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1 Introduction

It is almost twenty years since there has been discovered a remarkable new relation between

geometry and physics: within the Anti-de Sitter/Conformal Field Theory (AdS/CFT)

correspondence [1] we can investigate the dynamics of strongly coupled quantum field

theories by means of General Relativity methods. From purely academic studies this field

of research evolved to address experimental systems an example being strongly interacting

hadronic matter [2]. In particular, real time response of a thermal equilibrium state has

been quantified in the case of N = 4 super Yang-Mills theory by the means of the poles of

the retarded Green’s function [3], which correspond to quasinormal modes (QNM) in the

dual gravitational theory.

While the hydrodynamic QNMs have been studied in different gravitational theories

dual to non-CFT cases (e.g. ref. [4, 5]), initial steps towards extension were taken in ref. [6, 7]

where nonhydrodynamic QNM’s of an external scalar field were considered in non-conformal

field theories, which still admit a gravitational dual description. Subsequent investigations
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include different mechanisms of scale generation [8], different relaxation channels [9, 10],

baryon rich plasma [11], and studies of non-relativistic systems [12].

This paper is an extended version of the letter [13] where we provide many more details

as well as extend the investigation to a model of an improved holographic QCD type which

exhibits novel and interesting phenomena. We concentrate on investigating linearized real

time response of strongly coupled non-conformal field theories in the vicinity of various

types of phase transitions and phase structures. Thus the physical regime of interest in the

present paper is quite distinct from the the one of interest for ‘early thermalization’ which

have been extensively studied within the AdS/CFT correspondence.

Firstly, we analyze all allowed channels of energy-momentum tensor perturbations and

corresponding two-point correlation functions. Secondly, we concentrate on the phenomena

appearing in the vicinity of a nontrivial phase structure of various type: a crossover

(motivated by the lattice QCD equations of state [14]), a 2nd order phase transition and a

1st order phase transition. These cases are modeled by choosing appropriate scalar field

self-interaction potentials in a holographic gravity-scalar theory used in [15]. Apart form

this, we also analyze a potential from a different family of models, improved holographic

QCD (IHQCD), considered in [17, 18]. In this case the focus was on getting best possible

contact with properties of QCD, in particular asymptotic freedom and colour confinement

as well as obtaining a realistic value of the bulk viscosity.

Despite the fact, that considered models have a rather simplistic construction, the

resulting near equilibrium response shows a variety of non-trivial phenomena. Some generic

features consist of: (i) the breakdown of the applicability of a hydrodynamic description

already at lower momenta than in the conformal case; (ii) in the cases with a first order phase

transition we find a generic minimal temperature, Tm, below which no unstable solution

exists; (iii) whenever there exists a thermodynamical instability there is a corresponding

dynamical instability present in the hydrodynamic mode of the theory; (iv) the ultralocality

property of non-hydrodynamic modes, i.e., weak dependence on the momentum scale.

The nature of the dual gravitational formulation allows for a detailed quantitative

investigation of the above phenomena as well as for accessing diverse physical scenarios. In

particular, the first order phase transition appears in two different scenarios. The first one

is similar to the usual Hawking-Page transition [19] in which the two phases are a black

hole geometry and a thermal gas geometry [18]. In the second one the transition appears

between two black hole solutions [15]. This diversity is triggered by a different functional

dependence of the scalar field potential in the deep infrared (IR) region, and is reflected

in the corresponding QNM spectrum. Nevertheless there is a common aspect in both

situations. We observe some specific dynamical response of the system for a characteristic

temperature, Tch > Tm, in the stable branch of EoS. The details of this effect depend on

the case, but the existence of Tch is generic for a first order phase transition.

Particularly interesting effects appear in IHQCD model, which admits a first order

phase transition between a black hole and a thermal gas [18]. First, for temperatures in the

range Tm ≤ T ≤ Tch the lowest lying excitation modes become purely imaginary for low

momenta, which leads to a ultralocality violation. Second, at T = Tm for momenta higher

than some threshold value the hydrodynamic mode and the first non-hydrodynamic mode
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have the same dispersion relation. Third, in the small black hole branch there is a range

of temperatures which shows instability in a non-hydro mode. The appearance of these

phenomena makes the IHQCD model unique in the landscape considered.

The organization of the paper is as follows. In the next section, 2 we shortly describe

the thermodynamics of considered models and parameter choices for bulk scalar interactions.

In section 3 we discuss equations of motion for the linear perturbations of the background

and technical aspects of their solutions. In the first subsection we clarify the right boundary

conditions which have to be chosen for the QNM spectrum. In the second subsection we

give general remarks and list main aspects of physical properties we obtain. The following

sections 4 to 7 contain results and detailed studies of different cases. We close the paper by

a summary and outlook in section 8. For completeness appendixes A and B respectively

contain some technical details of the Free Energy computation, and the explicit form of the

QNM equations of motion.

2 The background and thermodynamics of the system

In this section we formulate the background black hole solutions and determine the scalar

field potential by considering emergent equations of state in the dual field theory.

2.1 Metric Ansatz and equations of motion

This section describes the black hole background solutions for the quasinormal mode

calculations, which follow from the action

S =
1

2κ2
5

∫
M
d5x
√
−g
[
R− 1

2
(∂φ)2 − V (φ)

]
− 1

κ2
5

∫
∂M

d4x
√
−h K , (2.1)

where V (φ) is thus far arbitrary and κ5 is related to five dimensional Newton constant

by κ5 =
√

8πG5. The last term in (2.1) is the standard Gibbons-Hawking boundary

contribution. These solutions are similar to those studied in ref. [15, 17]. Since our goal is

to determine the QNM frequencies, it will be convenient to employ Eddington-Finkelstein

coordinates, which have been proven useful in the case of the scalar field modes [6]. We will

discuss this in a more detail in the following section.

Whereas we are interested in asymptotically AdS space-time geometry, the potential

needs to have the following small φ expansion

V (φ) ∼ − 12

L2
+

1

2
m2φ2 +O(φ4) . (2.2)

Here, L is the AdS radius, which we set it to one, L = 1, by the freedom of the choice of

units. Such a gravity dual corresponds to relevant deformations of the boundary conformal

field theory

L = LCFT + Λ4−∆Oφ , (2.3)

where Λ is an energy scale, and ∆ is a conformal dimension of the operator Oφ related

to the mass parameter of the scalar field according to holography, ∆(∆ − 4) = m2. We
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consider 2 ≤ ∆ < 4 which corresponds to relevant deformations of the CFT and satisfies

the Breitenlohner-Freedman bound, m2 ≥ −4 [20, 21].

The Ansatz for solutions under considerations follows from the assumed symmetries:

translation invariance in the Minkowski directions as well as SO(3) rotation symmetry in

the spatial part. This leads to the following form of the line element:

ds2 = gttdt
2 + gxxd~x2 + grrdr

2 + 2grtdrdt , (2.4)

where all the metric coefficients appearing in (2.4) are functions of the radial coordinate r

alone, as is the scalar field φ. This form of the field Ansatz (determined so far only by the

assumed symmetries) allows two gauge choices to be made. For the purpose of computing

the quasinormal modes it is very convenient to use the Eddington-Finkelstein gauge grr = 0.

It is typically convenient also to impose the gauge choice gtr = 1, but for our purposes it

turns out to be very effective to use the remaining gauge freedom to set φ = r. We label

the metric components as

ds2 = e2A (−h dt2 + d~x2)− 2 eA+B dt dr , (2.5)

φ = r . (2.6)

In the above coordinate system the UV boundary is at r = 0, while the IR region is the

limit r →∞. The system of Einstein-scalar field equations

Rµν −
1

2
∇µφ∇νφ−

1

3
V (φ)gµν = 0 , (2.7)

∇µ∇µφ−
dV (φ)

dφ
= 0 , (2.8)

takes the following form

A′′ −A′B′ + 1

6
= 0 , (2.9)

h′′ + (4A′ −B′)h′ = 0 , (2.10)

6A′h′ + h(24A′2 − 1) + 2e2BV = 0 , (2.11)

4A′ −B′ + h′

h
− e2B

h
V ′ = 0 , (2.12)

where the prime denotes a derivative with respect to φ.

In contrast to methods proposed in ref. [15] we solve this coupled equations directly

using the spectral method [22] in the Newton linearization algorithm. We are interested

in solutions possessing a horizon, which requires that the blackening function h(r) should

have a zero at some r = rH :

h(rH) = 0 . (2.13)

Asymptotically we require that our geometry is that of the AdS space-time.
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2.2 Thermodynamics

Having determined the geometry we can extract the thermodynamic quantities in a standard

way. The Bekenstein-Hawking formula for entropy, together with the event horizon regularity,

lead to the following expressions for the entropy density and the Hawking temperature

s =
2π

κ2
5

e3A(rH) , T =
eA(rH)+B(rH)|V ′(rH)|

4π
. (2.14)

In turn, the speed of sound of the system can be determined as

c2
s =

d log T

d log s
. (2.15)

Let us emphasis that this is the speed of sound in the dual field theory. The corresponding

Free Energy (FE) is related to the value of the action evaluated at the solution [23]

βF = lim
ε→0

(S(ε)− Sct(ε)) , (2.16)

where β = 1/T , S is the Einstein-Hilbert-scalar action (with Gibbons-Hawking term)

evaluated on-shell with a cut-off ε in a holographic direction. Sct are properly chosen

counter terms. We will use this formula in the case of potentials with a first order phase

transition in order to compute the Free Energy difference between phases as a function of

temperature and determine the critical temperature, Tc, for those models. In evaluating

this difference the counter terms will cancel that is why we do not need to have a detailed

knowledge thereof.

The way in which conformal symmetry is broken is determined by the choice of the

scalar field potential which in our case is taken in a generic form [15, 17]

V (φ) = −12 (1 + aφ2)1/4 cosh(γ φ) + b2 φ
2 + b4 φ

4 + b6 φ
6. (2.17)

The chosen potentials are summarized in table 1. Corresponding plots, representing

temperature dependence of the entropy density, i.e., the equation of state (EoS), will be

given together with the detailed discussion of each case in following sections. Here we only

make a few general remarks. The parameters for the VQCD potential have been chosen to fit

the lattice QCD (lQCD) data from ref. [14], and the system is known to possess a crossover

behaviour at zero baryon charge density. Parameters of potentials V1st and V2nd were fitted

so that the corresponding equations of state exhibit respectively the 1st , and the 2nd order

phase transitions. In particular, for the 1st order case, in a certain temperature range we

expect an instability (spinodal) region.

This concrete form of the last potential was already used explicitly in [24] and is based

on the considerations in [16] neglecting logarithmic running in the UV. We will refer to

it as the IHQCD potential [17, 18]. As it was mentioned in the introduction, and will be

extended in section 7, it is designed to mimic some dynamical aspects of QCD. However it

is important to emphasize that the version used here is simplified as it does not incorporate

the UV logarithmic running.
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potential a γ b2 b4 b6 ∆

VQCD 0 0.606 1.4 -0.1 0.0034 3.55

V2nd 0 1/
√

2 1.958 0 0 3.38

V1st 0
√

7/12 2.5 0 0 3.41

VIHQCD 1
√

2/3 6.25 0 0 3.58

Table 1. Potentials chosen to study different equations of state exhibiting different phase structure

and corresponding conformal dimension of the scalar field.

The models determined by the potentials V1st and VIHQCD exhibit a first order phase

transitions. In the former case the transition happens between two different black hole

solutions, while in the latter the transition happens between a black hole and a horizon-less

geometry. In both of those cases one can determine the transition by evaluating the FE

difference according to formula (2.16), if one knows the counter terms.1 In this computation

we follow an alternative method of ref. [17] and integrate the thermodynamic relation,

dF = −s dT , with properly chosen boundary condition. We can achieve this by first

choosing some arbitrary reference temperature T0 and write

F(T ) = F(T0)−
∫ T

T0

s(T̃ )dT̃ , (2.18)

where we assume to be in one particular class of solutions. To evaluate the integration

constant, F(T0), we use the fact that the Free Energy vanishes for the zero horizon area

geometry. In general the small horizon area limit of the black hole solutions corresponds to

the vacuum geometry with “good singularity” in the deep IR [25]. By using the relation

of T and s and the horizon radius (2.14) we can evaluate the Free Energy with the data

obtained with methods outlined in the previous subsection. This amounts to a generic

formula

F(rH) = −2π

κ2
5

∫ ∞
rH

exp (3A(λH))
dT

dλH
dλH . (2.19)

The details of the computations along with the corresponding plots and predictions for Tc
will be given in the corresponding sections of the paper.

3 Quasinormal modes

In this section we formulate the problem of analyzing the linear perturbations around the

equilibrium states in considered models. The first subsection contains equations of motion

and proper boundary conditions that need to be imposed. The second subsection contains

a short summary of the results obtained with an emphasis on generic aspects. The detailed

case by case discussion is a subject of the remaining part of the paper.

1Clarification of this point can be found in the appendix A.
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3.1 Equations of motion and boundary conditions

The linear response of the system is analyzed by setting perturbations with momentum in

a given direction and computing poles of the resulting Green functions. In this section we

formulate the equations and corresponding boundary conditions to present and discuss the

results in the following part of the paper.

We consider perturbations of the background, obtained in the previous section, in the

following form

gab(r, t, z) = g
(0)
ab (r) + hab(r)e

−iωt+ikz , (3.1)

φ(r, t, z) = r + ψ(r)e−iωt+ikz . (3.2)

On the basis of [3, 4, 6] we consider infinitesimal diffeomorphism transformations, xa 7→
xa + ξa, of the form ξa = ξa(r)e

−iωt+ikz, which act on the perturbations in a standard way,

gab 7→ gab −∇aξb −∇bξa , φ 7→ φ− ξa∇aφ , (3.3)

and look for linear combinations of metric and scalar perturbations which are invariant

under those transformations. There are four such modes, two of which are decoupled and

two coupled. Written explicitly, the coupled modes read

Z1(r) = Haa(r)

(
k2h′(r)

2A′(r)
+ k2h(r)− ω2

)
+ k2h(r)Htt(r) + ω(2kHtz(r) + ωHzz(r)) , (3.4)

and

Z2(r) = ψ(r)− Haa(r)

2A′(r)
. (3.5)

In the above haa(r) = hxx(r) = hyy(r) are transverse metric components and we have

factorized the background from the metric perturbations in the following way: htt(r) =

h(r)e2A(r)Htt(r), htz(r) = e2A(r)Htz(r), haa(r) = e2A(r)Haa(r), hzz(r) = e2A(r)Hzz(r).

Comparing with equation (3.12) of ref. [3] we can see that Z1(r) mode corresponds to the

sound mode, while the Z2(r) might be called a non-conformal mode, since it is intimately

related to the scalar field. The third mode (which is decoupled) is the shear one and is

expressed as

Z3(r) = Hxz(r) +
ω

k
Hxt(r) , (3.6)

and according to the residual SO(2) symmetry in xy-plane (after turning on momentum

along z-direction) is degenerated with the mode in which the index x is replaced by the

index y. The dynamics of the fourth mode,

Z4(r) = Hxy(r) , (3.7)

is governed by an equation of motion which is similar to the external massless scalar

equation, which was studied with details in [6].

The equations of motion for the modes Z1(r) and Z2(r) have the generic form

M2(r)Z ′′1 (r) +M1(r)Z ′1(r) +M0(r)Z1(r) +K0(r)Z2(r) = 0 , (3.8)

N2(r)Z ′′2 (r) +N1(r)Z ′2(r) +N0(r)Z2(r) + L1(r)Z ′1(r) + L0(r)Z1(r) = 0 , (3.9)
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and have to be solved numerically with proper boundary conditions. The explicit form of

the coefficient functions and comments about the numerics are given in the appendix B. As

usual at the horizon we take the incoming condition, which in our coordinates means the

regular solution.

An analysis of the equations (3.8) and (3.9) near the conformal boundary leads to the

asymptotic behavior as r ∼ 0

Z1(r) ∼ A1 +B1 r
4

4−∆ , Z2(r) ∼ A2 r +B2 r
∆

4−∆ . (3.10)

Transformation to the usual Fefferman-Graham coordinates close to the boundary, r 7→ ρ4−∆,

reveals that Z1(ρ) has the asymptotic of metric components like the perturbations considered

in [3]. This perturbation corresponds to the sound mode of the theory. On the other hand

Z2(ρ) has the asymptotic of the background scalar field φ and is similar to the case studied

in [4]. The right boundary conditions for the QNM spectrum are: A1 = 0 and A2 = 0. The

shear mode perturbation Z3(r) has the same asymptotic as Z1(r) and requires a standard

Dirichlet boundary condition at r = 0.

3.2 General remarks and summary

In all the cases the problem emerging from equations disused in the previous section is a

generalized eigenvalue equation, which for a given k results in a well defined frequency ω(k).

Note that all modes, for which Re ω(k) 6= 0, come in pairs, namely

ω(k) = ± |Re ω(k)|+ i Im ω(k). (3.11)

As we will show in the next section in some cases the modes are purely imaginary. But

we want to emphasize that in all of these cases (except the hydrodynamical shear mode)

we still have a pair of modes with different values. An important thing to note here is

that due to the coupled nature of the modes Z1(r) and Z2(r) there is another approximate

degeneracy in the spectrum: all modes, except for the hydrodynamical one, come in pairs.

The reader is alerted not to confuse this structure with the one appearing in eq. (3.11).

For all the potentials we have made natural consistency checks. For high temperatures

(i.e., horizon radii closer to the asymptotic boundary) in the sound and the shear channels we

have an agreement with the pure gravity results dual to the CFT case [3]. The degeneracy

related to the coupled nature of the modes is still present at high temperatures, where the

system is expected to be conformal. The second most damped nonhydrodynamic mode

turns out to be the most damped nonhydrodynamic mode found in ref. [3]

The hydrodynamical QNM’s are defined by the condition limk→0 ωH(k) = 0, and are

related to transport coefficients in the following way

ω ≈ −i η

s T
k2 , ω ≈ ± cs k − iΓs k

2 , (3.12)

respectively in the shear and sound channels. Those formulas are approximate in a sense

that in general higher order transport coefficients should be considered [26]. However, in a

range of small momenta, second order expansion is enough and we use it to read off the
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lowest transport coefficients of the model. The sound attenuation constant, Γs, is related to

shear η and bulk ζ viscosities by

Γs =
1

2T

(
4

3

η

s
+
ζ

s

)
. (3.13)

Those formulas were used to make the second check of the results: compute the speed of

sound cs and values of the shear viscosity from the hydrodynamic modes and compare them

respectively to the one obtained from the background calculations (2.15) and predictions

known in the literature [27, 28]. Both of them are always satisfied, for example the classical

result, η/s = 1/(4π) [27], is found in all cases considered in this paper.

In classical gravity, the spectrum, apart from the hydro modes, contains of course also

an infinite ladder of non-hydrodynamical modes. These are identified with the poles of

corresponding retarded Green’s functions [3], and as such correspond to physical excitations

of the holographic field theory. In contrast to the hydrodynamic modes, we do not have a

universal interpretation for them in gauge theory, however, this cannot stop us from treating

them as physical excitations of the plasma system. Indeed, even if one is only interested

in analyzing (high order) hydrodynamics, in [26], one finds poles/cuts in the Borel plane

which exactly correspond to the lowest non-hydrodynamic QNM. This shows that these

non-hydrodynamic excitations have to be included for the self-consistency of the theory.

Of course if one is close to equilibrium, the higher QNM will be more damped and may

be neglected in practice. However in some cases the lowest QNM become comparable to the

hydrodynamic ones and as such provide an applicability limit for an effective hydrodynamic

description. These phenomena will be at the focus of the present paper. Indeed we find

that they become very important in the vicinity of a phase transition.

Finally, to demystify somewhat these higher quasinormal modes, one can give a well

known simple physical setup when only these modes are relevant. Suppose that one considers

a spatially uniform plasma system and starts with an anisotropic momentum distribution for

the gluons. Then the initial energy-momentum tensor is spatially constant but anisotropic.

If we let the system evolve, the system will thermalize (with the energy-momentum tensor

becoming eventually isotropic). However this (homogeneous) isotropization will not excite

any hydrodynamic modes as the symmetry of the problem forbids any flow. Thus the

relevant excitations will be different. At strong coupling they correspond exactly to the

higher quasinormal modes.

In the analysis below we measure the momenta and the frequencies in the units of

temperature by setting

q =
k

2πT
, $ =

ω

2πT
. (3.14)

There are a few novel predictions which we make from the QNM frequencies. First is

to estimate the momentum, or equivalently the length, scale where the hydrodynamic

description of the system breaks. For a CFT case this was evaluated to be q = 1.3 where in

the shear channel first non-hydrodynamic QNM dominated the system dynamics [29]. In

the same time this effect did not appear in the CFT sound channel. The new feature we
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potential sound channel qc shear channel qc c2
s ζ/s

VQCD 0.8 1.1 0.124 0.041

V2nd 0.55 0.9 0.0 0.061

V1st 0.8 1.15 0.0 0.060

VIHQCD 0.14 1.25 0.0 0.512

Table 2. The momenta for which the crossing phenomena in different channels and the corresponding

values of the speed of sound and bulk viscosity read of from the hydrodynamic mode. Values given

at corresponding critical temperatures (Tm for V1st and VIHQCD).

find is that we see this crossing2 not only in the shear channel but also in the sound channel.

This shows that the influence of a non-trivial phase structure of the background affects the

applicability of hydrodynamics in a qualitative way. Other aspect is that the hydrodynamic

description is valid in large enough length scale (the smaller critical momentum) which

means the applicability of hydrodynamics near the phase transition is more restricted than

in the high temperature case.

In table 2 we summarize the critical momenta in two channels and hydrodynamic

parameters for different potentials. All quantities are evaluated at corresponding critical

temperatures. In the following subsections we will show the QNM’s mostly for the sound

channel which present characteristic structure for each potential. Since the shear channel

in all cases has the same form (with different critical momentum) we restrict ourselves to

show only one related plot for the VQCD potential.

The second observation is the bubble formation in the spinodal region in the case of the

1st order phase transition [30]. This happens when c2
s < 0 which means that hydrodynamical

mode is purely imaginary. For small momenta, ωH = ±i|cs|k − iΓsk2, the mode with the

plus sign is in the unstable region, i.e., Im ωH > 0. For larger momenta the other term

starts to dominate, so that there is kmax = |cs|/Γs for which the hydro mode becomes stable

again. The scale of the bubble is the momentum for which positive imaginary part of the

hydro mode attains the maximal value. Imaginary part of the unstable hydro mode is called

the growth rate [30].

Third observation is that the hydrodynamical mode of the sound channel in 1st order case

near the critical temperature Tc, and in the IHQCD case also the first non-hydrodynamical

modes, become purely imaginary for a range of momenta. Interpretation of this fact is that

the corresponding wavelengths cannot propagate at a linearized level and correspondingly

there is a diffusion-like mechanism for those modes.

It is important to note that generically the ultra-locality [6] of the non-hydrodynamic

mode is still present in the critical region of the phase diagram. The only exception

observed is the IHQCD potential, where the modes exhibit a non trivial behaviour. Most

of the interesting dynamics and effects observed are due to the different behaviour of the

hydrodynamical modes and how they cross the most damped non-hydrodynamic modes.

This includes the instability and the bubble formation in the case of the 1st order phase

transition.
2In this paper by crossing between the modes we mean crossing in the imaginary part of the hydrodynamic

and the most damped non-hydrodynamic modes.
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Figure 1. Left panel: entropy density for VQCD potential with κ5 = 1. Right panel: speed of sound

squared as a function of temperature. Dots are the lQCD equation of state [14].

4 The crossover case

The results for the QNM with a QCD-like equations of state are summarized below.

Parameters of this potential have been chosen to fit the temperature dependence of the

speed of sound obtained in lattice QCD computations with dynamical quarks at zero baryon

chemical potential [14].

In our computations from the hydrodynamic mode we estimate the value of the bulk

viscosity, which is in agreement with ref. [24] (cf. table 2). It is important to note, that

despite the fact that the EoS of QCD are correctly reproduced in the model transport

coefficients are lower than the lattice predictions [31, 32]. For example only the qualitative

temperature dependence of bulk viscosity is correct, namely that it rapidly raises near

the Tc [24].3

In this analysis we take another step, and study the temperature and momentum

behaviour not only of the hydrodynamic mode but also of the first and second of the infinite

tower of higher modes. In particular this allows us to estimate the applicability of the

hydrodynamic approximation in the critical region of temperatures where we find crossing

of the modes in sound channel.

Firstly, before we move to the new results, using the example of the VQCD potential, let

us discuss the high temperature quasinormal modes. The results computed for T = 3Tc are

shown in figure 2. The speed of sound, shear and bulk viscosities read of from the lowest

QNM are very close to results expected for a conformal system, i.e., η/s ' 1/(4π), c2
s '

0.321, ζ/s ' 0.003. Modes computed for this temperature in the sound and the shear

channels are in agreement with the conformal results of ref. [3]. As we mentioned in previous

section, since Z1(r) and Z2(r) modes are coupled the nonhydrodynamic QNM’s are in pair

in all range of temperatures, and the second most damped nonhydrodynamic mode turns

out to be the most damped one found in ref. [3].

Now let us turn our attention to the opposite case of lower temperatures. The results

computed for the pseudo-critical temperature, T = Tc, are shown in figure 3. The most

3We define the pseudo-critical temperature as the lowest value for the speed of sound (2.15). Corresponding

lQCD definition refers to peaks of chiral and Polyakov loop susceptibilities [33, 34].
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Figure 2. Sound channel quasinormal modes for the potential VQCD at T = 3Tc. Real part (left

panel) and imaginary part (right panel).
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Figure 3. The real (left) and imaginary (right) parts of the quasinormal modes in the sound channel

for the potential VQCD at T = Tc.

important difference with respect to high-T case is a change in large momentum dependence

of the imaginary part of the hydrodynamic mode. Instead of approaching some constant

value the imaginary part of the mode flows to minus infinity as momentum increases.

This implies a novel effect in the sound channel: crossing between the hydrodynamic and

non-hydrodynamic mode appears. At the pseudocritical temperature this happens for

critical momentum qc ' 0.9. While in the conformal case this was present only in the shear

channel for qc ' 1.3 [29], as shown in figure 4 for the crossover potential qc ' 1.15 in the

same channel. In contrast, nonhydrodynamic modes are not much affected obeying ultra

locality property [6].

In view of possible relations to QCD we could expect only qualitative predictions

from our computations. However, lattice QCD computations could, in principle, verify the

ultra-locality property and the generic crossing of the modes. The main obstruction in

this case would be the necessity of real time formulation of the problem, which is not yet

available on the lattice.
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Figure 4. The real (left) and imaginary (right) parts of the quasinormal modes in the shear channel

for the potential VQCD at T = Tc.
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Figure 5. Left panel: equation of state for V2nd. Right panel: equation of state for V2nd near the

Tc (blue points). Magenta line is the fit (5.1) with α ' 0.65. In both plots we set κ5 = 1.

5 The second order phase transition case

In this section we present results for the case of a system with 2nd phase transition EoS,

which can be achieved by a suitable choice of parameters. We do not fit to any particular

system considered in the literature - we only require a particular shape of the entropy as a

function of temperature (cf. left panel of figure 5) which leads to vanishing speed of sound

at the critical temperature T = Tc [15]. Near the Tc entropy of the system takes the form

s(T ) ∼ s0 + s1t
1−α , (5.1)

where t = (T − Tc)/Tc, and α ' 0.65 is the specific heat critical exponent (cf. right panel of

figure 5). This value is very close to α = 2/3 from ref. [15].

The results for QNM at critical temperature are displayed in figure 6. Since there is no

new phenomena in the shear channel, only the sound mode is shown. Generic temperature

dependence of QNM frequencies is very similar to the crossover case. The main difference

compared to the crossover potential (figure 3) is that at Tc the hydrodynamic description

of the system breaks down already at smaller momenta scales.

We would like to mention that in high temperature regime we recovered the CFT

results in both channels with the pair structure explained in the previous subsection in the

sound channel due to coupling of the modes.
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Figure 6. Quasinormal modes for the potential V2nd at Tc. Real part (left panel) and imaginary

part (right panel).

6 The first order phase transition case

In this section we discuss the most fascinating case of a system which exhibits a 1st order

phase transition. There are two possible scenarios for such a transition: one is similar to

Hawking-Page case where there is a transition from a black hole to the vacuum geometry

without a horizon [19]. The second one, mentioned in ref. [17], is a transition from one

black hole solution to another. In this section we consider the latter case while the former

appears in the studies of IHQCD models (cf. section 7). The onset of the appearance of a

nonpropagating sound mode in the deeply overcooled phase has been observed earlier in a

related model [5].

In the V1st potential case there exist three characteristic temperatures. The first one

is the minimal temperature Tm, below which no unstable solution exists. The onset of

instability is seen at temperatures T & Tm (in the branch where c2
s(T ) < 0), and generically

we expect the 1st order phase transition to appear at a critical temperature Tc ≥ Tm,

which is determined by the temperature dependence of the Free Energy. To evaluate this

one can either use direct on-shell actions or one can use the method outlined in section 2.

The latter uses the standard thermodynamic relation dF = −s dT , where the integration

constant can be fixed by the choice of the reference geometry with vanishing horizon area,

which in this case corresponds to T = 0 solution. Temperature dependence of the FE for

this case is shown in the right panel of figure 7 and we determined Tc ' 1.05Tm. The

other characteristic temperature is estimated to be Tch ' 1.0001Tm, which is based on the

observation, that for a range of momenta the hydrodynamic modes become purely imaginary

and do not propagate in the plasma (cf. figure 8). This effect appears for temperatures

Tm ≤ T ≤ Tch, in the stable region of the EoS (green line in left panel of figure 7). Let us

note that in this model Tm < Tch < Tc.

Now we take a look at QNM structure at the minimal temperature Tm, in which the

green line and red-dashed line meet in figure 7 and the speed of sound vanishes. There is no

new structure in the shear channel and we only plot the sound channel QNM’s in figure 9.

One may see a new pattern at this point compared to the crossover and the 2nd order phase

transition cases, i.e., the hydrodynamic modes are purely imaginary (diffusive-like) for q ≤ 1.
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Figure 8. Quasinormal modes for the potential V1st at T = 1.00004Tm. Real part (left panel) and

imaginary part (right panel).
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Figure 9. Quasinormal modes for the potential V1st at T = Tm. Real part (left panel) and imaginary

part (right panel).

The most engrossing physics is discovered in the spinodal region (red-dashed line

figure 7) where the equation of state suggests thermodynamical instability, i.e., c2
s < 0 (cf.

figure 7). It was already anticipated in literature [35, 36] that in this range of temperatures

a corresponding dynamical instability should appear in the lowest QNM mode.
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Figure 10. Sound channel quasinormal modes for the potential V1st at T ' 1.06Tm. An instability

of the spinodal region is shown. The speed of sound at that temperature is c2s ' −0.1.

We study the instability phenomenon in detail by observing the bubble formation in the

spinodal region. It is generically expected in the case of the 1st order phase transition [30]

and a similar effect was observed in the gravity context by Gregory and Laflamme [37]. The

formation happens when c2
s < 0, which means that hydrodynamic mode is purely imaginary

ωH = ±i|cs|k − iΓsk2. For small enough k the mode with the plus sign is in the unstable

region, i.e., Im ωH > 0. For larger momenta the other term starts to dominate, so that there

is kmax = |cs|/Γs for which the hydrodynamic mode becomes again stable. The scale of

the bubble is the momentum for which positive imaginary part of the hydrodynamic mode

attains the maximal value. Imaginary part of the unstable hydrodynamic mode is called

the growth rate [30]. It is intriguing to note, that for the V1st potential the hydro mode

is purely imaginary up to momenta q ≈ 5, i.e., in all investigated range. An interesting

observation is that all higher modes remain stable in this case. Plot illustrating these words

is presented in figure 10.

Not only in the case when there is an instability region in the EoS, but also for the

temperature close to the Tm in the stable region and at Tm the hydrodynamic modes

become purely imaginary. These cases are shown in figures 10, 8, 9 respectively. When a

hydrodynamic mode, ωH(k), is purely imaginary, one can express it as

ωH(k) = ±iO(k)− iE(k) , (6.1)

with O(−k) = −O(k) and E(−k) = E(k). Then there are two separated branches of the

hydrodynamical modes, as seen in figures 8, 9 and 10. When this happens hydrodynamical

mode is not a propagating one, but has some sort of a “diffusive-like” behaviour.

7 The improved holographic QCD

This potential is in a class designed to grasp the dynamical features of QCD: the asymptotic

freedom and colour confinement [17, 18]. In those aspects it is a more detailed model than

the one used in section 4. Asymptotic freedom is implemented by logarithmic corrections

to the potential in the UV region, while confinement is detected by a linear dependence of

the glueballs masses on the consecutive number, i.e., m2
n ∼ n for large n. This is sometimes
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Figure 11. Upper panel: entropy density as a function of temperature for VIHQCD potential with

κ5 = 1. Lower panel: speed of sound squared for the VIHQCD potential (green line), and pure

gluon SU(3) lattice data (orange dots) [39]. Red and blue dashed lines on the right hand side plot

correspond to small black hole solutions, which always turn out to be unstable (see text).

referred to as a linear confinement [38]. The potential we choose has confining IR asymptotic,

but does not include the logarithmic corrections in the UV.

The IHQCD potential determines unique equation of state, with a rich structure

displayed in figure 11. The two branches of black hole solutions are divided as usual into

large (stable), and small (unstable) configurations. Stable configurations show behaviour

with the usual features characteristic for a system with a first order phase transition, and

the corresponding speed of sound is qualitatively similar to the pure glue system [39]. On

the contrary, unstable branch consists of two distinct subbranches. One of them is in

a disconnected range of temperatures, Tm < T < T1 = 1.014Tm and T2 = 5.67Tm < T ,

and displays spinodal instability signaled by the imaginary speed of sound. This in turn

implies bubble formation as described in section 6. Second sub-branch, T1 < T < T2, shows

anomalously large speed of sound, but does not show any instability on the level of equations

of state. However, as will be shown below, in this range of temperatures there exists an

unstable non-hydro mode in the QNM spectrum.

This system is expected to have a phase transition of a 1st order between a black

hole geometry with an event horizon, and the vacuum confining geometry in the spirit of

Hawking-Page phase transition [19]. In principle, to estimate Tc we can find the temperature

dependence of the FE along the lines mentioned in section 2. In this case non of the methods

brings up a decent result. The direct evaluation of the on-shell action is corrupted by a
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numerical instability, while the standard thermodynamic relation, dF = −s dT , suffers a

problem of correct choice of the reference configuration. A possible candidate for reference

geometry is the one of vanishing horizon area in the unstable black hole branch. However it

has infinite temperature and it is not clear for us whether it can be used as a proxy for the

thermal gas geometry. Also the unstable branch black holes exhibit a variety of pathologies

(which will be described later) with increasing T . Due to the above mentioned difficulties we

refrained from estimating the value of Tc in this particular model. Nevertheless we expect

that there exists a critical temperature Tc ≥ Tm where the transition takes place [15, 17].

This transition changes the geometry substantially.

It is important to note that in this case there exists a minimal temperature Tm below

which a black hole solution does not exist. As in the case of V1st the onset of instability

appears at T & Tm (for configurations with c2
s(T ) < 0).

The different structure of the EoS is reflected in the behaviour of QNM frequencies,

which indicate the existence of second characteristic temperature Tch ' 1.102Tm. The

novel effect observed in this system is that for temperatures near the minimal temperature

the ultralocality property of the first non-hydrodynamic mode is violated. The mode

turns out to be purely imaginary for very low momenta and for temperatures of the range

Tm ≤ T ≤ Tch, and it does not have a structure described in eq. (6.1). There are two purely

imaginary modes which have the following form

ω±(k) = iχ(k)± iξ(k) . (7.1)

In figure 12 we show the temperature dependence of those modes at k = 0 in the range

where there are purely imaginary. As the system is heated further the real part develops,

and the mode becomes the least damped non-hydrodynamic mode of the high-T limit, with

the usual structure (3.11). It directly comes from the presence of the background scalar

field, which breaks the conformal invariance.

In figure 13 we show QNM’s in the sound channel computed for VIHQCD at T = Tm.

The mode structure is different than the one generically present in previous cases. First

thing which is apparent is that hydrodynamic modes are purely imaginary for a range

of small momenta. In addition, there is a small gap between the hydrodynamic and

non-hydrodynamic degrees of freedom at arbitrary low momentum, which in turn implies

that the crossing happens at very low value of qc ' 0.14 (see the insert in figure 13). As

a matter of fact, in this case near the Tm one must always take into account the non-

hydrodynamic degrees of freedom in the description of the system dynamics. Another

absolutely fascinating effect observed exactly at Tm is that the non-hydrodynamic modes,

which are purely imaginary for low momenta, join with the hydrodynamic modes at some

finite momentum qJ , and follow them with increasing q. This effect is illustrated in figure 13,

where the non-hydro1 mode which has two branches joins with the two branches of the hydro

modes respectively at qJ ' 0.14 and qJ ' 1.5. In the same time the real part develops with

both signs, as expected from general considerations (see eq. (3.11)). This effect implies the

ultralocality violation observed generically in other models, and joining does not happen for

temperatures higher than the minimal one. The final observation from figure 13 is that the
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Figure 12. The temperature dependence of the non-hydro1 mode at q = 0. In this temperature

range it is spitted into two purely imaginary branches (red and blue squares).
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Figure 13. Sound channel quasinormal modes for the potential VIHQCD at T = Tm. The non-trivial

behaviour of the real part of the modes is shown. In particular in this example the ultralocality of

non-hydrodynamic modes is violated, i.e., the non-hydro1 mode attains considerable momentum

dependence.

second non-hydrodynamic mode, referred to as non-hydro2, obeys the ultralocality property,

and for high temperatures it becomes the mode detected in the conformal case [3].

Interestingly enough a gaped purely imaginary mode was found in [40]. System

considered there was a holographic dual of superfluidity, and the mode obeying the dispersion

relation ω = −iγ(T )− iDk2 was found in the superfluid phase. At the critical temperature

γ(Tc) = 0 and the mode becomes an ordinary diffusive mode. Despite the similarity we

have no good physical explanation for this behaviour.

The last point to discuss is the spectrum of modes for temperatures, T1 < T < T2,

in the small black hole branch, which shows anomalously large speed of sound. In fact,

c2
s > 1/3, and for some temperatures it is even superluminal, leading to causality violation.

In this range of temperatures the system does not exhibit any instability in thermodynamic
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Figure 14. Sound channel quasinormal modes for the potential VIHQCD at T = 1.027Tm in the small

black hole branch. Real part (left panel) and imaginary part (right panel). At this temperatures

speed of sound is superluminal and first non-hydro mode shows dynamical instability.

quantities. However, there appears to be a novel dynamical instability, signaled by the

positive imaginary part of the first non-hydrodynamical mode.4 The difference with respect

to the usual spinoidal region is that for k = 0 the mode stays positive on the imaginary

axis. Behaviour similar to the one found at T = Tm is also found here: first non-hydro

mode stays purely imaginary for a range of momenta, and merges with his partner when

the real part is developed. The important difference in this case is that merging is between

two modes of the same physical nature.

8 Discussion

In the present paper we performed an extensive study of the linearized dynamics of

excitations in strongly coupled field theories in the vicinity of a nontrivial phase structure of

various kinds. Generically the effects are visible in the sound channel of the models, while

the shear channel remains less affected.

We observed a number of novel features which were not present in the conformal

case. For relatively small momenta, the propagating hydrodynamical sound modes become

more damped than the lowest nonhydrodynamic degrees of freedom. This provides a more

stringent restriction on the applicability of hydrodynamics and indicates the necessity of

incorporating these other degrees of freedom on appropriate length scales. This is in contrast

to the conformal case where a similar phenomenon only occurred in the shear channel and

only at a higher value of momentum. The richness of phenomena appearing in the linearized

regime strongly suggests that it would be important to study the corresponding real-time

dynamics also at the nonlinear level.

A specific prediction could be anticipated in the potential fitted to lQCD equations

of state. Qualitative agreement of transport coefficients computed in QCD, and predicted

by this model was known before [24] and it is confirmed in our calculations. Our novel

predictions, however, are concerned with non-hydrodynamic degrees of freedom and break-

4The nomenclature is chosen because at high temperatures this modes continuously transforms into first

non-hydrodynamic mode.
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down of the hydrodynamic description near the QCD critical region. One specific feature

is the ultralocality property obeyed by nonhydrodynamic modes. Keeping in mind the

qualitative nature of those considerations, it would be a very interesting task to compute

similar spectrum in lattice QCD.

We study two systems which exhibit different types of the 1st order phase transition

as determined by potentials V1st and VIHQCD. We explicitly determined the instability

in the spinoidal branch of both of them, and for V1st we estimated the length scale for

bubble formation. On top of that, both models posses generic minimal temperature, Tm,

below which certain solution cease to exist. From the temperature dependence of the QNM

spectrum, in the stable region of the corresponding EoS, one can see the existence of another

characteristic temperature, related to the appearance of the diffusive-like modes, which is

slightly higher than Tm.

Number of novel phenomena is found in the case of IHQCD potential. At T = Tm the

hydrodynamic and the first non-hydrodynamic modes become purely imaginary for low

momenta. This implies the violation of ultralocality property generically observed in other

cases [6, 13]. One more surprising observation is that instead of the crossing of the modes,

found generically in the studied models, there is a “joining” phenomenon. From some value

of the momentum both the hydrodynamic and first-non hydrodynamic mode obey the same

dispersion relation. In the same time, higher non-hydrodynamic modes admit ultralocal

momentum dependence.

What makes the VIHQCD potential exceptional among the studied cases is a rich structure

of the small black hole branch solutions. The spectrum of quasinormal modes shows two

type of instabilities. One is the usual spinodal instability, similar to one found in the V1st

case. This appears exactly when the systems shows thermodynamic instability in equations

of state. Second is an instability triggered by the non-hydrodynamic mode. In this case

the relation between EoS and instabilities is that for configurations which have c2
s > 1/3

the first non-hydrodynamic mode becomes unstable. Two regions are separated and do not

overlap. Up to our knowledge this is the first example where such a dynamical mechanism

has been presented.
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A On-shell action and Free Energy

In this appendix we give some details about asymptotic behaviour of our black hole solutions

and we show how, in principle, one can use this expansion to compute the Free Energy.

Solving the equations of motion (2.9)–(2.12), close to the boundary one can find the
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asymptotic form of the general solutions as5

A(r) =
ln(r)

∆− 4
+

∞∑
n,m=0

anmr
2n+m∆/(4−∆) , (A.1)

B(r) = ln

(
1

r(4−∆)

)
+

∞∑
n,m=0

bnmr
2n+m∆/(4−∆) , (A.2)

h(r) = 1 +

∞∑
n=0,m=1

hnmr
2n+4m/(4−∆) , (A.3)

such that

a0 0 = 0 , b0 0 = 0 , h0 1 = −c/4, (A.4)

where c is a constant, related to the horizon data,

c = 2κ2
5 s T . (A.5)

The coefficients a0m (with m > 1), b0m (with m ≥ 1) can be found explicitly in terms of

the conformal weight ∆ and the coefficient a0 1. By solving the equations of motion order

by order, all higher coefficients akm, bkm (with k > 0) will be fixed in terms of a0 1, ∆ and

c. For a given solution which is unique for a given rH = φH one can read off numerically

a0 1 coefficient by studying the near boundary behaviour.

Let us notice that our black hole Ansatz (2.5) reduces to a thermal gas solution by

imposing the c = 0 condition [18]. In other words, all coefficients in the blackening function

h are proportional to positive powers of c.

To compute the Free Energy of a given solution using the holographic renormalization

approach one needs to know the boundary counter terms. Introducing the thermal gas

solution with a “good” singularity [25] as the reference configuration one can calculate the

Free Energy

βF = lim
ε→0

(SBH(ε)− STG(ε)) , (A.6)

without having the explicit form of the counter terms, since their contribution in two

solutions (black hole and thermal gas) will be canceled. We follow the method which has

been explained in detail in appendix C of [18]. The main difference we want to emphasize

is that thanks to the gauge we choose for our radial coordinate, φ = r, we can use the

same cut-off on both solutions. Computing the On-shell action (including Gibbons-Hawking

term) for a given black hole solution and subtracting the corresponding On-shell action of

the thermal gas solution one shows that,

F =
V3

2κ2
5

lim
ε→0

{
e4A(ε)−B(ε)

(
6h(ε)A′(ε) + h′(ε)

)
− 6e4A(ε)−B̃(ε)

√
h(ε)Ã′(ε)

}
, (A.7)

where V3 is the volume of 3-space and functions with tilde correspond to the thermal

gas solution with the same asymptotic as the black hole. Plugging the near boundary

5We are interested in the potentials which lead to non-integer conformal dimension ∆, otherwise some

additional logarithmic terms may appear in the expansion.
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expansion (A.1)–(A.3) in (A.7) it is easy to see that the divergent terms will be canceled,

namely

F =
V3

2κ2
5

(
− c

4
+

(4−∆)2(2−∆)

2
(a01 − ã01)

)
= −V3 s T

4
+

1

2κ2
5

(4−∆)2(2−∆)

2
(a01 − ã01) , (A.8)

where a01 and ã01 are the coefficients of the near boundary expansion of the black hole and

thermal gas solution respectively. The first term is what we expect for a conformal theory

in (3+1)-dimension and the second term corresponds to gluon condensation [18].

We would like to note that the subtraction term proportional to ã01 is constant. One

may use this fact to find its value numerically by taking the zero-size limit of the black hole

solutions, which corresponds to the “good” singularity definition [25].

For our V1st potential we find the a01 parameter for a given solution by fitting our

numerical solution for function A(r) with the asymptotic expansion (A.1) up to O(r40). The

results are stable and in perfect agreement with the other method explained in section 2.2.

The corresponding Free Energy is given in the right panel of figure 7. Unfortunately, we

can use neither this numerical method (because of numerical instability), nor the method

using the thermodynamic relation (2.19) (due to the difficulties sketched in section 7) to

compute the Free Energy for the potential VIHQCD.

B QNMs equations of motion and numerical details

In this appendix we show explicitly the QNM equations of motion, obtained by linearization

of the Einstein-Scalar system of equations for the gauge invariant combinations of the

fluctuations. Using the definition of Z1(r) and Z2(r) we can then decouple equations of

motion for sound channel and nonconfomral channel and set them as

M2(r)Z ′′1 (r) +M1(r)Z ′1(r) +M0(r)Z1(r) +K0(r)Z2(r) = 0 ,

N2(r)Z ′′2 (r) +N1(r)Z ′2(r) +N0(r)Z2(r) + L1(r)Z ′1(r) + L0(r)Z1(r) = 0 .
(B.1)

In those equations:

M2(r)= 36G(r)2e2A(r)+B(r) (3G(r)V ′(r) + V (r)) (k2e2B(r)
(
V (r)

(
6G′(r) + 12G(r)2 + 1

)
+3G(r)

(
12G(r)2 + 1

)
V ′(r)

)
+ 108ω2G(r)2G′(r)) ,

M1(r)= −36ik2ωG(r)eA(r)+2B(r)G′(r)(V (r)(3G(r)2(7−6G′(r))− 6G′(r)+396G(r)4−1)

+3G(r)(396G(r)4 + 21G(r)2 − 1)V ′(r)) + k2e3B(r)(e2A(r)(12G(r)2 + 1)

(V (r)(6G′(r)− 24G(r)2 + 1) + 3G(r)(1− 24G(r)2)V ′(r))2 + 108k2G(r)2G′(r)

(V (r)(6G′(r)+12G(r)2+1)+3G(r)(12G(r)2+1)V ′(r))−34992iω3eA(r)G(r)5G′(r)2

+11664k2ω2eB(r)G(r)4G′(r)2 ,

M0(r)= 12eA(r)G(r)(k2eA(r)+3B(r)(3G(r)V (r)(12G(r)2(2− 9G′(r))− 9G′(r)(2G′(r) + 1)

+576G(r)4 − 2)V ′(r) + 9G(r)2(12G(r)2 + 1)(−3G′(r) + 24G(r)2 − 1)V ′(r)2

+(12G(r)2 + 1)V (r)2(−6G′(r) + 24G(r)2 − 1))− 972ω2G(r)3eA(r)+B(r)G′(r)2V ′(r)
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−18ik2ωe2B(r)G(r)G′(r)(V (r)(6G′(r) + 12G(r)2 + 1) + 3G(r)(12G(r)2 + 1)V ′(r))

−1944iω3G(r)3G′(r)2) ,

K0(r)= −2k2e2A(r)+3B(r)(V (r)(−6G′(r) + 24G(r)2 − 1) + 3G(r)(24G(r)2 − 1)V ′(r))

(k2e2B(r)(V (r)(6G′(r)+48G(r)2+1)V ′(r)+3G(r)(12G(r)2+1)V ′(r)2+12G(r)V (r)2)

+6ω2G(r)(3G(r)(6G′(r) + 24G(r)2 − 1)V ′(r) + (24G(r)2 − 1)V (r))) ,

N2(r)= G(r)e2A(r)+B(r)(3G(r)V ′(r) + V (r))(k2e2B(r)(V (r)(6G′(r) + 12G(r)2 + 1)

+3G(r)(12G(r)2 + 1)V ′(r)) + 108ω2G(r)2G′(r)) ,

N1(r)= −3eA(r)G(r)G′(r)(eA(r)+B(r)V ′(r) + 2iω)(k2e2B(r)(V (r)(6G′(r) + 12G(r)2 + 1)

+3G(r)(12G(r)2 + 1)V ′(r)) + 108ω2G(r)2G′(r)) ,

N0(r)= G′(r)(−9ik2ωG(r)2eA(r)+2B(r)(V (r)(6G′(r) + 12G(r)2 + 1) + 3G(r)(12G(r)2 + 1)V ′(r))

+36ω2eB(r)G(r)G′(r)(e2A(r)(9G(r)2V ′′(r) + 6G(r)V ′(r) + V (r)) + 9k2G(r)2)

+k2e3B(r)(e2A(r)(V (r)(6G′(r)+1)V ′(r)+3G(r)(V (r)(6G′(r)+1)V ′′(r)+V ′(r)2+4V (r)2)

+108G(r)4V ′(r)V ′′(r)+36G(r)3(V (r)V ′′(r)+4V ′(r)2 + 3G(r)2V ′(r)(3V ′′(r)+28V (r)))

+3k2G(r)(V (r)(6G′(r)+12G(r)2+1)+3G(r)(12G(r)2+1)V ′(r)))−972iω3eA(r)G(r)4G′(r),

L1(r)= 36G(r)e2A(r)+B(r)G′(r)2 (3G(r)V ′(r) + V (r)) ,

L0(r)= 3eA(r)G′(r)2(eA(r)+B(r)(V (r)(−6G′(r) + 24G(r)2 − 1) + 3G(r)(24G(r)2 − 1)V ′(r))

−36iωG(r)G′(r)) .

In the k = 0 case all equations, except for the Z2(r) which remains coupled to Z1(r), reduce

to scalar field equations. This case has been studied in ref. [6].

In the case of shear channel, Z3(r), the gauge invariant form is given in (3.6) and the

QNM equation has the following form,

J2(r)Z ′′3 (r) + J1(r)Z ′3(r) + J0(r)Z3(r) = 0 , (B.2)

where

J2(r) = 2e2A(r)+B(r) (3A′(r)V ′(r)+V (r))
(
ω2 (6A′(r)B′(r)−1)+2k2e2B(r) (3A′(r)V ′(r)+V (r))

)
,

J1(r) = eA(r)
(
−4ik2ωe2B(r) (6A′(r)B′(r)−1) (3A′(r)V ′(r)+V (r))+4k2eA(r)+3B(r) (4A′(r)−B′(r))

(3A′(r)V ′(r) + V (r))
2 − ω2eA(r)+B(r)V ′(r) (1− 6A′(r)B′(r))

2 − 2iω3 (1− 6A′(r)B′(r))
2 )
,

J0(r) = (6A′(r)B′(r)− 1)
(
− iωeA(r)

(
k2e2B(r)

(
2V (r) (7A′(r)−B′(r)) +

(
42A′(r)2 − 1

)
V ′(r)

)
+3ω2A′(r) (6A′(r)B′(r)− 1)

)
+ 6k2ω2eB(r)A′(r)B′(r) + 2k4e3B(r) (3A′(r)V ′(r) + V (r))

−k2ω2eB(r)
)
.

At k = 0 this equations reduces to a equation of motion of minimally coupled massless

scalar field which was studied in [6].

In order to solve equations (B.1) and (B.2), which are linear ordinary differential

equations, we use spectral discretization with Chebyshev polynomials [22]. The resulting

matrix equation is of polynomial character in the mode frequency ω and we determine

QNMs by evaluating the determinant of the matrix and setting it to zero. Corresponding

– 24 –
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vectors in the kernel of this matrix are discretized versions of the radial dependence of

the desired solutions. To find physical solutions with the right boundary behaviour we fit

the tail of the function to a form obtained from small r (near the conformal boundary)

analysis. In particular for the modes Z1(r) and Z2(r) this procedure is non-trivial and the

asymptotic expansions are given in eq. (3.10).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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