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1 Introduction

The discovery of the Higgs boson with mass mh ' 125 GeV at the Large Hadron Collider

(LHC) [1, 2] confirmed that electroweak symmetry is broken due to the vacuum expectation

value (vev) of a scalar field. However, the symmetry was restored in the early Universe

due to high temperature modifications of the Higgs boson properties. The dynamics of

a phase transition from a symmetric phase in the hot early Universe to the present-day

broken phase at low temperature is described by finite-temperature field theory. While

the high-temperature Higgs dynamics is not directly measurable at a collider, it is tightly

related to the currently probed zero-temperature potential.

In this paper, we wish to study a baryogenesis scenario [3–6] in which the observed

baryon asymmetry of the Universe is created during the electroweak phase transition

(EWPT). This requires baryon number violation, both C and CP violation and the depar-

ture from thermal equilibrium [7]. The last condition can be fulfilled if the phase transition

is first order. However, in the Standard Model (SM) it is second order for a Higgs mass of

125 GeV, and the field transitions smoothly into its new non-symmetric minimum which

develops as the temperature drops. Thus, models of electroweak baryogenesis require new

physics near the electroweak scale in order to generate a barrier between the symmetric

phase and the broken phase [8, 9]. Such models gained renewed attention recently, as

the experimental accuracy with which we know the Higgs properties increases and models

predicting modification to its potential can be probed [10, 11].

– 1 –



J
H
E
P
0
6
(
2
0
1
6
)
0
5
5

In this paper, we will discuss a generic model of new physics studied previously

in [12, 13]. The Higgs potential is modified by a non-renormalizable dimension six op-

erator, which is suppressed by a cutoff scale Λ. In the references above it was shown that

this model can facilitate a first-order PT, depending on the value of Λ and the Higgs boson

mass. Now that the Higgs mass has been determined, the only remaining free parameter

is the cutoff scale Λ. Also in the references above, the usual assumption that the EWPT

proceeds in a radiation-dominated Universe was applied. In this work our main focus will

be to determine the consequences of relaxing this assumption. We emphasize that we will

not discuss the production of baryons during the EWPT, but rather the necessary con-

dition for the baryon asymmetry to avoid being “washed out” after the phase transition.

That is, our analysis concerns the decoupling of fermion number violating processes, due

to a modified expansion history.

In the standard cosmological model, the Universe is radiation-dominated from the end

of reheating to the time of matter-radiation equality around 400, 000 yrs after the Big Bang.

During this time, a plethora of phase transitions occurred, among them the EWPT at a

scale around T ∼ 100 GeV. While the good agreement between Big Bang nucleosynthesis

(BBN) models and measurements of the primordial elemental abundances imply that the

Universe was radiation-dominated during and after BBN (i.e., after a time corresponding

to T ' 1 MeV), the expansion history before BBN is still very poorly constrained. This

is equivalent to the statement that the energy density in the early Universe could have

been distributed among components in such a way that some of them may have sufficiently

decayed or transformed into radiation, and so their presence may not show up through

measurements of the energy density at later epochs. Since extensions of the SM predict

new particles and energy constituents, the question of how those will impact the early

Universe arises naturally.

The difficulty for electroweak baryogenesis (EWBG) that we will discuss arises when

the Universe returns to thermal equilibrium after the phase transition. Then, the same

sphaleron processes that could have created the baryon asymmetry during the transition

can wash it away, if their damping in the broken phase is not sufficient. One way to avoid

this problem is to generate a large potential barrier, such that these processes are damped

enough after the transition. However, cosmological freeze-out due to a fast expansion of

the Universe works in the same direction, see [14, 15]. In order to obtain a higher expansion

rate of the Universe than in the standard case, we require that the dominant energy density

during EWBG decreases faster than radiation which has to dominate the Universe later

during BBN. From the point of view of baryogenesis we can remain agnostic to what

cosmological model modifies the evolution of the Universe during this early epoch. Indeed,

our results are applicable to a large class of cosmological models and do not depend on

the detailed implementation of such models. However, it is still an important question

what agent could give rise to such a modification. It turns out that there exist models in

which that agent is actually the cosmological dark matter (DM). Hence, in these scenarios

it would be the DM itself which facilitates EWBG, lending further motivation to such DM

models. Specifically, we will discuss one of those models, namely scalar field dark matter

(SFDM), in which the entire dark matter abundance is described as a complex scalar field,
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see [16]. The underlying particles are ultra-light bosons, which condensed into their ground

state soon after their birth. As a result, DM can thereafter be described as a classical field

with a conserved U(1)-charge, which is effectively the conserved DM abundance, which is

chosen to match the present-day value.

Thus, our approach is to combine a simple and straightforward theory of first-order

electroweak symmetry breaking phase transition (|H|6 theory) with a simple and straight-

foward modification of the cosmological history (with the specific example of SFDM theory

which also explains the dark matter abundance) to suppress sphaleron rates, thereby en-

abling the possibility of electroweak baryogenesis. The outline of this paper is as follows.

We begin by describing the φ6 model, relevant experimental bounds, and the dark matter

in section 2. In section 3, we compute the temperature at which the EWPT takes place,

and contrast that to the critical temperature often used in the literature. This also al-

lows us to properly include corrections to this temperature, coming from a modification

of the expansion history. We show that this correction is very small and can be safely ne-

glected, as expected. In section 4, we describe the modification of Standard Model SU(2)

sphalerons responsible for generating the baryon asymmetry during the phase transition,

and its “wash-out” after the phase transition has completed. Here is where the main

modification from the increased expansion rate of the Universes comes in by making the

sphalerons decouple faster, after the phase transition has completed. This results in an

increased amount of remaining baryons, which, in turn, increases the minimal energy scale

Λ of new physics required for baryon asymmetry preservation. We find that this change can

be significant, moving Λ by twenty percent as the Hubble parameter increases by six orders

of magnitudes compared to the one in the standard case. While the modification does not

seem huge, it actually means circumventing the sphaleron bound altogether, since it brings

us very close to the cutoff values required for a first-order phase transition to begin with. On

the particle experimental side, it means that, with the assistance of SFDM, say, our model

can predict a modification of the Higgs self-coupling which is only slightly bigger than 1σ

away from the corresponding SM central value. This result will not even be challenged by

the tighter bounds provided by the high luminosity stage of the LHC (HL-LHC).

2 The particle model

In order to effectuate a first-order phase transition of electroweak symmetry breaking

(EWSB), we need a particle model that goes beyond the SM. There are numerous ideas in

the literature that accomplish this. Perhaps the simplest idea is to not introduce new prop-

agating degrees of freedom, but to merely add a single higher-dimensional operator |H|6

which can create a potential barrier between two local minima at the critical temperature,

thereby achieving the first-order phase transition as the temperature drops. This will be

the approach we pursue in this paper, and in the next subsection we review the details of

this model and also the finite temperature field theory formalism needed to investigate the

phase transition.

Achieving a first-order phase transition is not enough; it must be strong enough. One

can either scrap the simple EWSB |H|6 and pursue richer variants, or one can consider if the

Universe has a non-standard cosmological evolution that redefines what is the acceptable
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strength of the first-order phase transition for sphalerons to not wash out any baryon

asymmetry that might have been created during the transition. It is this approach that

we take. We can be agnostic as to what kinds of dynamics enable a different cosmological

evolution during the early time of the EWPT and parametrize simply what is needed.

We will express that attitude at times and show results that are generally applicable to

one’s favorite theory. However, to be concrete, we will present results within the specific

framework of SFDM, which provides an excellent and motivated illustration of how the

dark matter background can affect the viability of the first-order phase transition. To

that end, we provide in this section some additional descriptions of the SFDM model and

comments on how it affects the cosmological evolution. We also mention in passing other

models with a similar effect in the early Universe.

2.1 The φ6 EWSB theory

Here we describe the particle physics dynamics of having an additional |H|6 term in the

EWSB Higgs potential. The new non-renormalizable coupling is suppressed by a certain

mass scale Λ. Above that scale, new degrees of freedom become fully dynamical, and the

underlying particle model cannot be described in the language of our effective theory. Re-

stricting ourselves to processes around the electroweak scale, we will consider the following

potential

V (H) = −m2|H|2 + λ|H|4 +
1

Λ2
|H|6, (2.1)

with HT = (χ1 + iχ2, ϕ+ iχ3) /
√

2. We assume only the real part of the neutral component

has a vev: ϕ = φ+v. The physical Higgs boson is φ, which leads to the following tree level

potential

V (φ)tree = −m
2

2
φ2 +

λ

4
φ4 +

1

8

φ6

Λ2
. (2.2)

The field-dependent masses take the form

m2
h(φ) = −m2 + 3λφ2 +

15

4

φ4

Λ2
,

m2
χi

(φ) = −m2 + λφ2 +
3

4

φ4

Λ2
,

m2
W (φ) =

g2

4
φ2, m2

Z(φ) =
g2 + g′2

4
φ2, m2

t (φ) =
y2
t

2
φ2,

(2.3)

where g, g′ and yt are the gauge boson and Yukawa couplings, respectively.

Following the prescription from [13], where a very similar potential was considered, we

include thermal and loop corrections as follows,

Veff(φ, T ) =− m2

2
φ2 +

λ

4
φ4 +

1

8

φ6

Λ2
+

∑
i=h,χ,W,Z,t

ni
m4
i (φ)

64π2

[
log

m2
i (φ)

µ2
− Ci

]

+
∑

i=h,χ,W,Z

niT
4

2π2
Jb

(
m2
i (φ)

T 2

)
+
∑
i=t

niT
4

2π2
Jf

(
m2
i (φ)

T 2

)
+

∑
i=h,χ,W,Z,γ

n̄iT

12π

[
m3
i (φ)−

(
m2
i (φ) + Πi(T )

)3/2]
.

(2.4)
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The coefficients read n{h,χ,W,Z,t} = {1, 3, 6, 3,−12}, n̄{h,χ,W,Z,t} = {1, 3, 2, 1, 1}, Ci = 3/2

for i = h, χ, t and Ci = 5/6 for i = W,Z, the functions J are given by

Jb/f

(
m2
i (φ)

T 2

)
=

∫ ∞
0

dk k2 log

[
1∓ exp

(
−
√
k2 +m2

i (φ)

T 2

)]
. (2.5)

The mass corrections Πi in (2.4) result from the ring-improvement of the finite temperature

potential, which is a resummation of the so-called daisy diagrams that become enhanced

at high temperature in the limit of zero boson mass. In our model, these mass shifts

read [13, 17]

Πh,χi
(T ) =

T 2

4v2
0

(
m2
h + 2m2

W +m2
Z + 2m2

t

)
− 3

4
T 2 v

2
0

Λ2

ΠW (T ) =
22

3

m2
W

v2
0

T 2

(2.6)

and the shifted masses of Z and γ (m2
Z/γ + ΠZ/γ(T )) are eigenvalues of the following mass

matrix, including thermal corrections(
1
4g

2φ2 + 11
6 g

2T 2 −1
4g
′2g2φ2

−1
4g
′2g2φ2 1

4g
′2φ2 + 11

6 g
′2T 2

)
. (2.7)

The values of the parameters λ and m are calculated from the conditions that

V ′eff(φ, T = 0)|φ=v0 = 0, V ′′eff(φ, T = 0)|φ=v0 = mh, (2.8)

i.e., requiring the observed masses of the Higgs boson mh = 125.09 GeV, as well as those

for the gauge bosons via the Higgs ground state of v0 := 〈φ(T = 0)〉 = 246.2 GeV. The

resulting values of the parameters m and λ, as well as examples of potentials, are shown

in figure 1.

Using higher order corrections to the Higgs mass would result in a mass parameter

higher by a few percent and λ smaller by a few percent [18]. This results in a slightly bigger

barrier and stronger phase transition; however, it is negligible compared to the modification

coming from the non-renormalizable correction. It is also known that the two-loop thermal

potential predicts a bigger thermal barrier between the vacua and therefore results in a

stronger phase transition [8, 19]. However, our aim is to illustrate the effects of modified

cosmology and a stronger phase transition would only serve to strengthen our conclusions.

We will limit our considerations to cutoff scales smaller than Λ ≈ 1100 GeV. Above that

scale, the phase transition is as weak as in the Standard Model (SM) with mh ≈ 80 GeV,

where the barrier between vacua is actually negligible and lattice simulations show results

similar to a second-order phase transition [20]. In that case, even if the sphalerons can be

decoupled during the phase transition, no asymmetry will be created to begin with, so the

model would already be ruled out.
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Figure 1. The left panel shows examples of potentials at their critical temperatures for several

values of Λ. The right panel depicts the values of m and λ as functions of Λ (all values except for

the dimensionless λ are expressed in GeV).

2.2 The triple Higgs coupling

While all UV complete models realizing EWBG predict various modifications to Higgs

properties, our effective theory differs from the SM only in terms of the Higgs poten-

tial. All other modifications of Higgs properties in the language of an effective theory are

simply unrelated, until one chooses a specific UV completion. Consequently, we will not

discuss them.

In this approach, the only directly affected measurable Higgs property is the triple-

Higgs coupling related to the third derivative of the zero-temperature potential (2.4),

λ3 =
1

6

d3Veff(φ, T = 0)

dφ3

∣∣∣∣
φ=v0

. (2.9)

This coupling can be measured in double Higgs production events; however, the cross-

section for producing a single Higgs boson is roughly three orders of magnitudes larger.

This is why high-luminosity experiments are required for a reliable measurement. LHC in

its high-luminosity phase (HL-LHC) will be able to determine the value of λ3 with roughly

40% accuracy [21–24].

Figure 2 shows the value of λ3 in our model as a function of the cutoff scale Λ, along

with the SM value and the HL-LHC experimental sensitivity at 1, 2 and 3σ, respectively.

The smaller the cutoff scale (i.e., the larger the deviation from the SM), the larger the

coupling λ3. This allows us to explicitly calculate the reach of HL-LHC through λ3 mea-

surements, in terms of the cutoff scale of new physics. The resulting scales are Λ ≈ 1102, 783

and 641 GeV, corresponding to 1, 2 and 3σ deviations in the measurement, respectively.
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Figure 2. Values of the triple Higgs coupling λ3 as a function of the cutoff scale (dark blue

line), along with the SM value (light blue) and HL-LHC experimental sensitivity at 1, 2 and 3σ

(dashed lines). The thin vertical lines point to cutoff values corresponding to these bounds which

are Λ ≈ 1102, 783 and 641 GeV, respectively.

2.3 Dark matter as a stiff fluid

As discussed in the Introduction, the new energy component must decay faster than radia-

tion in order to make a cure to the problem of EWBG. Equivalently, the equation-of-state

(EOS) of that component must be stiffer than that of radiation, i.e., p = wρ with w > 1/3.

The gain is maximal for a “stiff EOS” with w = 1 (still consistent with causality). The na-

ture of this component could arise from diverse origins. Previously, the agent in [14, 15] has

been thought to be a (real) relic scalar field, either different from the inflaton, or the inflaton

itself which transitions into the required stiff phase. Indeed, such a phase can easily arise,

if the kinetic mode of a scalar field dominates its evolution (termed “kination” in [14]).

Our specific example affecting EWSB of the |H|6 potential is scalar field dark matter

(SFDM), in which the entire cosmological DM is described as a complex scalar field. Its

cosmological evolution has been studied first analytically in [25], but more accurately in [16].

The adopted Lagrangian is of a very generic form,

L =
~2

2ms
gµν∂µψ

∗∂νψ −
1

2
msc

2|ψ|2 − λs
2
|ψ|4. (2.10)

ms is the DM boson mass and the energy-independent boson coupling strength is chosen

to be repulsive or zero, λs ≥ 0. The SFDM model parameters, ms and λs, need to be

tiny for reasons of DM structure formation, see e.g. [26, 27]. Indeed, one major motivation

to study SFDM is its potential to resolve certain small-scale problems faced by standard

collisionless cold dark matter (CDM), in that it provides a characteristic (Jeans) scale,

prohibiting gravitational collapse below that scale, as follows.

If CDM is due to weakly interacting massive particles (WIMPs), the predicted mini-

mum clustering scale allows substructure down to the order of earth-mass microhalos with

radius of order the solar system. As a result, CDM predicts not only very high DM densities
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in the centers of galaxies, but also a much larger number of satellite galaxies around hosts

like the Milky Way. Both predictions have been continuously challenged by observations of

DM-dominated galaxies, which report deviations up to scales of one kpc (see e.g. [28] for

a review). This discrepancy is one major reason to study alternatives to the CDM/WIMP

paradigm. The Jeans scale of SFDM can be of order kpc, if the mass ms ' 10−22 eV.

Higher masses are possible, if a positive coupling strength is included; fiducial values of

λs ≈ 10−62 eV cm3 correspond to dimensionless couplings of order λ̃s ≈ 10−92. These

values are many orders of magnitudes below typical values for the QCD axion for which

ms ' 10−5 eV and λ̃s ≈ 10−53.

These values we use for the SFDM parameters are purely phenomenological and we do

not address possible fine-tuning issues, which we believe are not any worse than the large

hierarchy problem in the SM.

While the mass term in (2.10) will ensure that SFDM behaves like CDM with p ' 0 in

the late Universe, the presence of the other terms will render SFDM a relativistic species in

the early Universe. When the quartic term dominates (assuming λs > 0), SFDM behaves

radiation-like, i.e., p ' ρ/3. However, it is radiation that will dominate the cosmic energy

budget in that phase. Finally, even earlier in the evolution, the kinetic term in (2.10) will

give rise to a stiff EOS of SFDM, p ' ρ, in which SFDM will dominate over all the other

cosmic components. Note that SFDM transitions dynamically through all its phases, and

that the stiff phase arises in all models, with or without self-interaction [16]. While the

presence of a stiff epoch for real scalar fields requires the choice of an appropriate potential,

it is a generic feature of complex SFDM. It is the angular part due to the phase of the

complex field in the kinetic energy term in (2.10) that dominates for small scale factor,

whereas this term is absent in the real field case.

The requirement of compliance with cosmological observables, which probe the rel-

ativistic degrees of freedom during the cosmic history of our Universe, determines the

allowed parameter space of SFDM models. The observables are notably BBN and the

time of matter-radiation equality. We refer the reader to [16], in which a detailed analysis

has been presented. An additional important observable of future relevance is given by

primordial gravity waves from inflation, the impact of which on SFDM will be published

elsewhere [29]. Another issue raised recently, and not discussed up to now in the context

of SFDM, are the isocurvature constraints which could call into question the identification

of SFDM as dark matter. However, a naive reinterpretation of bounds recently derived

in [30] for a very weakly coupled scalar suggests these bounds do not exclude SFDM. Nev-

ertheless this is a very interesting issue which should be investigated further, but whose

results would not affect our conclusions since it could only exclude part of our parameter

space at best, and not all of it. To our amazement, we found that SFDM models do exist

which fulfill all the constraints and provide a high enough expansion rate during EWBG.

A fiducial case has been presented in [31].

We want to stress, however, that the stiff epoch transitions rapidly into the radiation-

dominated epoch due to the high power-law decay, no matter whether the underlying

agent is some generic scalar field that simply keeps diluting away faster than radiation,

or whether it is SFDM that dynamically transitions from a stiff phase to a radiation-like
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phase. Therefore, the analysis of our paper does not depend on a model specification for

the stiff epoch, and applies to models different from SFDM, as well. However, as a matter

of fact, it is a very attractive feature of SFDM that it could not only explain the dark

matter in the Universe, but potentially also enable EWBG.

Indeed, to lend further motivation to our analysis, we shall mention that many more

models do exist, which could give rise to an early stiff phase. Anisotropic cosmologies have

been known to include a stiff epoch, and implications have been studied in [32]. A stiff

phase may be also due to moduli fields, as discussed in [33], and which occur frequently

in extensions to the SM. On the other hand, a DM model with a stiff phase, which is

completely different from SFDM, has been studied in [34]. There, the authors consider

warm, self-interacting DM (WSIDM) with or without a collisionless CDM component added

to it. The small-scale problems mentioned above are a prime motivation here, too, to study

this DM candidate. The typical mass range of WSIDM particles is 1-10 keV and the DM

self-interaction is mediated by vector mesons. It turns out that the energy density due

to DM self-interactions decays as a−6, hence dominates in the early Universe. As with

SFDM, that contribution has to be constrained by BBN, see [34]. In fact, while all such

models need to be constrained by BBN and possibly primordial gravitational waves, they

may actually help to facilitate EWBG, if the corresponding stiff phase is allowed to last

during the electroweak phase transition. We believe that this feature provides additional

motivation for such models.

3 Electroweak phase transition

Below the critical temperature Tc, the minimum that breaks electroweak symmetry becomes

the global minimum of the potential, while the field is still in the symmetric local minimum

because the two minima are separated by a potential barrier generated due to thermal

fluctuations, as described in the previous section. The transition proceeds via thermal

tunnelling, which can be described in terms of the spontaneous nucleation of bubbles of

the broken phase (with non-zero vev) in the symmetric background. After nucleation the

bubbles grow, converting false vacuum into true one, until the whole Universe transitions

into the broken phase.

The crucial value for finding the temperature of the phase transition is the probability

of nucleation of a bubble. This probability per volume V is given by [35, 36]

Γ/V ≈ T 4 exp

(
−S3(T )

T

)
, (3.1)

where

S3 = 4π

∫
drr2

[
1

2

(
dφ

dr

)2

+ V (φ, T )

]
, (3.2)

is the action for the solution of the equation of motion that corresponds to the nucleating

bubble. We aim to find the solution with smallest action, i.e., the most symmetric one.

Assuming an O(3) symmetric bubble, the equation of motion for the field takes the form

d2φ

dr2
+

2

r

dφ

dr
+
∂V (φ, T )

∂φ
= 0, (3.3)
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with boundary conditions given by

φ(r →∞) = 0 and
dφ(r = 0)

dr
= 0. (3.4)

The question at what temperature the phase transition will proceed and the bubbles

will percolate also depends on the expansion rate of the Universe. We will assume that the

phase transition occurs at a temperature Tn, at which at least one bubble appears in every

horizon.

3.1 Radiation domination

The usual assumption used in the literature is that for T ≈ O(100 GeV) the Universe is

dominated by radiation [37], whose energy density decreases with scale factor a as

ρ̃R =
ρR
a4
. (3.5)

Neglecting all the other cosmic components, we can solve the Friedmann equation

H2 =

(
ȧ

a

)2

=
8π

3M2
p

ρR
a4
, (3.6)

and calculate the volume of the Universe as

VH(T ) =

(
a

∫
dt

a

)3

= 8ζ3
M3
p

T 6
, (3.7)

where ζ = 1
4π

√
45
πg∗
≈ 2×10−3, assuming the SM number of degrees of freedom g∗ = 106.75,

which is approximately constant in the range of temperatures of interest to us. Using (3.1),

our condition for one bubble to be nucleated within each horizon then translates to∫ ∞
Tn

ΓdT =

∫ ∞
Tn

dT

T

(
2ζMp

T

)4

exp

(
−S3(T )

T

)
= 1. (3.8)

Before pointing out the importance of using the nucleation temperature Tn instead of the

critical temperature Tc, we will discuss how the above result changes due to the modification

of our cosmological model.

3.2 Cosmological modification

Now, we want to generalize the foregoing calculation by including a modified expansion

epoch before the usual radiation-dominated epoch. We will assume that the energy density

of the new energy constituent redshifts as

ρ̃S =
ρS
an
, (3.9)

with n > 4. A stiff EOS corresponds to n = 6. As we move towards earlier times, the

contribution of the new component quickly dominates the total energy density. Thus, at
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EWBG we can use a simplified Friedmann equation, including only the new dominating

component

H2 =

(
ȧ

a

)2

=
8π

3M2
p

ρS
an
. (3.10)

We performed calculations in which we include both, radiation and the new component.

However, the results can only be expressed using special functions, and we found that

the correction coming from neglecting the radiation component is completely negligible.

Thus, for the sake of clarity we will present only the simplified calculation. Assuming that

the new energy component does not interact with SM degrees of freedom (as is the case

for SFDM), we can use the standard relationship between temperature and scale factor,

namely

ρ̃R =
ρR
a4

=
π2

30
g∗T

4, (3.11)

which allows us to obtain the scale factor as a function of temperature. Analogously to the

previous subsection, we now calculate the horizon volume

VH(T ) =

(
a

∫
dt

a

)3

=
M3
p 2

3
8

(5n−4)
(
π
3

) 3(n−4)
8 ξ

3n
4 ρR

3n/8

(n− 2)3T
3n
2 ρS3/2

. (3.12)

Using (3.1), the condition for one bubble to be nucleated within each horizon translates

now to ∫ ∞
Tn

ΓdT =

∫ ∞
Tn

dT

T

M4
p 2

5n−6
2

(
3
π

) 4−n
2 ξnρR

n
2

(n− 2)3T 2n−4ρS2
exp

(
−S3(T )

T

)
= 1. (3.13)

Next, using the Friedmann equation, we can express the new energy density as a func-

tion of the ratio of the modified Hubble parameter H to the standard radiation-dominated

case HR, as follows

ρS =

((
H

HR

)2

− 1

)
ρR30

4−n
4 π

n−4
2 Tn−4

(
ρR
g∗

) 4−n
4

, ρR =
π2

30
g∗T

4. (3.14)

All the above quantities have to be calculated at Tn to match the sphaleron freeze-out

calculation, described in the next subsection.

In order to obtain the nucleation temperature, we first solve (3.3) numerically using an

overshoot/undershoot algorithm. This determines the action S3(T ) via (3.2). Finally, we

integrate (3.13) to find the nucleation temperature Tn for all values of the cutoff scale Λ.

Figure 3 shows the critical temperature Tc and the nucleation temperature Tn, as well as

the ratio of the Higgs vev v(T ) := 〈φ(T )〉 to those temperatures, v(Tc)/Tc and v(Tn)/Tn, as

functions of the cutoff scale Λ, for the radiation-dominated case (H = HR) and n = 6 (as

for SFDM-domination) with H = 103HR and H = 106HR, respectively. Also, values of the

ratio of the vev to temperature (v/T )Sph required in each of these cases by the sphaleron

freeze-out (as discussed in section 4) are marked in the right panel.

The modification due to the proper calculation of the nucleation temperature can

change the resulting bounds significantly, since the difference between these cases increases

with the importance of the modification, which is largest in the most interesting range of
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Figure 3. The left panel shows the critical and nucleation temperatures (Tc and Tn) of our

model with n = 6. The thin vertical lines highlight cutoff scales corresponding to experimental

sensitivities, as shown in figure 2, while the horizontal lines point to the temperatures corresponding

to these values of Λ. The right panel depicts the ratios of vevs to the temperatures (v(Tc)/Tc and

v(Tn)/Tn), as a function of Λ (dashed lines). Also indicated are the sphaleron bounds on v/T for

different expansion rates, as described in section 4 (solid lines).

small cutoff scales. However, the correction in (3.13) due to the modified expansion rate

only appears in the factor in front of the exponential. Therefore, the results are nearly

identical for very different ratios of H/HR and n > 4.

We can see from the left panel that our EWBG era of interest lies between temperatures

of approximately 100−150 GeV. This is the era in which SFDM should be in its stiff phase.

We presented a fiducial SFDM model in [31], where we chose a reheating temperature

of 300 GeV. Reheating is followed by the stiff phase of SFDM, which transitions into its

radiation-like phase, making way to radiation-domination before the time of neutron-proton

freeze-out. The SFDM parameters were ms = 5 × 10−21 eV and λs = 7.5 × 10−59 eV cm3

(i.e., λs/(msc
2)2 = 3 × 10−18 eV−1 cm3). Using this SFDM model, the expansion rate

during the EWBG era of interest is about 3 − 5 orders of magnitudes higher with respect

to the standard case, within the above temperature range. Work is in progress to study

the SFDM parameter space in more detail.

3.3 Experimental bounds on modified cosmologies

In this section, we derive very generic bounds which have to be applied to a wide class

of cosmological models, and are respected by the SFDM fiducial model as well, see [31].

As elaborated in section 1 and section 2.3, these bounds come from BBN constraints (see

e.g. [38, 39]), whereby current measurements allow for some additional energy density

components [40]. The simplest way to obtain bounds on this contribution is to translate

the bound on the effective number of neutrinos to the modification of the Hubble rate [41],

H

HR

∣∣∣∣
BBN

=

√
1 +

7

43
∆Nνeff

. (3.15)
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Figure 4. Maximal modification of the Hubble parameter calculated at the nucleation temper-

atures Tn = 100 GeV and Tn = 150 GeV, as a function of the parameter n which determines our

cosmological model.

We will assume ∆Nνeff
is the difference between the SM radiation contribution N = 3.046

and the observed value Nνeff
= 3.28 from [38, 39] which corresponds to H/HR|BBN = 1.0187.

It is straightforward to calculate HR,BBN using (3.11),

ρR,BBN =
π2

30
g∗,BBNT

4
BBN (3.16)

and using the SM values, TBBN = 1 MeV and g∗,BBN = 43/4.

The next step is to simply compute the energy density of the new component at the

EWBG scale, using the Friedmann equation (3.10). We assume that ρR,BBN is composed

of the SM radiation, while the remaining contribution corresponds to the new component

ρS,BBN,

H

HR
=

1

HR

√
8π

3M2
p

ρS,BBN

(aBBN

a

)n
=

√(
H

HR

∣∣∣∣
BBN

)2

− 1

(
TBBN

Tn

) 4−n
2
(
g∗,BBN

g∗

) 1−2n
4

.

(3.17)

As before, all values without subscript BBN should be calculated at Tn. The resulting max-

imal modification of the expansion rate for different cosmological models in the interesting

temperature range T ∈ [100, 150] GeV is shown in figure 4. For our n = 6 example (i.e., a

stiff EOS), this corresponds to a maximal H/HR ratio between 6× 105 and 9× 105, which

agrees with the results for the fiducial SFDM model, quoted in the previous subsection.

However, the value of Neff = 3.28 adopted in this section is smaller than the one chosen

for the fiducial model in [31]. For this Neff , the appropriate SFDM model would require a

higher mass, while other parameters can stay the same. For instance, for the same ratio of

λs/(msc
2)2 = 3× 10−18 eV−1 cm3 and the same reheating temperature of 300 GeV, SFDM

with a mass of ms = 10−20 eV would work.
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4 Sphaleron freeze-out

In this paper, we do not discuss the production of baryons during the phase transition,

but rather the necessary condition for the baryon asymmetry to be not washed out after

the phase transition. While the SU(2) sphalerons can generate baryon asymmetry [4], they

also dilute it after the phase transition is completed, and the system is returning to thermal

equilibrium.

The sphalerons are suppressed in the broken phase due to the W bosons obtaining

mass, and the weak interactions act only on very short distances. Hence, this suppression

is proportional to the gauge boson masses, thus proportional to the Higgs vev right after

the phase transition. If the barrier separating the vacua is too thin and the broken phase

vev is too small, all the generated asymmetry can be washed out, including asymmetry

which may have been generated in mechanisms different from EWBG, as long as these

mechanisms also respect the B − L symmetry of the SM [37].

A simple criterion for sphaleron freeze-out (or “wash-out”) is obtained by assuming

that the sphaleron processes decouple when their rate becomes smaller than the expansion

rate of the Universe, i.e., when Γ / H. The sphaleron rate is given by [37]

Γ = 2.8× 105T 4κ
g

4π

( v
T

)7
exp

(
−
Esph

T

)
, (4.1)

where the parameter κ is the functional determinant associated with fluctuations about the

sphaleron. That parameter has been estimated to be in the range 10−4 . κ . 10−1. The

sphaleron energy Esph is modified due to the cutoff Λ [12], as well as due to the exponential

dependence on the action. Indeed, this can have a significant impact on the bounds we can

place on Λ. In order to accurately calculate the sphaleron energy we find the sphaleron

solution by starting with the ansatz [42] for the SU(2) gauge field W and the scalar field φ,

W a
i σ

adxi = −2i

g
f(ξ)dU U−1, φ =

v0√
2
h(ξ)U

(
0

1

)
,

where ξ = gv0r, σ
a are the Pauli matrices and U =

1

r

(
z x+ iy

−x+ iy z

)
, while f and h

are unknown functions of the single variable ξ. We will compute only the SU(2) sphaleron,

neglecting small corrections from U(1)Y , as in [42]. With the above assumptions, the action

of the sphaleron reads Esph = (4πv/g)E0 with

E0 =

∫ ∞

0

dξ

(
4f ′2 +

8

ξ2
f2(1− f)2 +

1

2
ξ2h′2+ h2(1− f)2 +

λ

4g2
ξ2(h2 − 1)2 +

v2

8g2Λ2
ξ2(h2 − 1)3

)
.

(4.2)

Varying this action, we find the field equations for the functions f and h,

ξ2d
2f

dξ2
= 2f(1− f)(1− 2f)− ξ2

4
h2(1− f) (4.3)

d

dξ

[
ξ2dh

dξ

]
= 2h(1− f)2 +

λ

g2
ξ2(h2 − 1)h+

3

4

v2
0

g2Λ2
ξ2h(h2 − 1)2.
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ξ → 0 ξ →∞

f ≈ ξ2/a2
0 f ≈ 1− a∞ exp(−ξ/2)

h ≈ ξ/b0 h ≈ 1− (b∞/ξ) exp
(
−
√

2λ
g2 ξ
)

Table 1. Analytic solutions of the asymptotic equations of motion (4.3) describing the sphaleron

solution near the boundaries.

These are subject to the boundary conditions f(0) = h(0) = 0 and f(∞) = h(∞) = 1. In

order to find the exact solutions, we start with the analytical solutions of the asymptotic

equations, valid near the boundaries as shown in table 1. Using these solutions to find

our initial conditions at a certain very small and very large value of ξ, we numerically

solve the full equations to a certain ξmatch where we compare the two solutions. Our

procedure consists of randomly varying the initial parameters a0, b0, a∞ and b∞ and

updating them if solutions with the new values match more closely. When both functions

and their derivatives at ξmatch match with an accuracy of 10−6, we consider the equations

solved, and use that solution to calculate the resulting sphaleron energy, Esph = (4πv/g)E0

from (4.2). Now, we can rewrite the freeze-out condition Γ ≤ H as

v

T
≥ g

4πE0
ln

(
2.8× 105T 4κ g

4π

(
v
T

)7
H

)
, (4.4)

where H is the Hubble rate calculated at the nucleation temperature Tn when the phase

transition ends. We will choose κ = 10−1, which gives the most stringent constraints. The

(weak) dependence of E0 on Λ is shown in the left panel of figure 5. It is also the reason

why the (v/T )Sph-lines shown in figure 3 are not straight, but show a slight dependence

on Λ. We can see that the sphaleron energy decreases for smaller cutoffs. This means

that the sphaleron processes are more active, hence more suppression is required after the

phase transition. However, the effect is rather weak and changes the results only by a small

amount, compared to the changes coming from the modified expansion history, as can be

seen in the right panel of figure 5.

We are finally in position to combine the v/T value required to decouple the sphalerons

and preserve the asymmetry (4.4) with the v/T value we obtain as a function of the cutoff

from figure 3, along with the experimental constraints on the cutoff from figure 2. Thus,

we can determine the minimal scale of new physics required to preserve the asymmetry as a

function of the modified expansion rate H/HR. We can also translate the maximal possible

modification of the Hubble rate, discussed in section 3.3, to an explicit bound on Λ for a

wide class of cosmological models. Figure 6 shows the minimal value of Λ as a function

of n, along with the experimental constraints, and the specific cosmological example for

n = 6 (i.e., a stiff EOS, as in SFDM).

Our key result is that for n = 6, the minimal Λ required by the sphaleron bound is

already very close to the value required for the first order phase transition (as discussed in
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Figure 5. Left panel: sphaleron energy (divided by the factor of 4πv/g) as a function of the cutoff

scale Λ. Right panel: minimal value of v/T required to avoid wash-out of baryon asymmetry, as a

function of the modified expansion rate H/HR for several values of the cutoff Λ.
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Figure 6. Left panel: cutoff scale Λ required for successful EWBG (solid blue line) as a function

of n which determines our cosmological model. Here we assumed maximal experimentally allowed

assistance from cosmology. Right panel: cutoff scale Λ required by EWBG as a function of the

expansion rate (solid blue curve) for n = 6. Both panels also show HL-LHC experimental constraints

on Λ from its modification to λ3 (horizontal dashed lines, 1σ (top) to 3σ (bottom)).

section 2.1). Thus, the modified cosmological history allows us to circumvent the sphaleron

bound altogether, and the only bound given by current experiments is equivalent to the

requirement of departure from thermal equilibrium.
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5 Conclusions

In this paper we studied the implications of a modified cosmological history for the elec-

troweak baryogenesis scenario. We adopted a generic model in which the Higgs potential

is modified by a non-renormalizable dimension six operator, suppressed by an appropriate

new mass scale Λ.

We discussed a very generic model of cosmological modification with a single new

energy density component which does not interact with SM degrees of freedom. As a

possible specific source of such a modification, we focused on complex scalar field dark

matter (SFDM).

We carefully computed the temperature at which the phase transition takes place,

instead of using the approximation coming from the critical temperature, often used in

the literature. This allowed us in addition to include minor corrections to the nucleation

temperature due to a modification of the cosmological history. In all, using the nucleation

temperature in the full calculation, rather than the critical temperature approximation,

can change the final results significantly for the allowed parameter space.

Next, we described the modification of Standard Model SU(2) sphalerons. This is

the main source of modification resulting from the increased expansion rate. A higher

expansion rate leads to a more readily achieved freeze-out of the sphalerons, thus preserving

any baryons remaining after the phase transition. This in turn increases the minimal scale

Λ of new physics which is required for successful baryogenesis.

We find that this modification of the required Λ’s, while numerically seemingly small

(about 20% for ρS ∝ a−6), actually means circumventing the sphaleron bound altogether,

because it brings us to the cutoff values required for a first order phase transition to begin

with. Also, our specific example of SFDM, and other models with n = 6, prove very

interesting, since they allow us to get very close to avoiding the sphaleron bound. Exotic

models with even higher expansion rates (i.e., whose energy density would decay even faster

than ∝ a−6) would not increase the allowed parameter space much further. On the particle

experimental side, it means that, with assistance of a fluid with stiff EOS, like SFDM, our

model can remain consistent within 1σ of the SM result, even with the bounds provided

by the high luminosity stage of the LHC.
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