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1 Introduction

One of the most intriguing features of a quantum system is that of entanglement. When

a physical system is in an entangled state local measurements at one point may instan-

taneously affect the result of local measurements at distant points. A universal measure

of entanglement is the Entanglement Entropy (EE). It can be defined for any quantum

field theory or many-body system and unlike correlation functions is a non-local quantity.

Suppose we are given a quantum system, e.g. a quantum field theory in d+ 1 dimensions.

Furthermore, suppose that we split the system in two parts, D and its complementary DC .

Assuming that the full Hilbert space of the theory H can be written as the direct product

of the Hilbert spaces of the parts D and DC , namely H = HD ⊗HDC , one can define the

reduced density matrix (RDM) of region D in the following way

ρD = TrDCρ , where ρ = |ψ〉〈ψ| , (1.1)

if the system is in a pure quantum state |ψ〉. Then the EE is defined as the von Neumann

entropy of the reduced density matrix, which as can be seen from (1.1) is obtained when

we trace out the degrees of freedom of the complementary region DC

SEE(D) = −Tr
[
ρD log ρD

]
. (1.2)
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Physically, the EE indicates to what extend the two subsystems, D and DC , are correlated.

Equivalently, one can also interpret the EE as the entropy measured by an observer sitting

in the region D who has no access to information about the subsystem DC .

Furthermore, since the EE is defined as the von Neumann entropy one should expect

that it is, somehow, related to the degrees of freedom of the system under consideration.

This expectation is fully realised in the context of two dimensional conformal field theories

(2d CFTs) where the universal piece of the EE is proportional to the central charge [1, 2].

Indeed, for a one-dimensional system with periodic boundary conditions at the critical

point, the EE for an interval of length l is given by

SEE(l) =
c

3
log

(
L

πa
sin

πl

L

)
with SEE(l) ≈ c

3
log

l

a
for L→∞ (1.3)

where c is the central charge of the corresponding CFT, a is a UV cut-off and L is the

length of the whole system. Based on the holographic proposal of Ryu & Takayanagi

(RT) [3, 4] for the EE of a higher dimensional quantum field theory, it seems that the

proportionality between the EE and the central charge of a CFT in four dimensions also

holds. The holographic proposal for calculating the EE has been proved for spherical

entangling regions [5] and there are supporting arguments based on the notion of generalised

entropy [6].

As opposed to the thermal entropy, the EE is non-vanishing at zero temperature.

Therefore, we can employ it to probe the quantum properties of the ground state for a

given quantum system. Additionally it can be used as an order parameter for the study of

quantum phase transitions at zero temperature [7, 8].

The vast majority of the results obtained so far in the literature have been devoted

to the entanglement properties of the vacuum state. Comparatively, very little is known

about the behaviour of the EE when the system under consideration is in an excited state

(see for example [9]).1 The aim of this work is to contribute towards this direction. In

particular, we will focus our attention at one of the mostly studied conformal field theories,

namely the maximally supersymmetric field theory in four dimensions. It is well-known

that the operators of N = 4 SYM can be mapped to states of an integrable spin-chain,

while the dilatation operator can be mapped to a long-range spin-chain Hamiltonian whose

eigenvalues give the spectrum of the dilatation operator [11]. Furthermore, through the

AdS/CFT correspondence [12] (for a set of pedagogical introductions see [13, 14]) the

gauge theory operators are dual to certain string states propagating on the AdS5 × S5

background with the energies of the string states being equal to the dimension of the dual

field theory operator.

We should mention that the Entanglement Entropy that we are about to calculate is

not directly related to the EE of N = 4 SYM as a field theory. Such entropy measures the

entanglement of a 3-dimensional subregion of the manifold on which the theory is defined to

the rest of the space. What we will calculate is the EE of a portion of the N = 4 SYM spin

chain, when the chain is in an excited state of either one of the closed rank one subsectors

of N = 4 SYM or in the full PSU(2, 2|4) algebra of N = 4 SYM, in the case of the BMN

1For a review summarising the progress on the calculation of EE in quantum spin systems see [10].
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limit. The important point is that, through the AdS/CFT correspondence, the EE of the

spin chain should be somehow related to the EE of the corresponding string state, that is to

the EE of an excited state of the 1 + 1−dimensional supersymmetric non-linear σ− model

which describes the propagation of the corresponding string in the AdS background. As it

is extremely complicated to calculate this quantity directly from the σ− model considered

as a field theory, our intension is to see if one can extract some information from the

corresponding spin chain picture where the calculation is considerably easier.2

The plan of the paper is as follows: in section 2 we will analytically calculate the

EE of excited states with two magnons in all closed rank one subsectors of N = 4 SYM,

namely SU(2), SU(1|1) and SL(2). Our calculation will be performed using the formalism

of Coordinate Bethe Ansatz (CBA) and will be leading in the coupling expansion (our

states will be the eigenstates of the one-loop dilatation operators) but exact in the length

of the spin chain and of the part of it we cut, namely D.

In section 3 we will calculate the EE of the superconformal primary operator with two

excitations in the BMN limit. We will derive an analytic expression for the EE of which

is exact in the coupling λ′ =
g2YMN

J2 = λ
J2 . This will allows us to analyse the effect of

long-range interactions of the spin chain on the EE. In particular, we will see that the EE

of a part of the spin chain is a monotonically increasing function of the coupling which

saturates to a constant value as λ′ →∞ when keeping the length of the chain we cut fixed.

This results to a violation of a certain bound for the EE that is present at weak coupling.

Thus, one of our main conclusions is that, as it is physically anticipated, the entanglement

between parts of the chain becomes stronger as one increases the coupling λ′, at least for

the superconformal primary operator with two excitations.

In section 4 we will employ integrability and more precisely the powerful formalism

of the Algebraic Bethe Ansatz (ABA) in order to calculate numerically the EE of excited

states with up to seven magnons in the SU(2), SU(1|1) and SL(2) subsectors. Finally, in

section 5 we will present our conclusions along with directions for future research.

2 Entanglement Entropy of two magnons in the three rank one closed

subsectors of the N = 4 spin chain

As discussed in the introduction, it is of the outmost importance to calculate the EE for

the excited states of any physical system. This task is extremely difficult but it could

provide highly non-trivial information about the physical system under consideration. For

example, the EE can be viewed as the order parameter characterising the phase transitions

which the system might undergo, (see e.g. [8]).

In this section, and having the AdS/CFT correspondence in mind, we will focus on

the case of two magnons propagating in the N = 4 SYM spin chain. In particular we will

consider operators in each of the three rank one closed subsectors of N = 4 SYM, namely

SU(2), SU(1|1) and SL(2). We will derive analytic expressions for any two magnon state

in all the aforementioned sectors by employing the CBA.

2To our knowledge no precise relation between the EE, as calculated from the σ− model and from the

corresponding spin chain, can be found in the literature.
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As is well known, the problem of finding the eigenvalues and the eigenvectors of the

dilatation operator of N = 4 SYM can be solved by mapping this operator to the Hamil-

tonian of a certain integrable long-range spin chain. Then one can apply the method of

Perturbative Asymptotic Bethe Ansatz (see [15] for details about this method) to solve

for the eigenstates and the eigenvalues. If one is restricted to the one loop case, then the

powerful technique of the ABA can be employed. It is this method that we will use in the

following to obtain the EE for spin chains with different lengths and up to seven magnons.

2.1 Entanglement Entropy of the vacuum

We will take the operator corresponding to the vacuum state to be

Ovac ∼ Tr
[
ZL
]
. (2.1)

This is a BPS operator whose engineering dimension is L. This dimension is not altered

by quantum corrections. The corresponding spin chain state is given by

| ↓〉vac =

L∏
i=1

⊗ | ↓〉i . (2.2)

When the system is in the ground state (2.2) the EE of any part of the spin chain D is

zero, i.e. SEE(D) = 0, since (2.2) can be written as a direct product of states at each site.

2.2 Entanglement Entropy of a state with one magnon

It is straightforward to consider the case where the wavefunction of the system is that of a

giant magnon with momentum p. Although this is not a legitimate state since the cyclicity

of the trace will necessarily set p = 0, one can consider this state as a building block of

states with more than one excitations. In a spin chain language the eigenstate of a giant

magnon is given by

|ψ〉magnon ∼
L∑
l=0

eipl | ↑l〉 where | ↑l〉 =
l−1∏
i=1

⊗ | ↓〉i ⊗ | ↑l〉 ⊗
L∏

i=l+1

⊗ | ↓〉i . (2.3)

One can then use (2.3) to calculate the entanglement of a part of the chain with length

N to the rest of the spin chain. It is straightforward to show that the corresponding EE

reads [16]

S1m
EE (N) = log

L

L − N
− N

L
log

N

L − N
. (2.4)

Notice that this expression is independent of the momentum p with which the giant magnon

propagates. In what follows we will see that the EE of any eigenstate of the one-loop

Hamiltonian in the SU(2), SU(1|1) and SL(2) sectors with M magnons, will have as an

upper bound the single magnon entropy of (2.4) multiplied by the number of magnons M

SMm
EE (N) ≤ M S1m

EE (N) . (2.5)
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2.3 Entanglement Entropy of a state with two magnons

After this warm up we will now turn to the case of two magnons propagating in the SU(2),

SU(1|1) and SL(2) spin chains. The first step is to write the expression for the wavefunction

in the CBA. This reads

|ψ〉 =
∑

1≤x1<x2≤L
ψ(x1, x2) |x1, x2〉 with

ψ(x1, x2) = ei(p1x1 + p2x2) + S(p2, p1) ei(p2x1 + p1x2) . (2.6)

In (2.6) L denotes the length of the spin chain, x1 and x2 the positions where the two

magnons are sitting and p1 and p2 = − p1 = − p are their momenta. Finally, S(p2, p1)

denotes the two-body scattering matrix in the sector under consideration. We will substi-

tute its specific value only at the end of the calculation and this will allow us to treat all

three sectors simultaneously.

The next step consists in splitting the spin chain in two parts, one from site number 1

to site number N which we will call part D and one from site number N +1 to site number

L which we will call the complementary part of D, namely DC . Then one should take the

trace of the complete density matrix ρ = |ψ〉〈ψ| with respect to the degrees of freedom of

the complementary part DC to obtain the reduced density matrix (RDM) corresponding

to the part D, that is

ρD = TrDC ρ . (2.7)

In order to perform the tracing one has to distinguish three cases.

No magnons in the part D of the spin chain. This configuration gives the following

contribution to the reduced density matrix

ρ
(i)
D =

∑
N<x1<x2≤L

〈x1, x2|ψ〉 〈ψ|x1, x2〉 = | ↓〉D D〈↓ | fp(L,N) with

fp(L,N) =
∑

N<x1<x2≤L
ψ(x1, x2)ψ∗(x1, x2) , (2.8)

where | ↓〉D is the vacuum for the region D

| ↓〉D =

N∏
i=1

⊗ | ↓〉i . (2.9)

Both magnons in the part D of the spin chain. The corresponding contribution to

the RDM reads

ρ
(ii)
D = |ψD〉〈ψD| where |ψD〉 =

∑
1≤x1<x2≤N

ψ(x1, x2) |x1, x2〉 . (2.10)
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One magnon in the part D and one in the complementary DC of the spin chain.

In this case we have for the contribution to the RDM

ρ
(iii)
D =

∑
1≤x1≤N

∑
1≤x′1≤N

|x1〉〈x′1| gp(x1, x
′
1) with

gp(x1, x
′
1) =

∑
N<x2≤L

ψ(x1, x2)ψ∗(x′1, x2) . (2.11)

Combining (2.8), (2.10) & (2.11) we finally get for the RDM

ρD = κ

[
|ψD〉〈ψD| +

∑
1≤x1≤N

∑
1≤x′1≤N

|x1〉〈x′1| gp(x1, x
′
1) + | ↓〉D D〈↓ | fp

]
, (2.12)

and normalising the trace of the RDM to one we have for the constant κ

TrDρD = 1 ⇒ κ−1 = 〈ψ|ψ〉 =
∑

1≤x1<x2≤L
ψ(x1, x2)ψ∗(x1, x2) . (2.13)

It is now straightforward to write down the η-th power of the RDM

ρηD = κη

[
|ψD〉〈ψD|〈ψD|ψD〉η−1 + | ↓〉D D〈↓ | fηp

+
∑

y1,y2,··· ,yη−1∈D
|x1〉〈x′1| gp(x1, y1)gp(y1, y2) . . . gp(yη−1, x

′
1)

]
, (2.14)

and the only non-trivial part is in the second line of (2.14). This can be evaluated by

noticing that the structure ∆(x1, y1) = A1 e
ip(x1−y1) + B∗1e

−ip(x1+y1) + c.c., which is the

structure of gp(x1, y1), maps to a similar expression with the same spacetime structure but

with different coefficients A1 and B∗1 under the following map

R(x1, x
′
1) = ∆(x1, y1) ?∆(y1, x

′
1) =

∑
y1∈DC

∆(x1, y1) ∆(y1, x
′
1) . (2.15)

Since this is the operation needed to calculate the multiple sum we obtain∑
y1,...yη−1∈D

|x1〉〈x′1| gp(x1, y1) . . . gp(yη−1, x
′
1) = Aηe

ip(x1−x′1) +B∗ηe
−ip(x1+x′1) + c.c. , (2.16)

where the coefficients Aη and B∗η are given by(
Aη
B∗η

)
=

(
α β

β∗ α∗

)η−1

·

(
A

B∗

)
. (2.17)

The entries of the matrices are given by

A =L − N & B =S(p2, p1)S∗1 ,

α =AN + B Ŝ∗1 & β =A Ŝ1 + BN , (2.18)

S1 =
∑
x∈DC

ei(p2−p1)x & Ŝ1 =
∑
x∈D

ei(p2−p1)x .

– 6 –
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One can now diagonalise the 2×2 matrix to obtain an analytic expression for the coefficients

Aη and B∗η . Plugging this solution in the expression for the Renyi Entropy

S
(η)
R =

1

1 − η
log TrD ρ

η
D with

TrDρ
η
D = κη

[
〈ψD|ψD〉η +

(
Aη + A∗η

)
N + Bη Ŝ

∗
1 + B∗η Ŝ1 + fηp

]
. (2.19)

and taking the limit η → 1 we find for the EE of the two magnon excited state that

SEE = lim
η→1

S
(η)
R (2.20)

= −κ

[
fp log fp + 〈ψD|ψD〉 log 〈ψD|ψD〉 +

(
2∑
i=1

Gi log λi + c.c.

)]
+ log κ ,

where

G1 =
−β∗

2
√

∆
(A − U12B

∗)
(
U11N + Ŝ1

)
& U11 =

i Imα −
√

∆

β∗

G2 =
β∗

2
√

∆
(A − U11B

∗)
(
U12N + Ŝ1

)
& U12 =

i Imα +
√

∆

β∗
(2.21)

λ1 = Reα −
√

∆ , λ2 = Reα+
√

∆ with ∆ = −(Imα)2 + |β|2 .

We should mention that λ1 and λ2 are the two eigenvalues of the 2 × 2 matrix appearing

in (2.17) while α and β are given in (2.18). A few important comments are in order. Firstly,

the expression (2.20) gives the EE for all three closed rank one subsectors. The difference

between the three sectors enters through the different values of the scattering matrices and

the corresponding quantisation of the momenta. Namely, we have

SSU(2)(p1, p2) =
cot p12 − cot p22 + 2i

cot p12 − cot p22 − 2i
⇒ p1 = − p2 =

2πn

L− 1

SSU(1|1)(p1, p2) = − 1 ⇒ p1 = − p2 =
(2n + 1) π

L
(2.22)

SSL(2)(p1, p2) =
cot p12 − cot p22 − 2i

cot p12 − cot p22 + 2i
⇒ p1 = − p2 =

2πn

L+ 1
.

Notice also that the sums over x1 and x2 appearing in all expressions above (see equa-

tion (2.13), for instance) should be replaced by
∑

x1≤x2 when considering the SL(2) sector

since in this case both derivatives may sit at the same Z field. Contrary to the common

trend in the literature we define L in the SL(2) sector as the sum of the background fields

plus the number of magnons. Secondly, we should stress that equation (2.20) gives the

leading contribution to the EE in the coupling expansion. As is well known, the N = 4

SYM dilatation operator and as a result its eigenvalues receive corrections order by order in

perturbation theory. These corrections will also affect the value of the EE. Our calculation,

– 7 –
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Figure 1. In this figure we present the EE for an excited state with two magnons in the SU(2)

sector. On the left part of the figure it is the plot of the EE as a function of the position that we

split the spin chain in two parts, D and its complement DC . In order to simplify notation and to

be able to compare spin chains with different number of sites we normalize the horizontal axis and

plot with respect to the ratio of the splitting point divided by the length of the spin chain. In all

the subsequent plots of the EE the horizontal axis will be in units of this “normalized splitting”

(N/L). The black curve is twice the EE of a single magnon while the magenta dots represent the

actual computation of the EE, using (2.20), when the scattering of the two magnons is taken into

account. On the right part of the figure, in order to illustrate the saturation points, we present the

normalized EE (i.e. dividing (2.20) by twice the EE of a single magnon). The calculations are for

mode number n = 1 & the length of the spin chain is set to L = 100.

in this section, gives the leading term in the weak coupling expansion of the EE. However,

it is exact as a function of the spin chain length.

Given the general expressions for the Renyi Entropy (2.19) and the EE (2.20), we are

now in position to plot the EE as a function of the size of the part of the spin chain we cut.

In figure 1 we present the EE for an excited state with two magnons in the SU(2) sector.

The quantum number specifying the momenta of the magnons is set to n = 1. On the left

part of the figure one can see the plot of the EE as a function of the position that we split

the spin chain in two parts, D and its complement DC . In the same plot we have also drawn

twice the EE of a single magnon, which is the upper bound for the EE of any state involving

two magnons. One can see that the bound is almost saturated at two symmetric points,

one on the left and one on the right of the middle of the chain (see also the right part of

figure 8).3 To illustrate this point we present the normalised EE, that is the ratio of (2.20)

over twice the EE of the single magnon, on the right part of the figure 1. In figure 2 we

present the dependence of the difference between the aforementioned bound and the EE

of two magnon excited state on the mode number n, which characterises the excited state.

Generically, as one moves towards the centre of the chain the difference oscillates with an

amplitude that decreases. Furthermore, as one increases the mode number from one to

four the bound is almost saturated for specific values of the length of the domain D for

which the EE is calculated. If we exclude the trivial cases where D is either the empty set

or when D is the whole chain the number of points that the bound is almost saturated is 2n

3This is not the case for the SL(2) subsector where the bound (for n = 1) is almost saturated when we

cut the spin chain in two equal parts, see figure 10.
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Figure 2. In this figure we present the difference between the EE of two magnons and twice the

EE of one magnon when we change/increase the mode number (from mode number one to four),

in the SU(2) sector.

(see also the end of the next paragraph), which is twice the excitation number. We should

note that part of the results of the current section have some overlap with the analysis

in [16].

Looking at the expression of the EE bound (see (2.4) multiplied by two) it is clear

that if there points where this bound is explicitly saturated, then the analytic expression

of the EE (2.20) at those points should be independent of the value of the momentum of

the excitation. To detect those points, one should go to (2.18) where all the ingredients are

defined and look for a systematic way to eliminate the presence of the momentum. Setting

S1 and Ŝ1 to zero satisfies the above requirement and furthermore eliminates the presence

of the momentum in the expression of fp and ψD. In that way the EE at those points,

which simultaneously set to zero S1 and Ŝ1, explicitly saturate the bound (2.5). Combining

the expressions for S1 and Ŝ1 together with the value of the momentum for each one of

the three sectors, it is easy to conclude that the bound is explicitly saturated only in the

SU(1|1) sector and in the following points

N

L
=

κ

2n+ 1
with n ≥ 0 & 0 ≤ κ ≤ 2n+ 1. (2.23)

To illustrate the above claim we have plotted in figure 3 the EE in the SU(1|1) sector for

two different quantum numbers, namely n = 1 and n = 2, in a spin chain with 90 sites. Ac-

cording to (2.23) we expect to have four and six saturation points, located at the positions

– 9 –
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Figure 3. In this figure we present the EE for an excited state with two magnons in the SU(1|1)

sector. On the upper left part of the figure it is the plot of the EE as a function of the “normalised

splitting” (N/L) and on the upper right part the difference between the EE of two magnons and

twice the EE of the single magnon again as a function of the “normalised splitting”, when the mode

number is n = 1. In the lower two plots of the figure we present the results for mode number n = 2,

to illustrate the increase of the number of the explicit saturation points when the mode number

increases. The black curve is twice the EE of a single magnon while the magenta dots represent

the computation of the EE using (2.20). The length of the spin chain is set to L = 90.

(0, 1/3, 2/3, 1) and (0, 1/5, 2/5, 3/5, 4/5, 1) respectively, and this is exactly what we observe

in figure 3. In the other two sectors the quantities S1 and Ŝ1 can never be simultaneously

zero and for that reason the entropy comes very close to the bound but without saturating

it. In cases with more than two magnons the existence of saturation points seems difficult

to occur, since more than two constraints have to be satisfied simultaneously, but needs to

be checked with an explicit calculation.

A final comment concerns the expected fact that the plots for the EE are symmetric

with respect to the centre of the spin chain. This is a consequence of the well-known fact

that the EE’s of D and of its complementary DC are equal SEE(D) = SEE(DC), when the

state which describes the system as a whole D ∪DC is a pure state.

The aim of the next section will be to analyse the effect of interactions to the EE. To

this end we will focus on the BMN limit of AdS5 × S5 and find the exact, in the coupling,

expression for the EE.
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3 All-loop Entanglement and Renyi entropies of the superconformal pri-

mary operator with two excitations in the BMN limit

One of the most interesting limits of the AdS/CFT correspondence is the so-called BMN

limit [17]. The reason is that in this limit, known as the Penrose or pp-wave limit on the

gravity side, the Green-Schwarz superstring action for type IIB strings becomes quadratic

in the light-cone variables and as a result one can solve for the superstring spectrum

exactly. This result provides an all-orders prediction for the anomalous dimensions of

certain operators with large R-charge [18] which are dual to the string states propagating

in the pp-wave background. Subsequently, one can study the dynamics of the theory by

employing string field theory to construct the three-string vertex (see [19–21] and references

therein) and compare the so-obtained string amplitudes to the corresponding three-point

correlators [22–24].4

3.1 The superconformal primary operator with two impurities in the BMN

limit

In this subsection, we will briefly review the construction of the superconformal primary

state involving two excitations (impurities) on both the string and gauge theory side. The

full supermultiplet based on this primary state was constructed in [28] at leading order in

the coupling expansion. In what follows, we will closely follow [23, 29]. The main idea is to

use the action of the superalgebra on the states of the theory in order to resolve the operator

mixing appearing in the wavefunction of the primary operator. More precisely, consider

the non-BPS highest weight state (HWS) with two impurities which we will denote by On.

By definition this state should be annihilated by the sixteen superconformal generators

preserved by the pp-wave background. Schematically one has

[S,On(x = 0)] = 0 and [Q,On(x = 0)] 6= 0 . (3.1)

The action of the remaining sixteen supersymmetry generators, collectively denoted here

by Q, on the HWS generates the whole supermultiplet with two impurities. Equation (3.1)

should be implemented order by order in perturbation theory since the superconformal

charges receive quantum corrections [23, 29]. However in the pp-wave limit the 32 super-

charges can be straightforwardly constructed order by order in the string coupling. What

is important for us is that their leading in gs expressions are known to all-orders in the

effective Yang-Mills coupling λ′ =
g2YMN

J2 . Here g2
YMN is the ’t Hooft coupling while J

is the large R-charge of the operator which correspond to the angular momentum of the

point-like string orbiting around one of the equators of the five-sphere S5 of the parent

AdS5 × S5 background. Demanding that the full set of the 16 superconformal charges an-

nihilates the HWS one can determine the form of the latter to all orders in λ′. The details

of this construction can be found in [29]. The result for the two-impurity HWS reads

|n〉 =
1

4(1 + U2
n)

[
a†
i′

na
†i′
n + a†

i′

−na
†i′
−n+2Unb

†
−n Π b†n−U2

n

(
a†
i
na
†i
n + a†

i
−na

†i
−n

)]
|α〉 . (3.2)

4For weak/strong coupling comparisons of three-point correlators see also [25–27].

– 11 –



J
H
E
P
0
6
(
2
0
1
6
)
0
9
9

In (3.2) a†
i′

±n, b†±n and a†
i
±n denote the creation operators for the four scalar, eight fermionic

and four vector excitations while |α〉 denotes the string vacuum of fixed light-cone momen-

tum p+. Furthermore, n is the mode number characterising the excited state while the

function Un is given by

Un ≡
1− ρn
1 + ρn

with ρn =
ωn − n

µα
& ωn =

√
n2 + (µα′ p+)2 , (3.3)

where p+ is the light cone momentum of the state and µ is the parameter setting the

scale of the curvature of the PP-wave background (as usual, α ≡ α′p+ and λ′ = 1/(µα)2).

Finally, Π is the appropriate 16× 16 block of the matrix Π =
∏4
i′=1 Γi

′
. The index i′ takes

values in the flavour SO(4) ⊂ SO(6) and the Γ indicate the SO(1, 9) gamma matrices.

One important comment is in order. Notice that the HWS string state, as well as the

corresponding field theory operator On, exhibits the important feature of mixing between

different kinds of excitations, namely bosonic and fermionic states (operators) mix among

each other as long as the mixing states have the same quantum numbers.

Needless to say that this construction can be generalised to HWS with more than two

impurities.

3.2 Exact in λ′ entanglement entropy

Our aim in this section is to derive, based on (3.2), an analytic expression for the EE of

the two impurity primary operator which is exact in the BMN coupling λ′. This expression

will be an interpolating function from the weak coupling regime λ′ → 0 to the strong

coupling regime λ′ → ∞. We should stress that our result is exact in the strict BMN

limit and generically will receive 1/J corrections. It would be interesting to calculate these

corrections by going to the near-BMN limit.

The first step towards this end is to rewrite (3.2) as an operator of N = 4 SYM. An

important observation is that due to mixing of different kinds of impurities this operator

can not be restricted in one of the closed subsectors of N = 4 SYM but “lives” in the full

PSU(2, 2|4) superalgebra. The field theory operator which is dual to the string state (3.2)

can be written as follows

(1 + U2
n)(Ost)Jn =

√
N−J−2

0

J + 3

2∑
i=1

J∑
p=0

cos
πn(2p+ 3)

J + 3
Tr
[
Zi Z

p Z̄i Z
J−p]

− 2

√
N−J−2

0

J + 3
cos

πn

J + 3
Tr
[
Z̄ ZJ+1

]
(3.4)

+
Un
2

√
N−J−1

0

J + 1

J−1∑
p=0

sin
πn(2p+ 2)

J + 1
Tr
[
ψ1α Zp ψ2

α Z
J−p−1

]

− Un
2

√
N−J−1

0

J + 1

J−1∑
p=0

sin
πn(2p+ 2)

J + 1
Tr
[
ψ̄3α̇ Z

p ψ̄α̇4 Z
J−p−1

]

− U2
n

4

√
N−J0

J − 1

J−2∑
p=0

cos
πn(2p+ 1)

J − 1
Tr
[
DµZ Z

pDµ Z ZJ−p−2
]
.
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In (3.4) ψA (with A = 1, 2, 3, 4) denote the four fermions of N = 4 SYM while α = 1, 2

and α̇ = 1, 2 are spinor indices over which we sum. Furthermore, N0 = N
8π2 where N is the

number of colours. We should mention that in order to translate the string state (3.2) to

the field theory operator (3.4) we have used the prescription of [29]. Namely, we have used

the following dictionary

1

4

[
a†
i′

n a
†i′
n + a†

i′

−n a
†i′
−n

]
|α〉 ↔ O(0)J

n , (3.5)

where O(0)J
n is the sum of the first two terms on the r.h.s. of (3.4). The string state on the

l.h.s. of (3.5) is normalised to one and the same is true for the tree-level 2-point function of

the corresponding gauge theory operator. In a similar fashion the term with the fermionic

oscillators in (3.2) corresponds to a field theory operator with four fermions

1

2

[
b†−n Π b†n

]
|α〉 ↔ O(1)J

n , (3.6)

where O(1)J
n is the sum of the third and fourth terms on the r.h.s. of (3.4) multiplied by

Un. Finally, for the term involving the vector impurities we have

1

4

[
a†
i
n a
†i
n + a†

i
−n a

†i
−n

]
|α〉 ↔ O(2)J

n , (3.7)

where O(2)J
n is the last term on the r.h.s. of (3.4) multiplied by U2

n. As in the purely

scalar operator, (3.6) and (3.7) are derived so that both the string state and the gauge

theory operator are normalised to one. Since the two-point functions of operators involving

fermions or/and vector impurities have non-trivial space-time structure we have used the

prescription of [24, 30]. Once is given an operator it is possible to define the barred one,

which is the conjugate of the initial operator followed by an inversion. It is then this

operator which is used in the calculation of the two-point function. This prescription is

motivated by the radial quantisation in two-dimensional CFT’s and results to two-point

functions which can be easily normalised to one.

One can now use the following relation

J∑
p=0

cos
πn(2p+ 3)

J + 3
Tr
[
X Zp Y ZJ−p

]
≈ 1

2 J
(3.8)

×
∑

1≤x1<x2≤J

(
ei(p1x2 + p2x1) + ei(p1x1 +p2x2)

)
Tr
[
Zx1−1X Zx2−x1−1 Y ZJ−x2

]
,

as well as the analogous equation for the fermionic term to rewrite (3.4) as a spin chain

wavefunction. To achieve this one should take into account the fact that p1 = p = −p2 =

2πn/J � 1 and as a result to leading order in the large J expansion e±ip ≈ 1 and

cos
(
πn/(J + 3)

)
≈ 1. Furthermore, we will make use of the following correspondence

between the Yang-Mills and spin chain excitations [31]

1√
N0

ZYM ↔ Zsp
1√

2N0
ψAYM ↔ ψAsp

1√
2N0

(DµZ)YM ↔ (DµZ)sp . (3.9)
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In conclusion the wavefunction of the non-BPS primary operator with two excitations can

be written in the spin chain language as (we suppress the index “sp” since from now on we

will be using only the spin chain wavefunctions) follows

|ψ〉 =
N
2J

[
2∑
i=1

∑
x1<x2

(
eip1x2+ip2x1 + eip1x1+ip2x2

)
|(Zi)x1(Z̄i)x2〉 − 4

∑
x

|Z̄x〉 (3.10)

−i Un
∑
x1<x2

(
eip1x2+ip2x1 − eip1x1+ip2x2

) (
|(ψ1α)x1(ψ2

α)x2〉 − |(ψ̄3α̇)x1(ψ̄α̇4 )x2〉
)

−U
2
n

2

∑
x1<x2

(
eip1x2+ip2x1 + eip1x1+ip2x2

)
|(DµZ)x1(DµZ)x2〉

]
.

A couple of important comments are in order. As is stressed in [18] the N = 4 SYM

spin chain is dynamic in the sense that the length of the chain in not fixed since different

impurities have different scaling dimensions. Indeed as can be seen from (3.4) the number

of Z fields is not the same in all terms. We should mention that each of the kets written

in (3.10) describe two excitations in the appropriate number of Z fields dictated by (3.4).

The dynamic nature of the spin chain may result to a situation where both vector impurities

lie in the domain D but the scalar impurities lie on in D and one in its complementary.

This can happen when both excitations are close to the boundary of D. In what follows

we will ignore such circumstances since their contribution will be 1/J suppressed in the

BMN limit. As second related comment concerns the exact form of (3.4). As is well-known

the exact expression for the eigenstate of the dilatation operator will have non-asymptotic

terms where the two impurities will be close to each other. As it happens with the two-point

functions one can show that these terms give a contribution which is also 1/J suppressed

with respect to the contributions coming from the asymptotic terms and as such can be

ignored in the strict BMN limit where J → ∞. Finally, let us notice that the state (3.4)

may, in principle, be taken from considering the scattering of two scalar impurities with a

double copy of the SU(2|2) scattering matrix of [18].

We are now in position to write down the RDM originating from the wavefunction

above. As usual we will be cutting the spin chain into two parts. One part is from site

1 to site N , which is the domain D of which the EE we intend to calculate, while the

remaining part is the complementary DC whose degrees of freedom we have to trace out

in order to obtain the RDM. Furthermore, as in the case of two magnons at weak coupling

(see section 2) by |ψD〉 we denote the wavefunction of the part D when both magnons sit

in the region D, while by |ψCD〉 we denote the wavefunction of the complementary region

DC when both magnons sit in the region Dc. After these explanations the RDM can be

written as

ρD = κ

[
|ψD〉〈ψD| + | ↓〉D D〈↓ | fp + 42

(∑
x

|(Z̄)x〉〈(Z̄)x| + | ↓〉D D〈↓ |(J −N)

)

+
∑
x1<x′1

(
2∑
i=1

|(Zi)x1〉〈(Zi)x′1 | g
(1)
p (x1, x

′
1) + |(ψ1α)x1〉〈(ψ1α)x′1 | g

(2)
p (x1, x

′
1)

+|(ψ3α̇)x1〉〈(ψ3α̇)x′1 | g
(2)
p (x1, x

′
1) + |(DµZ)x1〉〈DµZ)x′1 | g

(3)
p (x1, x

′
1)

)]
, (3.11)
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where

g(1)
p = gSU(2)

p with SSU(2)(p2, p1) = 1 ,

g(2)
p =U2

ng
SU(1|1)
p with SSU(1|1)(p2, p1) = − 1 , (3.12)

g(3)
p =

U4
n

4
gSU(2)
p with SSL(2)(p2, p1) = 1 ,

that is g
(1)
p is the same function appearing in the weak coupling calculation of section 2

but with the scattering matrix set to one and so on. We should mention that the fact that

the scattering matrices should be set to ±1 is in accordance with the standard lore that in

the BMN limit the impurities do not scatter at all since they are most of the time very far

from each other.

It is now straightforward to write down the n-th power of the RDM

ρηD = κη

[
|ψD〉〈ψD|〈ψD|ψD〉η−1 + | ↓〉D D〈↓ | fηp

+ 42η

(
Nη−1

∑
x

|(Z̄)x〉〈(Z̄)x| + (J − N)η | ↓〉D D〈↓ |

)
(3.13)

+
∑
x1<x′1

(
2∑
i=1

|(Zi)x1〉〈(Zi)x′1 |
∑

y1,...,yη−1∈D
g(1)
p (x1, y1)g(1)

p (y1, y2) . . . g(1)
p (yη−1, x

′
1)

+ |(ψ1α)x1〉〈(ψ1α)x′1 |
∑

y1,...,yη−1∈D
g(2)
p (x1, y1)g(2)

p (y1, y2) . . . g(2)
p (yη−1, x

′
1)

+ |(ψ3α̇)x1〉〈(ψ3α̇)x′1 |
∑

y1,...,yη−1∈D
g(2)
p (x1, y1)g(2)

p (y1, y2) . . . g(2)
p (yη−1, x

′
1)

+ |(DµZ)x1〉〈DµZ)x′1 |
∑

y1,...,yη−1∈D
g(3)
p (x1, y1)g(3)

p (y1, y2) . . . g(3)
p (yη−1, x

′
1)

)]
.

A couple of comments are in order. The first term in the first line of (3.13) originates

from the partition where both magnons are in the region D, while the second term from

the partition where both magnons are in the complementary region DC . Furthermore, the

second line of (3.13) comes from part of the wavefunction which has a single impurity Z̄.

Finally, the rest of the expression originates from the partition where one of the magnons

is in the region D and one in the complementary DC .

The next step is to find the exact in λ′ Renyi Entropy

S
(η)
R =

1

1 − η
log TrD ρ

η
D with (3.14)

TrDρ
η
D = κη

[
〈ψD|ψD〉η + fηp +

(
2η +

(
U4
n

)η) [(
A(1) +A(1)∗

)
N +B(1) Ŝ∗1 +B(1)∗Ŝ1

]
+
(
4U2

n

)η [(
A(2) +A(2)∗

)
N +B(2)Ŝ∗1 +B(2)∗Ŝ1

]
+ 42η (Nη + (J −N)η)

]
,

– 15 –



J
H
E
P
0
6
(
2
0
1
6
)
0
9
9

where all quantities are defined in section 2. We should only add that A(1) = ASU(2) and

B(1) = BSU(2) are the SU(2) weak coupling expressions for A and B defined in section 2 but

with SU(2) scattering matrix set to one, i.e. SSU(2)(p2, p1) = 1. Similarly, A(2) = ASU(1|1)

and B(2) = BSU(1|1) are the SU(1|1) weak coupling expressions for A and B defined in

section 2 but with SU(1|1) scattering matrix set to minus one, i.e. SSU(1|1)(p2, p1) = −1.

Before we continue with the η → 1 limit and the calculation of the EE, we would like to

comment on the coefficients of the different contributions in (3.14) (namely scalar, fermion

and vector) and their η dependence.

The second line of (3.13) gives the last term in (3.14). The third line of (3.13) gives

the part of the third term in (3.14) which is proportional to 2η. This happens since i = 1, 2

so we have to raise two to the η-th power, i.e 2η. The fourth and fifth lines of (3.13) give

the penultimate term in (3.14). Since α = 1, 2 and α̇ = 1, 2 we have to multiply Un by four

and then raise to the η-th power, i.e
(
4× U2

n

)η
. In the same fashion, since µ = 1, 2, 3, 4,

the ultimate term in (3.13) has to be multiplied by four and then raised to the η-th power,

i.e.
(

4× U4
n

4

)η
to give the part of the third term of (3.14) that is proportional to U4η

n .

Taking the limit η → 1 we find for the EE of the two magnon excited state

SEE = − κ

[
16
[
N log (16N) + (J −N) log

(
16 (J −N)

)]
+ fp log fp

+ 〈ψD|ψD〉 log 〈ψD|ψD〉 +

(
4U2

n

2∑
i=1

G
(2)
i log (4U2

n λ
(2)
i ) (3.15)

+ 2

2∑
i=1

G
(1)
i log (2λ

(1)
i ) + U4

n

2∑
i=1

G
(1)
i log (U4

n λ
(1)
i ) + c.c.

)]
+ log κ ,

where in full analogy with (2.21)

G
(i)
1 =

−β(i)∗

2
√

∆(i)

(
A(i) − U

(i)
12 B

(i)∗
)(

U
(i)
11 N + Ŝ1

)
& U

(i)
11 =

i Imα(i) −
√

∆(i)

β(i)∗

G
(i)
2 =

β(i)∗

2
√

∆(i)

(
A(i) − U

(i)
11 B

(i)∗
)(

U
(i)
12 N + Ŝ1

)
& U

(i)
12 =

i Imα(i) +
√

∆(i)

β(i)∗ (3.16)

λ
(i)
1 = Reα(i) −

√
∆(i) , λ

(i)
2 = Reα(i) +

√
∆(i) with ∆(i) = −(Imα(i))2 + |β(i)|2 .

The upper index i = 1 denotes that the quantities that carry it are defined in the SU(2)

sector with the scattering matrix set to one. Similarly, when the upper index i is set to

two, i = 2, denotes quantities as defined in the SU(1|1) sector with the scattering matrix

set to minus one. Finally, the expressions for the inner products in (3.14) & (3.15) are

〈ψ|ψ〉 = 2〈ψ|ψ〉SU(2) + 16J + 4U2
n〈ψ|ψ〉SU(1|1) + U4

n〈ψ|ψ〉SU(2)

〈ψD|ψD〉 = 2〈ψD|ψD〉SU(2) + 4U2
n〈ψD|ψD〉SU(1|1) + U4

n〈ψD|ψD〉SU(2) (3.17)

fp = 2〈ψDC |ψDC 〉SU(2) + 4U2
n〈ψDC |ψDC 〉SU(1|1) + U4

n〈ψDC |ψDC 〉SU(2) ,
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Figure 4. In this figure we present the EE for an excited state with two magnons in the BMN

limit. The mode number of the state is taken to be n = 1. On the left part of the figure it is the

plot of the EE as a function of the normalised splitting of the spin chain, for different values of

λ′. The correspondence between colour and λ′ is the following: Red ⇒ λ′ = 0, Green ⇒ λ′ = 0.1,

Yellow ⇒ λ′ = 1 & Magenta ⇒ λ′ = 5. On the right part of the figure we present the EE flow from

the IR (lower values of λ′) to the UV (higher values of λ′) as we change the splitting point of the

spin chain. In order to compare the different curves we have normalised each one by dividing with

the EE for λ′ → ∞. In this way all the curves approximate to one. The correspondence between

colours and normalised splitting (e.g. N/L) of the spin chain is the following: Red ⇒ 0.5, Green ⇒
0.1, Yellow ⇒ 0.01 & Magenta ⇒ 0.001.

where 〈ψ|ψ〉SU(2) and 〈ψ|ψ〉SU(1|1) denote the inner product for the eigenstate of the one-

loop dilatation operator in the SU(2) and SU(1|1) sectors, respectively. These are defined

in section 2.

Now having at hand the analytic expressions for both the Renyi entropy (3.14) and

the EE (3.15), we will probe the parametric space and extract interesting qualitative be-

haviours. As can be seen from both (3.14) & (3.15) both quantities depend on the position

we split the spin chain in two parts (D and its complement DC), the coupling constant

λ′ and the mode number n characterising the excited state.5 In figure 4 we present the

EE for an excited state with n = 1 in the BMN limit. On the left part of the figure it is

the plot of the EE as a function of the normalised splitting of the spin chain, for different

values of λ′. As can be seen from the plot (the correspondence colour/λ′ is explained in the

caption of the figure) the EE increases as we increase the value of the coupling. To fully

realise/visualise this EE flow from the UV to IR, on the right part of figure 4 we present

the EE as a function of the coupling λ′, for different values of the splitting point of the spin

chain. In order to compare the different curves in a unified manner we have normalised

each one by dividing with the EE for λ′ →∞, i.e.

NormalisedSEE(N,λ′, n) =
SEE(N,λ′, n)

SEE(N,∞, n)
. (3.18)

Since the EE is related to the central charge of the underlying CFT, this monotonically

decreasing behaviour of the EE along the RG flow from λ′ →∞ to λ′ → 0 could be related

5Renyi entropy depends also on the order η.
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Figure 5. In this figure we present the difference between the EE in the BMN limit and twice the

EE of the single magnon (2.4), when we increase the mode number (from mode number one to two),

for different values of λ′. For the left plot the correspondence colour/λ′ is Red ⇒ λ′ = 0, Green ⇒
λ′ = 0.1 & Magenta ⇒ λ′ = 0.5, while for the right plot is Red ⇒ λ′ = 0, Green ⇒ λ′ = 0.01 &

Magenta ⇒ λ′ = 0.05.

to the existence of a c-theorem [32, 33], which connects through an RG flow a fixed point

in the UV with another fixed point in the IR.

As we pointed out in (2.5) and verified with the calculations of the EE for the three

different rank one sectors in section 2, the EE of a single magnon multiplied by the number

of impurities (two in our case) appears to be an upper bound for the EE. As can be seen

from the two plots of figure 5 this bound is violated as soon as we move away from the

λ′ → 0 limit. In order to underline the violation of this bound for finite λ′ in figure 5 we

plot the the difference between the EE in the BMN limit and twice the EE of the single

magnon, when we increase the mode number (from mode number one/left to two/right),

for different values of λ′. As can be seen from the plots, when the coupling increases it is

possible to find pieces of the spin chain with EE that violate the bound and as we increase

the value of λ′ more and more pieces acquire EE that violate the bound. Gradually all

the pieces of the spin chain will violate the bound and the bigger is the mode number the

faster (i.e. with lower value of λ′) this violation will be implemented. The smaller the part

of the chain we cut the more we have to increase the value of λ′ to violate the bound. In

order to decide if it exists a λ′crit, after which the bound is violated no matter how small

is the length of the chain, we need to consider 1/J corrections to the EE in (3.15).

We close this section with a couple of plots for the Renyi entropy and its dependence

on the order η, λ′ and the normalised splitting N/L. In figure 6 we present the Renyi

entropy (of different orders) as a function of the normalised splitting, for two values of λ′,

λ′ = 0 and λ′ = 5. From these two plots it is clear that for finite λ′ the bound is violated

for any value of the order parameter η. Furthermore for two order parameters η1 & η2 with

η1 < η2 the two Renyi entropies S
(η1)
R & S

(η2)
R obey the inequality S

(η1)
R > S

(η2)
R , making

S
(2)
R a useful lower bound on S

(1)
R . This is a known feature of the Renyi entropy from field

theory considerations of its functional dependence on the order parameter, (see e.g. [34]).

In figure 7 we highlight the flow of the Renyi entropy from the UV to IR (besides that

of the EE that we already saw in figure 4). In this figure we present the normalised Renyi
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Figure 6. In this figure we present the Renyi entropy in the BMN limit (of different orders) as a

function of the normalised splitting, for two values of λ′, λ′ = 0 and λ′ = 5. The correspondence

between color and Renyi order is the following: Red ⇒ η = 1, Green ⇒ η = 2, Blue ⇒ η = 5

& Magenta ⇒ η = 10. The Black curve corresponds to twice the EE of the single magnon. The

calculations are for mode number n = 1.
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Figure 7. In this figure we present the Renyi entropy flow (of different orders) from the IR (lower

values of λ′) to the UV (higher values of λ′), as we change the normalised splitting (left plot ⇒
N/L = 0.5 & right plot ⇒ N/L = 0.2). As in figure 4, we have normalized each of the curves by

dividing with the Renyi entropy for λ′ → ∞. The correspondence between color and Renyi order

is the following: Red ⇒ η = 1, Green ⇒ η = 2 & Magenta ⇒ η = 10.

entropy (see (3.18) for the definition of this normalisation) flow (of different orders) from

the IR (lower values of λ′) to the UV (higher values of λ′), as we change the normalised

splitting. From these plots it is clear that increasing the order (or decreasing the length of

the spin chain we cut) decreases the difference between the IR and the UV values of the

Renyi entropy.

4 Entanglement Entropy from the algebraic Bethe ansatz

In this section we concentrate on the case where there is an arbitrary number of excitations

(magnons) propagating in the spin chain. In such a case the method used in the previous

section for the case of two magnons becomes cumbersome because of the large number of

excitations. However, it is the formalism of ABA that comes to rescue in this occasion.

Following the same reasoning as before, we split the spin chain of length L in two pieces.

The first piece which we call D contains the sites from 1 to N , while its complementary DC
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contains the sites from N + 1 to L. In the ABA language the wavefunction |ψ〉 describing

the excited state is characterised by a set of M numbers {ui}, i = 1, 2, . . . ,M . The ui’s

are called the rapidities of the M magnons and for an on-shell state they should satisfy the

Bethe equations of the corresponding sector. Thus (see [35, 36] for all the details about

the formalism of the ABA),

|ψ〉 = |{ui}〉 =
∑

a
⋃
ā= {ui}

H(a, ā) |al〉 ⊗ |ār〉 , (4.1)

where the sum is over all the possible partitions of the M magnons into two sets. If for

example we have two magnons, as in the cases of the CBA we worked so far, the possible

partitions are ({}, {u1, u2}) , ({u1}, {u2}) , ({u2}, {u1}) & ({u1, u2}, {}). The set of magnons

with rapidities al are sitting in the left part of the spin chain, that is in region D, while the

set of magnons with rapidities ar are sitting in the complementary region of the chain, that

is DC . The function H(a, ā) describes the weight of each partition, it is different in each

rank one subsector of the N = 4 SYM and its form is given by (for the various functions

appearing in (4.2) see also appendix A)

H(a, ā) = faā dar a
ā
l . (4.2)

Starting from (4.1) it is now straightforward to evaluate the RDM

ρD = κ
∑
c̄r

∑
al ∪ ār
bl ∪ b̄r

H(al, ār)H
∗(bl, b̄r) 〈c̄r|ār〉 ⊗ |al〉〈bl| ⊗ 〈b̄r|c̄r〉

= κ

M∑
m=0

∑
aml , bml

f
(m)
aml b

m
l
|aml 〉〈bml | , (4.3)

where we have defined the following quantity

f
(m)
aml b

m
l
≡ H(a

(m)
l , ā(M−m)

r )H∗(b
(m)
l , b̄(M−m)

r ) 〈b̄(M−m)
r |ā(M−m)

r 〉. (4.4)

In (4.3) c̄r denotes a complete basis of states of the complementary part of the spin chain

DC . In order to get the last expression for the RDM we have used the completeness relation

for the basis c̄r ∑
c̄r

|c̄r〉〈c̄r| = Ir . (4.5)

Here we should stress that because the scalar product of two states involving different

numbers of magnons is zero the RDM can be written as a sum of terms each of which

has a definite number of excitations m in the region D. Subsequently, for each of these

terms one has to sum over all possible partitions of the full set of rapidities into two sets,

one having m excitations and its complementary having M −m excitations. Notice that

the scalar products appearing in the second line of (4.3) are generic off-sell products, since

none of the sets of rapidities ār nor b̄r satisfy the Bethe equations for the complementary
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region of the spin chain. This scalar product is given in terms of the recursion relation in

equation (A.10). The normalisation constant κ is obtained by demanding the condition

TrDρD = 1 ⇒ κ−1 = 〈ψ|ψ〉 =
M∑
m=0

∑
aml

F
(m)
aml a

m
l
,

with F
(m)
aml b

m
l

= f
(m)
aml c

m
l
g

(m)
cml b

m
l

and g
(m)
cml b

m
l

= 〈c(m)
l |b

(m)
l 〉 . (4.6)

A final comment concerns the dimensionality of the matrices F (m), f (m) and g(m). The

dimensionality of each of these square matrices depend on the number m of magnons sitting

in the region D and is given by

d(m) ≡ M !

m!(M −m)!
. (4.7)

As we will see in a while it is the matrices F (m) which one has to diagonalise in order to

calculate the EE. As a result the numerical complexity of the calculation grows not with

the number of the sites of the region D of which the EE we are after, but like 2M , that is

with the number of magnons running in the spin chain. This advantage is related to the

fact that we have employed the powerful technique of the ABA and not that of the CBA.

We are now in position to evaluate the η-th power of the RDM and take its trace to

obtain the Renyi Entropy of the region D as follows

ρηD = κη
M∑
m=0

[
ρ

(m)
D

]n
with

[
ρ

(m)
D

]η
=

∑
aml ,b

m
l ,c

m
l

|a(m)
l 〉〈b

(m)
l |

[
F

(m)
aml c

m
l

]η−1
f

(m)
cml b

m
l
⇒

TrD [ρD]η = κη
M∑
m=0

∑
aml

[
F

(m)
aml a

m
l

]η
. (4.8)

Thus we see that in order to evaluate the Renyi entropy we need to diagonalise the matrices

κF (m) and sum their eigenvalues after they are raised to the ηth power. By taking the

η → 1 limit of the Renyi entropy it is straightforward to show that the EE is given by

SEE = −
M∑
m=0

Tr
[
κF (m) log (κF (m))

]
. (4.9)

Thus, as mentioned above, it is enough to diagonalise each of the matrices κF (m). If we

denote the eigenvalues of each of these matrices by λ
(m)
i with i = 1, 2, . . . , d(m) then the

EE of the part D of the spin chain can be finally written as6

SEE = −
M∑
m=0

d(m)∑
i=1

λ
(m)
i log λ

(m)
i . (4.10)

6To be precise we should notice the following: the upper limit in the second summation in (4.10) is

strictly speaking min{M,N} and not M . Similarly, the lower limit is max{0,M − (L−N)}. The reason is

that if N is less than M then in the calculation of the EE contribute only a portion of the possible partitions

of the Bethe roots and not the whole.
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Figure 8. In this figure we present the EE of an excited state in the SU(2) sector. On the left

part of the figure it is the plot of the EE as a function of the normalised splitting of the spin chain.

On the right part of the figure it is the plot of the normalised EE (i.e. the EE for M magnons

divided by M times the EE of one magnon) again as a function of the normalised splitting. The

different colours for the bullets in both plots correspond to different number of magnons present in

the spin chain. The correspondence between colour and number of magnons is the following: Red

⇒ 2 magnons, Green ⇒ 3 magnons, Blue ⇒ 4 magnons, Black ⇒ 5 magnons, Cyan ⇒ 6 magnons

& Magenta ⇒ 7 magnons.

In the final expression (4.10), the EE of each one of the three rank one sectors of N = 4

SYM is a function of the length of the spin chain, the position we split it in two parts (D

and its complement DC) and the number of excitations (magnons). In figures 8 & 9 we

focus on the SU(2) sector of the theory.7 On the left part of figure 8 we plot the EE of a

spin chain with 14 sites as a function of the position of the splitting point. We plot the

EE for different number of magnons, from two to seven. At this point we should point out

that there is a perfect match of the EE for the two magnons, between the CBA and the

ABA calculations (for all the three rank-one subsectors). That is a non-trivial consistency

check for the calculations that we present.

The Bethe roots we use in the calculation of the EE are coming after solving the Bethe

equation, with the recursive method of [37], and distribute themselves along two disjoint

cuts on the complex plane.8 As can be seen from this plot the EE increases as we increase

the number of the magnons, but the qualitative behaviour remains the same. It increases

as the splitting point approaches the middle of the chain and it is symmetric under the

change N (splitting point) → L−N .

Our initial motivation in employing the very efficient ABA formulation was reaching

the thermodynamic limit, by increasing both the number of magnons and the length of the

spin chain. However, this is a very complicated numerical task. As we mentioned before, the

calculation of the EE for M magnons in a spin chain boils down to diagonalising matrices

with dimension d(m). This means that either a very powerful machine is needed or the

problem needs to be formulated in a different basis when the number of magnons increases.

On the right panel of figure 8 we plot the normalised EE (i.e. the EE for M magnons

divided by M times the EE of one magnon) again as a function of the position of the

7The rapidities of the excited states, for which we calculate the EE, are listed in appendix B.
8The MATHEMATICA code to explicitly produce those solutions can be found in appendix E1 of [38].
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Figure 9. In this figure we present the normalised EE for different number of magnons when the

length of the spin chain changes from L = 12 to L = 20. The correspondence between colour and

length of the spin chain is the following: Red ⇒ L = 12, Green ⇒ L = 14, Blue ⇒ L = 16, Black

⇒ L = 18 & Magenta ⇒ L = 20.

splitting point. We plot the EE for different number of magnons and the behaviour is

different to the one we noticed before. Now increasing the number of magnons decreases

the normalised EE. Notice also in the same plot, that the EE for two magnons almost

saturates the bound not in the middle of the spin chain but at the splitting points 5/14

and 9/14. The maximum of the curve of the normalised EE is not in the middle also for

the three magnons, but eventually as we increase their number this maximum moves to

the centre.

Until now we kept constant the length of the spin chain, modifying the number of

the magnons. In figure 9 we change this perspective, keeping constant the number of the

magnons while changing the length of the spin chain. As can be seen from all the plots of
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Figure 10. In this figure we repeat the calculations that we presented in figure 8, but for an excited

state in the SL(2) sector. The Bethe roots are sitting in two cuts on the real axis. The correspon-

dence between colour and number of magnons is the following: Red ⇒ 2 magnons, Green ⇒ 3

magnons, Blue⇒ 4 magnons, Black ⇒ 5 magnons, Cyan⇒ 6 magnons & Magenta ⇒ 7 magnons.

figure 9, where we present the normalised EE (this is the only quantity that make sense

to compare) for different number of magnons (from two to seven) when the length of the

spin chain changes, we observe the following pattern. When the number of the magnons is

small (from two to four) the curve almost does not change as we change the length of the

spin chain. Increasing the number of the magnons, we notice two effects depending on the

length of the part of the spin chain we cut: when the length of the cut piece is small the

EE increases when we increase the length of the spin chain, while the opposite happens for

the EE when the cut piece is close to the half of the spin chain.

In figures 10 and 11 we complete the computation of the EE for the three rank one

sectors of N = 4 SYM by repeating the calculation for the SL(2) and the SU(1|1) sec-

tors, respectively. In order to numerically perform these computations we use the same

MATHEMATICA code as for the SU(2) sector only changing accordingly the definitions

for the functions f , g, a & d, as they appear in equations (A.4) & (A.6), as well as the

corresponding scattering matrices for the calculation of the Bethe roots.

The results for the EE of the SL(2) sector are similar to the ones of the SU(2) sector.

We should mention that we have chosen the excited states for which the Bethe roots are

sitting in two symmetric cuts on the real axis.9 In the plots of the normalised EE there are

though some differences. Notice that the EE for two magnons almost saturates the bound

in the middle of the spin chain and not in some other points as in the SU(2) case. Also

the maximum of the curve of the normalised EE is in the middle of the spin chain until

we have five magnons, but as we increase their number this maximum is not in the middle

any more. This is the inverse picture with respect to the observations of the SU(2) sector,

for the normalised EE.

The EE of the of the SU(1|1) sector has some differences with respect to the other

two, namely of the SU(2) & SL(2). This is reflected in the right plot of figure 11, where

for more than three magnons (the case with two magnons and its particularity has been

analysed explicitly at the end of section 2) the pattern we observe is different from the

9The rapidities of the excited states, are listed in appendix B.
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Figure 11. In this figure we repeat the calculations that we presented in figure 8, but for an

excited state in the SU(1|1) sector. The correspondence between colour and number of magnons is

the following: Green ⇒ 3 magnons, Blue ⇒ 4 magnons, Black ⇒ 5 magnons, Cyan ⇒ 6 magnons

& Magenta ⇒ 7 magnons.

other two sectors. Here the maximum of the normalised EE is when we cut the shortest

possible piece of the spin chain, while the minimum is always when we cut the spin chain

in the middle. In agreement with the observation in the other two sectors, increasing the

number of magnons decreases the normalised EE.

Closing this section we should mention that the two features that remain universal,

that is independent of the particular excited state we consider, are the following:

• The fact that the EE per magnon decreases as we increase the number of the

magnons.10

• For the bosonic subsectors SU(2) & SL(2) the behaviour of the EE presented in

figures 8, 9 and 10 is universal, as long as one remains within the broad class of two

cut solutions. These solutions are of special interest for the thermodynamic limit and

the AdS/CFT correspondence.

5 Conclusions and future directions

The aim of this paper was to exploit integrability in order to shed some light to the

behaviour of the Entanglement and Renyi Entropies of the N = 4 SYM spin chain. Gener-

ically, the Entanglement and Renyi Entropies depend on the lengths of the spin chain and

of the domain of it that we cut, as well as on the details of the excited state whose entropy

we are after. These details are the number of propagating magnons, their rapidities and the

particular sector on which we focus. Furthermore, since the dilatation operator of N = 4

receives quantum corrections its eigenstates and the associated with them Entanglement

and Renyi Entropies will depend on the ’t Hooft coupling λ. Our goal was to address these

questions about how the EE depends on the aforementioned parameters.

10Notice that for every value of the normalised splitting N/L the behaviour of the normalised entropy

and the EE per magnon is the same.
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After providing the reader with the results for the EE of the vacuum and the single

magnon state we analytically calculated the EE of excited states with two magnons in

all closed rank one subsectors of N = 4 SYM, namely SU(2), SU(1|1) and SL(2). Our

calculation was performed using the formalism of the Coordinate Bethe Ansatz and was

leading in the coupling expansion (our states were eigenstates of the one-loop dilatation

operators) but exact in the length of the spin chain and of the part of it we cut.

In section 3 we calculated the EE of the superconformal primary operator with two

excitations in the BMN limit. We derived an analytic expression for the EE which is exact

in the coupling λ′ =
g2YMN

J2 = λ
J2 and interpolates between the weak λ′ = 0 and strong

coupling regimes λ′ →∞. This allowed us to analyse the effect of long-range interactions

of the spin chain on the EE. We have found that the EE of a part of the spin chain is a

monotonically increasing function of the coupling which saturates to a constant value as

λ′ → ∞ when we keep the length of the chain we cut fixed. This results to a violation

of a certain bound for the EE that is present at weak coupling. Thus, one of our main

conclusions is that, as it is physically anticipated, the entanglement between parts of the

chain becomes stronger as one increases the coupling λ′, at least for the superconformal

primary operator with two excitations.

In section 4 we employed integrability, and more precisely the powerful formalism of

the Algebraic Bethe Ansatz in order to calculate numerically the EE of excited states with

up to seven magnons in the SU(2), SU(1|1) and SL(2) subsectors. In the SU(2) and SL(2)

subsectors we have focused on excited state corresponding to 2-cut solutions of the Bethe

equations. Although the absolute value of the EE increases with the number of magnons,

its normalised value, that is the EE for an M magnon excited state divided by M times

the EE of one magnon, decreases with the the number of magnons. Some differences in the

behaviour of the EE as a function of the magnon number for the two bosonic sectors are

scrutinised in section 4. The different statistics of the excited states in the SU(1|1) sector

lead to a different qualitative behaviour of the normalised EE. This is the only sector that

the normalised EE explicitly saturates the bound for the case of two magnons.

A number of very interesting questions remain to be answered. First of all from the

perspective of the AdS/CFT correspondence it is important if the calculation of section 4

for the SU(2) and SL(2) sectors could be performed for a larger number of magnons in

longer spin chains. This would allow one to approach the thermodynamic limit in which

case the spin chain states will be dual to certain semi-classical string solutions. However,

it seems that for this to be achieved a reformulation of the problem will be needed. In

particular one should need to obtain expressions for the product of two off-shell states in

the thermodynamic limit. One can then address the question of what is the precise relation

between the entropy calculated from the spin chain approach and the one which one may

calculate from the dual solutions of the non-linear σ-model.11 The same question can be

asked about the exact in λ′ EE which we have calculated in section 3. Furthermore, it

would be interesting to generalise the calculation of section 3 to the case of superconformal

11One comment is in order. Notice that while in our calculations the EE is always finite (even at the BMN

limit where J →∞) while in all the field theory calculations that appear in the literature (see e.g. [39]) for

free field theories the EE is divergent when the cut-off a is sent to zero.
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primary operators with more than two excitations. Another direction would be to calculate

the 1
J corrections to the BMN EE by considering the near BMN limit.

One could also employ the Perturbative Bethe Ansatz technique to calculate the g2
YMN

corrections to the EE, as an order by order expansion in perturbation theory. One should of

course interpret the fact that eigenstates of the dilatation operators (and as a consequence

the corresponding EE) will be scheme-dependent. Notice that such a complication is absent

both in the BMN limit considered in section 3 and in the leading in g2
YMN calculations of

section 4.
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A Algebraic Bethe ansatz: essential formulas

In this appendix we collect all the essential mathematical formulas needed for the construc-

tion of the ABA, following the references [36, 38, 40]. We introduce the following functions

that determine the rank one subsector of the N = 4 SYM we are working.

SU(2) sector. The expressions for the basic building blocks are

f(u) ≡ 1 +
i

u
, g(u) ≡ i

u
, h(u) ≡ f(u)

g(u)
=
u+ i

i
, t(u) ≡ g(u)2

f(u)
=

−1

u(u+ i)
, (A.1)

a(u) ≡
(
u +

i

2

)L
, d(u) ≡

(
u − i

2

)L
, (A.2)

while the SU(2) Bethe equations that determine the set of rapidities, are

1 ≡
(
uj + i/2

uj − i/2

)L M∏
k 6=j

uj − uk − i

uj − uk + i
. (A.3)

SL(2) sector. The expressions for the basic building blocks are

f(u) = 1 +
i

u
, g(u) =

i

u
, a(u) =

(
u − i

2

)L
, d(u) =

(
u +

i

2

)L
, (A.4)

while the SL(2) Bethe equations are

1 ≡
(
uj + i/2

uj − i/2

)L M∏
k 6=j

uj − uk + i

uj − uk − i
. (A.5)

SU(1|1) sector. The expressions for the basic building blocks are

f(u) =
i

u
, g(u) =

i

u
, a(u) =

(
u +

i

2

)L
, d(u) =

(
u − i

2

)L
, (A.6)

while the SU(1|1) Bethe equations are

1 ≡
(
uj + i/2

uj − i/2

)L
. (A.7)
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In order to simplify the expressions we introduce the following shorthand notation

F a ≡
∏
uj∈ a

F (uj) , F aā ≡
∏
ui ∈ a
vj ∈ ā

F (ui − vj) , F aa< ≡
∏

ui, uj ∈ a
i < j

F (ui − uj) . (A.8)

Now we can write the expression for the function H(a, ā), that weights the different parti-

tions of the spin chain, according to the algebraic normalizations of [36]

H(a, ā) = faā dar a
ā
l , (A.9)

where al and dr are defined as in equations (A.1), (A.4) & (A.6), but using instead of L

the lengths for the left and the right subchain respectively.

Scalar product. In order to compute the RDM we need to evaluate the scalar product

between two Bethe wavefunctions for arbitrary {u} and {v}. A recursion relation for such

an expression is computed analytically in references [36] and [40]. Here, for completeness,

we present the outcome of that computation.

Consider two Bethe states, which are parametrized by ui and vi, with i = 1, . . . , N .

The scalar product SN ({v}, {u}) ≡ 〈{v∗}|{u}〉 is given by the following recursion relation

SN ({v1, . . . , vN}, {u1, . . . , uN}) =
∑
n

bn SN−1 ({v1, . . . , v̂n, . . . , vN}, {û1, u2, . . . , uN})

−
∑
n<m

cn,m SN−1 ({u1, v1, . . . v̂n, . . . , v̂m, . . . vN}, {û1, u2, . . . , uN}) , (A.10)

where a Bethe root with a hat means that it is omitted. The definitions for bn and cn,m
are the following

bn = g(u1 − vn)a(vn)d(u1)

N∏
j 6=n

f(u1 − vj) f(vj − vn) + (u1 ↔ vn) , (A.11)

cn,m = g(u1 − vn) g(u1 − vm) a(vm) d(vn) f(vn − vm)

×
N∏

j 6=n,m
f(vn − vj) f(vj − vm) + (n↔ m) . (A.12)

Using (A.10) and substituting the corresponding expressions for the functions

f(u), g(u), a(u) and d(u) (from either (A.1), (A.4) or (A.6)), it is possible to calculate

the scalar product for any of the rank one subsectrors.

B Bethe roots

In section 4 we calculate the EE of excited states that belong either on the SU(2) or on the

SL(2) or on the SU(1|1) sector. In this appendix we list the Bethe roots of these excited

states and in the SU(2) case we also plot them, since they distribute themselves along two

disjoint cuts on the complex plane.

We start from the Bethe roots of the excited states of figures 8 and 9. In those figures

we are considering spin chains with 12, 14, 16, 18 & 20 sites with a number of magnons

ranging from 2 to 7. The Bethe roots for these magnons are the following:
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SU(2) sector: L=12

2 m ⇒ {-1.703, 1.703},

3 m ⇒ {-0.478 + 0.500 I, -0.478 - 0.500 I, 1.418}

4 m ⇒ {-1.296 + 0.564 I, -1.296 - 0.564 I, 1.296 - 0.564 I, 1.296 + 0.564 I}

5 m ⇒ {-1.11 + 0.537 I, -1.11 - 0.537 I, 0.979 - I, 1.009, 0.979 + I}

6 m ⇒ {-0.676 + I, -0.676, -0.676 - I, 0.676 - I, 0.676, 0.676 + I}

SU(2) sector: L=14

2 m ⇒ {-2.029, 2.029},

3 m ⇒ {-0.713 + 0.501 I, -0.713 - 0.501 I, 1.754}

4 m ⇒ {-1.644 + 0.601 I, -1.644 - 0.601 I, 1.644 - 0.601 I, 1.644 + 0.601 I}

5 m ⇒ {-1.47 + 0.574 I, -1.47 - 0.574 I, 1.428, 1.37 - 1.043 I, 1.37 + 1.043 I}

6 m ⇒ {-1.16 + 1.01 I, -1.2, -1.16 - 1.01 I, 1.16 - 1.01 I, 1.2, 1.16 + 1.01 I}

7 m ⇒ {-0.898 + 0.994 I, -0.898 - 0.994 I, 0.686 + 1.499 I, 0.686 - 1.499 I,

0.665 - 0.5 I, 0.665 + 0.5 I, -0.907}

SU(2) sector: L=16

2 m ⇒ {-2.352, 2.352},

3 m ⇒ {-0.922 + 0.502 I, -0.922 - 0.502 I, 2.083}

4 m ⇒ {-1.981 + 0.639 I, -1.981 - 0.639 I, 1.981 - 0.639 I, 1.981 + 0.639 I}

5 m ⇒ {-1.815 + 0.612 I, -1.815 - 0.612 I, 1.721 - 1.1 I, 1.804, 1.721 + 1.1 I}

6 m ⇒ {-1.54 + 1.06 I, -1.6, -1.54 - 1.06 I, 1.54 - 1.06 I, 1.6, 1.54 + 1.06 I}

7 m ⇒ {-1.351 + 1.023 I, -1.396, -1.351 - 1.023 I, 1.230 - 1.464 I,

1.262 - 0.502 I, 1.262 + 0.502 I, 1.23 + 1.464 I}

SU(2) sector: L=18

2 m ⇒ {-2.675, 2.675},

3 m ⇒ {-1.117 + 0.505 I, -1.117 - 0.505 I, 2.408}

4 m ⇒ {-2.312 + 0.675 I, -2.312 - 0.675 I, 2.312 - 0.675 I, 2.312 + 0.675 I}

5 m ⇒ {-2.15 + 0.65 I, -2.15 - 0.65 I, 2.063 - 1.156 I, 2.159, 2.063 + 1.156 I}

6 m ⇒ {-1.89 + 1.1 I, -1.98, -1.89 - 1.1 I, 1.89 - 1.1 I, 1.98, 1.89 + 1.1 I}

7 m ⇒ {1.614 - 1.503 I, 1.702 - 0.511 I, 1.702 + 0.511 I, 1.614 + 1.503 I,

-1.719 + 1.074 I, -1.790, -1.719 - 1.074 I}

SU(2) sector: L=20

2 m ⇒ {-2.996, 2.996},

3 m ⇒ {-1.302 + 0.51 I, -1.302 - 0.51 I, 2.732}

4 m ⇒ {-2.64 + 0.71 I, -2.64 - 0.71 I, 2.64 - 0.71 I, 2.64 + 0.71 I}

5 m ⇒ {-2.48 + 0.685 I, -2.48 - 0.685 I, 2.397 - 1.214 I, 2.5, 2.397 + 1.214 I}

6 m ⇒ {-2.23 + 1.17 I, -2.3, -2.23 - 1.17 I, 2.23 - 1.17 I, 2.3, 2.23 + 1.17 I}

7 m ⇒ {1.965 - 1.567 I, 2.090 - 0.525 I, 2.090 + 0.525 I, 1.965 + 1.567 I,

-2.066 + 1.131 I, -2.153, -2.066 - 1.131 I}
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Figure 12. The correspondence between colour and number of magnons is the following: Red ⇒
2 magnons, Green ⇒ 3 magnons, Blue ⇒ 4 magnons, Black ⇒ 5 magnons, Cyan ⇒ 6 magnons &

Magenta ⇒ 7 magnons.

We only plot the Bethe roots that correspond to a spin chain with 14 sites, since all

the other plots are similar.

The Bethe roots that correspond to the excited states of the figures 10 (SL(2) sector)

and 11 (SU(1|1) sector), for a spin chain with with 14 sites, are the following:

SL(2) sector:

2 m ⇒ {-2.352, 2.352},

3 m ⇒ {-1.889, -3.069, 2.521}

4 m ⇒ {-2.024, -3.268, 3.268, 2.024}

5 m ⇒ {-2.166, -3.472, 3.946, 2.652, 1.726}

6 m ⇒ {-1.845, 1.845, -2.822, -4.17, 4.17, 2.822}

7 m ⇒ {4.831, 1.619, 2.415, 3.437, -1.97, -2.998, -4.398}

and

SU(1|1) sector:

3 m ⇒ {0.399, 0.627, 1.038}

4 m ⇒ {0, 0.114, 0.241, 0.399, 0.627}

5 m ⇒ {-2.166, -3.472, 3.946, 2.652, 1.726}

6 m ⇒ {-0.175, -0.056, 0.056, 0.175, 0.314, 0.5}

7 m ⇒ {-0.399, -0.241, -0.114, 0, 0.114, 0.241, 0.399}

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[34] C. Beck and F. Schlögl, Thermodynamics of chaotic systems, Cambridge University Press,

Cambridge U.K. (1993).

[35] L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, hep-th/9605187

[INSPIRE].

[36] J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring three-point functions and

integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].

[37] T. Bargheer, N. Beisert and N. Gromov, Quantum stability for the Heisenberg ferromagnet,

New J. Phys. 10 (2008) 103023 [arXiv:0804.0324] [INSPIRE].

[38] J. Escobedo, Integrability in AdS/CFT: exact results for correlation functions, Ph.D. thesis,

Waterloo University, U.S.A. (2012).

[39] H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A 42

(2009) 504007 [arXiv:0905.2562] [INSPIRE].

[40] J. Caetano and J. Escobedo, On four-point functions and integrability in N = 4 SYM: from

weak to strong coupling, JHEP 09 (2011) 080 [arXiv:1107.5580] [INSPIRE].

– 32 –

http://dx.doi.org/10.1088/1126-6708/2002/06/011
http://arxiv.org/abs/hep-th/0206005
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206005
http://dx.doi.org/10.1088/1126-6708/2003/04/015
http://arxiv.org/abs/hep-th/0302064
http://inspirehep.net/search?p=find+EPRINT+hep-th/0302064
http://dx.doi.org/10.1088/1126-6708/2009/10/009
http://arxiv.org/abs/0907.1567
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1567
http://dx.doi.org/10.1088/1126-6708/2004/04/001
http://arxiv.org/abs/hep-th/0403188
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403188
http://dx.doi.org/10.1007/JHEP11(2010)141
http://arxiv.org/abs/1008.1070
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1070
http://dx.doi.org/10.1007/JHEP02(2011)046
http://arxiv.org/abs/1011.5181
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5181
http://dx.doi.org/10.1007/JHEP09(2011)132
http://dx.doi.org/10.1007/JHEP09(2011)132
http://arxiv.org/abs/1107.1850
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1850
http://dx.doi.org/10.1016/S0550-3213(03)00229-3
http://arxiv.org/abs/hep-th/0211032
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211032
http://dx.doi.org/10.1088/1126-6708/2009/01/082
http://arxiv.org/abs/0810.0499
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.0499
http://dx.doi.org/10.1088/1126-6708/2003/10/049
http://dx.doi.org/10.1088/1126-6708/2003/10/049
http://arxiv.org/abs/hep-th/0306234
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306234
http://dx.doi.org/10.1007/JHEP04(2012)038
http://dx.doi.org/10.1007/JHEP04(2012)038
http://arxiv.org/abs/1201.0992
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.0992
http://dx.doi.org/10.1103/PhysRevD.82.046006
http://dx.doi.org/10.1103/PhysRevD.82.046006
http://arxiv.org/abs/1006.1263
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.1263
http://dx.doi.org/10.1007/JHEP01(2011)125
http://dx.doi.org/10.1007/JHEP01(2011)125
http://arxiv.org/abs/1011.5819
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5819
http://arxiv.org/abs/hep-th/9605187
http://inspirehep.net/search?p=find+EPRINT+hep-th/9605187
http://dx.doi.org/10.1007/JHEP09(2011)028
http://arxiv.org/abs/1012.2475
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2475
http://dx.doi.org/10.1088/1367-2630/10/10/103023
http://arxiv.org/abs/0804.0324
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.0324
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://dx.doi.org/10.1088/1751-8113/42/50/504007
http://arxiv.org/abs/0905.2562
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2562
http://dx.doi.org/10.1007/JHEP09(2011)080
http://arxiv.org/abs/1107.5580
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5580

	Introduction
	Entanglement Entropy of two magnons in the three rank one closed subsectors of the N=4 spin chain
	Entanglement Entropy of the vacuum
	Entanglement Entropy of a state with one magnon
	Entanglement Entropy of a state with two magnons

	All-loop Entanglement and Renyi entropies of the superconformal primary operator with two excitations in the BMN limit
	The superconformal primary operator with two impurities in the BMN limit
	Exact in lambda' entanglement entropy

	Entanglement Entropy from the algebraic Bethe ansatz
	Conclusions and future directions
	Algebraic Bethe ansatz: essential formulas
	Bethe roots

