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1 Introduction

Jets are used in a broad range of physics analyses at colliders and notably at CERN’s large

hadron collider (LHC). The study of jets requires the use of a jet definition and for many

of the algorithms in use today that jet definition involves a “radius” parameter, R, which

determines how far in angle a jet clusters radiation. A limit of particular interest is that

where R is taken small. One reason is that contamination from multiple simultaneous pp

interactions (“pileup”) is minimised, as is the contribution from the large underlying event
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when studying heavy-ion collisions. Furthermore small-R subjets are often a component

of jet substructure analyses used to reconstruct hadronic decays of highly boosted weak

bosons and top quarks. Finally a powerful systematic cross-check in precision jet studies

comes from the variation of R, e.g. to verify that conclusions about data-theory agreement

remain stable. Such a variation will often bring one into the small-R limit.

In the small-R limit the perturbative series involves terms αns lnn 1/R2, where the

smallness of αns is partially compensated by large logarithms lnn 1/R2. The first order

αs ln 1/R2 terms (together with the constant) were first calculated long ago [1–3] and have

been examined also more recently [4–6]. About a year ago, the whole tower of leading-

logarithmic (LLR) terms was determined [7], i.e. αns lnn 1/R2 for all n, for a range of

observables (for related work, see also refs. [8, 9]). Work is also ongoing towards next-to-

leading logarithmic accuracy, NLLR [10, 11], however the concrete results do not yet apply

to hadron-collider jet algorithms.

From the point of view of phenomenological studies, there has so far been one in-

vestigation of the impact of small-R resummation in the context of jet vetoes in Higgs

production [12]. Though small-R contributions have a significant impact on the results,

most of their effect (at the phenomenologically relevant R value of 0.4) is already accounted

for in fixed-order and pt-resummed calculations. Accordingly the resummation brings only

small additional changes.

In this article, we examine the phenomenological impact of small-R terms for the

archetypal hadron-collider jet observable, namely the inclusive jet spectrum. This observ-

able probes the highest scales that are accessible at colliders and is used for constraining

parton distribution functions (PDFs), determining the strong coupling and also in studies

of hard probes in heavy-ion collisions. Two factors can contribute to enhance small-R ef-

fects in the inclusive jet spectrum: firstly, it falls steeply as a function of pt, which magnifies

the impact of any physical effect that modifies the jet’s energy. Secondly, a wide range of R

values has been explored for this observable, going down as far as R = 0.2 in measurements

in proton-proton collisions by the ALICE collaboration [13]. That wide range of R has been

exploited also in studies of ratios of cross sections at different R values [13–17]. For R = 0.2,

LLR small-R effects can be responsible for up to 40% modifications of the jet spectrum.

A first part of our study (section 2) will be to establish the region of R where the

small-R approximation is valid and to examine the potential impact of effects beyond the

LLR approximation. This will point to the need to include at the least the subleading

R-enhanced terms that arise at next-to-next-to-leading order (NNLO) and motivate us

to devise schemes to match LLR resummation with both NLO and NNLO calculations

(sections 3 and 4 respectively). At NLO we will see indications of spuriously small scale

dependence and discuss how to resolve the issue. Concerning NNLO, since the full calcula-

tion is work in progress [18, 19], to move forwards we will introduce an approximation that

we refer to as “NNLOR”. It contains the full R-dependence of the NNLO prediction but

misses an R-independent, though pt-dependent, constant term. By default we will take it to

be zero at some reference radius Rm, but we will also examine the impact of other choices.

In addition to the perturbative contributions at small-R, one must take into account

non-perturbative effects, which are enhanced roughly as 1/R at small R and grow large
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especially at smaller values of pt. Two approaches exist for incorporating them, one based

on analytic calculations [20], the other based on the differences between parton and hadron-

level results in Monte Carlo event generators such as Pythia [21, 22] and Herwig [23–26].

Based on our studies in section 5, we adopt the Monte Carlo approach for our comparisons

to data. These are the subject of section 6, where we examine data from the ALICE collab-

oration [13] at R = 0.2 and 0.4, and from the ATLAS [27] collaboration at R = 0.4 and 0.6.

A broad range of dynamically-generated plots comparing different theory predictions

across a range of rapidities, transverse momenta and R values can be viewed online [28].

Furthermore some of the plots included in the arXiv source for this paper contain additional

information in the form of extra pages not displayed in the manuscript.

2 Small-R resummation for the inclusive jet spectrum

2.1 Recall of the small-R resummation formalism at LLR accuracy

As for the inclusive hadron spectrum [29], the small-R inclusive “microjet” spectrum can

be obtained [7] from the convolution of the leading-order inclusive spectrum of partons of

flavour k and transverse momentum p′t,
dσ(k)

dp′t
, with the inclusive microjet fragmentation

function, f incljet/k(pt/p
′
t, t), for producing microjets carrying a fraction pt/p

′
t of the parton’s

momentum,

σLLR(pt, R) ≡
dσLLR

jet

dpt
=
∑
k

∫
pt

dp′t
p′t

f incljet/k

(
pt
p′t
, t(R,R0, µR)

)
dσ(k)

dp′t
. (2.1)

To keep the notation compact, we use σLLR(pt, R) to denote either a differential cross

section, or the cross section in a given pt bin, depending on the context. At LLR accuracy,

the small-R effects are entirely contained in the fragmentation function, which depends on

R through the evolution variable t, defined as

t(R,R0, µR) =

∫ R2
0

R2

dθ2

θ2
αs(µR θ/R0)

2π
=

1

b0
ln

1

1− αs(µR)
2π b0 ln

R2
0

R2

, (2.2)

with b0 =
11CA−4TRnf

6 .1 Here, R0 is the angular scale, of order 1, at which the small-radius

approximation starts to become valid. For R = R0, or equivalently t = 0, the fragmentation

function has the initial condition f incljet/k(z, 0) = δ(1 − z). It can be determined for other t

values by solving a DGLAP-like evolution equation in t [7]. These results are identical for

any standard hadron-collider jet algorithm of the generalised-kt [30–34] and SISCone [35]

families, with differences between them appearing only at subleading logarithmic order.

In this work we will restrict our attention to the anti-kt algorithm (as implemented in

FastJet v3.1.3 [36]). The LLR resummation is implemented with the aid of HOPPET [37].

1The choice of whether to use αs(µR θ/R0) or αs(µR θ) in the integral is arbitrary. We choose the former

because it ensures that αs(µR) factorises from the logarithm of R in the right-hand side.
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Figure 1. Impact of R-dependent terms in the inclusive-jet spectrum, illustrated using the small-R

resummation factor obtained from the ratio of σLLR in eq. (2.1) to the leading order inclusive jet

spectrum σLO. It is shown as a function of the jet pt for different jet radius values. For each R

value, the plot illustrates the impact of two choices of R0: R0 = 1 (our default) as solid lines and

R0 = 1.5 as dashed lines.

The phenomenological relevance of the small-R terms is illustrated in figure 1, which

shows the ratio of the jet spectrum with small-R resummation effects to the LO jet spec-

trum.2 For this and a number of later plots, the pt and rapidity ranges and the collider

energy choice correspond to those of ATLAS measurements [27], to which we will later

compare our results. We show the impact of resummation for a range of R values from

0.1 to 1.0 and two R0 choices. The smallest R values typically in use experimentally are

in the range 0.2–0.4 and one sees that the fragmentation of partons into jets brings up to

40% reduction in the cross section for the smaller of these radii. The fact that the small-R

effects are substantial is one of the motivations for our work here.

From the point of view of phenomenological applications, the question that perhaps

matters more is the impact of corrections beyond NLO (or forthcoming NNLO), since fixed

order results are what are most commonly used in comparisons to data. This will be most

easily quantifiable when we discuss matched results in sections 3 and 4. Note that there

was already some level of discussion of effects beyond fixed order in ref. [7], in terms of

an expansion in powers of t. However comparisons to standard fixed order refer to an

expansion in αs, which is what we will be using throughout this article. A brief discussion

of the different features of t and αs expansions is given in appendix A.

2Although for this purpose we have used the small-R resummed calculations, we could also have used

NLO calculations which would also indicate similarly visible R-dependent effects. The differences between

the small-R resummation and NLO predictions will be discussed later.
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2.2 Range of validity of the small-R approximation and effects beyond LLR

In order to carry out a reliable phenomenological study of small-R effects it is useful to ask

two questions about the validity of our LLR small-R approach. Firstly we wish to know

from what radii the underlying small-angle approximation starts to work. Secondly, we

want to determine the potential size of small-R terms beyond LLR accuracy.

To investigate the first question we take the full next-to-leading-order (NLO) calcu-

lation for the inclusive jet spectrum from the NLOJet++ program [38], and look at the

quantity ∆1(pt, R,Rref), where

∆i(pt, R,Rref) ≡
σi(pt, R)− σi(pt, Rref)

σ0(pt)
. (2.3)

Here σi(pt) corresponds to the order α2+i
s contribution to the inclusive jet cross section in

a given bin of pt. This can be compared to a similar ratio, ∆LLR
1 (pt, R,Rref), obtained from

the NLO expansion of eq. (2.1) instead of the exact NLO result.3 The quantity Rref here

is some small reference radius at which one expects the small-R approximation to be valid;

we choose Rref = 0.1. Figure 2 (left) shows the comparison of ∆1 (filled squares) and ∆LLR
1

(crosses) as a function of pt for several different R values. One sees very good agreement

between ∆1 and ∆LLR
1 for the smaller R values, while the agreement starts to break down

for R in the vicinity of 1–1.5. This provides grounds for using the small-R approximation

for R values . 0.6 and motivates a choice of R0 in range 1–1.5. We will take R0 = 1 as

our default, and use R0 = 1.5 as a probe of resummation uncertainties.

Next let us examine effects of subleading small-R logarithms, terms that come with

a factor αns lnn−1R relative to the Born cross section. While there has been some work

investigating such classes of terms in refs. [10, 11], those results do not apply to hadron-

collider jet algorithms. Instead, here we examine the R dependence in the NNLO part of

the inclusive jet cross section to evaluate the size of these terms. Because the R dependence

starts only at order α3
s, we can use the NLO 3-jet component of the NLOJet++ program to

determine these terms. More explicitly, we use the fact that

σNNLO(R)− σNNLO(Rref) = σNLO3j (R)− σNLO3j (Rref) . (2.4)

To determine this difference in practice, for each event in the NLOJet++ 3-jet run we apply

the following procedure: we cluster the event with radius R and for each resulting jet add

the event weight to the jet’s corresponding pt bin; we then recluster the particles with

radius Rref and for each jet subtract the event weight from the corresponding pt bin. For

this procedure to give a correct answer, it is crucial not to have any 3-jet phasespace cut

in the NLO 3-jet calculation (i.e. there is no explicit requirement of a 3rd jet).4

3∆LLR
1 (pt, R,Rref) is independent of R0 because the R0 cancels between the two terms in the numerator.

4Note that we have encountered issues with the convergence of the NLOJet++ calculation, with some bins

showing extremely large excursions in individual runs. To obtain stable results, we perform a combination

of a large number of runs (order 2000−4000) in which each bin’s weight from a given run is inversely

proportional to the square of its statistical error. Given that such weighted combinations are known to give

biased results, we then apply a global correction factor to ∆1+2(pt, R,Rref) across all bins. That factor
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Figure 2. Left: comparison of the R dependence in the exact and small-R approximated NLO

expansion, using eq. (2.3), shown as a function of jet transverse momentum pt, for
√
s = 7 TeV

in the rapidity region |y| < 0.5. Right: comparison of ∆1+2(pt, R,Rref) and ∆LLR
1+2 (pt, R,Rref) (cf.

eq. (2.5)). In both plots CT10 NLO PDFs [39] are used, while the renormalisation and factorisation

scales are set equal to the pt of the highest-pt R = 1 jet in the event (this same scale is used for all

R choices in the final jet finding).

Hence, we can then examine

∆1+2(pt, R,Rref) ≡ ∆1(pt, R,Rref) + ∆2(pt, R,Rref) (2.5)

and its corresponding LLR approximation, ∆LLR
1+2 (pt, R,Rref). The reason for including both

NLO and NNLO terms is to facilitate comparison of the size of the results with that of

the pure NLO piece. The results for ∆1+2 (filled squares) and ∆LLR
1+2 (crosses) are shown in

figure 2 (right). The difference between the crosses in the left-hand and right-hand plots is

indicative of the size of the NNLO LLR contribution. At small R, the difference between

the crosses and solid squares in the right-hand plot gives the size of the NLLR contribution

at NNLO. It is clear that this is a substantial contribution, of the same order of magnitude

as the LLR contribution itself, but with the opposite sign. Ideally one would therefore

carry out a full NLLR calculation. That, however, is beyond the scope of this article.

is equal to the ratio of
∫ pt,max

pt,min
dpt ∆1+2(pt, R,Rref), as obtained from a bin-wise unweighted combination

(with removal of a few percent of outlying runs in each bin) and a bin-wise weighted combination (an

alternative approach to a similar issue was recently discussed in ref. [40]). We believe that the systematics

associated with this procedure are at the level of a couple of percent.

– 6 –
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Instead we will include a subset of the subleading lnR terms by combining the LLR
resummation with the exact R dependence up to NNLO fixed order, i.e. the terms explicitly

included in the solid squares in figure 2.

3 Matching NLO and LLR

For phenomenological predictions, it is necessary to combine the LLR resummation with

results from fixed-order calculations. In this section we will first examine how to combine

LLR and NLO results, and then proceed with a discussion of NNLO corrections.

3.1 Matching prescriptions

One potential approach for combining LLR and NLO results would be to use an additive

type matching,

σNLO+LLR,add.(R) = σLLR(R) + σ1(R)− σLLR
1 (R) , (3.1)

where σ1(R) denotes the pure NLO contribution to the inclusive jet spectrum (without the

LO part, as in section 2.2) and σLLR
1 (R) refers to the pure NLO contribution within the LLR

resummation. For compactness, the pt argument in the cross sections has been left implicit.

A simple, physical condition that the matching must satisfy is that in the limit R→ 0,

the ratio of the matched result to the LO result should tend to zero perturbatively,5

σNLO+LLR

σ0
→ 0 for R→ 0 . (3.2)

Eq. (3.1) does not satisfy this property: while σLLR/σ0 does tend to zero, the quantity

(σ1− σLLR
1 )/σ0 instead tends to a constant for small R. We will therefore not use additive

matching.

Another class of matching procedure is multiplicative matching. One simple version

of multiplicative matching is given by

σNLO+LLR,mult.simple =
σLLR(R)

σ0
×
(
σ0 + σ1(R)− σLLR

1 (R)
)
. (3.3)

Because σLLR
1 (R) contains the same logs as those in σ1(R), the right hand bracket tends

to a constant for small R and all the R dependence comes from the σLLR(R) factor. Since

σLLR(R) tends to zero for R→ 0, eq. (3.3) satisfies the condition in eq. (3.2). The matching

formula that we actually use is

σNLO+LLR = (σ0 + σ1(R0))×

[
σLLR(R)

σ0
×

(
1 +

σ1(R)− σ1(R0)− σLLR
1 (R)

σ0

)]
, (3.4)

where R0 is taken to be the same arbitrary radius of order 1 that appears in σLLR(R)

as defined in eq. (2.1). Compared to eq. (3.3), we have explicitly separated out a factor

(σ0 + σ1(R0)). As with eq. (3.3), at small-R the entire R dependence comes from the

5Once non-perturbative effects are accounted for, σLLR(R = 0) must coincide with the inclusive hadron

spectrum.
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σLLR(R) factor, thus ensuring that eq. (3.2) is satisfied. Eq. (3.4) has the advantage over

eq. (3.3) that matching will be simpler to extend to NNLO+LLR, which is why we make

it our default choice.

Eq. (3.4) has a simple physical interpretation: the left-hand factor is the cross section

for producing a jet of radius R0 and is effectively a stand-in for the normalisation of

the (ill-defined) partonic scattering cross section, i.e. we equate partons with jets with

radius R0 ∼ 1. The right hand factor (in square brackets) then accounts for the effect of

fragmentation on the cross section, including both the LLR contribution and an exact NLO

remainder for the difference between the cross sections at radii R0 and R.

Even without a small-R resummation, one can argue that the physical separation that

is embodied in eq. (3.4) is one that should be applied to normal NLO calculations. This

gives us the following alternative expression for the NLO cross section

σNLO-mult. = (σ0 + σ1(R0))×
(

1 +
σ1(R)− σ1(R0)

σ0

)
, (3.5)

i.e. the cross section for producing a small-radius jet should be thought of as the cross

section for the initial partonic scattering, followed by the fragmentation of the parton to

a jet. As in eq. (3.4), we introduce a radius R0 ∼ 1 to give meaning to the concept of

a “parton” beyond leading order. It is straightforward to see that eq. (3.5) differs from

standard NLO only in terms of corrections at order α2
s relative to LO.

3.2 Unphysical cancellations in scale dependence

Let us now return to the resummed matched prediction, eq. (3.4). The left and right-hand

factors in that formula are shown separately in figure 3. The left-hand factor, corresponding

to an overall normalisation for hard partonic scattering, is shown in the left-hand plot

(divided by the LO to ease visualisation), while the small-R fragmentation (i.e. right-

hand) factor, which includes the resummation and matching contributions, is shown on

the right. One sees that the two terms bring K-factors going in opposite directions. The

overall normalisation has a K-factor that is larger than one and grows with pt. Meanwhile

the fragmentation effects generate a K-factor that is substantially below one for smaller R

values, with a relatively weak pt dependence.

The pt dependence of the two factors involves an interplay between two effects: on one

hand, the fraction of gluons decreases at large pt, as does αs; on the other hand the PDFs

fall off more steeply at higher pt, which enhances (positive) threshold logarithms in the

normalisation factor and also increases the effect of small-R logarithms in the fragmentation

factor (i.e. reduces the fragmentation factor). We believe that the gentle increase of the

fragmentation factor is due to the decrease in gluon fraction, partially counteracted by the

increasing steepness of the PDFs. A similar cancellation is probably responsible for the

flatness of the normalisation factor at low and moderate pt’s, with threshold logarithms

induced by the PDFs’ steepness driving the increase at the highest pt’s.

We note also that both factors in eq. (3.4) depend significantly on the choice of R0,

with two values being shown in figure 3, R0 = 1 (solid) and R0 = 1.5 (dashed). However

– 8 –
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Figure 3. Left: size of the matching normalisation factor (left-hand factor of eq. (3.4), normalised

to LO), shown v. pt for various R values and two R0 choices. Right: size of the matched small-R

fragmentation factor (right-hand factor of eq. (3.4); similar results are observed for the right-hand

factor of eq. (3.5)). The results are shown for the scale choice µR = µF = pt,max, where pt,max is

the transverse momentum of the hardest jet in the event.

in the full results, eqs. (3.4) and (3.5), the R0 dependence in cancels up to NLO, leaving a

residual R0 dependence that corresponds only to uncontrolled higher-order terms.

The partial cancellation between higher-order effects that takes place between the

small-R effects and the residual matching correction is somewhat reminiscent of the sit-

uation for jet vetoes in Higgs-boson production. There it has been argued that such a

cancellation can be dangerous when it comes to estimating scale uncertainties. As a result,

different schemes have been proposed to obtain a more reliable and conservative estimate,

notably the Stewart-Tackmann [41] and jet-veto-efficiency [42] methods. Here we will

take an approach that is similar in spirit to those suggestions (though somewhat closer

to the jet-veto-efficiency method) and argue that for a reliable estimate of uncertainties,

scale-dependence should be evaluated independently for the left and right-hand factors in

eqs. (3.4) and (3.5) (and also in eq. (3.3)), and the resulting relative uncertainties on those

two factors should be added in quadrature. We will always verify that the R0 dependence

(for just the central scale choice) is within our scale uncertainty band.

3.3 NLO+LLR matched results

Figure 4 shows the inclusive jet cross section integrated from 100 GeV to 1992 GeV (the full

range covered by the ATLAS data [27]), as a function of R, normalised to the leading order

result. The left-hand plot shows the standard NLO result (light blue band), the “NLO-

mult.” result of eq. (3.5) (green band) and the NLO+LLR matched result of eq. (3.4)

(orange band). To illustrate the issue of cancellation of scale dependence discussed in

section 3.2, the scale uncertainty here has been obtained within a prescription in which the
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Figure 4. Inclusive jet cross section for pt > 100 GeV, as a function of R, normalised to the (R-

independent) leading-order result. Left: the standard NLO result, compared to the “NLO-mult.”

result of eq. (3.5) and the NLO+LLR matched result of eq. (3.4). The scale uncertainty here has

been obtained within a prescription in which the scale is varied simultaneously in the left and right-

hand factors of eqs. (3.4) and (3.5) (“correlated scale choice”). Right: the same plot, but with the

scale uncertainties determined separately the left and right-hand factors of eqs. (3.4) and (3.5), and

then added in quadrature (“uncorrelated scale choice”). The plot also shows the NLO+LLR result

for R0 = 1.5 at our central scale choice.

scale is varied in a correlated way in the left and right-hand factors of eqs. (3.4) and (3.5).

We adopt the standard convention of independent µR = {12 , 1, 2}µ0 and µF = {12 , 1, 2}µ0
variations around a central scale µ0, with the additional condition 1

2 ≤ µR/µF ≤ 2. Our

choice for µ0 is discussed below.

One sees that in each of the 3 bands, there is an R value for which the scale uncer-

tainty comes close to vanishing, roughly R = 0.5 for NLO, R = 0.3 for “NLO-mult.” and

R = 0.1−0.2 for NLO+LLR. We believe that this near-vanishing is unphysical, an arte-

fact of a cancellation in the scale dependence between small-R and overall normalisation

factors, as discussed in the previous paragraph. One clear sign that the scale dependence

is unreasonably small is that the NLO-mult. and NLO+LLR bands differ by substantially

more than their widths.

The right-hand plot of figure 4 instead shows uncertainty bands when one separately

determines the scale variation uncertainty in the left-hand (normalisation) and the right-

hand (small-R matching) factors and then adds those two uncertainties in quadrature

(“uncorrelated scale choice”; note that the NLO band is unchanged). Now the uncertainties

remain fairly uniform over the whole range of R and if anything increase towards small

R, as one might expect. This uncorrelated scale variation is the prescription that we will

adopt for the rest of this article.
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Intriguingly, the NLO+LLR result is rather close to the plain NLO prediction. Given

the large difference between the NLO and NLO-mult. results, this is, we believe, largely

a coincidence: if one examines yet smaller R, one finds that the NLO and NLO+LLR
results separate from each other, with the NLO and NLO-mult. results going negative for

sufficiently small R, while the NLO+LLR result maintains a physical behaviour.

Figure 4 (right) also shows the impact of increasing R0 to 1.5. One sees a 5−10%

reduction in the cross section, however this reduction is within the uncertainty band that

comes from the uncorrelated scale variation.

A comment is due concerning our choice of central scale, µ0. At NLO, for each event,

we take µ0 to be the pt of the hardest jet in the event, pt,max. In NLO-like configurations,

with at most 3 final-state partons, this hardest jet pt is independent of the jet radius and

so we have a unique scale choice that applies to all jet radii. An alternative, widely used

prescription is to use a separate scale for each jet, equal to that jet’s pt. We disfavour this

alternative because it leads to a spurious additional R dependence, induced by inconsistent

scale choices in real and virtual terms. Further details are given in appendix B.

4 Matching to NNLO

4.1 Matching prescription

Given that full NNLO results for the inclusive cross section are likely to be available

soon [18, 19], here we propose matching schemes for combining our small-R resummed

results with a full NNLO result. The direct analogue of eq. (3.4) is

σNNLO+LLR = (σ0 + σ1(R0) + σ2(R0))×

×

[
σLLR(R)

σ0
×

(
1 + ∆1+2(R,R0)−

σLLR
1 (R) + σLLR

2 (R)

σ0

−
σLLR
1 (R)

(
σ1(R)− σLLR

1 (R)
)

σ20
− σ1(R0)

σ0

(
∆1(R,R0)−

σLLR
1 (R)

σ0

))]
, (4.1)

where the functions ∆1 and ∆1+2 were defined in eq. (2.3) and (2.5) and we recall that

σLLR and its expansion are functions both of R and R0. As with our NLO+LLR formula,

eq. (3.4), we have written eq. (4.1) in terms of two factors: an overall normalisation for

producing R0-jets, together with a matched fixed-order and resummed result for the cor-

rection coming from fragmentation of the R0 jet into small-R jets. One comment here is

that in eq. (3.4) the matching part (big round brackets inside the square brackets) gave

a finite result for R → 0. The situation is different at NNLO because the LLR resumma-

tion does not capture the α2
s ln 1/R2 (NLLR) term that is present at fixed order and so

the matching term has a residual α2
s ln 1/R2 dependence. This means that for sufficiently

small-R, eq. (4.1) can become unphysical. We have not seen any evidence of this occurring

in practice, but one should keep in mind that for future work one might aim to resolve this

in-principle problem either by incorporating NLLR resummationor by choosing a different

form of matching, for example one where the O
(
α2
s

)
parts of the matching correction are
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exponentiated, ensuring a positive-definite result. Note that with NLLR resummation one

could also use a formula analogous to eq. (3.3),

σNNLO+NLLR,mult.simple =

=

(
σ0 + σ1 + σ2 − σNLLR

1 − σNLLR
2 − σNLLR

1

σ0

(
σ1 − σNLLR

1

))
× σNLLR

σ0
, (4.2)

where each of the terms is evaluated at radius R.

As well as a matched result, it can be instructive to study a modification of the plain

NNLO result, “NNLO-mult.”, in analogy with eq. (3.5). This remains a fixed order result,

but it factorises the production of large-R0 jets from the fragmentation to small-R jets,

σNNLO-mult. = (σ0 + σ1(R0) + σ2(R0))×
(

1 + ∆1+2(R,R0)−
σ1(R0)

σ0
∆1(R,R0)

)
. (4.3)

It differs from σNNLO only by terms beyond NNLO.

As in section 3.1, in eqs. (4.1)–(4.3) we advocate varying scales separately in the

normalisation and fragmentation factors, and also studying the R0 dependence of the final

result.

4.2 A stand-in for NNLO: NNLOR

We have seen in section 2.2 that NNLO terms of the form α2
s ln 1/R2 that are not accounted

for in our LLR calculation can be large. Insofar as they are known, they should however

be included in phenomenological studies. This specific class of terms can be taken into

account in the context of a stand-in for the full NNLO calculation which contains the exact

NNLO R dependence and that we refer to as NNLOR. It is constructed as follows:

σNNLOR(R,Rm) ≡ σ0 + σ1(R) + [σ2(R)− σ2(Rm)], (4.4)

which depends on an arbitrary angular scale Rm. Though neither σ2(R) nor σ2(Rm) can

be fully determined currently, their difference can be obtained from the same NLO 3-jet

calculation that was used to examine ∆1+2(pt, R,Rref) in figure 2 (right).

Since the full NNLO result has the property

σNNLO(R) = σNNLOR(R,Rm) + σ2(Rm) , (4.5)

the use of σNNLOR(R,Rm) instead of σNNLO(R) is equivalent to the assumption that σ2(Rm)

vanishes. In practice we will take Rm = 1, independently of pt.

One point to be aware of is that σNNLOR(R,Rm) and σNNLO(R) have parametrically

different scale dependence. On one hand, the σ2(R) term in σNNLO(R) fully cancels the

(relative) O
(
α2
s

)
scale variation that is left over from σ0 and σ1, leaving just O

(
α3
s

)
depen-

dence. On the other, in σNNLOR(R,Rm) the use of the σ2(R) − σ2(Rm) means that some

residual O
(
α2
s

)
dependence is left over. In particular, for R = Rm the scale dependence

is identical to that at NLO. Accordingly, when estimating higher-order uncertainties in
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Figure 5. Left: comparison of the NLO, NNLOR and NNLOR-mult. results for the inclusive jet

cross section for pt > 100 GeV, as a function of R, normalised to the LO result. Right, corresponding

comparison of NLO, NNLOR and NNLOR+LLR together with the central curve for NNLOR+LLR

whenR0 is increased to 1.5. In both plots, for the NNLOR-mult. and NNLOR+LLR results the scale-

dependence has been evaluated separately in the normalisation and fragmentation contributions and

added in quadrature to obtain the final uncertainty band.

studies that use NNLOR results, we do not explicitly need to vary Rm, since the O
(
α2
s

)
uncertainty that it brings should already be accounted for in the scale variation.6

Our central scale choice for any given event will be µ0 = pR=1
t,max, the transverse mo-

mentum of the hardest jet in the event as clustered with R = 1. This is analogous to the

choice of pt,max used at NLO, except that at NNLO one needs to explicitly specify R since

pt,max can depend on the jet clustering. The logic for taking pt,max at a fixed jet radius of 1,

independently of the R used in the clustering for the final jet spectrum, is that one obtains

a unique scale for the event as a whole and avoids mixing scale-variation effects with R

dependence. Another potential choice that we did not investigate is to take the averaged pt
of the two hardest jets. As long as the jets are obtained with a clustering radius ∼ 1 such a

choice is expected to be good at minimising the impact both of initial-state and final-state

radiation, whereas our pt,max choice has some sensitivity to initial-state radiation.

4.3 Results at NNLOR and NNLOR+LLR

Let us start by examining the NNLOR result, shown versus R as the purple band in figure 5

(left), together with the NNLOR-mult. results using eq. (4.3) and the NLO band. One sees

that the R dependence of the NNLOR result is steeper than in the NLO result, especially for

6Despite this statement, one may wish to examine the robustness of conclusions with respect to different

possibles values of σ2(Rm). This is the subject of section 4.4.
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R & 0.2. This pattern is qualitatively in line with one’s expectations from figure 2 (right)

and will hold also for the full NNLO calculation, which differs from NNLOR only by an

R-independent (but pt and scale-dependent) additive constant. The point of intersection

between the NLO and NNLOR results, at R = 1, is instead purely a consequence of our

choice of Rm = 1 in eq. (4.4). Thus at R = 1, both the central value and scale dependence

are by construction identical to those from the NLO calculation.

The left-hand plot of figure 5 also shows the NNLOR-mult. result. Relative to what we

saw when comparing NLO and NLO-mult., the most striking difference here is the much

better agreement between NNLOR and NNLOR-mult., with the two generally coinciding

to within a few percent. For R & 0.4, this good agreement between different approaches

carries through also to the comparison between NNLOR and NNLOR+LLR. However,

for yet smaller values of R, the NNLOR+LLR result starts to be substantially above the

NNLOR and NNLOR-mult. ones. This is because the NNLOR and NNLOR-mult. results

have unresummed logarithms that, for very small-R, cause the cross section to go negative,

whereas the resummation ensures that the cross section remains positive (modulo the

potential issue with unresummed NLLR terms that remain after matching).

Comparing the NNLOR+LLR result to the NLO+LLR of figure 4 (right), one finds

that the central value of the NNLOR+LLR prediction starts to lie outside the NLO+LLR
uncertainty band for R . 0.5. This highlights the importance of the NNLO corrections,

and in particular of terms with subleading ln 1/R2 enhancements. Finally, the dependence

on the choice of R0 is slightly reduced at NNLOR+LLR compared to NLO+LLR and it

remains within the scale-variation uncertainty band.

To help complete the picture, we also show results as a function of R in a high-pt bin,

1530 < pt < 1992 GeV in figure 6. Most of the qualitative observations that we discussed

above remain true also for high pt. The main difference relative to the pt > 100 GeV results

is that scale uncertainty bands generally grow larger. This is perhaps due to threshold

effects and might call for the inclusion of threshold resummation, see e.g. ref. [43] and

references therein. Figures 7 and 8 show the jet spectrum as a function of pt, normalised

to the LO result, for R = 0.2 and two rapidity bins. Again, the conclusions are similar.

All of the predictions shown here have been obtained with the choice Rm = 1 in

eq. (4.4), equivalent to the assumption that σ2(Rm = 1) = 0 in eq. (4.5). For a discussion

of how the predictions change if σ2(Rm = 1) is non-zero, the reader is referred to section 4.4.

To conclude this section, our main observation is that LLR and NNLO terms both have

a significant impact on the R dependence of the inclusive jet spectrum, with the inclusion

of both appearing to be necessary in order to obtain reliable predictions for R . 0.4. In

particular, if NNLO and NLO coincide for R = 1, then for R = 0.4 the NNLO results will

be about 20% below the NLO ones. Going down to R = 0.2, one sees that even with NNLO

corrections resummation of small-R logarithms is important, having a further 10% effect.

4.4 Impact of finite two-loop corrections

In our NNLOR-based predictions, we have all elements of the full NNLO correction ex-

cept for those associated with 2-loop and squared 1-loop diagrams (and corresponding

counterterms).
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Figure 6. Same as figure 4, but focusing only on the high pt bin. Both plots use an uncorrelated

scale variation in the normalisation and fragmentation factors.
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Figure 7. Left: the NLO inclusive jet spectrum as a function of pt, normalised to LO, together

with the “NLO-mult.” result and the NLO+LLR matched results for R = 0.2. The cross section

is shown for the rapidity bin |y| < 0.5. The bands give the scale uncertainty obtained using an

uncorrelated scale choice. Right: analogous plots with the NNLOR and NNLOR+LLR predictions.
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Figure 8. Same as figure 7 but showing the cross section in the rapidity bin 2 < |y| < 2.5.

Here, we examine how our results depend on the size of those missing contributions.

We introduce a factor K that corresponds to the NNLO/NLO ratio for a jet radius of Rm:

σNNLOR,K (Rm) = K × σNLO(Rm) . (4.6)

For other values of the jet radius, we have

σNNLOR,K (R) = σ0

[
1 +

σ1(R)

σ0
+ ∆2(R,Rm) + (K − 1)×

(
1 +

σ1(Rm)

σ0

)]
. (4.7)

As before, we will take Rm = 1.0. One could attempt to estimate K from the partial NNLO

calculation of ref. [18, 19], however given that this calculation is not yet complete, we prefer

instead to leave K as a free parameter and simply examine the impact of varying it.

In figure 9, we show the impact of taking K = 1.10, to be compared to figure 5, which

corresponds to K = 1. As K is increased, one sees that NNLOR,K and NNLOR,K+LLR
start to agree over a wider range of R. This behaviour can be understood by observing

there are two effects that cause NNLOR,K and NNLOR,K+LLR to differ: on one hand

the small-R resummation prevents the cross section from going negative at very small

radii, raising the prediction in that region relative to NNLOR and reducing the overall

R dependence. On the other hand, the normalisation (first) factor in eq. (4.1), which is

larger than 1, multiplies the full NNLO R dependence that is present in the fragmentation

(second) factor, thus leading to a steeper R dependence than in pure NNLOR,K . With

K = 1, the first effect appears to dominate. However as K is increased, the second effect

is enhanced and then the two effects cancel over a relatively broad range of R values.

To put it another way, in the NNLOR,K result the K factor acts additively, shifting the

cross section by the same amount independently of R. In the NNLOR,K+LLR result, the K

factor acts multiplicatively, multiplying the cross section by a constant factor independently

of R. By construction, the two always agree for R = R0 = 1. With K = 1, NNLOR,K is

below NNLOR,K+LLR at small R, but the additive shift for K > 1 brings about a larger
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Figure 9. The same as figure 5, but applying a K-factor of 1.10 to the NNLOR prediction, as an

estimate of the potential impact of the full NNLO calculation.

increase of NNLOR,K than the multiplicative factor for NNLOR,K+LLR, because σ/σ(R0)

is smaller than one.

Another point to note is that while in figure 5 the NNLOR-mult. and NNLOR results

agreed over the full range of R, that is no longer the case with K = 1.1: this is because

NNLOR-mult. acquires a multiplicative correction, as compared to the additive correction

for NNLOR,K . Therefore one strong conclusion from our study is that independently of

the size of the NNLO K-factor, plain fixed order calculations at NNLO are likely to be

insufficient for R . 0.4.

4.5 Comparison to POWHEG

One widely used tool to study the inclusive jet spectrum is POWHEG’s dijet implementa-

tion [44]. Insofar as parton showers should provide LLR accuracy and POWHEG guarantees

NLO accuracy, POWHEG together with a shower should provide NLO+LLR accuracy. It

is therefore interesting to compare our results to those from the POWHEG BOX V2’s dijet

process (v3132), which are obtained here using a generation cut bornktmin of 50 GeV and

a suppression factor bornsuppfact of 500 GeV.7 We have used it with Pythia 8 (v8.186

with tune 4C [45]) for the parton shower, Pythia 6 (v6.428 the Perugia 2011 tune [46]) and

with Herwig 6 (v6.521 with the AUET2-CTEQ6L1 tune [47]). We examine the results at

parton level, with multiple-parton interaction (MPI) effects turned off. Since the Pythia 6

and Pythia 8 results are very similar we will show only the latter. In the case of Pythia 8,

7We also carried out a run with bornktmin of 25 GeV and bornsuppfact of 300 GeV and found results

that are consistent with those shown here to within the statistical errors, which at low pt are of the order

of 1%.
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Figure 10. Top: comparison between the NNLOR-based results and POWHEG+Herwig 6 (left) and

POWHEG+Pythia 8 (right), shown as a function of R, integrated over pt for pt > 100 GeV. Bottom:

comparison of POWHEG+Pythia 8 with NNLOR-based results, where the latter have an additional

NNLO K-factor of 1.15.

we include an uncertainty band from the variation of scales in the generation of the POWHEG

events.

In figure 10, we show the pt-integrated cross section as a function of R. The dark

blue band (or line) shows the predictions obtained from POWHEG. In the top left-hand plot

one sees a comparison with POWHEG+Herwig 6, which agrees with the NNLOR+LLR result
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to within the latter’s uncertainty band, albeit with a slightly steeper R dependence at

large R values. In the top right-hand plot, one sees a comparison with POWHEG+Pythia 8.

There is reasonable agreement for small radii, however the POWHEG+Pythia 8 prediction

has much steeper R dependence and is substantially above the NNLOR+LLR result for

R = 1. Differences between Herwig and Pythia results with POWHEG have been observed

before [48], though those are at hadron level, including underlying-event effects, which can

introduce further sources of difference between generators.

One difference between the NNLOR+LLR results and those from POWHEG with a shower-

generator is an additional resummation of running scales and Sudakov effects for initial-

state radiation (ISR). To illustrate the impact of ISR, the dark-blue dashed curve shows how

the POWHEG+Pythia 8 prediction is modified if one switches off initial-state radiation (ISR)

in the shower. Though not necessarily a legitimate thing to do (and the part of the ISR

included in the POWHEG-generated emission has not been switched off), it is intriguing that

this shows remarkably good agreement with the NNLOR+LLR results over the full R range.

This might motivate a more detailed future study of the interplay between ISR and the jet

spectrum. Note that, as shown in [44], nearly all the R dependence of the POWHEG+parton-

shower result comes from the parton shower component. It is not so straightforward to

examine Herwig with ISR turned off so we have not included this in our study.

Given the differences between POWHEG +Pythia 8 and our NNLOR+LLR results, it is

also of interest to examine what happens for K 6= 1. We can tune K so as to produce

reasonable agreement between NNLOR,K+LLR and POWHEG+Pythia 8 for R = 1 and this

yields K ' 1.15, which we have used in the bottom-right plot. Then it turns out that both

predictions agree within uncertainty bands not just at R = 1, but over the full R range.

In this context it will be particularly interesting to see what effective value of K comes

out in the full NNLO calculation. Note that the patterns of agreement observed between

different predictions depend also on pt and rapidity. For a more complete picture we refer

the reader to our online tool [28].

5 Hadronisation

Before considering comparisons to data, it is important to examine also the impact of non-

perturbative effects. There are two main effects: hadronisation, namely the effect of the

transition from parton-level to hadron-level; and the underlying event (UE), generally asso-

ciated with multiple interactions between partons in the colliding protons. Hadronisation

is enhanced for small radii so we discuss it in some detail.

One way of understanding the effect of hadronisation and the underlying event is

to observe that they bring about a shift in pt. This can to some extent be calculated

analytically and applied to the spectrum [20]. An alternative, more widespread approach is

to use a Monte Carlo parton shower program to evaluate the ratio of hadron to parton level

jet spectra and multiply the perturbative prediction by that ratio. One of the advantages

of the analytical hadronisation approaches is that they can matched with the perturbative

calculation, e.g. as originally proposed in ref. [49]. In contrast, a drawback of the Monte

Carlo hadronisation estimates is that the definition of parton-level in a MC simulation is
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Figure 11. The average shift in jet pt induced by hadronisation in a range of Monte Carlo tunes,

for R = 0.4 and R = 0.2 jets, both quark and gluon induced. The shift is shown as a function of

jet pt and is rescaled by a factor RCF /C (C = CF or CA) in order to test the scaling expected

from eq. (5.1). The left-hand plot shows results from the AUET2 [47] tune of Herwig 6.521 [23, 24]

and the Monash 13 tune [54] of Pythia 8.186 [22], while the right-hand plot shows results from

the Z2 [55] and Perugia 2011 [46, 56] tunes of Pythia 6.428 [21]. The shifts have been obtained

by clustering each Monte Carlo event at both parton and hadron level, matching the two hardest

jets in the two levels and determining the difference in their pt’s. The simple analytical estimate of

0.5 GeV ± 20% is shown as a yellow band.

quite different from the definition of parton level that enters a perturbative calculation:

in particular showers always include a transverse momentum cutoff at parton level, while

perturbative calculations integrate transverse momenta down to zero.

To help guide our choice of method, we shall first compare the pt shift as determined

in ref. [20] with what is found in modern Monte Carlo tunes. We first recall that the

average shift should scale as 1/R (see also refs. [50, 51]) for hadronisation and as R2 for

the underlying event (see also ref. [52]). For small-R jets, hadronisation should therefore

become a large effect, while the underlying event should vanish. By relating the hadroni-

sation in jets to event-shape measurements in DIS and e+e− collisions in a dispersive-type

model [49, 53], ref. [20] argued that the average pt shift should be roughly

〈∆pt〉 ' −
C

CF

(
1

R
+O (1)

)
× 0.5 GeV , (5.1)

where C is the colour factor of the parton initiating the jet, CF = 4
3 for a quark and CA = 3

for a gluon. Those expectations were borne out by Monte Carlo simulations at the time,

with a remarkably small O (1) term. Eq. (5.1) translates to a −6 GeV shift for R = 0.2

gluon-initiated jets. On a steeply falling spectrum, such a shift can modify the spectrum

significantly.

Figure 11 shows the shift in pt in going from parton-level jets to hadron level jets,

as a function of the jet pt. Four modern Monte Carlo generator tunes are shown [21–
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24, 46, 47, 54, 56], two in each plot. For each generator tune (corresponding to a given

colour), there are four curves, corresponding to two values of R, 0.2 and 0.4 and both

quark and gluon jets. The shifts have been rescaled by a factor RCF /C. This means that

if radius and colour-factor dependence in eq. (5.1) are exact, then all lines of a given colour

will be superposed. This is not exactly the case, however lines of any given colour do tend

to be quite close, giving reasonable confirmation of the expected trend of C/R scaling.

A further expectation of eq. (5.1) is that the lines should cluster around 0.5 GeV and

be pt independent. This, however, is not the case. Firstly, there is almost a factor of

two difference between different generators and tunes, with Pythia 6 Perugia 2011 and

Pythia 8 Monash 2013 both having somewhat smaller than expected hadronisation correc-

tions. Secondly there is a strong dependence of the shift on the initial jet pt, with a variation

of roughly a factor of two between pt = 100 GeV and pt = 1 TeV. Such a pt dependence is

not predicted within simple approaches to hadronisation such as refs. [20, 49, 50, 53]. It was

not observed in ref. [20] because the Monte Carlo study there restricted its attention to a

limited range of jet pt, 55−70 GeV. The event shape studies that provided support for the

analytical hadronisation were also limited in the range of scales they probed, specifically,

centre-of-mass energies in the range 40 − 200 GeV (and comparable photon virtualities in

DIS). Note, however, that scale dependence of the hadronisation has been observed at least

once before, in a Monte Carlo study shown in figure 8 of ref. [57]: effects found there to be

associated with hadron masses generated precisely the trend seen here in figure 11. The pt
dependence of those effects can be understood analytically, however we leave their detailed

study in a hadron-collider context to future work.8 Experimental insight into the pt de-

pendence of hadronisation might be possible by examining jet-shape measurements [59, 60]

over a range of pt, however such a study is also beyond the scope of this work.

In addition to the issues of pt dependence, one further concern regarding the analytical

approach is that it has limited predictive power for the fluctuations of the hadronisation

corrections from jet to jet. Given that the jet spectrum falls steeply, these fluctuations

can have a significant impact on the final normalisation of the jet spectrum. One might

address this with an extension of our analytical approach to include shape functions, e.g.

as discussed in ref. [61].

In light of the above discussion, for evaluating hadronisation effects here, we will resort

to the standard approach of rescaling spectra by the ratio of hadron to parton levels derived

from Monte Carlo simulations.

Figure 12 shows, as a function of R, the ratio of hadron-level without UE to parton-level

(left) and the ratio of hadron level with UE to hadron level without UE (right), for a range of

Monte Carlo tunes. The results are shown for pt>100 GeV in the upper row and pt > 1 TeV

in the lower row. A wide range of R values is shown, extending well below experimentally

accessible values. Beyond the tunes shown in figure 11, here we also include the UE-EE-

4 tune [62] of Herwig++ 2.71 [25, 26] and tune 4C [45] of Pythia 8.186 [22]. To investigate

the issue of possible mismatch between our analytic parton-level calculations and parton-

level as defined in Monte Carlo simulations, we have considered a modification of Monte

8Hadron-mass effects have been discussed also in the context of ref. [58].
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Figure 12. Hadronisation (left) and underlying event (right) multiplicative corrections to the jet

spectrum, as a function of R for pp collisions at 7 TeV. The top row shows results for pt > 100 GeV

and |y| < 0.5, while the bottom row is for pt > 1 TeV. Six combinations of generator and tune are

shown, and the yellow band corresponds to the envelope of the tunes.

Carlo parton level where the transverse momentum cutoff was taken to zero (an effective

cutoff still remains, because of the use finite parton masses and ΛQCD in the shower, however

this method can arguably still give a rough estimate of the size of the effect one is dealing

with). One finds that taking the cutoff to zero changes the parton-level spectrum by a few

percent effect. As this is somewhat smaller than the differences that we will shortly observe

between tunes, it seems that for the time being it may not be too unreasonable to neglect it.

While there is a substantial spread in results between the different tunes in figure 12,

the observed behaviours are mostly as expected, with hadronisation reducing the jet spec-

trum, especially at the smallest R values, while the UE increases it, especially at large R

values. The magnitude of these effects is strongly pt dependent, with (roughly) a factor

of ten reduction at not-too-small R values when going from pt > 100 GeV to pt > 1 TeV.

Such a scaling is consistent with a rough 1/(Rpt) behaviour for hadronisation and R2/pt
behaviour for the UE (ignoring the slow changes in quark/gluon fraction and steepness of

the spectrum as pt increases).

One surprising feature concerns the behaviour of the UE corrections at very small

radii: firstly, in a number of the tunes the corrections tend to be smaller than 1, suggesting
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that the multi-parton interactions (MPI) that are responsible for the UE remove energy

from the core of the jet. For R values in the range 0.4−1, the effect of MPI is instead

to add energy to the jet, as expected. Secondly, this loss of energy from the jet is not

particularly suppressed at high pt. The most striking example is the Z2 tune where there

can be corrections of up to 7% at R = 0.03 (and even more at yet smaller R values).

The effect is somewhat reduced in the Z2-LEP tune, which has modified fragmentation

parameters. One wonders if the mechanism for MPI generation might be inducing some

form of factorisation breaking. A simple context in which to study this might be the high-pt
inclusive hadron spectrum, where factorisation would imply that MPI should have no effect.

While kt-factorisation is believed to be broken for the inclusive hadron spectrum [63], we

are not aware of definite statements concerning breaking of collinear factorisation.

6 Comparisons to data

Having formulated and studied the perturbative and non-perturbative contributions to the

inclusive jet spectrum, we now consider comparisons with data. The purpose of this section

is to highlight the relative sizes of different physical effects as compared to the precision of

the data.

We will compare our predictions to the two datasets that have the smallest R values:

that from ALICE at centre-of-mass energy
√
s = 2.76 TeV with R = 0.2 and 0.4 [13] and

that from ATLAS at
√
s = 7 TeV with R = 0.4 and 0.6 [27].9

All our results are obtained with CT10 NLO PDFs. This is the case also for our LO and

NNLOR results. For the latter, since NNLOR does not correspond to full NNLO, it is jus-

tifiable to use NLO PDFs.10 One should also be aware that most modern PDF sets include

inclusive jet-data in their fit. Accordingly they may have a bias associated with the theory

choice that was used in their determination. With an updated theoretical framework, such

as that used here, the PDFs would conceivably change and a complete study would benefit

from refitting the PDFs. That is beyond the scope of this work and anyway more appropri-

ately done once full NNLO results become available. For completeness, we have nevertheless

briefly examined the impact of changing PDFs in the context of a pure LLR calculation, ex-

amining also CT10nnlo [66], CT14nlo, CT14nnlo [67], MSTW2008nlo [68], MMHT2014nlo,

MMHT2014nnlo [69], NNPDF30 nlo as 0118 and and NNPDF30 nnlo as 0118 [70]. For

pt’s below 500 GeV, most of these PDFs give results slightly above those from CT10, but

by no more than 6%, which is modest relative to other uncertainties and differences that

we will see below.

All fixed-order results are obtained with version 4.1.3 of the NLOJet++ program [38].

Our central renormalisation and factorisation scale choice is µ0 = pR=1
t,max, the transverse

momentum of the hardest jet in the event as clustered with R = 1. The envelope of indepen-

dent variations of µR and µF by a factor of two (while maintaining 1
2 ≤ µR/µF ≤ 2) provides

9The CMS collaboration has also published inclusive jet spectrum results [64, 65], however the smallest

R considered there is slightly larger, R = 0.5.
10In interpreting the plots, one may wish to keep in mind the potential impact of K 6= 1, which is

illustrated explicitly in section 6.3. The plots use a pt-independent NNLO K factor, however the true K

factor would depend on pt.
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Figure 13. Non-perturbative corrections to the inclusive jet spectrum for the pt range, rapidity and

centre-of-mass energy corresponding to the ALICE data [13] for R = 0.2 (left) and R = 0.4 (right).

The results are shown separately for hadronisation, UE and the product of the two, and in each

case include the average and envelope of the corrections from the six tunes discussed in section 5.

the perturbative uncertainty estimate. In the case of NLO-mult. and (N)NLO(R)+LLR
results, the scale variation is performed independently for the normalisation and fragmen-

tation factors and the uncertainty from the two factors is then added in quadrature. As

explained in section 3, this is intended to avoid spuriously small scale uncertainties associ-

ated with cancellations between different physical contributions.

Non-perturbative corrections are taken as the average of the parton-to-hadron Monte

Carlo correction factors (including hadronisation and UE) as obtained with the six different

tunes discussed in section 5. The envelope of that set of six corrections provides our estimate

of the uncertainty on the non-perturbative corrections, which is added in quadrature to

the perturbative uncertainty.

In the case of the ATLAS data we will explore transverse momenta well above the elec-

troweak (EW) scale, where EW corrections become substantial. The ATLAS collaboration

accounted for these using the calculation of tree-level (O (αsαEW)) and loop (O
(
α2
sαEW

)
)

EW effects from ref. [71]. Here, since we concentrate on QCD effects, when showing the

data we divide it by the EW corrections quoted by ATLAS.11

6.1 Comparison to ALICE data

As a first application of small-R resummation in comparisons to data, we look at the

inclusive jet cross section in proton-proton collisions at
√
s = 2.76 TeV reported by the

ALICE collaboration [13]. The measurements are in the |y| < 0.5 rapidity range, with jets

obtained using the anti-kt algorithm with a boost-invariant pt recombination scheme, for

radii R = 0.2 and 0.4.

11Those corrections don’t account for real W and Z emission. The first estimate of real EW emission

effects was given by Baur [72], but at the time only 14 TeV collisions were envisaged. The real contributions

for 7 TeV collisions have been evaluated in ref. [73]. At high pt’s they grow to become up to 3−4%, however

in this region statistical and systematic uncertainties on the data are substantially larger and so we believe

it is reasonable to neglect them.
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Figure 14. Comparison between a range of theoretical predictions for the inclusive jet spectrum

and data from ALICE at
√
s = 2.76 TeV [13]. The upper row is for R = 0.2 and the lower one

for R = 0.4. The left-hand column shows NLO-based comparisons, while the right-hand one shows

NNLOR-based comparisons. Rectangular boxes indicate the size of systematic uncertainties on the

data points, while the errors bars correspond to the statistical uncertainties. Results are normalised

to the central NNLOR+LLR prediction (including non-perturbative corrections).

The non-perturbative corrections for hadronisation and underlying event are shown in

figure 13. For R = 0.2, non-perturbative corrections are largely dominated by hadronisa-

tion, with underlying event being a small effect, as expected for sufficiently small R. The net

non-perturbative correction is about −50% at the lowest pt of 20 GeV, while it decreases to

about −10% at 100 GeV. For R = 0.4 there is a partial cancellation between hadronisation

and UE, with a net impact of about −10% percent at low pt and a 5−10% uncertainty.

The comparison of our full results to the ALICE data is given in figure 14, as a ratio to

the NNLOR+LLR theory prediction (including non-perturbative corrections). The top row

shows the jet spectrum for R = 0.2, while the lower row corresponds to R = 0.4. The left-

hand plots show NLO-based theory results. They all appear to be consistent with the data
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within their large uncertainties. The right-hand plots show NNLOR-based theory (with

plain NLO retained to facilitate cross-comparisons). In general the NNLOR+LLR results

appear to provide the best match for the data, though they are slightly low. In particular,

for R = 0.2 where the differences between NNLOR+LLR and NNLOR are substantial,

almost 30% at low pt, there seems to be a preference for NNLOR+LLR. In contrast, at

R = 0.4 there is little difference between the two predictions though both are significantly

more compatible with the data than is the plain NLO. In considering these statements, it

is however important to keep several caveats in mind: the systematic uncertainties on the

data and on the non-perturbative corrections (especially for R = 0.2) are not negligible and

a one-σ shift could somewhat affect the conclusions. Furthermore, the currently unknown

finite NNLO contribution (the difference between NNLOR and full NNLO) may also have

a relevant impact.

To further evaluate the compatibility of our results and the data we examine the ratio

of the inclusive jet spectra at the two R values, R(pt;R1, R2) = σ(pt;R1)/σ(pt;R2) with

R1 = 0.2 and R2 = 0.4. This ratio is of interest because it allows us to directly study

the R dependence of the results and also because certain components of the uncertainties

cancel in the ratio, in both the data and the theoretical prediction. In the experimental

results, for example, the luminosity uncertainty cancels, as should part of the jet energy

scale and resolution uncertainties. In the theoretical prediction, PDF uncertainties cancel.

The ALICE collaboration’s results [13] explicitly include a determination of the ratio.

Earlier studies that focused on the R ratios [17] directly used the perturbative expan-

sion for the cross-section ratio, rather than the ratio of perturbative predictions for the

cross sections. That approach could be extended also to matched ratios, and one example

of a NNLO+LLR matching formula for the ratio would be

RNNLO+LLR,expand =
σLLR(R1)

σLLR(R2)
×

(
1 + ∆1+2(R1, R2)−∆1+2(R1, R2)

σ1(R2)

σ0

− σLLR
1 (R1) + σLLR

2 (R1)− σLLR
1 (R2)− σLLR

2 (R2)

σ0

+

(
σLLR
1 (R1)

σ0
−∆1(R1, R2)

)
σLLR
1 (R1)− σLLR

1 (R2)

σ0

)
. (6.1)

However, we prefer here to simply take the ratios of the relevant theory prediction (NLO,

NNLOR, NNLOR+LLR, etc.) at the two R values, e.g.

RNNLO+LLR =
σNNLOR+LLR(R1)

σNNLOR+LLR(R2)
. (6.2)

This simple ratio has the same formal accuracy as (6.1) and fits better our primary goal,

which is to predict inclusive jet cross sections and only examine their ratios for different

R values as a supplementary test. In the case of the results matched to LLR resummation

and of the (N)NLO-mult. results, the normalisation factor (with the cross section at radius

R0) cancels in the ratio, leaving only the fragmentation factor. For the NNLOR-mult.

and NNLOR+LLR results in particular, this means that any dependence on the unknown
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Figure 15. Comparison between a range of theoretical predictions for the inclusive jet cross-

section ratio and data from ALICE at
√
s = 2.76 TeV [13]. The left-hand column shows NLO-

based comparisons, while the right-hand one shows NNLOR-based comparisons. Rectangular boxes

indicate the size of systematic uncertainties on the data points, while the errors bars correspond to

the statistical uncertainties.

full NNLO K-factor (or, equivalently, the choice of Rm in eq. (4.4)) is eliminated, and

the prediction for the ratio is identical to that which would be obtained with the full

NNLO result. Accordingly, we will drop the subscript R label in these cases, i.e. writing

RNNLO+LLR in eq. (6.2) rather than RNNLOR+LLR .

To estimate the perturbative theoretical uncertainties on the ratio, we take the envelope

of the ratios as determined for our seven renormalisation and factorisation scale choices.

In the case of (N)NLO-mult. and (N)NLO+LLR results, since the normalisation factor

cancels, we only consider the component of the perturbative uncertainties associated with

the fragmentation factor. We have verified that the effect of R0 variation is contained

within the scale-variation envelope. For the non-perturbative uncertainties, we take the

envelope of the ratios of the corrections factors from different Monte Carlo tunes. The

perturbative and non-perturbative uncertainties on the ratio are added in quadrature.

The comparison of the theory predictions with the measurements of the ALICE col-

laboration is presented in figure 15, at NLO accuracy on the left and at NNLO(R)-based

accuracy on the right. At first sight, it appears that the data have a considerably flatter pt
dependence than any of the theory predictions. The latter all grow noticeably with increas-

ing pt, a consequence mainly of the pt dependence of the non-perturbative correction factor,

cf. figure 13. Nevertheless, on closer inspection one sees that if one ignores the left-most

data point then the remaining data points are compatible with the predicted pt dependence.

The overall agreement is then best with the NNLO LLR-based prediction. However, the

sizes of the experimental uncertainties are such that it is difficult to draw firm conclusions.

We have also examined the impact of using eq. (6.1) instead of (6.2) and find that the

difference is small, no more than 5%. We have also examined the pure NNLO expansion

of the ratio of cross sections, as used in ref. [17] and find that this too is quite similar to
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Figure 16. Non-perturbative corrections to the inclusive jet spectrum for the pt range, rapidity

and centre-of-mass energy corresponding to the ATLAS data [27] for R = 0.4 (left) and R = 0.6

(right).

eq. (6.2), much more so than the direct ratio of NNLO results, σNNLOR(R1)/σ
NNLOR(R2).

Thus our finding that we obtain reasonable agreement between eq. (6.2) and the data is

consistent with the observations of ref. [17], which were based on expanded NNLO ratios.12

6.2 Comparison to ATLAS data

Let us now turn to a comparison with the inclusive jet cross-sections reported by the ATLAS

collaboration [27], obtained from 4.5 fb−1 of proton-proton collisions at
√
s = 7 TeV. Jets

are identified with the anti-kt algorithm, this time with a usual E-scheme, taking radii

R = 0.4 and 0.6. The measurements are doubly-differential, given as a function of jet pt
and rapidity, and performed for pt > 100 GeV and |y| < 3. Note that given the difference

in centre-of-mass energy, the lower pt for the ATLAS data, 100 GeV, involves the same

partonic x range as pt = 40 GeV for the ALICE data.

The hadronisation and underlying event corrections applied are shown in figure 16. As

in the case of the ALICE data, for R = 0.4 these two classes of correction mostly cancel.

When increasing the jet radius to R = 0.6, the hadronisation corrections shrink, while the

UE corrections increase and now dominate, leaving a net effect of up to 6−7% at the lowest

pt’s.

Figures 17 and 18 show comparisons between data and theory for two rapidity bins,

|y| < 0.5 and 2.0 < |y| < 2.5. At central rapidities the situation here contrasts some-

what with that for the ALICE data and in particular the inclusion of NNLOR corrections

worsens the agreement with data: over most of the pt range, the data points are about

15−20% higher than than either NNLOR or NNLOR+LLR (which are close to each other,

as expected for R & 0.4). Nevertheless, one encouraging feature of the NNLOR-based

predictions is that there is now a consistent picture when comparing R = 0.4 and R = 0.6,

insofar as the ratio of data to NNLOR-theory is essentially independent of R. This is not

12Note, that ref. [17] used an analytical rather than Monte-Carlo based approach to estimating hadroni-

sation corrections.
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Figure 17. Comparison between a range of theoretical predictions for the inclusive jet spectrum

and data from ATLAS at
√
s = 7 TeV [27] in the rapidity bin |y| < 0.5. The upper row is for

R = 0.4 and the lower one for R = 0.6. The left-hand column shows NLO-based comparisons,

while the right-hand one shows NNLOR-based comparisons. Rectangular boxes indicate the

size of systematic uncertainties on the data points, while the errors bars correspond to the

statistical uncertainties. Results are normalised to the central NNLOR+LLR prediction (including

non-perturbative corrections).

the case when comparing data and NLO predictions (cf. figure 5, which shows the steeper

R dependence of NNLOR-based results as compared to NLO). We return to the question

of R dependence in more detail below.

In the forward rapidity bin, over most of the pt range, the data instead favours the

NNLOR-based predictions over NLO, while at high pt the data falls below all of the predic-

tions. However the systematic uncertainties on the data are slightly larger than the differ-

ence with any of the theory predictions, making it difficult to draw any solid conclusions.

A significant positive 2-loop correction (cf. the discussion in sections 4.4, 4.5 and 6.3)

would bring overall better agreement at central rapidities, but would worsen the agreement
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Figure 18. Analogue of figure 17, but for the rapidity bin 2 < |y| < 2.5.

at forward rapidities. However, the finite 2-loop effects can be pt and rapidity dependent,

making it difficult to draw any conclusions at this stage. Furthermore, one should keep in

mind that adjustments in PDFs could affect different kinematic regions differently.

We close this section with an explicit comparison of the ratio of the jet spectra for

the two different R values. For the theoretical prediction, we proceed as discussed in the

previous subsection, when we made a comparison with the ALICE data for such a ratio.

We will not include EW effects, since in the ratio they appear to be at a level well below 1%.

Concerning the experimental results, the central value of the ratio can be obtained

directly from the ATLAS data at the two R values. However the ATLAS collaboration has

not provided information on the uncertainties in the ratio. It has provided information [74]

to facilitate the determination of correlations between pt and rapidity bins, specifically

10000 Monte Carlo replicas of their data to aid in estimating statistical correlations, as

well as a breakdown of systematic uncertainties into O (70) sources that are individually

100% correlated across bins and totally uncorrelated with each other. The information is
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Figure 19. Comparison between a range of theoretical predictions for the inclusive jet cross-

section ratio and data from ATLAS at
√
s = 7 TeV [27]. The left-hand column shows NLO-based

comparisons, while the right-hand one shows NNLO(R)-based comparisons. Rectangular boxes

indicate our estimated systematic uncertainties on the data points, while the errors bars correspond

to the statistical uncertainties. Note that these estimates are known to be incomplete, insofar as

the information provided by the ATLAS collaboration on its results is not intended to be used for

the determination of uncertainties on cross section ratios at different radii.

presented in a format such that, technically, it can also be used to estimate the uncertainties

in the ratio of cross section for two R values. However, we have been advised by the ATLAS

collaboration that the degree of correlation between systematic uncertainties at different

R values is not well known. Accordingly, we label the uncertainties obtained in this way

as “approx. uncert.” to emphasise that we do not have full knowledge of the experimental

uncertainties in the ratio and that they are potentially larger than our estimate.

Keeping in mind this caveat, we show in figure 19 a comparison between various

theoretical predictions for the cross section ratio at R = 0.4 relative to R = 0.6, together

with the experimental data. One sees overall very good agreement with both the NNLOR

and NNLO+LLR-based results, and substantially worse accord with NLO-based predictions

(albeit consistent with pure NLO and NLO-mult. within their larger uncertainties).

6.3 Brief comparisons with an NNLO K-factor

For completeness, here we show the comparisons between theoretical predictions and data

change when we introduce a two-loop K-factor for R = Rm, as described in section 4.4.

Figures 20, 21 and 22 are to be compared to their counterparts in sections 6.1 and 6.2

i.e. figures 14, 17 and 18. In most cases, the changes that one observes are largely as

expected, with a corresponding trivial rescaling of the observed data-theory ratio. One

exception is in the case of the R = 0.2 comparison to ALICE data, figure 20 (left), where

with K = 1.10 one observes that the NNLOR,K results are now in very close accord with

the NNLOR,K+LLR results. This is to be contrasted with the situation in figure 14. The
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Figure 20. Comparison between theoretical predictions with a NNLO Rm = 1 correction factor

K = 1.10 and data from ALICE at
√
s = 2.76 TeV [13] at R = 0.2 and R = 0.4. Rectangular boxes

indicate the size of systematic uncertainties on the data points, while the errors bars correspond

to the statistical uncertainties. Results are normalised to the central NNLOR,K+LLR prediction

(including non-perturbative corrections).

difference is due to the fact that the K factor acts additively on the NNLOR,K result, but

multiplicatively on the NNLOR,K+LLR result, as discussed already in section 4.4.

Note that for the ATLAS comparison, while a K-factor of K = 1.10 improves agree-

ment with the data at central rapidities, it appears to worsen it somewhat at high rapidities,

as can be seen in figure 22. One should, however, keep in mind that the true K-factor will

depend both on rapidity and pt, and also that modifications associated with changes in

PDFs can affect forward and central rapidities differently.

7 Conclusion

In this paper we have used the limit of small-radius jets to explore a variety of features of

the most basic of jet observables, the inclusive jet spectrum.

A first observation, in section 2, was that the small-R approximation starts to repro-

duce fixed-order R dependence quite well already for R just below 1, giving us confidence

in the usefulness of that approximation for phenomenologically relevant R values.

In seeking to combine small-R resummation with NLO predictions, in section 3, it was

natural to write the cross section as a product of two terms: an overall normalisation for

elementary partonic scattering, together with a factor accounting for fragmentation of those

partons into small-R jets. Such a separation can be performed also at fixed order. There

appear to be spurious cancellations between higher-order contributions for the two factors

and this led us to propose that one should estimate their scale uncertainties independently

and then add them in quadrature. This procedure has similarities with methods used for

jet vetoes in Higgs physics [41, 42].
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Figure 21. Comparison between theoretical predictions with a NNLO Rm = 1 correction factor

K = 1.10 and data from ATLAS at
√
s = 7 TeV [27] in the rapidity bin |y| < 0.5, for R = 0.4 and

R = 0.6. Rectangular boxes indicate the size of systematic uncertainties on the data points, while

the errors bars correspond to the statistical uncertainties. Results are normalised to the central

NNLOR,K+LLR prediction (including non-perturbative corrections).
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Figure 22. Analogue of figure 21, but for the rapidity bin 2 < |y| < 2.5.

We also saw that there are large R-dependent terms at NNLO that are beyond the

control of our LLR resummation (sections 2.2 and 4). To account for them in the absence

of the full NNLO calculation, we introduced a stand-in for NNLO that we called NNLOR.

This is defined to be identical to NLO for R = 1 but includes full NNLO R dependence,

which can be obtained from a NLO 3-jet calculation. Once complete NNLO predictions

become available, it will be trivial to replace the NNLOR terms with NNLO ones.

For an accurate description of the inclusive jet spectrum one must also account for non-

perturbative effects. In section 6 we revisited the analytical hadronisation predictions of
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ref. [20]. We found that the predicted scaling with R and the parton flavour was consistent

with what is observed in Monte Carlo simulations. However such simulations additionally

show a non-trivial pt dependence that is absent from simple analytical estimates. Accord-

ingly we decided to rely just on Monte Carlo simulations to evaluate non-perturbative

corrections.

We compared our results to data from the ALICE and ATLAS collaborations in sec-

tion 6. For the smallest available R value of 0.2, both the NNLOR and the LLR corrections

beyond NNLOR play important roles and at the lower end of ALICE’s pt range, the effect

of NNLOR corrections was almost 50%, while further LLR corrections mattered at the

20% level. For R = 0.4, NNLOR corrections still mattered, typically at the 10−30% level,

depending on the pt. However LLR resummation then brought little additional change.

Overall, for the ALICE data and the forward ATLAS data, NNLOR+LLR brought some-

what better agreement than NLO, while for central rapidities, the ATLAS data were sub-

stantially above the NNLOR+LLR predictions. It will be important to revisit the pattern

of agreement once the full NNLO corrections are known, taking into account also aspects

such as correlated experimental systematic uncertainties and PDF uncertainties.

Where the NNLOR and NNLOR+LLR predictions clearly make the most difference is

for reproducing the R-dependence of the cross sections. For the inclusive spectrum plots,

once one goes to NNLOR+LLR, the picture that emerges is consistent across different values

of R. That was not the case at NLO. This is visible also in the ratios of cross sections

at different R values. In particular, for the reasonably precise ATLAS data, NNLOR and

NNLO+LLR are in much better agreement with the data than the NLO-based predictions.

For the ALICE data, the uncertainties are such that it is harder to make a definitive

statement. Nevertheless NNLO+LLR performs well and notably better than plain NNLOR.

Overall, the substantial size of subleading R-enhanced terms in the NNLO corrections

also motivates studies of small-R resummation beyond LLR accuracy and of small-R higher

order effects in other jet observables.

A final comment concerns long-term prospects. We have seen here that the availability

of data at multiple R values provides a powerful handle to cross-check theoretical predic-

tions. As the field moves towards ever higher precision, with improved theoretical predic-

tions and reduced experimental systematic uncertainties, cross checks at multiple R values

will, we believe, become increasingly important. In this respect, we strongly encourage

measurements at three different radii. Small radii, R ' 0.2−0.3, are particularly sensitive

to hadronisation effects; large radii, R ' 0.6−0.8 to underlying event effects; the use of an

intermediate radius R ' 0.4 minimises both and provides a good central choice. Only with

the use of three radii do we have a realistic chance of disentangling the three main sources of

theoretical uncertainties, namely perturbative effects, hadronisation, the underlying event.
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A Differences in αs and t expansions

In our original work on small-R effects [7], we compared the LLR resummed results to an

expansion in powers of t, with t as defined in eq. (2.2). However t is a non-trivial function

of αs and expansions in αs and t can have different convergence properties.

This is illustrated in figure 23. The left-hand plot shows the difference between the

resummation and its expansion to NLO in powers of αs, normalised to the full resummed

result. The right-hand plot shows the difference between the resummation and its expansion

to NLO in powers of t, with the same normalisation. Three different R values are shown.

One sees that the t expansion converges more slowly than the αs expansion.

At first sight, this observation is somewhat surprising, insofar as t would appear to

be the natural variable for considering small R effects. Part of the explanation is as
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follows: the t expansion has alternating sign coefficients, at least for the first couple of

orders. This means that the NLO O (t) correction (relative to LO) is larger than the

overall effect of resummation. The O (αs) correction has the same coefficient as the O (t)

correction (modulo an overall normalisation factor of 1
2π lnR2

0/R
2). However, t involves

the average of the coupling over a range of scales between pt and Rpt, which is larger

than αs(pt). Consequently, the NLO O (αs) term is not as large as the NLO O (t) term,

and it overshoots the resummation by less. Though not illustrated in figure 23, a similar

phenomenon occurs also when comparing to expansions at NNLO.

One should keep in mind that for observables other than the inclusive jet spectrum,

it may no longer be true that a t expansion converges more slowly than an αs expansion.

Rather, when discussing fixed-order convergence properties compared to full small-R re-

summation, one should simply be aware that the convergence properties of the t and αs
expansions will be sometimes be noticeably different.

Note also that the above discussion holds specifically for the expansion of the LLR
result. As we have seen in section 2.2, NLLR effects are large and at NNLO are of opposite

sign to the LLR contribution. This further complicates the discussion of the convergence

properties of the inclusive jet spectrum.

B Scale choice beyond leading order

When making fixed-order predictions for the inclusive jet cross section, there are two widely

used prescriptions for the choice of a central renormalisation and factorisation scale. One

prescription is to use a single scale for the whole event, set by the pt of the hardest jet in

the event, µ0 = pt,max. This was adopted, for example, in ref. [27]. Another prescription is

to take instead a different scale for each jet, specifically that jet’s pt, µ0 = pt,jet. This was

adopted for example in ref. [13].13

At LO, the two prescriptions give identical results, since there are only two jets in

the event and they have the same pt. However, starting from NLO the prescriptions can

differ substantially. Interestingly, a study of the small-radius limit can provide considerable

insight into which choice is more appropriate.

Figure 24 (left) shows the ratio of the NLO result as obtained with µ0 = pt,jet to

that with µ0 = pt,max, as a function of the jet pt, for three different jet radii. The main

observation is that the µ0 = pt,jet prescription increases the cross section, especially at

small radii: it brings an increase of almost 20% for R = 0.1 at low pt, versus . 4% for

R = 1.0 (in both cases for a central scale choice). As we saw in section 4, for reasonably

small R, the NNLO corrections suppress the cross section. Therefore the choice µ0 = pt,jet
takes us in the wrong direction.

In order to understand this better, it is useful to make a number of observations:

1. For the virtual part of the NLO calculation, the two scale prescriptions give identical

results, so the deviation of the ratio from 1 in figure 24 (left) can come only from the

real part.

13Note that yet other scale choices have been used in the literature, notably in predictions for dijet

masses [48, 75].

– 36 –



J
H
E
P
0
6
(
2
0
1
6
)
0
5
7

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 200  500  2000 100  1000

0.5µ0 < µR, µF < 2µ0

pp, 7 TeV, CT10

|y| < 0.5

σ(
µ

0
=

p
t,

je
t)

/σ
(µ

0
=

p
t,

m
a
x
)

pt [GeV]

ratio of pt,jet and pt,max scale choices

R=0.1
R=0.4
R=1.0

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 200  500  2000 100  1000

pp, 7 TeV, CT10

|y| < 0.5

ra
ti

o
 t

o
 L

O

pt [GeV]

third jet contrib. to NLO incl. jet σ

R=0.1
R=0.4
R=1.0

Figure 24. Left: ratio of NLO predictions for the inclusive spectrum when using the per-jet scale

choice µ0 = pt,jet versus the per-event choice µ0 = pt,max. The results are shown as a function

of jet pt for three jet radius choices, R = 0.1, 0.4 and 1.0 and have been obtained with NLOJet++.

The bands correspond to the effect of scale variation, where the scales are varied upwards and

downwards by a factor of two simultaneously for the numerator and denominator. Right: fraction

of the inclusive jet spectrum (for |y| < 0.5) that comes from jets beyond the two hardest. The 3-jet

rate and the overall normalisation are both evaluated at LO.

2. The real part itself involves two different pieces: that from binning either of the two

leading jets, and that from binning the 3rd jet. The right-hand plot of figure 24 shows

that the leading-order 3rd-jet contribution is at the level of 1−2% of the leading-order

dijet result and so it is reasonable to neglect it in our discussion.14

3. When a real emission is within an angle R of its nearest other parton, there are only

two jets in the event and the two scale-choice prescriptions are identical.

4. Differences between the prescriptions arise when the softest parton falls outside one

of the two leading jets. Then one of those jets has a reduced pt and the choice

µ0 = pt,jet gives a smaller scale than µ0 = pt,max. This occurs with a probability that

is enhanced by ln 1/R.

5. At pt ∼ 100 GeV, where the effects are largest, renormalisation scale (µR) variations

play a much larger role than factorisation scale (µF ) variations. Therefore a smaller

scale translates to a larger value of αs and thus a larger cross section for the real

contribution (which is always positive). Consequently, the prescription µ0 = pt,jet
leads to a cross section that is larger than the prescription µ0 = pt,max and the

difference is enhanced by a factor ln 1/R for small R.

14The 3rd jet is produced with a probability O (αs), however because its pt is lower than that of the two

leading jets, its contribution to the (steeply falling) jet spectrum is substantially suppressed.
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This qualitatively explains the behaviour seen in figure 24 (left). The µ0 = pt,jet scale choice

introduces a correction that goes in the wrong direction because it leads to a smaller scale

(and larger αs) for the real part, but without a corresponding modification of the virtual

part. Thus it breaks the symmetry between real and virtual corrections.

The above reasoning leads us to prefer the µ0 = pR=1
t,max prescription. To make it a

unique event-wide choice, independent of R, we define always define µ0 = pt,max using jets

with a radius equal to one, regardless of the R value used in the measurement.

We note that µ0 = pt,max has a potential linear sensitivity to initial-state radiation,

i.e. initial state radiation of transverse momentum pt,i shifts µ0 by an amount pt,i. A yet

more stable choice might be µ0 = 1
2(pt,1 + pt,2), the average transverse momentum of the

two hardest jets (again defined with a radius of one). For this choice, the shift of µ0 would

be limited O
(
p2t,i/(pt,1 + pt,2)

)
. We leave its study to future work.

Yet another option is the use of MINLO type procedures [76]. For dijet systems, this

should be rather similar to µ0 = 1
2(pt,1 + pt,2).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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