
µ

τ ǫντρσ + β(3)
ν

τ ǫµτρσ = 0 . (2.21)

Multiplying by 1
2ǫ

αβρσ, and using the identities (A.20), we obtain

− δαµβ
(3)
ν

β + δβµβ
(3)
ν

α − δαν β
(3)
µ

β + δβν β
(3)
µ

α = 0 . (2.22)

Tracing the expression above with ηνβ, we arrive at

β(3)
µα = bηµα , (2.23)

for b = 1
4η

µνβ
(3)
µν ∈ R.

Tracing equation (2.17) with ηµν gives

2β(0)
ρ − 2ηµνβ(2)

µνρ = 0 , (2.24)

while tracing it with ηνρ gives

5β(0)
µ + ηνρβ(2)

νρµ = 0 . (2.25)
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These two equations together imply

β(0)
µ = 0 , (2.26)

which, when inserted into equation (2.17), yields

β
(2)
(µν)ρ = 0 . (2.27)

This implies β
(2)
µνρ = β

(2)
[µνρ] (i.e., β

(2) ∈ ∧3V ), so that it can be parametrised by ϕ ∈ V

such that

β(2)
µνρ = ǫµνρσϕ

σ . (2.28)

In summary, the general solution of equation (2.11) is

βµ = Γµ(a+ bΓ5) + ϕνΓµνΓ5 + β(4)
µ Γ5 , (2.29)

where we have used the the last of the identities (A.19).

Next we solve the second cocycle condition (2.14). Using the expression for βµ given

in equation (2.29), we can rewrite the first term of equation (2.14) as follows:

(sΓµs)
(
Γµ(a+ bΓ5) + ϕνΓµνΓ5 + β(4)

µ Γ5

)
s, (2.30)

where, using that the Dirac current of s Clifford annihilates s (see Proposition 15), the first

term vanishes. Similarly, using Γµν = −ΓνΓµ− ηµν and again the fact that (sΓµs)Γµs = 0,

the first term in equation (2.14) becomes

(sΓµs)
(
β(4)
µ − ϕµ

)
Γ5s . (2.31)

We now rewrite the second term in equation (2.14) by inserting the expression for βν in

equation (2.29) into equation (2.16) to obtain

1
2(sΓµβνs)Γ

µνs = 1
2(sΓµν(a+ bΓ5)s)Γ

µνs− (sΓµs)ϕµΓ5s , (2.32)

where we have again used Γµν = −ΓνΓµ − ηµν and the fact that (sΓµs)Γµs = 0. The first

term on the right-hand side vanishes by virtue of the fact that the Dirac 2-form of s and its

dual both Clifford annihilate s (see Proposition 15). In summary, equation (2.14) becomes

(sΓµs)
(
β(4)
µ − 2ϕµ

)
Γ5s = 0 , (2.33)

for all s ∈ S, whose general solution is

β(4)
µ = 2ϕµ . (2.34)

Inserting this into equation (2.29), we arrive at

βµ = Γµ(a+ bΓ5) + ϕνΓµνΓ5 + 2ϕµΓ5 ,

which can be rewritten as

βµ = Γµ(a+ bΓ5)−
1
2ϕ

ν (ΓµΓν + 3ΓνΓµ) Γ5 ,

from where the result follows.
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p Hom(V,∧pV )

0 ∧1V

1 ∧0V ⊕ ∧2V ⊕ (V ⊗ ∧1V )0
2 2 ∧1 V ⊕ (V ⊗ ∧2V )0
3 ∧0V ⊕ ∧2V ⊕ (V ⊗ ∧1V )0
4 ∧1V

Table 2. Irreducible components of Hom(V,∧pV ) for p = 0, . . . , 4.

Alternative proof. It may benefit some readers to see an alternative proof of this result,

which exploits the equivariance under so(V ).

Let us consider the first cocycle condition (2.5). Given β ∈ Hom(V,End(S)) and

any v ∈ V we let βv ∈ End(S) to be defined by βvs = β(v, s) and rewrite (2.5) as

γ(s, s)v = −2κ(s, βvs). Taking the inner product with v and using (A.13) and (A.9) we

arrive at

0 = 〈s, v · βvs〉 , (2.35)

for all s ∈ S, v ∈ V . In other words, for all v ∈ V , the endomorphism v · βv of S is

in ∧2S = ∧0V ⊕ ∧3V ⊕ ∧4V or, equivalently, it is fixed by the anti-involution ς defined

by the symplectic form on S. We claim that the solution space of equation (2.35) is an

so(V )-submodule of Hom(V,End(S)). To see this, it is convenient to consider the so(V )-

equivariant map

Υ : Hom(V,End(S)) → Hom(⊙2V,End(S))

which sends β to Υ(β) given by

Υ(β)(v, w) = v · βw + w · βv ,

for all v, w ∈ V . We consider also the natural decompositions into so(V )-submodules

Hom(V,End(S)) ∼=

4⊕

p=0

Hom(V,∧pV ) ,

Hom(⊙2V,End(S)) ∼=

4⊕

q=0

Hom(⊙2V,∧qV ) ,

(2.36)

which are induced by the usual identification End(S) =
⊕4

p=0 ∧
pV . This allows us to write

any elements β ∈ Hom(V,End(S)) and θ ∈ Hom(⊙2V,End(S)) as β = β0 + · · · + β4 and

θ = θ0 + · · · + θ4, where βp ∈ Hom(V,∧pV ) and θq ∈ Hom(⊙2V,∧qV ). The claim then

follows from the fact that equation (2.35) is equivalent to Υ(β)q = 0 for q = 1, 2.

In table 2 above we list the decomposition of Hom(V,∧pV ) for p = 0, 1, . . . , 4 into

irreducible so(V )-modules, with (V ⊗∧pV )0 denoting the kernel of Clifford multiplication

V ⊗ ∧pV → ∧p−1V ⊕ ∧p+1V .

From the first decomposition in (2.36) we immediately infer that Hom(V,End(S)) is

the direct sum of five different isotypical components, namely

2 ∧0 V , 4 ∧1 V , 2 ∧2 V , (2.37)
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and

2(V ⊗ ∧1V )0 , (V ⊗ ∧2V )0 . (2.38)

Note now that for any Θ,Θ′ ∈ ∧2S the element β ∈ Hom(V,End(S)) defined by

βvs = v ·Θ · s+Θ′ · v · s

satisfies

ς(v · βv) = −η(v, v)ς(Θ) + ς(v ·Θ′ · v)

= −η(v, v)Θ + v · ς(Θ′) · v

= −η(v, v)Θ + v ·Θ′ · v

= v · βv

and it is therefore a solution of (2.35). If instead Θ,Θ′ ∈ ⊙2S = ∧1V ⊕ ∧2V a similar

computation yields ς(v · βv) = −v · βv. In summary we get that the solution space of

equation (2.35) contains an so(V )-module isomorphic to

∧0 V ⊕ 2 ∧3 V ⊕ ∧4V , (2.39)

where, say, Θ ∈ ∧0V ⊕ ∧3V ⊕ ∧4V , Θ′ ∈ ∧3V and that there exists another submodule

which is isomorphic to

2 ∧1 V ⊕ 2 ∧2 V (2.40)

and formed by elements which do not satisfy (2.35). Note that the direct sum of (2.39)

and (2.40) gives all the isotypical components (2.37) in Hom(V,End(S)).

We now turn to the remaining isotypical components (2.38). We first recall that

Hom(V,End(S)) contains a single irreducible submodule of type (V ⊗ ∧2V )0. We fix an

orthonormal basis (eµ) of V , consider the element

β = e
♭
1 ⊗ e2 ∧ e3 + e

♭
2 ⊗ e1 ∧ e3 ∈ (V ⊗ ∧2V )0

and evaluate

1
2Υ(β)(e1 + e2, e1 + e2) = (e1 + e2) · βe1+e2

= −(e1 + e2) · (e2 ∧ e3)− (e1 + e2) · (e1 ∧ e3)

= ıe2(e2 ∧ e3) + ıe1(e1 ∧ e3)

= −2e3 .

In other words Υ(β)1 6= 0, which implies that (V ⊗ ∧2V )0 is not included in the solution

space of equation (2.35). Finally any irreducible submodule in Hom(V,End(S)) isomor-

phic to (V ⊗ ∧1V )0 is given by the image into Hom(V,∧1V )⊕ Hom(V,∧3V ) of an so(V )-

equivariant embedding ξ 7→ (r1ξ, r2ξ), ξ ∈ (V ⊗ ∧1V )0, where r1, r2 ∈ R. For instance the

image of ξ = e1 ⊗ e2 + e2 ⊗ e1 ∈ (V ⊗ ∧1V )0 is

β = r1(e
♭
1 ⊗ e2 + e

♭
2 ⊗ e1) + r2(e

♭
1 ⊗ ⋆e2 + e

♭
2 ⊗ ⋆e1)

= r1(e
♭
1 ⊗ e2 + e

♭
2 ⊗ e1) + r2(−e

♭
1 ⊗ e0 ∧ e1 ∧ e3 + e

♭
2 ⊗ e0 ∧ e2 ∧ e3)
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and we have

1
2Υ(β)(e1, e1) = e1 · βe1

= −r1(e1 · e2) + r2(e1 · e0 ∧ e1 ∧ e3)

= −r1e1 ∧ e2 − r2e0 ∧ e3 .

It follows that Υ(β)2 6= 0 unless r1 = r2 = 0 and that the solution space of (2.35) does not

contain any submodule isomorphic to (V ⊗ ∧1V )0 either.

In summary we just showed that β ∈ Hom(V,End(S)) solves (2.35) if and only if there

exist reals a, b and vectors ϕ1, ϕ2 such that

βvs = v · (a+ b vol) · s+ (v · ϕ1 + ϕ2 · v) · vol ·s , (2.41)

for all v ∈ V and s ∈ S.

We now turn to equation (2.6), with β as in (2.41) and γ expressed in terms of β

using (2.5). We remark that from the above discussion we already know that H 2,2 is

identified with an so(V )-submodule of 2 ∧0 V ⊕ 2 ∧1 V .

At this point it is convenient to fix an η-orthonormal basis (eµ) of V and use the

Einstein summation convention on indices as in appendix A.2.1.

We first introduce

γ(s, s)µν = η(eµ, γ(s, s)eν)

and note that (2.5) is equivalent to γ(s, s)µν = −2sΓµβνs where we set βµ = βeµ . In

particular,

σ(γ(s, s))s = −1
4γ(s, s)µνΓ

µνs

= 1
2(sΓµβνs)Γ

µνs ,

β(κ(s, s), s) = (sΓµs)βµs ,

and equation (2.6) is equivalent to

1
2(sΓµβνs)Γ

µνs+ (sΓµs)βµs = 0 . (2.42)

We first show that H 2,2 includes the whole isotypical component 2∧0V . Indeed if βvs = av·

s for some real a then the left-hand side of equation (2.42) is a(12(sΓµνs)Γ
µνs+(sΓµs)Γµs)

and both terms are zero separately since ω(2)(s, s)·s = ω(1)(s, s)·s = 0 (see Proposition 15).

If βvs = bv · vol ·s, for some real b, we also get b(12(sΓµνΓ5s)Γ
µνs+ (sΓµs)ΓµΓ5s) = 0 since

⋆ω(2)(s, s) · s = ⋆ω(1)(s, s) · s = 0 (see again Proposition 15).

Finally, we consider the irreducible submodule in 2∧1 V determined by (2.41) and the

image of the so(V )-equivariant embedding ϕ 7→ (ϕ1, ϕ2) = (r1ϕ, r2ϕ), where r1, r2 ∈ R. In

other words, we consider βvs = (r1v ·ϕ+ r2ϕ · v) ·vol ·s and note that equation (2.42) gives

1
2r1(sΓµΓνϕΓ5s)Γ

µνs+ 1
2r2(sΓµϕΓνΓ5s)Γ

µνs+ r1(sΓ
µs)ΓµϕΓ5s+ r2(sΓ

µs)ϕΓµΓ5s = 0 .

(2.43)

The last term vanishes because (sΓµs)ΓµΓ5s = −ω(3) · s = 0 (see Proposition 15). The

third term is

r1κ · ϕΓ5s = −r1ϕ · κΓ5s− 2r1η(κ, ϕ)Γ5s = −2r1η(κ, ϕ)Γ5s ,
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again, using that ω(3) · s = 0. Using equation (A.19) repeatedly, the Clifford relation and

Proposition 15 again, we can rewrite the first two terms of (2.43) as

−r1η(κ, ϕ)Γ5s+ r2η(κ, ϕ)Γ5s ,

turning equation (2.43) into

(r2 − 3r1)η(κ, ϕ)Γ5s = 0 .

Since this must hold for all ϕ ∈ ∧1V and s ∈ S, it follows that r2 = 3r1.

3 Killing superalgebras

In analogy with the results [39, 40] in eleven dimensions, we define a notion of Killing

spinor from the component β of the cocycle in Proposition 3. In this section we prove that

these Killing spinors generate a Lie superalgebra.

3.1 Preliminaries

Let (M, g, a, b, ϕ) be a four-dimensional Lorentzian spin manifold (M, g) with spin bundle

S(M) which is, in addition, endowed with two functions a, b ∈ C∞(M) and a vector field

ϕ ∈ X(M). The main aim of this section is to construct a Lie superalgebra k = k0̄ ⊕ k1̄

naturally associated with (M, g, a, b, ϕ).

Motivated by (i) of Proposition 3 we introduce the connection

DXε := ∇Xε−X · (a+ b vol) · ε+ (ϕ ∧X) · vol ·ε− 2g(ϕ,X) vol ·ε (3.1)

on S(M), where ∇ is the Levi-Civita connection of (M, g), X ∈ X(M), ε ∈ Γ(S(M)).

Definition 4. A section ε of S(M) is called a Killing spinor if DXε = 0 for all X ∈ X(M).

Note that any non-zero Killing spinor is nowhere vanishing since it is parallel with

respect to a connection on the spinor bundle. We set

k0̄ = {X ∈ X(M) | LXg = LXa = LXb = LXϕ = 0} ,

k1̄ = {ε ∈ Γ(S(M)) | DXε = 0 for all X ∈ X(M)} ,
(3.2)

and consider the operation [−,−] : k⊗ k → k compatible with the parity of k = k0̄ ⊕ k1̄ and

determined by the following maps:

• [−,−] : k0̄ ⊗ k0̄ → k0̄ is given by the usual commutator of vector fields,

• [−,−] : k1̄ ⊗ k1̄ → k0̄ is a symmetric map, with [ε, ε] = κ(ε, ε) given by the Dirac

current of ε ∈ k1̄,

• [−,−] : k0̄ ⊗ k1̄ → k1̄ is given by the spinorial Lie derivative of Lichnerowicz and

Kosmann (see [46] and also, e.g., [47]).
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The fact that [−,−] actually takes values in k is a consequence of Theorem 7 below, where

we show that [−,−] is the bracket of a Lie superalgebra structure on k. Assuming that

result for the moment we make the following

Definition 5. The pair (k = k0̄ ⊕ k1̄, [−,−]) is called the Killing superalgebra associated

with (M, g, a, b, ϕ).

We recall that the spinorial Lie derivative of a spinor field ε along a Killing vector

field X is defined by LXε = ∇Xε+ σ(AX)ε, where σ : so(TM) → End(S(M)) is the spin

representation and AX = −∇X ∈ so(TM). It enjoys the following basic properties, for all

Killing vectors X,Y , spinors ε, functions f and vector fields Z:

(i) LX is a derivation:

LX(fε) = X(f)ε+ fLXε ;

(ii) X 7→ LX is a representation of the Lie algebra of Killing vector fields:

LX(LY ε)− LY (LXε) = L[X,Y ]ε ;

(iii) LX is compatible with Clifford multiplication:

LX(Z · ε) = [X,Z] · ε+ Z · LXε ;

(iv) LX is compatible with the Levi-Civita connection:

LX(∇Zε) = ∇[X,Z]ε+∇Z(LXε) .

We note for later use that, from property (iii) and the fact that ⊙2S = ∧1V ⊕ ∧2V , we

have for any Killing vector X, spinor ε and vector field Z,

g([X,κ(ε, ε)], Z) = X(g(κ(ε, ε), Z))− g(κ(ε, ε), [X,Z])

= X(〈ε, Z · ε〉)− 〈ε, [X,Z] · ε〉

= 2 〈∇Xε, Z · ε〉+ 〈ε,∇ZX · ε〉

= 2 〈∇Xε, Z · ε〉+ 2 〈ε, Z · σ(AX)ε〉

= 2g(κ(LXε, ε), Z) ,

which yields the following additional property of the spinorial Lie derivative:

(v) the Dirac current is equivariant under the action of Killing vector fields:

[X,κ(ε, ε)] = 2κ(LXε, ε) .

We first collect a series of important auxiliary results, which will be needed in the

proof of the main Theorem 7.

Proposition 6. Let ε be a non-zero section of the spinor bundle S(M) of (M, g, a, b, ϕ),

with associated differential forms
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• ω(1) ∈ Ω1(M), where ω(1)(X) = 〈ε,X · ε〉,

• ω(2) ∈ Ω2(M), where ω(2)(X,Y ) = 〈ε, (X ∧ Y ) · ε〉,

• ω̃(2) = − ⋆ ω(2) ∈ Ω2(M), where ω̃(2)(X,Y ) = 〈ε, (X ∧ Y ) · vol ·ε〉,

• ω(3) = − ⋆ ω(1) ∈ Ω3(M), where ω(3)(X,Y, Z) = 〈ε, (X ∧ Y ∧ Z) · vol ·ε〉,

for all X,Y, Z ∈ X(M). If ε is a Killing spinor then

(i) dω(1) = −4aω(2) − 4bω̃(2) − 4ıϕω
(3),

(ii) dω(2) = 6bω(3),

(iii) dω̃(2) = −6aω(3),

(iv) dω(3) = 0.

In particular the Dirac current K = κ(ε, ε) of ε is a Killing vector field satisfying

LKa = LKb = LKω(1) = LKω(2) = LK ω̃(2) = LKω(3) = 0 (3.3)

and

0 = −2ω̃(2)(Z,X)g(LKϕ, Y ) + 2ω̃(2)(Z, Y )g(LKϕ,X)− 2ω̃(2)(LKϕ, Y )g(Z,X)

+ 2ω̃(2)(LKϕ,X)g(Z, Y ) + 4ω̃(2)(X,Y )g(LKϕ,Z) ,
(3.4)

for all X,Y, Z ∈ X(M).

Proof. For any Killing spinor ε and X,Y, Z ∈ X(M) we compute

(∇Zω
(1))(X) = 2 〈ε,X · ∇Zε〉

= 2a 〈ε,X ∧ Z · ε〉+ 2b 〈ε,X ∧ Z · vol ·ε〉+ 2 〈ε, ϕ ∧X ∧ Z · vol ·ε〉 ,

and

(∇Zω
(2))(X,Y ) = 2 〈ε,X ∧ Y · ∇Zε〉

= 2a 〈ε,X ∧ Y · Z · ε〉+ 2b 〈ε,X ∧ Y · Z · vol ·ε〉

− 2 〈ε,X ∧ Y · ϕ ∧ Z · vol ·ε〉+ 4g(ϕ,Z) 〈ε,X ∧ Y · vol ·ε〉

= 2ag(Z,X) 〈ε, Y · ε〉 − 2ag(Z, Y ) 〈ε,X · ε〉+ 2b 〈ε, Z ∧X ∧ Y · vol ·ε〉

+ 2g(ϕ, Y ) 〈ε,X ∧ Z · vol ·ε〉 − 2g(ϕ,X) 〈ε, Y ∧ Z · vol ·ε〉

− 2g(Z, Y ) 〈ε,X ∧ ϕ · vol ·ε〉+ 2g(X,Z) 〈ε, Y ∧ ϕ · vol ·ε〉

+ 4g(ϕ,Z) 〈ε,X ∧ Y · vol ·ε〉 ,

where, in both cases, the last equality follows from equation (A.11) or, equivalently, that

⊙2S = ∧1V ⊕ ∧2V . In other words we have

∇Zω
(1) = −2aıZω

(2) − 2bıZ ω̃
(2) − 2ıZ ıϕω

(3) , (3.5)

∇Zω
(2) = 2aZ ∧ ω(1) + 2bıZω

(3) − 2ıZ ω̃
(2) ∧ ϕ− 2Z ∧ ıϕω̃

(2) + 4g(ϕ,Z)ω̃(2) , (3.6)
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and applying ⋆, which is a parallel endomorphism of Ω•(M), on both sides of these identities

we also get

∇Z ω̃
(2) = 2bZ ∧ ω(1) − 2aıZω

(3) + 2Z ∧ ıϕω
(2) + 2ıZω

(2) ∧ ϕ− 4g(ϕ,Z)ω(2) , (3.7)

∇Zω
(3) = 2aZ ∧ ω̃(2) − 2bZ ∧ ω(2) + 2Z ∧ ϕ ∧ ω(1) . (3.8)

Claims (i)-(iv) follows then immediately from the fact that for any ω ∈ Ωp(M) we have

dω =
3∑

µ=0

eµ ∧∇eµω and
3∑

µ=0

eµ ∧ ıeµω = pω ,

where (eµ) is a fixed local orthonormal frame field of (M, g).

Now, for any Killing spinor ε and X,Y ∈ X(M) we have

g(∇XK,Y ) = 2 〈ε, Y · ∇Xε〉

= 2a 〈ε, Y ·X · ε〉+ 2b 〈ε, Y ·X · vol ·ε〉 − 2 〈ε, Y · (ϕ ∧X) · vol ·ε〉

+ 4g(ϕ,X) 〈ε, Y · vol ·ε〉

= 2a 〈ε, (Y ∧X) · ε〉+ 2b 〈ε, (Y ∧X) · vol ·ε〉+ 2 〈ε, (ϕ ∧ Y ∧X) · vol ·ε〉

where the last equality follows from equation (A.11). Since the last term is manifestly

skewsymmetric in X and Y we have that K is a Killing vector. From dω(3) = 0, we

also have

0 = d(dω(2)) = 6db ∧ ω(3) = −6db ∧ ⋆ω(1) = −6(ıKdb) vol ;

i.e., LKb = 0. One shows LKa = 0 in a similar way. If ω = ω(1), ω(2), ω̃(2), or ω(3), then

ıKω = 0 by Proposition 15 and from (i)-(iv) we get

LKω = dıKω + ıKdω = 0 .

This proof of (3.3) is thus completed.

In order to show (3.4) we use that K is a Killing vector and LKω(2) = 0 so that for

all X,Y, Z ∈ X(M):

0 = (LK∇Zω
(2))(X,Y )− (∇[K,Z]ω

(2))(X,Y )

= LK((∇Zω
(2))(X,Y ))− (∇[K,Z]ω

(2))(X,Y )−∇Zω
(2)([K,X], Y )−∇Zω

(2)(X, [K,Y ])

= −2ω̃(2)(Z,X)g(LKϕ, Y ) + 2ω̃(2)(Z, Y )g(LKϕ,X)− 2ω̃(2)(LKϕ, Y )g(Z,X)

+ 2ω̃(2)(LKϕ,X)g(Z, Y ) + 4ω̃(2)(X,Y )g(LKϕ,Z) ,

where the last identity follows from a direct computation using (3.6) and (3.3).

3.2 The Killing superalgebra

We state and prove the main result of section 3.

Theorem 7. Let X,Y ∈ k0̄ and ε ∈ k1̄. Then [X,Y ] ∈ k0̄, κ(ε, ε) ∈ k0̄ whereas LXε ∈ k1̄.

Moreover, [−,−] defines a Lie superalgebra on k = k0̄ ⊕ k1̄.
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Proof. The fact that [k0̄, k0̄] ⊂ k0̄ follows from basic properties of Lie derivatives of vector

fields. On the other hand for any X ∈ k0̄ and Z ∈ X(M) we have that

[LX , DZ ] = D[X,Z] ,

since D depends solely on the data (g, a, b, ϕ) which is preserved by X ∈ k0̄. This shows

that LXε is a Killing spinor or, in other words, that [k0̄, k1̄] ⊂ k1̄.

We already know from Proposition 6 that K = κ(ε, ε) is a Killing vector field which

satisfies LKa = LKb = 0. To prove K ∈ k0̄ we still need to show LKϕ = 0. From

Proposition 6 we have

0 = −
1

4
d(dω(1)) = da ∧ ω(2) + 6abω(3) + db ∧ ω̃(2) − 6abω(3) + dıϕω

(3)

= da ∧ ω(2) + db ∧ ω̃(2) − Lϕ ⋆ ω(1)

and hence, for any ϑ ∈ Ω1(M),

ϑ ∧ ⋆Lϕω
(1) = ϑ ∧ Lϕ ⋆ ω(1) − div(ϕ)ϑ ∧ ⋆ω(1) − (Lϕg)(ϑ, ω

(1)) vol

= ϑ ∧ da ∧ ω(2) + ϑ ∧ db ∧ ω̃(2) + div(ϕ)ϑ ∧ ω(3) − (Lϕg)(ϑ, ω
(1)) vol .

(3.9)

In the special case where ıKϑ = 0 the first three terms of the right-hand side of the above

identity are degenerate 4-forms and hence zero. Then equation (3.9) becomes

0 = ϑ ∧ ⋆Lϕω
(1) + (Lϕg)(ϑ, ω

(1)) vol

= −g(Lϕϑ, ω
(1)) vol

= −(Lϕϑ)(K) vol

= ϑ(LϕK) vol

= −ϑ(LKϕ) vol ,

so that LKϕ = fK, for some f ∈ C∞(M). From this fact, equation (3.4) and ω(1)∧ω̃(2) = 0

we finally get

0 = f(2ω̃(2)(X,Y )ω(1)(Z) + ω̃(2)(X,Z)ω(1)(Y ) + ω̃(2)(Z, Y )ω(1)(X))

= 3fω̃(2)(X,Y )ω(1)(Z) ,

for all X,Y, Z ∈ X(M), hence f = 0. This proves LKϕ = 0 and [k1̄, k1̄] ⊂ k0̄.

We finally show that [−,−] : k⊗ k → k satisfies the axioms of a Lie superalgebra. This

is a direct consequence of the following observations:

(i) k0̄ is a Lie algebra: this is just the Jacobi identity of the Lie bracket of vector fields;

(ii) k0̄ acts on k1̄, by property (ii) of the spinorial Lie derivative;

(iii) the Dirac current is a symmetric k0̄-equivariant map, by property (v) of the spinorial

Lie derivative;
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(iv) for any ε ∈ k1̄, with associated Dirac current K = κ(ε, ε), we have from the definition

of Killing spinor and (3.5) that

LKε = ∇Kε+ σ(AK)ε

= −(ϕ ∧K) vol ·ε+ 2g(ϕ,K) vol ·ε+ ıϕω
(3) · ε

= g(ϕ,K) vol ·ε+ ıϕω
(3) · ε

= −ϕ · ω(3) · ε

= 0 ,

where the last equality holds by Proposition 15. This is equivalent to the component

of the Jacobi identity for k with three odd elements.

The proof is thus completed.

3.3 The Killing superalgebra is a filtered deformation

We now show that the Killing superalgebra k = k0̄ ⊕ k1̄ is a filtered deformation of a

Z-graded subalgebra of the Poincaré superalgebra p. To this aim, it is convenient to

denote the triple (a, b, ϕ) collectively by Φ and to abbreviate the Killing spinor equation

as ∇Zε = βΦ
Zε, where βΦ is the End(S(M))-valued one-form defined by

βΦ
Zε = Z · (a+ b vol) · ε− (ϕ ∧ Z) · vol ·ε+ 2g(ϕ,Z) vol ·ε , (3.10)

for all Z ∈ X(M) and ε ∈ Γ(S(M)). The notation is chosen to make contact with that

of Proposition 3. The reason for the superscript Φ is to distinguish βΦ from the more

general component β of the filtered Lie brackets in (3.15) below. For a similar reason we

also introduce the so(TM)-valued symmetric bilinear tensor γΦ on S(M) given by

γΦ(ε, ε)(Z) = −2k(βΦ
Zε, ε) ,

for all Z ∈ X(M) and ε ∈ Γ(S(M)).

Let E = E0̄ ⊕ E1̄ be the super vector bundle with

E0̄ = TM ⊕ so(TM) and E1̄ = S(M)

and (even) connection D defined on E0̄ by [48, 49]

DZ

(
ξ

A

)
=

(
∇Zξ +A(Z)

∇ZA−R(Z, ξ)

)
(3.11)

and on E1̄ by the connection D in (3.1). A section (ξ, A) of E0̄ is parallel if and only if ξ

is a Killing vector and A = −∇ξ, whereas a section ε of E1̄ is parallel if and only if it is a

Killing spinor. Therefore k is a subspace of the parallel sections of E : k1̄ are precisely the

parallel sections of E1̄, whereas k0̄ are the parallel sections of E0̄ which in addition leave

invariant the scalars a and b and the vector field ϕ.

– 19 –



J
H
E
P
0
6
(
2
0
1
6
)
1
0
6

Parallel sections ζ of a vector bundle with connection are uniquely determined by their

value ζ|o at any given point o ∈ M . (We tacitly assume that M is connected.) Let us

introduce the following notation

(V, η) = (ToM, g|o) so(V ) = so(ToM) S = So(M) .

Therefore k determines a subspace of Eo = V ⊕ so(V )⊕ S, which is the underlying vector

space of the Poincaré superalgebra p. We recall that p is a Z-graded Lie superalgebra with

Lie brackets given in equation (1.1) and that the Z and Z2 gradings are compatible.

Let (ξ, Aξ), with Aξ = −∇ξ, and (ζ, Aζ) belong to k0̄. Their Lie bracket is given by

[(ξ, Aξ), (ζ, Aζ)] = (Aξζ −Aζξ, [Aξ, Aζ ] +R(ξ, ζ)) , (3.12)

where the bracket on the right-hand side is the commutator in so(TM). We see that the

Riemann curvature measures the failure of k0̄ to be a Lie subalgebra of the Poincaré algebra

p0̄. If now ε ∈ k1̄, then the Lie bracket with (ξ, Aξ) is given by

[(ξ, Aξ), ε] = ∇ξε+ σ(Aξ)ε = βΦ
ξ ε+ σ(Aξ)ε , (3.13)

where σ : so(TM) → End(S(M)) is the spinor representation. Finally, the Dirac current

of a Killing spinor ε ∈ k1̄ is given by

[ε, ε] = (κ(ε, ε), Aκ(ε,ε)) ,

where

Aκ(ε,ε)(Z) = −∇Zκ(ε, ε) = −2κ(∇Zε, ε) = −2κ(βΦ
Zε, ε) .

We now show that k defines a graded subspace of p = Eo. Define ev0̄o : k0̄ → V to be

evaluation at o and projection onto V = ToM . More precisely,

ev0̄o(ξ, Aξ) = ξ|o .

Similarly, let ev1̄o : k1̄ → S be the evaluation at o. We set S′ = imev1̄o and V ′ = imev0̄o.

Let h = ker ev0̄o. These are the Killing vectors in k0̄ which take the form (0, A) ∈

V ⊕ so(V ) at o ∈ M . Therefore h defines a subspace of so(V ), but from equation (3.12),

we see that it is also a Lie subalgebra:

[(0, A), (0, B)] = (0, [A,B]) .

In addition, the conditions Lξa = Lξb = Lξϕ = 0 that are satisfied by the Killing vectors

ξ ∈ k0̄, when evaluated at o ∈ M , imply that if (0, A) ∈ h then

A ∈ so(V ) ∩ stab(a|o) ∩ stab(b|o) ∩ stab(ϕ|o) ,

and the Lie bracket (3.13) at o ∈ M implies that

[(0, A), ε] = σ(A)ε .
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In particular, h acts on S by restricting the action of so(V ), and this action preserves S′.

The Lie subalgebra h < k0̄ defines a short exact sequence

0 −−−−→ h −−−−→ k0̄
ev0̄o−−−−→ V ′ −−−−→ 0 , (3.14)

which yields a vector space isomorphism k0̄
∼= h⊕V ′, and therefore as graded vector spaces,

a (non-canonical) isomorphism

k ∼= h⊕ S′ ⊕ V ′ ⊂ so(V )⊕ S ⊕ V ∼= p .

We now wish to express the Lie superalgebra structure on k in terms of a Lie bracket

on the graded vector space h ⊕ S′ ⊕ V ′. This requires a choice of splitting of the short

exact sequence (3.14). Geometrically, this amounts to choosing for every v ∈ V ′ a Killing

vector field ξ ∈ k0̄ with ξ|o = v. Such a choice gives an embedding of V ′ into V ⊕ so(V )

as the graph of a linear map Σ : V ′ → so(V ); that is, by sending v ∈ V ′ to (v,Σv), where

Σv ∈ so(V ) is the image of v under Σ. Any other choice of splitting would result in (v,Σ′
v)

for some other linear map Σ′ : V ′ → so(V ), but where the difference Σ− Σ′ : V ′ → h.

The Lie bracket of (0, A) ∈ h and (v,Σv) ∈ k0̄ is given by

[(0, A), (v,Σv)] = (Av, [A,Σv]) = (Av,ΣAv) + (0, [A,Σv]− ΣAv) .

Similarly, if ε ∈ k1̄, then

[(v,Σv), ε] = βΦ
v ε+Σvε ,

whereas

[ε, ε] = (κ(ε, ε), Aκ(ε,ε)) = (κ(ε, ε),Σκ(ε,ε)) + (0, Aκ(ε,ε) − Σκ(ε,ε)) .

Finally, if v, w ∈ V ′,

[(v,Σv), (w,Σw)] = (Σvw − Σwv, [Σv,Σw] +R(v, w))

= (Σvw − Σwv,ΣΣvw−Σwv) + (0, [Σv,Σw] +R(v, w)− ΣΣvw−Σwv)

This allows us to read off the Lie bracket on h⊕ S′ ⊕ V ′. We will let v, w ∈ V ′, s ∈ S′

and A,B ∈ h. Then we have

[A,B] = AB −BA

[A, s] = σ(A)s

[A, v] = Av + [A,Σv]− ΣAv︸ ︷︷ ︸
λ(A,v)

[s, s] = κ(s, s) + γΦ(s, s)− Σκ(s,s)︸ ︷︷ ︸
γ(s,s)

[v, s] = βΦ
v s+Σvs︸ ︷︷ ︸
β(v,s)

[v, w] = Σvw − Σwv︸ ︷︷ ︸
α(v,w)

+ [Σv,Σw] +R(v, w)− Σα(v,w)︸ ︷︷ ︸
δ(v,w)

,

(3.15)
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which define maps λ : h ⊗ V ′ → h, γ : ⊙2S′ → h, β : V ′ ⊗ S′ → S′, α : ∧2V ′ → V ′ and

δ : ∧2V ′ → h.

Notice that all the under-braced terms have positive filtration degree: λ, α, β and

γ have degree 2, whereas δ has degree 4. If we set those maps to zero, which is equiva-

lent to passing to the associated graded superalgebra, then we are left with the Z-graded

subalgebra a < p given by the Lie brackets

[A,B] = AB −BA

[A, s] = σ(A)s

[A, v] = Av

[s, s] = κ(s, s)

[v, s] = 0

[v, w] = 0 .

(3.16)

Moreover, it follows from Lemma 16 in the appendix that if dimS′ > 1
2 dimS = 2, then

V ′ = V .

Therefore we have proved the following

Proposition 8. The Killing superalgebra k in equation (3.15) is a filtered deformation

of the Z-graded subalgebra a < p defined on h ⊕ S′ ⊕ V ′ by the Lie brackets in (3.16).

Moreover if dimS′ > 1
2 dimS = 2 then the Lie algebra k0̄ of infinitesimal automorphisms

of (M, g, a, b, ϕ) acts locally transitively around any point o ∈ M .

4 Zero curvature equations

In this section we calculate the curvature of the connection D on the spinor bundle and

solve the zero curvature equations for the metric g and the fields a, b, ϕ. We do this in two

steps. In the first step we arrive at a first set of equations obtained by setting the Clifford

trace of the curvature to zero. We perform this first step for two reasons. The first reason is

by analogy with eleven-dimensional supergravity, where the vanishing of the Clifford trace

of the curvature is equivalent to the bosonic field equations (and the Bianchi identity).

The second reason is that this first set of equations is easier to solve and already imposes

strong constraints on the geometric data which simplify the solution of the zero curvature

equations. The second step is the solution of the zero curvature equations, which will yield

the maximally supersymmetric backgrounds. The Killing superalgebras of these maximally

supersymmetric backgrounds should (and do) agree with the maximally supersymmetric

filtered deformations which we classify in section 5.

With regard to the first reason for performing the first step, we must stress that any

relation in four dimensions between the equation obtained by setting to zero the Clifford

trace of the curvature and the bosonic field equations of minimal off-shell supergravity

remains to be seen. If we were to identify (up to constants of proportionality) the fields a,

b and ϕ in the connection D in (3.1) with the bosonic fields in the minimal off-shell gravity

supermultiplet in four dimensions (as described, say, in [50] section 16.2.3), and identify

(up to an overall constant of proportionality) Dε with the supersymmetry variation of the

gravitino Ψ in the gravity supermultiplet, evaluated at Ψ = 0, one finds that the purely

bosonic terms in the off-shell supergravity Lagrangian density must be proportional to

R + 24(a2 + b2 + |ϕ|2), where R is the scalar curvature of g. The Einstein equations for
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this supergravity Lagrangian are Rµν = −12(a2+ b2)gµν − 24ϕµϕν which, after integrating

out the auxiliary fields a, b and ϕ, imply that that g must be Ricci-flat. As we will see,

the equations obtained by setting to zero the Clifford trace of the curvature are similar but

different.

4.1 The curvature of the superconnection

Let us write the Killing spinor condition for ε ∈ Γ(S(M)) as ∇Zε = βΦ
Zε for all vector

fields Z, and where the End(S(M))-valued one-form βΦ was defined in equation (3.10). In

other words, DZ = ∇Z − βΦ
Z . The curvature RD of D is defined by

RD
X,Y = D[X,Y ] − [DX , DY ]

= RX,Y + (∇XβΦ)Y − (∇Y β
Φ)X − [βΦ

X , βΦ
Y ] ,

where R is the curvature 2-form of ∇ on the spinor bundle. An explicit calculation

shows that

RD
X,Y = RX,Y +X(a)Y +X(b)Y · vol−Y (a)X − Y (b)X · vol−(∇Xϕ ∧ Y ) · vol

+ (∇Y ϕ ∧X) · vol+2g(∇Xϕ, Y ) vol−2g(∇Y ϕ,X) vol+2(a2 + b2 − |ϕ|2g)X ∧ Y

+ 4a(ϕ ∧X ∧ Y ) · vol+4ag(ϕ, Y )X · vol−4ag(ϕ,X)Y · vol−4bϕ ∧X ∧ Y

− 4bg(ϕ, Y )X + 4bg(ϕ,X)Y + 2g(ϕ,X)ϕ ∧ Y − 2g(ϕ, Y )ϕ ∧X . (4.1)

From this expression we will be able to read off a set of equations by demanding that

the Clifford trace of the curvature RicD : TM → End(S(M)), defined by

RicD(X) =
∑

µ

eµ ·RD
X,eµ , (4.2)

vanishes. Here eµ and eµ are g-dual local frames of TM . Another explicit calculation

shows that

RicD(X) = Ric(X)− 3X(a)− 3X(b) vol−da♯ ∧X − (db♯ ∧X) · vol+6(a2 + b2)X

− 4|ϕ|2gX − 4a(ϕ ∧X) · vol+4bϕ ∧X + 12ag(ϕ,X) vol−12bg(ϕ,X)

+ 4g(ϕ,X)ϕ+
(
∇µϕνXρΓ

µνρ −∇µϕ
µX − 2g( /∇ϕ,X)

)
· vol ,

(4.3)

where Ric stands for the Ricci operator and we have introduced the shorthand g( /∇ϕ,X) =

Γρ∇ρϕµX
µ.

4.2 The vanishing of the Clifford trace of the curvature

We now describe the equations arising by demanding that the Clifford trace of the curvature

of the spinor connection D vanishes; in other words, that for all vector fields X, RicD(X) =

0. This is a system of equations with values in End(S(M)), which is isomorphic as a

vector bundle to
⊕4

p=0 ∧
pTM . This means that the components of these equations in each

summand have to be satisfied separately. The p = 1 component relates the Ricci tensor

to the data (a, b, ϕ), whereas the p 6= 1 components constrain (a, b, ϕ). We start with

these first.
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4.2.1 The p = 0 component

The p = 0 component of the equation RicD(X) = 0 is given by

−3X(a)− 12bg(ϕ,X) = 0 ,

which, after abstracting X, is equivalent to

da♯ = −4bϕ . (4.4)

4.2.2 The p = 4 component

The p = 4 component of RicD(X) = 0 is given by

−3X(b) vol+12ag(ϕ,X) vol = 0

which is equivalent to

db♯ = 4aϕ . (4.5)

4.2.3 The p = 2 component

The p = 2 component of RicD(X) = 0 is given by

−da♯ ∧X − (db♯ ∧X) · vol−4a(ϕ ∧X) · vol+4bϕ ∧X = 0 ,

which using equations (4.4) and (4.5) becomes

(ϕ ∧X) · (b+ a vol) = 0 .

Multiplying by b− a vol and since this has to be true for all X, we arrive at

(a2 + b2)ϕ = 0 . (4.6)

It follows from this equation that there are three branches of solutions:

(I) a = b = ϕ = 0,

(II) a2+b2 > 0 and ϕ = 0, in which case a and b are constant by equations (4.4) and (4.5),

and

(III) a = b = 0 and ϕ 6= 0.

4.2.4 The p = 3 component

The p = 3 component of RicD(X) = 0 is given by

−(∇µϕ
µX + 2g( /∇ϕ,X)) · vol = 0 ,

which, abstracting X, can be written as

∇µϕ
µΓν + 2∇µϕ

νΓµ = 0 . (4.7)
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Multiplying with Γν on both left and right we arrive at the pair of equations:

−4∇µϕ
µ + 2∇µϕνΓ

µΓν = 0

−4∇µϕ
µ + 2∇µϕνΓ

νΓµ = 0 .

Adding the two equations, and using the Clifford relations,

−8∇µϕ
µ − 4∇µϕ

µ = 0 =⇒ ∇µϕ
µ = 0 .

Plugging this back into equation (4.7), we arrive at

∇µϕ
νΓµ = 0 ,

which says that ϕ is parallel:

∇ϕ = 0 . (4.8)

4.2.5 The p = 1 component

Finally we arrive at the p = 1 component of RicD(X) = 0:

Ric(X) + 6(a2 + b2)X − 4|ϕ|2gX + 4g(ϕ,X)ϕ+∇µϕνXρΓ
µνρ · vol = 0 .

The last term vanishes because ϕ is parallel, so that we are left with

Ric(X) + 6(a2 + b2)X − 4|ϕ|2gX + 4g(ϕ,X)ϕ = 0 .

We can abstract X and leave it as an equation on the Ricci operator itself:

Ric = −12(a2 + b2) Id+8|ϕ|2g Id−8ϕ⊗ ϕ♭ , (4.9)

which, in terms of the symmetric Ricci tensor, becomes

Rµν = −12(a2 + b2)gµν + 8|ϕ|2ggµν − 8ϕµϕν . (4.10)

4.3 The solutions

Let us analyse the type of solutions to these equations. We have seen that there are three

branches of solutions stemming from the p = 2 component equation (4.6).

(I) a = b = ϕ = 0. In this case, the p = 1 component equation simply says that g is Ricci-

flat. In this background, Killing spinors are parallel and therefore the supersymmetric

backgrounds are the Ricci-flat manifolds whose holonomy is contained in the isotropy

of a spinor. Since the Dirac current of a parallel spinor is null and parallel, these

metrics are Ricci-flat Brinkmann metrics. See, e.g., ([51] section 3.2.3) for a discussion

of these geometries.

(II) a2 + b2 6= 0 and ϕ = 0. Putting ϕ = 0, we see from equations (4.4) and (4.5) that

da = db = 0, so they are constant and the Ricci tensor is given by

Rµν = −12(a2 + b2)gµν ,

so that g is Einstein with negative cosmological constant. The Killing spinors are

(up to an R-symmetry which allows us to set b = 0, say) geometric Killing spinors.

Such geometries are reviewed in ([52] sections 6–7) and discussed in [53].
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(III) a = b = 0 and ϕ 6= 0. Then ϕ is a parallel vector field and the Ricci tensor, given by

Rµν = −8
(
ϕµϕν − |ϕ|2ggµν

)
, (4.11)

is also parallel. This is a kind of fluid solution. Ricci-parallel geometries have been

studied in [54]. The determining factor is the algebraic type of the Ricci endomor-

phism. In this case, this depends on the causal type of ϕ, which is constant because

ϕ is parallel. If ϕ is timelike or spacelike, so that (in our mostly minus conventions)

|ϕ|2g is positive or negative, respectively, then the Ricci endomorphism is diagonal-

isable and the geometry decomposes (up to coverings) into a product M = R × N

of a line and a three-dimensional Einstein space N , hence a space form. Moreover,

upon identifying the spin bundle of M with (an appropriate number of copies of) the

spin bundle of N , it is not difficult to see that Killing spinors in these backgrounds

correspond to geometric Killing spinors on N (up to an R-symmetry). If ϕ is null,

then the Ricci endomorphism is two-step nilpotent and the geometry is Ricci-null.

The subbundle of TM of orthogonal vectors to ϕ is also in this case integrable in the

sense of Frobenius but the above simple interpretation of Killing spinors is missing

since the associated integrable submanifolds N have a degenerate induced metric.

4.4 Maximally supersymmetric backgrounds

Maximally supersymmetric backgrounds are those for which the spinor connection D is

flat. The zero curvature condition RD
X,Y = 0 for all vector fields X,Y becomes a system

of equations with values in End(S(M)) and therefore, just as for the vanishing of the

Clifford trace of the curvature, the different components of the curvature must vanish

separately. We can reuse our calculations above, since if D is flat, the Clifford trace of

the curvature certainly vanishes. This means that we can consider the three branches

described above. We will meet the geometries we are about to discuss again in the next

section, where we classify the maximally supersymmetric filtered subdeformations of the

Poincaré superalgebra.

4.4.1 Maximally supersymmetric backgrounds with a = b = ϕ = 0

If a = b = ϕ = 0, the connection D agrees with the Levi-Civita spin connection and hence

D-flatness means flatness and every such background is locally isometric to Minkowski

spacetime.

4.4.2 Maximally supersymmetric backgrounds with ϕ = 0 and a2 + b2 > 0

If ϕ = 0, then a, b are constant and not both zero and hence the D-flatness condition is

RX,Y = −2(a2 + b2)X ∧ Y ,

as an equation in End(S(M)). This is equivalent to

Rµνρσ = 4(a2 + b2)(gµρgνσ − gµσgνρ) ,

which says that g is locally isometric to AdS4.
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4.4.3 Maximally supersymmetric backgrounds with a = b = 0 and ϕ 6= 0

If a = b = 0, and using that ϕ is parallel, the D-flatness condition is

RX,Y = 2|ϕ|2gX ∧ Y − 2g(ϕ,X)ϕ ∧ Y + 2g(ϕ, Y )ϕ ∧X ,

again as an equation in End(S(M)). The corresponding Riemann tensor is given by

Rµνρσ = −4|ϕ|2g(gµρgνσ−gµσgνρ)−4ϕνϕρgµσ+4ϕνϕσgµρ+4ϕµϕρgνσ−4ϕµϕσgνρ . (4.12)

Since ϕ and g are parallel, so is the Riemann tensor and hence this corresponds to a locally

symmetric space. Furthermore, it is conformally flat. Indeed, in four dimensions, the Weyl

tensor is given in terms of the Riemann tensor, the Ricci tensor Rµν = gρσRµρσν and the

Ricci scalar R = gµνRµν by

Wµνρσ = Rµνρσ + 1
2 (gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ)−

1
6R (gµρgνσ − gµσgνρ) .

Inserting the above expression for Rµνρσ into the Weyl tensor we see that it vanishes, so that

the geometry is conformally flat. The corresponding Ricci tensor is given by equation (4.11)

and the Ricci scalar is R = 24|ϕ|2g.

This geometry corresponds to a Lorentzian Lie group with a bi-invariant metric. In-

deed, the equation (4.12) satisfied by the Riemann tensor is equivalent to the vanishing of

the curvature of a metric connection with parallel totally skewsymmetric torsion propor-

tional to the Hodge dual of ϕ. As shown, for instance, in [55, 56], the existence of a flat

metric connection with closed skewsymmetric torsion is equivalent to the manifold being

locally isometric to a Lie group with a bi-invariant metric.

Since ϕ is parallel, its g-norm is constant and in a Lorentzian manifold this can be of

three types:

1. |ϕ|2g > 0. This is timelike in our conventions. The background is locally isometric to

R×S3, where we identify the round S3 with the Lie group SU(2) with its bi-invariant

metric.

2. |ϕ|2g < 0. This is spacelike and hence the background is locally isometric to AdS3×R,

where we identify AdS3 with SL(2,R) with its bi-invariant metric.

3. |ϕ|2g = 0. This is the null case and hence the background is locally isometric to the

Nappi-Witten group [57] with its bi-invariant metric.

5 Maximally supersymmetric filtered deformations

We now resume the analysis of filtered subdeformations of the Poincaré superalgebra by

classifying the filtered deformations with maximal odd dimension. We will show that

they correspond precisely to the Killing superalgebras of the maximally supersymmetric

backgrounds classified in section 4.4.

More precisely, let a = a−2 ⊕ a−1 ⊕ a0 be a Z-graded subalgebra of the Poincaré

superalgebra p = V ⊕S ⊕ so(V ) with a−1 = S. By Lemma 16, we also have that a−2 = V ,
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so that a differs from p only in zero degree, where a0 = h is a subalgebra of so(V ). The aim

of this section is to classify, for any possible given h, the filtered deformations g of a. We

will see that they are essentially governed by the h-invariant elements H2,2(a−, a)
h of the

Spencer group H2,2(a−, a) of a, where a− = a−2 ⊕ a−1 is the negatively graded part of a.

In section 5.1 we set up the calculation of H2,2(a−, a), which will be described in

section 5.2. This result will then be used in section 5.3 to classify the filtered deformations.

The results are summarised in Theorem 14 in section 5.4.

5.1 Preliminaries

Here we set up the calculation of the Spencer cohomology H2,2(a−, a). We introduce the

Spencer complex of a in complete analogy to the Spencer complex of p (cf. section 2):

one has simply to replace so(V ) with h in the definitions. For instance any element ζ ∈

C2,2(a−, a) can be uniquely written as the sum ζ = α+ β + γ, where

α ∈ Hom(∧2V, V ) , β ∈ Hom(V ⊗ S, S) and γ ∈ Hom(⊙2S, h) (5.1)

and the Lie brackets of a general filtered deformations of a take the form

[A,B] = AB −BA

[A, s] = σ(A)s

[A, v] = Av + λ(A, v)

[s, s] = κ(s, s) + γ(s, s)

[v, s] = β(v, s)

[v, w] = α(v, w) + δ(v, w) ,

(5.2)

for some maps λ : h⊗ V → h and δ : ∧2V → h, where A,B ∈ h, s ∈ S, v, w ∈ V .

We recall that a transitive and fundamental Z-graded Lie superalgebra a =
⊕

ap

with negatively graded part a− =
⊕

p<0 ap is called a full prolongation of degree k if

Hd,1(a−, a) = 0 for all d ≥ k.

Lemma 9. Let a = a−2 ⊕ a−1 ⊕ a0 be a Z-graded subalgebra of the Poincaré superalgebra

which differs only in zero degree. Then a is fundamental, transitive and Hd,2(a−, a) = 0

for all even d > 2. Furthermore it is a full prolongation of degree k = 2.

Proof. We only show the last claim, the others follow as in the proof of Lemma 1. Any

ζ ∈ C2,1(a−, a) satisfies ζ(V ) ⊂ h, ζ(S) ⊂ a1 = 0 and

∂ζ(s1, s2) = −ζ(k(s1, s2))

∂ζ(s1, v1) = −σ(ζ(v1))s1

∂ζ(v1, v2) = ζ(v1)v2 − ζ(v2)v1

for all s1, s2 ∈ S, v1, v2 ∈ V . The first equation directly implies that ζ = 0 is the only

cocycle and hence H2,1(a−, a) = 0. If d > 2 then Cd,1(a−, a) = 0 for degree reasons.

Remark. One can actually prove that a is a full prolongation of degree k = 1, based on

the non-trivial fact that the so-called “maximal prolongation” g∞ of a− = V ⊕S is a simple

Lie superalgebra of type sl(1|4) with a special Z grading of the form g∞ = g∞−2 ⊕ · · · ⊕ g∞2 ,

cf. [58]; but the simpler result of Lemma 9 suffices for our purposes.
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To state the main first intermediate result on filtered deformations g of a we recall

that the Lie brackets of g have components of nonzero degree: the sum µ : a⊗ a → a of all

components of degree 2 and the unique component δ : ∧2V → h of degree 4.

Proposition 10. Let a = V ⊕S⊕ h be a Z-graded subalgebra of the Poincaré superalgebra

p = V ⊕S⊕so(V ) which differs only in zero degree. If g is a filtered deformation of a then:

1. µ|a−⊗a− is a cocycle in C2,2(a−, a) and its cohomology class

[µ|a−⊗a− ] ∈ H2,2(a−, a)

is h-invariant (that is, the cocycle µ|a−⊗a− is h-invariant up to coboundaries); and

2. if g′ is another filtered deformation of a such that [µ′|a−⊗a− ] = [µ|a−⊗a− ] then g′ is

isomorphic to g as a filtered Lie superalgebra.

Proof. The first claim follows directly from Proposition 2.2 of [37]. Let now g and g′

be filtered deformations of a such that [µ|a−⊗a− ] = [µ′|a−⊗a− ]. Then (µ − µ′)|a−⊗a− is a

Spencer coboundary and we may first assume without any loss of generality that µ|a−⊗a− =

µ′|a−⊗a− by Proposition 2.3 of [37]. Moreover, since a is a fundamental and transitive full

prolongation of degree k = 2 by Lemma 9, Proposition 2.6 of [37] applies and we may

also assume µ = µ′ without any loss of generality. In other words we just showed that g′

is isomorphic as a filtered Lie superalgebra to another filtered Lie superalgebra g′′ which

satisfies µ′′ = µ.

Now, given any two filtered deformations g and g′ of a with µ = µ′ it is easy to see

that δ − δ′ = (δ − δ′)|a−⊗a− is a Spencer cocycle (use e.g., [37] equation 2.6). However

H4,2(a−, a) = ker ∂|C4,2(a−,a) = 0 by Lemma 9 and hence δ = δ′. This proves that any two

filtered deformations g and g′ of a with [µ′|a−⊗a− ] = [µ|a−⊗a− ] are isomorphic.

In other words, filtered deformations are determined by the space H2,2(a−, a)
h of h-

invariant elements inH2,2(a−, a). In particular the components of non-zero filtration degree

λ = µ|h⊗V : h⊗V → h and δ : ∧2V → h are completely determined by the class [µ|a−⊗a− ] ∈

H2,2(a−, a)
h, up to isomorphisms of filtered Lie superalgebras.

We will now describe H2,2(a−, a). We recall that this group has already been deter-

mined in Proposition 3 when a = p is the Poincaré superalgebra. Therein we also described

the kernel H 2,2 of the Spencer operator acting on Hom(V ⊗ S, S)⊕ Hom(⊙2S, so(V )): it

consists of the maps β+γ ∈ Hom(V ⊗S, S)⊕Hom(⊙2S, so(V )) which are of the form given

by Proposition 3. To avoid confusion with the general components (5.1) we will denote

these maps by βΦ + γΦ from now on, that is we set Φ = (a, b, ϕ) ∈ 2R ⊕ V and

βΦ(v, s) = v · (a+ b vol) · s−
1

2
(v · ϕ+ 3ϕ · v) · vol ·s ,

γΦ(s, s)v = −2κ(s, β(v, s)) ,

for all v ∈ V and s ∈ S, according to Proposition 3. In addition we set

γϕ(s, s)v = 2κ(s, (ϕ ∧ v) · vol ·s) ,

γ(a,b)(s, s)v = −2aκ(s, v · s)− 2bκ(s, v · vol ·s) ,

for all v ∈ V , s ∈ S.
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We will also determine the h-invariant classes in H2,2(a−, a), the Lie subalgebras h ⊂

so(V ) for whichH2,2(a−, a)
h 6= 0, hence the graded subalgebras a = V ⊕S⊕h of p admitting

nontrivial filtered deformations. The condition H2,2(a−, a)
h 6= 0 has strong consequences

and, as we will now see, gives rise to a dichotomy: either ϕ = 0 and a2 + b2 6= 0 or ϕ 6= 0

and a = b = 0.

5.2 The cohomology group H2,2(a−, a)

We start with the following

Proposition 11. Let a = V ⊕S⊕ h be a Z-graded subalgebra of the Poincaré superalgebra

p = V ⊕ S ⊕ so(V ) which differs only in zero degree. Then

H2,2(a−, a) =

{
βΦ + γΦ + ∂ψ̃

∣∣∣Φ ∈ 2R ⊕ V, ψ̃ : V → so(V ) s.t. γΦ(s, s)− ψ̃(κ(s, s)) ∈ h
}

{∂ψ |ψ : V → h}

and

(i) the cohomology class [βΦ + γΦ + ∂ψ̃] is trivial if and only if Φ = 0;

(ii) the condition γΦ(s, s)−ψ̃(κ(s, s)) ∈ h is satisfied for all s ∈ S if and only if separately

γϕ(s, s)− ψ̃(κ(s, s)) ∈ h , (5.3)

γ(a,b)(s, s) ∈ h , (5.4)

for all s ∈ S;

(iii) if [βΦ + γΦ + ∂ψ̃] is an h-invariant cohomology class then h leaves ϕ invariant, that

is h ⊂ hϕ where hϕ = so(V ) ∩ stab(ϕ) and stab(ϕ) is the Lie algebra of the stabiliser

of ϕ in GL(V ).

In particular if [βΦ + γΦ + ∂ψ̃] ∈ H2,2(a−, a) is a nontrivial and h-invariant cohomology

class then exactly one of the following two cases occurs:

(1) if ϕ = 0 then a2 + b2 6= 0, γΦ(s, s) = γ(a,b)(s, s) ∈ h for all s ∈ S and the cohomology

class [βΦ + γΦ + ∂ψ̃] = [βΦ + γΦ];

(2) if ϕ 6= 0 then a = b = 0 and

γϕ(s, s) ∈ hϕ , (5.5)

ψ̃(κ(s, s)) ∈ hϕ , (5.6)

for all s ∈ S.

Proof. From Lemma 2 we know that given any α ∈ Hom(∧2V, V ), there is a unique

ψ̃ ∈ Hom(V, so(V )) such that ∂ψ̃ = α + β̃ + γ̃, for some β̃ ∈ Hom(V ⊗ S, S) and

γ̃ ∈ Hom(⊙2S, so(V )). Any cochain α + β + γ ∈ C2,2(a−, a) may be therefore uniquely

written as

α+ β + γ = (α+ β + γ − ∂ψ̃) + ∂ψ̃ = (β − β̃) + (γ − γ̃) + ∂ψ̃ ,
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where β − β̃ ∈ Hom(V ⊗ S, S) and γ − γ̃ ∈ Hom(⊙2S, so(V )). If α + β + γ is a cocycle,

then so is (β− β̃)+ (γ− γ̃), so that by Proposition 3, β− β̃ = βΦ and γ− γ̃ = γΦ for some

Φ ∈ 2R ⊕ V or, in other words,

ker ∂
∣∣
C2,2(a−,a)

⊂ H
2,2 ⊕ ∂Hom(V, so(V )) . (5.7)

Conversely equation (2.2) tells us that ∂ψ̃(s, s) = −ψ̃(κ(s, s)) for all s ∈ S so that an

element βΦ + γΦ + ∂ψ̃ is in C2,2(a−, a) if and only if

γΦ(s, s)− ψ̃(κ(s, s)) ∈ h , (5.8)

for all s ∈ S. This fact together with (5.7) yield immediately the claim on H2,2(a−, a).

If Φ = 0, then ψ̃(κ(s, s)) ∈ h for all s ∈ S and ∂ψ̃ is in the image of C2,1(a−, a) =

Hom(V, h), proving one implication of claim (i). The other implication is trivial.

We will now have a closer look at condition (5.8), using that ⊙2S = ∧1V ⊕∧2V . From

(ii) of Proposition 3 we have

γΦ(s, s)v = −2κ(s, βΦ(v, s))

= −2aκ(s, v · s)− 2bκ(s, v · vol ·s) + 2κ(s, (ϕ ∧ v − 2η(ϕ, v)) · vol ·s)

= −2aκ(s, v · s)− 2bκ(s, v · vol ·s) + 2κ(s, (ϕ ∧ v) · vol ·s) ,

with the first two terms (resp. last term) in the r.h.s. of the above equation acting on

the component ∧2V (resp. ∧1V ) of ⊙2S but trivially on the other component ∧1V (resp.

∧2V ). In particular condition (5.8) splits into (5.3) and (5.4), proving claim (ii).

Let now [βΦ + γΦ + ∂ψ̃] ∈ H2,2(a−, a) be an h-invariant class; i.e., for any x ∈ h there

is a ψ ∈ Hom(V, h) such that x · (βΦ + γΦ + ∂ψ̃) = ∂ψ. In other words, in terms of the

so(V )-equivariant projections (2.4), we have:

x · (πα(∂ψ̃)) = πα(∂ψ) , (5.9)

x · (βΦ + πβ(∂ψ̃)) = πβ(∂ψ) , (5.10)

x · (γΦ + πγ(∂ψ̃)) = πγ(∂ψ) . (5.11)

Equation (5.9) and the so(V )-equivariance of πα and ∂ imply

(πα ◦ ∂)(ψ) = (πα ◦ ∂)(x · ψ̃)

so that x · ψ̃ = ψ, by Lemma 2. Equation (5.10) yields therefore

πβ(∂ψ) = x ·
(
βΦ + πβ(∂ψ̃)

)
= x · βΦ + x · πβ(∂ψ̃)

= x · βΦ + πβ(∂(x · ψ̃)) = x · βΦ + πβ(∂ψ)

from which βx·ϕ = x · βϕ = x · βΦ = 0. This proves claim (iii).

We now prove the last claims. Let [βΦ + γΦ + ∂ψ̃] be a nontrivial h-invariant class. If

ϕ = 0 then a2 + b2 6= 0 by (i) and ∂ψ̃ is in the image of C2,1(a−, a) = Hom(V, h) by (5.3).

This fact together with (5.4) immediately gives case (1).
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If ϕ 6= 0 then (ii) and (iii) imply

γϕ(s, s)− ψ̃(κ(s, s)) ∈ hϕ , (5.12)

γ(a,b)(s, s) ∈ hϕ , (5.13)

for all s ∈ S. We fix an orthonormal basis {eµ} of V , use the Einstein summation convention

and note that equation (5.13) gives

0 = γ(a,b)(s, s)ϕ

= 2ϕµ(s̄ΓµΓν(a+ b vol)s)eν

= 2aϕµ(s̄ΓµΓνs)e
ν + 2bϕµ(s̄ΓµΓν vol s)e

ν

= 2aϕµ(s̄Γµνs)e
ν + 2bϕµ(s̄Γµν vol s)e

ν

= 2s̄(ϕµ(aΓµν + bΓµν vol))se
ν ,

for all s ∈ S, hence ϕµ(aΓµν + bΓµν vol) = 0 for every 0 ≤ ν ≤ 3. Since ϕ 6= 0 this readily

implies a = b = 0. Similarly

γϕ(s, s)ϕ = −ϕµ(s̄Γµ(Γνϕ+ 3ϕΓν) vol s)e
ν

= −2ϕµϕρ(s̄ΓµΓρν vol s)e
ν

= −2ϕµϕρ(s̄Γµρν vol s)e
ν

= 0 ,

so that γϕ(s, s) ∈ hϕ for all s ∈ S automatically and, from equation (5.12), we infer that

ψ̃(κ(s, s)) ∈ hϕ for all s ∈ S too. This is case (2).

By the results of Proposition 10 and Proposition 11, we need only to consider the

filtered deformations associated to h-invariant cohomology classes in H2,2(a−, a) with Φ 6=

0. Indeed if Φ = 0 then [µ|a−⊗a− ] = 0 and the associated filtered Lie superalgebras are just

the Z-graded subalgebras of the Poincaré superalgebra.

We now investigate separately the cohomology classes in family (1) and (2) of Propo-

sition 11.

Lemma 12. Let [βΦ + γΦ] ∈ H2,2(a−, a) be a nontrivial and h-invariant cohomology class

with ϕ = 0. Then h = Im(γΦ) = so(V ).

Proof. First of all, as a2 + b2 6= 0 by Proposition 11, we have that right multiplication by

a+b vol in Cℓ(V ) is a linear isomorphism. In particular it restricts to a linear isomorphism

of ∧2V ⊂ Cℓ(V ). On the other hand, from Proposition 3:

η(w, γΦ(s, s)v) = −2η(w, κ(s, v · (a+ b vol) · s))

= −2 〈s, w · v · (a+ b vol) · s〉

= −2 〈s, w ∧ v · (a+ b vol) · s〉 ,

for all w ∧ v ∈ ∧2V ⊂ Cℓ(V ) and s ∈ S. Since γΦ(s, s) ∈ h for all s ∈ S from (1) of

Proposition 11 and ⊙2S = ∧1V ⊕ ∧2V , the claim follows.
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To proceed further, we need to consider the case where ϕ 6= 0, a = b = 0. It is

however sufficient to consider ϕ up to the action of CSO(V ) = R× × SO(V ). To see it, we

note that the group CSpin(V) with Lie algebra co(V ) is a double-cover of CSO(V ) and it

naturally acts on the Poincaré superalgebra p = V ⊕S⊕so(V ) by 0-degree Lie superalgebra

automorphisms (t Id ∈ CSpin(V) acts with eigenvalues 0, e−t and e−2t on, respectively,

so(V ), S and V ). In particular any element c ∈ CSpin(V) sends a Z-graded subalgebra

a = V ⊕ S ⊕ h of p into an (isomorphic) Z-graded subalgebra a′ = c · a = V ⊕ S ⊕ (c · h)

of p and, if g is a filtered deformation of a associated with ϕ then g′ = c · g is a filtered

deformation of a′, which is associated with ϕ′ = c · ϕ.

We will distinguish ϕ according to whether it is spacelike, timelike or lightlike and

denote by Π ⊂ V the line defined by the span of ϕ. In the first two cases we can decompose

V = Π ⊕ Π⊥ into an orthogonal direct sum and hϕ = so(Π⊥) ⊂ so(V ). If ϕ is lightlike,

we choose an η-Witt basis for V such that V = R 〈e+, e−〉 ⊕ W and ϕ = e+. Our plane

is Π = R 〈e+〉 and hϕ = so(W ) A (e+ ∧ W ) ⊂ so(V ), where e+ ∧ W is the abelian Lie

subalgebra of so(V ) consisting of null rotations fixing e+. In this case we decompose any

v ∈ V into

v = v+ + v− + v⊥ ,

where v+ ∈ Π, v− ∈ R 〈e−〉 and v⊥ ∈ W .

Lemma 13. Let [βΦ + γΦ + ∂ψ̃] ∈ H2,2(a−, a) be a nontrivial and h-invariant cohomology

class with ϕ 6= 0 and a = b = 0. Then Im(γΦ) = hϕ and there exists a unique cocycle

representative βΦ + γΦ + ∂ψ̃ for which γΦ(s, s)− ψ̃(κ(s, s)) = 0 for all s ∈ S.

Proof. We already know from (2) of Proposition 11 that Im(γΦ) ⊂ hϕ. In addition:

η(w, γΦ(s, s)v) = η(w, κ(s, (v · ϕ+ 3ϕ · v) · vol ·s))

= −2η(w, κ(s, v · ϕ · vol ·s))

= 2 〈s, w · v · ıϕ vol ·s〉

= 2 〈s, ıwıv(ıϕ vol) · s〉 , (5.14)

for all v, w ∈ V . Using (5.14) and ⊙2S = ∧1V ⊕ ∧2V , we first see that γΦ(∧2V ) = 0.

We now break our arguments into two cases, depending on whether or not the line Π

corresponding to ϕ is degenerate.

If ϕ is spacelike or timelike then from (5.14) we see that γΦ(Π) = 0 whereas

γΦ|Π⊥ : Π⊥ ⊂ ∧1V −→ so(Π⊥)

is an so(Π⊥)-equivariant monomorphism, hence an isomorphism by dimensional reasons.

If ϕ is lightlike we decompose

η(w, γΦ(s, s)v) =2 〈s, ıwıv(ıϕ vol) · s〉

=2
〈
s, ıw⊥

ıv−(ıϕ vol) · s
〉
+2

〈
s, ıw−

ıv⊥(ıϕ vol) · s
〉
+2 〈s, ıw⊥

ıv⊥(ıϕ vol) · s〉 ,

(5.15)
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which readily gives γΦ(Π) = 0, γΦ(e−) is a generator of so(W ) and, finally, γΦ(W ) =

e+ ∧W . In this case γΦ is an hϕ-equivariant isomorphism from R 〈e−〉 ⊕W to hϕ.

To prove the last statement, we recall that γΦ(s, s) − ψ̃(κ(s, s)) ∈ h for all s ∈ S, by

Proposition 11. On the other hand we just saw that the operator γΦ − ψ̃(κ(−,−)) acts

trivially on ∧2V ⊂ ⊙2S and possibly non-trivially only on ∧1V ⊂ ⊙2S. In other words it

is an operator of the form ψ(κ(−,−)) : ⊙2S → h for some ψ ∈ C2,1(a−, a) = Hom(V, h)

and such a ψ is clearly unique, since a is fundamental. Subtracting the coboundary ∂ψ to

the cocycle βΦ + γΦ + ∂ψ̃ gives the last claim.

We collect here for later use different equivalent characterizations of the map ψ̃ : V →

so(V ) associated to the unique cocycle representative of Lemma 13:

(i) ψ̃(κ(s, s)) = γϕ(s, s) for all s ∈ S;

(ii) ψ̃(u) = 2ıuıϕ vol for all u ∈ V ;

(iii) ψ̃(u)v = 2ıvıuıϕ vol for all u, v ∈ V ;

(iv) η(w, ψ̃(u)v) = 2ıwıvıuıϕ vol for all u, v, w ∈ V ;

(v) ψ̃(u)s = −(ϕ ∧ u) · vol ·s for all u ∈ V and s ∈ S;

(vi) (ψ̃(u)v) · s = 2(ϕ ∧ u ∧ v) · vol ·s for all u, v ∈ V and s ∈ S.

We also remark that ψ̃ is an hϕ-equivariant map with the kernel Π and image hϕ.

5.3 Integrability of the infinitesimal deformations

In this section we construct a filtered deformation g for any of the nontrivial h-invariant

elements in H2,2(a−, a). Our description of g will be very explicit and rely on a direct check

of the Jacobi identities. To describe the Lie superalgebra structure of g, it is convenient

to introduce a formal parameter t which keeps track of the order of the deformation. In

particular, the original graded Lie superalgebra structure on a subalgebra a = V ⊕ S ⊕ h

of the Poincaré superalgebra p = V ⊕ S ⊕ so(V ) has order t0 whereas the infinitesimal

deformation has order t.

From Proposition 10, Proposition 11, and Lemma 12, Lemma 13 we know that there

are two different families of non-trivial filtered deformations g. The first family has ϕ = 0,

a2 + b2 6= 0 and h = so(V ), that is a = p. In this case γΦ : ⊙2S → so(V ) is surjective and

by (2) of Proposition 11 the filtered Lie superalgebra g has the brackets of the form

[A, v] = Av + tλ(A, v)

[A, s] = σ(A)s

[A,B] = AB −BA

[v, w] = t2δ(v, w)

[v, s] = tβΦ(v, s) = tv · (a+ b vol) · s

[s, s] = κ(s, s) + tγΦ(s, s) ,

(5.16)

where A,B ∈ so(V ), s ∈ S, v, w ∈ V , for some maps λ : so(V ) ⊗ V → so(V ) and

δ : ∧2V → so(V ) to be determined. In other words the brackets on V ⊗ S and ⊙2S are

respectively given by βΦ and γΦ and we can always assume α = 0 without any loss of

generality.
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The second family has ϕ 6= 0, a = b = 0 and h is a Lie subalgebra of the stabiliser

hϕ = so(V ) ∩ stab(ϕ), see (iii) of Proposition 11. We recall that ϕ ∈ ∧1V can be either

spacelike, timelike or lightlike. In this case the bracket on ⊙2S is simply given by the Dirac

current and the filtered Lie superalgebra g has the form

[A, v] = Av + tλ(A, v)

[s, s] = κ(s, s)

[A, s] = σ(A)s

[A,B] = AB −BA

[v, w] = tα(v, w) + t2δ(v, w) = tπα(∂ψ̃)(v, w) + t2δ(v, w)

= tψ̃(v)w − tψ̃(w)v + t2δ(v, w)

[v, s] = tβ(v, s) = tβΦ(v, s) + tπβ(∂ψ̃)(v, s)

= −1
2 t(v · ϕ+ 3ϕ · v) · vol ·s+ tψ̃(v)s ,

(5.17)

where A,B ∈ h, s ∈ S, v, w ∈ V , for some maps λ : h ⊗ V → h and δ : ∧2V → h to be

determined.

To go through all the Jacobi identities systematically, we use the notation [ijk] for

i, j, k = 0, 1, 2 to denote the identity involving X ∈ a−i, Y ∈ a−j and Z ∈ a−k. We first

consider the second case (5.17), which is slightly more involved, and claim that the Jacobi

identities are satisfied if we set both λ and δ to be zero. To show this, it is first convenient

to note that [V, V ] ⊂ V , [V, S] ⊂ S and [S, S] ⊂ V and prove that the putative bracket

operations restricted on V ⊕ S satisfy the Jacobi identities. We have:

• the [112] identity is satisfied by virtue of the characterization (i) of ψ̃, the hϕ-

equivariance of the Dirac current and the first cocycle condition (2.5);

• the [111] identity is satisfied by virtue of the characterization (i) of ψ̃ and the second

cocycle condition (2.6);

• the [122] identity is satisfied provided

[βv, βw]s− βα(v,w)s = 0 , (5.18)

for all v, w ∈ V and s ∈ S;

• the [222] identity is satisfied provided

S(α(u, α(v, w))) = 0 , (5.19)

where S is the cyclic sum on u, v, w ∈ V .

Now using characterization (iv) of ψ̃ one can check that

η(x, ψ̃(u)ψ̃(v)w) = 4η(ıvıwıϕ vol, ıxıuıϕ vol) = η(x, ψ̃(ψ̃(w)v)u)

for all u, v, w, x ∈ V , from which

α(u, α(v, w)) = ψ̃(u)ψ̃(v)w − ψ̃(u)ψ̃(w)v + ψ̃(ψ̃(w)v)u− ψ̃(ψ̃(v)w)u

= 2ψ̃(u)ψ̃(v)w − 2ψ̃(u)ψ̃(w)v

= 4ψ̃(u)ψ̃(v)w
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and S(α(u, α(v, w))) = 4S(ψ̃(u)ψ̃(v)w) = 0 by characterization (iii) of ψ̃. This is the [222]

Jacobi identity (5.19). On the other hand, for all v, w ∈ V and s ∈ S we have

βvβws = −1
2βv((w · ϕ+ 3ϕ · w) · vol ·s) + βv(ψ̃(w)(s))

= −(ϕ ∧ v − 2η(ϕ, v)) · (ϕ ∧ w − 2η(ϕ,w)) · s− (ϕ ∧ v − 2η(ϕ, v)) · vol ·ψ̃(w)s

− vol ·ψ̃(v)(ϕ ∧ w − 2η(ϕ,w)) · s+ ψ̃(v)ψ̃(w)s

and therefore, repeatedly using equations (A.4) and the fact that ψ̃(u)ϕ = 0 for all

u ∈ V , also

[βv, βw]s = −[ϕ ∧ v, ψ̃(w)] vol ·s+ [ϕ ∧ w, ψ̃(v)] vol ·s

− [ϕ ∧ v, ϕ ∧ w]s+ [ψ̃(v), ψ̃(w)]s

= (ϕ ∧ ψ̃(w)v) · vol ·s− (ϕ ∧ ψ̃(v)w) · vol ·s

− 2η(ϕ,ϕ)v ∧ w · s+ 2η(ϕ, v)ϕ ∧ w · s− 2η(ϕ,w)ϕ ∧ v · s

+ [ψ̃(v), ψ̃(w)]s .

(5.20)

In a similar way we can prove:

βα(v,w)s = (ϕ ∧ ψ̃(w)v) · vol ·s− (ϕ ∧ ψ̃(v)w) · vol ·s+ ψ̃(ψ̃(v)w)s− ψ̃(ψ̃(w)v)s . (5.21)

In summary we use (5.20) and (5.21), together with characterizations (v) and (vi) of ψ̃, to

arrive at:

[βv, βw]s− βα(v,w)s = −2η(ϕ,ϕ)v ∧ w · s+ 2η(ϕ, v)ϕ ∧ w · s− 2η(ϕ,w)ϕ ∧ v · s

+ [ψ̃(v), ψ̃(w)]s− ψ̃(ψ̃(v)w)s+ ψ̃(ψ̃(w)v)s

= −2η(ϕ,ϕ)v ∧ w · s+ 2η(ϕ, v)ϕ ∧ w · s− 2η(ϕ,w)ϕ ∧ v · s

− [ϕ ∧ v, ϕ ∧ w]s− 2ϕ · (ϕ ∧ v ∧ w)s− 2(ϕ ∧ v ∧ w) · ϕ · s

= 0 ,

proving the [122] Jacobi identity (5.18).

Let g− = (V ⊕S, [−,−]) be the filtered Lie superalgebra structure on V ⊕S we have just

described. Note that the Lie bracket of g− is defined in terms of ψ̃, Clifford multiplication,

Dirac current of spinors and the vector ϕ, so that the stabilizer hϕ = so(V ) ∩ stab(ϕ) of

ϕ in so(V ) acts naturally on g− by outer derivations. It is then clear from (5.17) that, for

any subalgebra h of hϕ, the semidirect sum g = h A g− is the required filtered deformation

of a = V ⊕ S ⊕ h.

We now consider the first case (5.16) and set λ to be zero. We have:

• the [000] identity is satisfied since so(V ) is a Lie algebra;

• the [001] and [002] identities are satisfied because S and V are so(V )-modules;

• the [011] and [012] identities are satisfied because the [SS], [SV ] Lie brackets are

so(V )-equivariant;
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• the [111] identity is satisfied by virtue of the second cocycle condition (2.6);

• the [022] identity requires δ : ∧2V → so(V ) to be so(V )-equivariant;

• the [222] identity is satisfied provided

S(δ(v, w)u) = 0 , (5.22)

where S is the cyclic sum on v, w, u ∈ V ;

• the [122] identity is satisfied provided

δ(v, w)s = [βΦ
v , β

Φ
w ]s , (5.23)

for all v, w ∈ v and s ∈ S;

• the [112] identity has a component of order t, which is satisfied by virtue of the first

cocycle condition (2.5) and one of order t2, which reads

δ(v, κ(s, s)) = 2γΦ(βΦ
v s, s) , (5.24)

for all v ∈ V and s ∈ S;

Since ∧2V is an irreducible so(V )-representation of complex type, we have that the [022]

Jacobi identity is satisfied if and only if there exist r, r′ ∈ R such that

δ(v, w)u = r(η(v, u)w − η(w, u)v) + r′ ⋆ (v ∧ w ∧ u) ,

for all v, w, u ∈ V . However it is easy to see that (5.22) implies r′ = 0.

We will now show that (5.23) and (5.24) hold true for r = 4(a2 + b2). Indeed:

δ(v, w)s = r
4(v · w · s− w · v · s) ,

[βΦ
v , β

Φ
w ]s = v · (a+ b vol) · w · (a+ b vol) · s− w · (a+ b vol) · v · (a+ b vol) · s

= (a2 + b2)(v · w · s− w · v · s) ,

for all v, w ∈ V , s ∈ S, whereas

η(δ(v, κ(s, s))u,w) = r(η(v, u)η(κ(s, s), w)− η(κ(s, s), u)η(v, w))

= r(η(v, u) 〈s, w · s〉 − η(v, w) 〈s, u · s〉) ,

2η(γΦ(βΦ
v s, s)u,w) = −2η(κ(βΦ

v s, β
Φ
u s), w)− 2η(κ(s, βΦ

u β
Φ
v s), w)

= 2(a2 + b2)(〈s, v · w · u · s〉 − 〈s, w · u · v · s〉)

= 4(a2 + b2)(η(v, u) 〈s, w · s〉 − η(v, w) 〈s, u · s〉) ,

for all v, w, u ∈ V , s ∈ S.
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5.4 Summary

We summarise the results of sections 5.1, 5.2 and 5.3 in the following

Theorem 14. There are exactly two families of nontrivial filtered deformations g = g0̄⊕g1̄

of Z-graded subalgebras a = V ⊕ S ⊕ h of the Poincaré superalgebra p = V ⊕ S ⊕ so(V ),

which we now detail:

1. In this case h = so(V ), there exist a, b ∈ R such that a2+ b2 6= 0 and the Lie brackets

of g are given by

[A, v] = Av

[A, s] = σ(A)s

[A,B] = AB −BA

[v, w] = 4(a2 + b2)v ∧ w

[v, s] = v · (a+ b vol) · s

[s, s] = κ(s, s) + γ(a,b)(s, s) ,

(5.25)

where v, w ∈ V , s ∈ S, A,B ∈ so(V ) and γ(a,b)(s, s) ∈ so(V ) is defined by

γ(a,b)(s, s)v = −2κ(s, v · (a+ b vol) · s) ;

2. In this case there exists a nonzero ϕ ∈ V , h is any Lie subalgebra of the stabiliser

hϕ = so(V ) ∩ stab(ϕ) of ϕ in so(V ) and the Lie brackets of g are given by

[A, v] = Av

[A, s] = σ(A)s

[A,B] = AB −BA

[v, w] = ψ̃(v)w − ψ̃(w)v

[v, s] = −
1

2
(v · ϕ+ 3ϕ · v) · vol ·s+ ψ̃(v)s

[s, s] = κ(s, s) ,

(5.26)

where v, w ∈ V , s ∈ S, A,B ∈ h and ψ̃(v) ∈ hϕ is defined by ψ̃(v) = 2ıvıϕ vol. In

particular g− = V ⊕S is an ideal of g and g = h A g− is the semidirect sum of h and

g− (h acts on g− by restricting the vector and spinor representations of so(V )).

Note that the associated homogeneous Lorentzian manifolds (M = G/H, g), Lie(G) = g0̄,

Lie(H) = h always admit a reductive decomposition g0̄ = h⊕ V . In the first family (M, g)

is locally isometric to AdS4 whereas in the second family the geometry is that of a Lie group

with a bi-invariant metric, more precisely:

(i) If ϕ is spacelike then hϕ ≃ so(1, 2) and (M, g) is locally isometric to AdS3 × R;

(ii) If ϕ is timelike then hϕ ≃ so(3) and (M, g) is locally isometric to R × S3;

(iii) If ϕ is lightlike then hϕ ≃ so(2) A R2 and we have the so-called Nappi-Witten

group [57], a central extension of the Lie group of Euclidean motions of the plane.

Explicitly, if we choose an η-Witt basis for V with ϕ = e+, then the only nonzero Lie

brackets of the Lie algebra of the Nappi-Witten group are:

[e−, e1] = 4e2 , [e−, e2] = −4e1 , [e1, e2] = −4e+ .
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6 Conclusions

In this paper, we have considered the supersymmetries of rigid supersymmetric field theories

on Lorentzian four-manifolds from the viewpoint of their Killing superalgebras.

We showed that the relevant Killing spinor equations, which we identify with the

defining condition for bosonic supersymmetric backgrounds of minimal off-shell supergrav-

ity in four dimensions, admit a cohomological interpretation in terms of the Spencer group

H2,2(p−, p) of the N=1 Poincaré superalgebra p in four dimensions. This result is in

analogy with a similar result in eleven dimensions [39, 40].

We then gave a self-contained proof of the fact that supergravity Killing spinors gen-

erate a Lie superalgebra, and that this Lie superalgebra is a filtered subdeformation of p.

Finally we classified, up to local isometry, the geometries admitting the maximum number

of Killing spinors: Minkowski space, AdS4 and the nonabelian Lie groups with a Lorentzian

bi-invariant metric, namely AdS3×R, R × S3 and the Nappi-Witten group NW4. Our ap-

proach here is based on two independent arguments. In section 4 we solved the flatness

equations for the connection defining the Killing spinor equations and described the corre-

sponding Lorentzian geometries. In section 5 we used again Spencer cohomology techniques

to describe the filtered subdeformations of p with maximum odd dimension and recovered

in this way the Killing superalgebras of the maximally supersymmetric backgrounds.

None of the geometries in our classification are new. The novelty in this paper lies

in our approach, which systematises the search for backgrounds on which one can define

rigid supersymmetric field theories by mapping it to an algebraic problem on which we

can bring to bear representation-theoretic techniques. In forthcoming work, we shall apply

these techniques to a broader class of field theories with rigid supersymmetry in higher

dimensions.
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A Conventions and spinorial algebraic identities

In this appendix we define our conventions for Clifford algebras, spinors and derive a

number of useful algebraic identities we will have ample opportunity to apply in the bulk

of the paper.

A.1 Clifford algebra conventions

Let (V, η) be a four-dimensional Lorentzian vector space, by which we mean that η has sig-

nature −2 (“mostly minus”). We may choose an η-orthonormal basis eµ = (e0, e1, e2, e3)

with ηµν = η(eµ, eν) = diag(+1,−1,−1,−1). Such a basis defines an isomorphism

(V, η) ∼= R1,3.
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The Clifford algebra Cℓ(V ) associated to (V, η) is the real, associative, unital algebra

generated by V (and the identity 1) subject to the Clifford relation (please notice the sign!)

v2 = −η(v, v)1 ∀ v ∈ V . (A.1)

As a vector space, Cℓ(V ) ∼= ΛV =
⊕4

p=0 ∧
pV . If v ∈ V and φ ∈ ∧pV , their Clifford

product, denoted by ·, is given by

v · φ = v ∧ φ− ιv♭φ , (A.2)

where v♭ ∈ V ∗ is the dual covector defined by the inner product: v♭(w) = η(v, w), for all

w ∈ V . We will often drop the superscript ♭ if it is unambiguous to do so. The Clifford

algebra is not commutative:

φ · v = (−1)p (v ∧ φ+ ιvφ) . (A.3)

Continuing in this way we may derive the Clifford product of φ ∈ ∧pV with bivectors:

(v ∧ w) · φ = v ∧ w ∧ φ+ ιvιwφ− v ∧ ιwφ+ w ∧ ιvφ

(v ∧ w) · φ = v ∧ w ∧ φ+ ιvιwφ+ v ∧ ιwφ− w ∧ ιvφ .
(A.4)

Let us introduce the volume element vol = e0 ∧ e1 ∧ e2 ∧ e3 ∈ ∧4V . It obeys

vol2 = −1 and vol ·φ = (−1)pφ · vol ,

for φ ∈ ∧pV . In particular, it is not central. Clifford multiplication by the volume element

agrees (up to a sign) with Hodge duality:

⋆ φ = (−1)p(p+1)/2φ · vol , (A.5)

for φ ∈ ∧pV . It follows that ⋆2 = (−1)p+1 on ∧pV . In particular, it is a complex structure

on bivectors, as expected.

The Lie algebra so(V ) of η-skewsymmetric endomorphisms of V is isomorphic, as a

vector space, to ∧2V . If v ∧w ∈ ∧2V , then the corresponding endomorphism is defined by

(v ∧ w)(u) = ιu♭(v ∧ w) = η(u, v)w − η(u,w)v . (A.6)

We embed so(V ) in Cℓ(V ) by sending

v ∧ w 7→ 1
4 [v, w] =

1
4(v · w − w · v) . (A.7)

Indeed, one checks that the Clifford commutator

[
1
4 [v, w], u

]
= η(u, v)w − η(u,w)v ,

agrees with equation (A.6).
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A.2 Clifford module conventions

The Clifford algebra Cl(V ) is isomorphic, as a real associative algebra, to the algebra

Mat4(R) of 4×4 real matrices. Being simple, this algebra has a unique (up to isomorphism)

nontrivial irreducible module, which is real and four-dimensional. Let S denote the unique

(up to isomorphism) irreducible Cℓ(V )-module, so that Cℓ(V ) ∼= EndS. Restricting to

so(V ) ⊂ Cℓ(V ), we obtain a representation σ of so(V ) on S:

σ(v ∧ w)s = 1
4 [v, w] · s . (A.8)

On S we have a symplectic structure 〈−,−〉 realising one of the canonical anti-

involutions of the Clifford algebra:

〈v · s1, s2〉 = −〈s1, v · s2〉 , (A.9)

for all v ∈ V and s1, s2 ∈ S. It follows that it is also so(V )-invariant:

〈σ(A)s1, s2〉 = −〈s1, σ(A)s2〉 , (A.10)

for all A ∈ so(V ). More generally, it follows from repeated application of equation (A.9),

that if φ ∈ ∧pV , then

〈φ · s1, s2〉 = (−1)p(p+1)/2 〈s1, φ · s2〉 . (A.11)

We can therefore decompose EndS ∼= ⊙2S ⊕ ∧2S into representations of so(V ) as

⊙2S ∼= ∧1V ⊕∧2V ∼= V ⊕so(V ) and ∧2S ∼= ∧0V ⊕∧3V ⊕∧4V ∼= 2R⊕V . (A.12)

Associated with s ∈ S there is a vector κ, called the Dirac current of s, that is

defined by

η(κ, v) = 〈s, v · s〉 , (A.13)

for all v ∈ V . There is also a Dirac 2-form ω(2) defined by

ω(2)(v, w) = 〈s, v · w · s〉 . (A.14)

(One checks that indeed ω(2)(v, w) = −ω(2)(w, v).) In addition we have a second 2-form

ω̃(2) and a 3-form ω(3) defined by

ω̃(2)(v, w) = 〈s, v · w · vol ·s〉 and ω(3)(u, v, w) = 〈s, u · v · w · vol ·s〉 . (A.15)

It follows that

ω̃(2) = − ⋆ ω(2) and ω(3) = − ⋆ ω(1) , (A.16)

where ω(1) = κ♭ is the one-form dual to the Dirac current.
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A.2.1 Gamma matrices

We denote the endomorphism of S corresponding to eµ ∈ V by Γµ and note that the

Clifford relation (A.1) turns into the well-known

ΓµΓν + ΓνΓµ = −2ηµν1 , (A.17)

where we let 1 denote also the identity endomorphism of S. The vector space isomorphism

Cℓ(V ) ∼= ΛV defines a vector space isomorphism EndS ∼= ΛV and this in turns defines the

standard R-basis of EndS:

1 Γµ Γµν ΓµΓ5 Γ5 , (A.18)

where we have introduced Γ5 = Γ0Γ1Γ2Γ3 as the endomorphism corresponding to the

volume element and Γµν = 1
2 [Γµ,Γν ]. In the same way we define the totally skewsymmetric

products Γµνρ and Γµνρσ, which obey

Γµνρ = ǫµνρσΓ
σΓ5 ΓµνΓ5 =

1
2ǫµνρσΓ

ρσ Γ5 = − 1
4!ǫµνρσΓ

µνρσ , (A.19)

where ǫ0123 = +1, we raise and lower indices with η and where the Einstein summation

convention is in force. Some useful identities involving ǫµνρσ are

1
6ǫµνρσǫ

ανρσ = −δαµ
1
2ǫµνρσǫ

αβρσ = −
(
δαµδ

β
ν − δβµδ

α
ν

)
, (A.20)

and

ǫµνρσǫ
αβγσ = −

(
δαµδ

β
ν δ

γ
ρ − δαµδ

γ
ν δ

β
ρ + δβµδ

γ
ν δ

α
ρ − δβµδ

α
ν δ

γ
ρ + δγµδ

α
ν δ

β
ρ − δγµδ

β
ν δ

α
ρ

)
, (A.21)

whereas some useful trace-like identities involving the Γµ are

ΓνΓµΓν = 2Γµ and ΓρΓµνΓρ = 0 . (A.22)

Let A ∈ so(V ) be an η-skewsymmetric endomorphism of V . Its matrix relative to an

η-orthonormal basis eµ has entries Aν
µ defined by

Aeµ = eνA
ν
µ , (A.23)

whose corresponding skew-symmetric bilinear form has entries

η(eν , Aeµ) = Aνµ . (A.24)

This in turn gives rise to a bivector 1
2A

νµ
eµ ∧ eν and the map so(V ) → ∧2V thus defined

is the inverse to the one in equation (A.6). From equation (A.8), we see that the spin

representation σ : so(V ) → EndS sends A to

σ(A) = 1
4A

νµΓµν = −1
4A

µνΓµν . (A.25)

It is often convenient to introduce the notation s1s2 = 〈s1, s2〉 and hence to write the

components of the Dirac current and the Dirac 2-form as

κµ = sΓµs and ω(2)
µν = sΓµνs , (A.26)
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and similarly for their (negative) duals

ω̃(2)
µν = sΓµνΓ5s and ω(3)

µνρ = sΓµνρΓ5s , (A.27)

which, using the relations (A.19), can be expressed as

ω̃(2)
µν = 1

2ǫµνρσω
(2)ρσ and ω(3)

µνρ = −ǫµνρσκ
σ . (A.28)

A.3 Spinorial identities

Let s1, s2 ∈ S. The rank-one endomorphism s2s1 defined by (s2s1)(s) = (s1s)s2 can be

expressed in terms of the standard basis for EndS via the Fierz identity

s2s1=
1
4

(
(s1s2)1 − (s1Γ

µs2)Γµ − 1
2(s1Γ

µνs2)Γµν − (s1Γ
µΓ5s2)ΓµΓ5 − (s1Γ5s2)Γ5

)
, (A.29)

which specialises when s1 = s2 = s to

ss = −1
4κ− 1

4ω
(2) = −1

4

(
κµΓµ + 1

2ω
(2)
µν Γ

µν
)

. (A.30)

There are a number of algebraic identities relating a spinor s, its Dirac current and

Dirac 2-form and their duals, which are collected in the following

Proposition 15. Let s ∈ S and κ be its Dirac current, ω(1) = κ♭, ω(2) its Dirac 2-form,

ω̃(2) = − ⋆ ω(2) and ω(3) = − ⋆ (κ♭). Then the following identities hold:

(a) κ · s = 0

(b) ω(2) · s = 0

(c) ω̃(2) · s = 0

(d) ω(3) · s = 0

(e) η(κ, κ) = 0

(f)
(
ω(2), ω(2)

)
η
= 0

(g)
(
ω̃(2), ω̃(2)

)
η
= 0

(h)
(
ω(3), ω(3)

)
η
= 0

(i) ικω
(2) = 0

(j) ικω̃
(2) = 0

(k) ικω
(3) = 0

(l) ω(1) ∧ ω(2) = 0

(m) ω(1) ∧ ω̃(2) = 0

(n) ω(1) ∧ ω(3) = 0

Proof. (a) This is equivalent to κρΓρs = 0. Using the Fierz identity (A.30),

κρΓρs = ΓρssΓ
ρs

= Γρ

(
−1

4

(
sΓµsΓµ + 1

2sΓ
µνsΓµν

))
Γρs

= −1
4(sΓ

µs)ΓρΓµΓ
ρs− 1

8(sΓ
µνs)ΓρΓµνΓ

ρs

= −1
2(sΓ

µs)Γµs

= −1
2κ

µΓµs ,

where we have used the trace identities (A.22).
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(b) Using that ss = 0, we see from the Fierz identity (A.30) and part (a) that

ω(2)
µν Γ

µνs = 0 .

(c) This follows from ω̃(2) = vol ·ω(2) and part (b).

(d) This follows from ω(3) = − vol ·κ and part (a).

(e) From (a) it follows that κ is null:

η(κ, κ) = 〈s, κ · s〉 = 0 .

(f) Similarly, from (b) it follows that ω(2) is null:

(
ω(2), ω(2)

)

η
=

〈
s, ω(2) · s

〉
= 0 .

(g) This follows from the fact that ω(2) is null and that Hodge duality is an isometry (up

to sign).

(h) This follows from the fact that κ is null and that Hodge duality is an isometry (up

to sign).

(i) This is equivalent to ω(2)(κ, v) = 0 for all v, but

ω(2)(v, κ) = 〈s, v · κ · s〉 = 0 ,

where we have used (a) above.

(j) This follows from (a) and

ω̃(2)(v, κ) = 〈s, v · κ · vol ·s〉 = −〈s, v · vol ·κ · s〉 = 0 .

(k) Again this follows from (a) and

ω̃(2)(u, v, κ) = 〈s, u · v · κ · vol ·s〉 = −〈s, u · v · vol ·κ · s〉 = 0 .

(l) We prove the equivalent statement ⋆(ω(1) ∧ ω(2)) = 0:

ǫµνρσκ
νω(2)ρσ = ǫµνρσκ

νsΓρσs

= 2κνsΓµνΓ5s

= 2κνsΓµΓνΓ5s

= −2sΓµΓ5κ
νΓνs = 0 ,

again using (a) above.
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(m) Similar to the previous part, we prove that ⋆(ω(1) ∧ ω(2)) = 0:

ǫµνρσκ
ν ω̃(2)ρσ = ǫµνρσκ

νsΓρσΓ5s

= −2κνsΓµνs

= −2κνsΓµΓνs = 0 ,

again using (a).

(n) By definition of Hodge star and (e) above,

ω(1) ∧ ω(3) = −ω(1) ∧ ⋆ω(1) = −η(ω(1), ω(1)) vol = 0 .

Two remarks are worth mentioning. The first is that from parts (l), (m) and (n) in

the above proposition, it follows that ω(2) = ω(1) ∧ θ, ω̃(2) = ω(1) ∧ θ̃ and ω(3) = ω(1) ∧ θ(2)

for some covectors θ, θ̃ and 2-form θ(2) which are defined only modulo the ideal generated

by ω(1).

A second remark is that it is possible to prove the above proposition without resorting

to the Fierz identity, by exploiting the representation theory of the spin group. The group

Spin(V ) sits inside the Clifford algebra Cℓ(V ) and hence S becomes a Spin(V )-module by

restriction. The volume element defines a complex structure on S which is invariant under

the spin group. The identity component of the spin group is isomorphic to SL(2,C) under

which S is the fundamental 2-dimensional complex representation. The orbit structure of

S under Spin(V ) is therefore very simple; namely, there are two orbits: a degenerate orbit

consisting of the zero spinor and an open orbit consisting of all the nonzero spinors. The

stabiliser of a nonzero spinor s is the abelian subgroup Hs consisting of the null rotations

in the direction of its Dirac current κ, and it is a subgroup of the stabiliser of any object

we can construct from s in a Spin(V )-equivariant fashion: e.g., the Dirac current and the

Dirac 2-form. Now the Hs-invariant 2-forms can be seen to be of the form κ ∧ θ, for some

“transverse” 1-form θ, and hence the Dirac 2-form ω(2) has this form. By equivariance

under Hs < Spin(V ), the Clifford product of ω(2) on s must be again proportional to s,

but by squaring we see that the constant of proportionality must be zero. Finally, Clifford

multiplication by the spacelike θ is invertible, so it must be that κ Clifford-annihilates s.

A.4 A further property of the Dirac current

For completeness we discuss a further algebraic properties of the Dirac current. Recall

that if s ∈ S, its Dirac current κ is defined by equation (A.13). Let us define a symmetric

bilinear map κ : S ⊗ S → V by

κ(s1, s2) =
1
2 (κs1+s2 − κs1 − κs2) , (A.31)

where κs denotes the Dirac current of s. It follows from the representation theory of so(V )

that the map κ is surjective onto V . Now consider a linear subspace S′ ⊂ S and let V ′ ⊂ V

denote the image of the map κ restricted to S′ ⊗ S′. For which S′ do we still have that

V ′ = V ? The following lemma, which is a modification of the similar result in [35] for

eleven dimensions, shows that this holds provided dimS′ > 2.

– 45 –



J
H
E
P
0
6
(
2
0
1
6
)
1
0
6

Lemma 16. Let S′ ⊂ S be a linear subspace with dimS′ > 1
2 dimS. Then the restriction

of κ to S′ ⊗ S′ is surjective onto V .

Proof. Let S′ ⊂ S have dimS′ > 1
2 dimS. Let V ′ = im κ|S′⊗S′ and let v ∈ (V ′)⊥. We want

to show that v = 0 so that (V ′)⊥ = 0 and hence V ′ = V . By definition, v is perpendicular

to κ(s1, s2) for all s1, s2 ∈ S′; equivalently, 〈s1, v · s2〉 = 0. This means that Clifford

multiplication by v maps S′ → (S′)⊥, where ⊥ here means the symplectic perpendicular.

Because of the hypothesis on the dimension of S′, dim(S′)⊥ < dimS′, so that Clifford

multiplication by v has nontrivial kernel. By the Clifford relation (A.1), it follows that v

is null. In other words, every vector in (V ′)⊥ is null, and this means that dim(V ′)⊥ ≤ 1.

Now for every s ∈ S′, κ(s, s) is null and perpendicular to the null vector v, so that one

of two situations must occur: either v = 0 or else κ(s, s) is collinear with v. Suppose for

a contradiction that v 6= 0. Then κ(s, s) is collinear with v and, by polarisation, so are

κ(s1, s2) for all s1, s2 ∈ S′. But this says that V ′ is one-dimensional, contradicting the fact

that dim(V ′)⊥ ≤ 1.
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