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1 Introduction

Our most refined understanding of nature is founded on two major theoretical frameworks:

general relativity and Yang-Mills theory. There is much in common between these two:

local symmetries play an important role in their structure; there are simple action principles

for both theories; the geometry of fibre bundles is common to the physical interpretation

of the theories. But at the perturbative level, general relativity seems to be a vastly

different creature to Yang-Mills theory. Indeed, the Einstein-Hilbert Lagrangian, when

expanded in deviations of the spacetime metric from some fiducial metric (such as the

Minkowski metric) contains terms with arbitrarily many powers of the deviations. This is

in stark contrast to the Yang-Mills Lagrangian, which contains at most fourth order terms

in perturbation theory.

From this perturbative point of view, it is therefore remarkable that Kawai, Lewellen

and Tye (KLT) found [1] that every tree scattering amplitude in general relativity can be

expressed as a sum over products of two colour-stripped Yang-Mills scattering amplitudes.

Therefore the KLT relations and the Yang-Mills Lagrangian together can be used to recon-

struct the Lagrangian of general relativity [2]. This suggests that there may be a KLT-like

map between solutions of general relativity and solutions of Yang-Mills theory.

More recently, the perturbative relationship between gauge and gravity theories has

been formulated in a particularly suggestive manner by Bern, Carrasco and Johansson

(BCJ) [3–5]. BCJ found that gravity n-point amplitudes can be obtained from n-point
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gauge theory counterparts at the level of diagrams. Specifically, the BCJ prescription is

simply to replace the colour factor of each diagram by an additional copy of the diagram’s

kinematic numerator. This replacement must be performed in a particular representation

of the amplitude, where the kinematic numerators satisfy the algebraic properties of the

corresponding colour factor. In particular, the kinematic factors must satisfy the same Ja-

cobi identities and antisymmetry properties as the colour factors. For this reason, the BCJ

representation of the kinematic numerators is known as a colour-dual representation. The

procedure of replacing colour factors in gauge theory scattering amplitudes with another

copy of the kinematic numerator is known as the double copy, since it represents gravity

scattering amplitudes as two copies of Yang-Mills scattering amplitudes.

The validity of the BCJ double copy and the existence of colour-dual numerators has

been proven at tree-level [5–13] (where it is equivalent to the KLT relations [1]). One very

exciting feature of the BCJ procedure is that it admits a simple extension to loop diagrams

in the quantum theory [4]. This extension remains conjectural, but it has been verified in

highly nontrivial examples at multiloop level [4, 14–35]. All-order evidence can be obtained

in special kinematic regimes [17, 36–39], but a full proof of the correspondence has to date

been missing (see, however, refs. [40–54] for related studies).

Motivated by this progress, a double copy for classical field solutions (which we will

refer to as the classical double copy) has been proposed [55]. This classical double copy is

similar in structure to the BCJ double copy for scattering amplitudes: in both cases, the

tensor structure of gravity is constructed from two copies of the vector structure of gauge

theory. In addition, scalar propagators are present in both cases; these scalars are exactly

the same in gauge and gravitational processes. However, the classical double copy [55] is

only understood at present for the special class of Kerr-Schild solutions in general relativity.

This reflects the particularly simple structure of Kerr-Schild metrics: the Kerr-Schild ansatz

has the remarkable property that the Einstein equations exactly linearise. Therefore we

can anticipate that any Yang-Mills solution related to a Kerr-Schild spacetime must be

particularly simple. Indeed, the authors of [55] showed that any stationary Kerr-Schild

solution has a well-defined single copy that satisfies the Yang-Mills equations, which also

take the linearised form. While the structure of the classical double copy is very reminiscent

of the BCJ double copy, so far no precise link has been made between the two. One aim

of the present article is to provide such a link.

Although the classical double copy is only understood for a restricted class of solutions,

many of these are familiar. For example, the Schwarzschild and Kerr black holes are

members of this class; in higher dimensions, the Myers-Perry black holes are included [55].

The relationship between classical solutions holds for all stationary Kerr-Schild solutions,

but other Kerr-Schild solutions are known to have appropriate single copies. A particularly

striking example is the shockwave in gravity and gauge theory; the double copy of this pair

of solutions was pointed out by Saotome and Akhoury [36]. In further work, the classical

double copy has been extended [56] to the Taub-NUT solution [57, 58], which has a double

Kerr-Schild form and whose single copy is a dyon in gauge theory.

Despite this success, Kerr-Schild solutions are very special and do not easily describe

physical systems which seem very natural from the point of view of the double copy for
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scattering amplitudes. For example, there is no two-form field or dilaton on the gravity

side; there are no non-abelian features on the gauge theory side; the status of the sources

must be better understood. In cases where the sources are point particle-like, the classical

double copy relates the gauge theory current density to the gravity energy-momentum

tensor in a natural way [55, 56]. For extended sources, extra pressure terms on the gravity

side are needed to stabilise the matter distribution. Furthermore, reference [59] pointed

out that in certain gravity solutions the energy-momentum tensor does not satisfy the weak

and/or strong energy conditions of general relativity.

The aim of this paper is to extend the classical double copy of refs. [55, 56] by consid-

ering one of the simplest situations involving explicit time dependence, namely that of an

arbitrarily accelerating, radiating point source. We will see that this situation can indeed

be interpreted in the Kerr-Schild language, subject to the introduction of additional source

terms for which we provide a clear interpretation. One important fact which will emerge

is that these sources themselves have a double copy structure. We will demonstrate that

the sources can be related directly to scattering amplitudes, maintaining the double copy

throughout. This provides a direct link between the classical double copy and the BCJ

procedure for amplitudes, strongly bolstering the argument that these double copies are

the same. The gravitational solution of interest to us is a time-dependent generalisation

of the Schwarzschild solution; we will see that this gravitational system is a precise double

copy of an accelerating point particle. Since there is a double copy of the sources, and

these describe the radiation fields, we learn that the gravitational radiation emitted by

a black hole which undergoes a short period of acceleration is a precise double copy of

electromagnetic Bremsstrahlung.

The structure of our paper is as follows. In section 2, we briefly review the Kerr-Schild

double copy. In section 3, we present a known Kerr-Schild solution for an accelerating

particle, before examining its single copy. We will find that additional source terms appear

in the gauge and gravity field equations, and in section 4 we relate these to scattering

amplitudes describing radiation, by considering the example of Bremsstrahlung. In sec-

tion 5, we examine the well-known energy conditions of GR for the solutions under study.

Finally, we discuss our results and conclude in section 6. Technical details are contained

in an appendix.

2 Review of the Kerr-Schild double copy

Let us begin with a brief review of the Kerr-Schild double copy, originally proposed

in [55, 56]. We define the graviton field via

gµν = ḡµν + κhµν , κ =
√

16πGN (2.1)

where GN is Newton’s constant, and ḡµν is a background metric, which, for the purposes

of the present paper, we will take to be the Minkowski metric.1 There is a special class of

Kerr-Schild solutions of the Einstein equations, in which the graviton has the form

hµν = −
κ

2
φkµkν , (2.2)

1We choose to work with a negative signature metric η = diag(1,−1,−1,−1).
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consisting of a scalar function φ multiplying the outer product of a vector kµ with itself.

We have inserted a negative sign in this definition for later convenience. The vector kµ
must be null and geodesic with respect to the background:

ḡµν k
µ kν = 0, (k ·D)k = 0, (2.3)

where Dµ is the covariant derivative with respect to the background metric. It follows

that kµ is also null and geodesic with respect to the metric gµν . These solutions have the

remarkable property that the Ricci tensor with mixed upstairs / downstairs indices is linear

in the graviton. More specifically, one has

Rµ
ν = R̄µ

ν − κ

[

hµρR̄
ρ
ν −

1

2
Dρ (Dνh

µρ +Dµhρν −Dρhµν)

]

, (2.4)

where R̄µν is the Ricci tensor associated with ḡµν , and we have used the fact that hµµ = 0.

It follows that the Einstein equations themselves linearise. Furthermore, ref. [55] showed

that for every stationary Kerr-Schild solution (i.e. where neither φ nor kµ has explicit time

dependence), the gauge field

Aa
µ = caφ kµ, (2.5)

for a constant colour vector ca, solves the Yang-Mills equations. Analogously to the grav-

itational case, these equations take a linearised form due to the trivial colour dependence

of the solution. We then refer to such a gauge field as the single copy of the graviton hµν ,

since it involves only one factor of the Kerr-Schild vector kµ rather than two. Note that the

scalar field φ is left untouched by this procedure. This was motivated in ref. [55] by taking

the zeroth copy of eq. (2.5) (i.e. stripping off the remaining kµ factor), which leaves the

scalar field itself. The zeroth copy of a Yang-Mills theory is a biadjoint scalar field theory,

and the field equation linearises for the scalar field obtained from eq. (2.5). The scalar func-

tion φ then corresponds to a propagator, and is analogous to the untouched denominators

(themselves scalar propagators) in the BCJ double copy for scattering amplitudes.

Source terms for the biadjoint, gauge and gravity theories also match up in a natural

way in the Kerr-Schild double copy. Pointlike sources in a gauge theory map to point

particles in gravity, where electric and (monopole) magnetic charge are replaced by mass

and NUT charge respectively [56]. Extended source distributions (such as that for the Kerr

black hole considered in ref. [55]) lead to additional pressure terms in the gravity theory,

which are needed to stabilise the source distribution so as to be consistent with a stationary

solution. Conceptual questions relating to extended source distributions have been further

considered in ref. [59], regarding the well-known energy conditions of general relativity. In

this work, we will consider point-like objects throughout, and therefore issues relating to

extended source distributions will not trouble us. Nevertheless we will discuss the energy

conditions in section 5 below.

Let us emphasise that the Kerr-Schild double copy cannot be the most general re-

lationship between solutions in gauge and gravity theories. Indeed, the field one obtains

upon taking the outer product of kµ with itself is manifestly symmetric. Moreover, the null

condition on kµ means that the trace of the field vanishes. Hence, the Kerr-Schild double
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copy is unable to describe situations in which a two-form and / or dilaton are active in the

gravity theory. This contrasts sharply with the double copy procedure for scattering am-

plitudes, which easily incorporates these fields. Furthermore, Yang-Mills amplitudes only

obey the double copy when written in BCJ dual form, meaning that certain Jacobi relations

are satisfied by the kinematic numerator functions [3–5]. It is not known what the ana-

logue of this property is in the classical double copy procedure. All of these considerations

suggest that the Kerr-Schild story forms part of a larger picture, and in order to explore

this it is instructive to seek well-defined generalisations of the results of refs. [55, 56].

3 Kerr-Schild description of an accelerating point particle

In this article, we will go beyond previous work on the Kerr-Schild double copy [55, 56] by

considering an accelerating point particle. This is a particularly attractive case, because an

accelerating point particle must radiate, so we may hope to make direct contact between

the double copy for scattering amplitudes and for Kerr-Schild backgrounds. We first de-

scribe a well-known Kerr-Schild spacetime containing an accelerating point particle, before

constructing the associated single-copy gauge theoretic solution. We find that the physics

of the single copy is particularly clear, allowing a refined understanding of the gravitational

system. We will build on this understanding in section 4 to construct a double copy pair

of scattering amplitudes from our pair of Kerr-Schild solutions in gauge theory and gravity

in a manner that preserves the double copy throughout.

3.1 Gravity solution

Consider a particle of mass M following an arbitrary timelike worldline y(τ), parameterised

by its proper time τ so that the proper velocity of the particle is the tangent to the curve

λµ =
dyµ

dτ
. (3.1)

An exact Kerr-Schild spacetime containing this massive accelerating particle is known,

though the spacetime contains an additional stress-energy tensor; we will understand the

physical role of this stress-energy tensor below. A useful geometric interpretation of the

null vector kµ appearing in the solution has been given in refs. [60–62] (see ref. [63] for

a review), as follows. Given an arbitrary point yµ(τ) on the particle worldline, one may

draw a light cone as shown in figure 1. At all points xµ along the light-cone, one may then

define the null vector

kµ(x) =
(x− y(τ))µ

r

∣

∣

∣

∣

ret

, r = λ · (x− y)|ret , (3.2)

where the instruction ret indicates that y and λ should be evaluated at the retarded time

τret, i.e. the value of τ at which a past light cone from xµ intersects the worldline. Calcu-

lations are facilitated by noting that:

∂µkν = ∂νkµ =
1

r

(

ηµν − λµkν − kµλν − kµkν (−1 + rk · λ̇)
)

, (3.3)

∂µr = λµ + kµ(−1 + rk · λ̇), (3.4)

where dots denote differentiation with respect to the proper time τ .
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Figure 1. Geometric interpretation of the Kerr-Schild solution for an accelerated particle.

The Kerr-Schild metric associated with this particle is

gµν = ηµν −
κ2

2
φkµkν (3.5)

where kµ is precisely the vector of eq. (3.2) and different functional forms for φ lead to

different solutions. The scalar function corresponding to an accelerating particle is given by

φ =
M

4πr
. (3.6)

Plugging this into the Einstein equations, one finds

Gµ
ν ≡ Rµ

ν −
R

2
δµν =

κ2

2
TKS

µ
ν , (3.7)

where2

Tµν
KS =

3M

4π

k · λ̇

r2
kµkν

∣

∣

∣

∣

∣

ret

. (3.8)

Thus, the use of Kerr-Schild coordinates for the accelerating particle leads to the presence of

a non-trivial energy-momentum tensor on the right-hand side of the Einstein equations. We

can already see that this extra term vanishes in the stationary case (λ̇µ = 0), consistent

with the results of ref. [55]. More generally, this stress-energy tensor Tµν
KS describes a

pure radiation field present in the spacetime. The physical interpretation of this source is

particularly clear in the electromagnetic “single copy” of this system, to which we now turn.

3.2 Single copy

Having examined a point particle in arbitrary motion in a Kerr-Schild spacetime, we may

apply the classical single copy of eq. (2.5) to construct a corresponding gauge theoretic so-

lution. This procedure is not guaranteed to work, given that the single copy of refs. [55, 56]

2We note what appears to be a typographical error in ref. [63], where the energy-momentum tensor

contains an overall factor of 4 rather than 3. We have explicitly carried out the calculation leading to

eq. (3.7), and found agreement with refs. [60–62].
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was only shown to apply in the case of stationary fields. However, we will see that we can

indeed make sense of the single copy in the present context. Indeed, the physical inter-

pretation of the stress-energy tensor Tµν
KS we encountered in the gravitational situation is

illuminated by the single copy.

The essence of the Kerr-Schild double-copy is a relationship between gauge theoretic

solutions Aµ = kµφ and Kerr-Schild metrics which is simply expressed as kµ → kµkν . Thus,

the single-copy of

hµν = −
Mκ

2

1

4πr
kµkν (3.9)

is3

Aµ = g
1

4πr
kµ, (3.10)

where g is the coupling constant.4 Inserting this gauge field into the Yang-Mills equations,

one finds that nonlinear terms vanish, leaving the Maxwell equations

∂µFµν = jKS ν , (3.11)

where

Fµν = ∂µAν − ∂νAµ (3.12)

is the usual electromagnetic field strength tensor.

A key result is that we find that the current density appearing in the Maxwell equations

is given by

jKS ν = 2
g

4π

k · λ̇

r2
kν

∣

∣

∣

∣

∣

ret

. (3.13)

It is important to note that the current density jKS is related to the energy-momentum

tensor, eq. (3.8), we encountered in the gravitational case. Indeed the relationship between

these sources is in accordance with the Kerr-Schild double copy: it involves a single factor

of the Kerr-Schild vector kµ, with similar prefactors, up to numerical constants. We will

return to this interesting fact in the following section.

The role of the Kerr-Schild current density jKS can be understood by examining our

single-copy gauge field, eq. (3.10), in more detail. Let us compute the electromagnetic field

strength tensor of this system. Using the results (3.3) and (3.4), it is easy to check that

Fµν = ∂µAν − ∂νAµ =
g

4πr2
(kµλν − λµkν) . (3.14)

A first observation about this field strength tensor is that it falls off as 1/r2 and does not

depend on the acceleration of the particle. Therefore, it does not describe the radiation field

3In principle, one should include an arbitrary colour index on the field strength and current density.

Given that the field equations are abelian, however, we ignore this. The resulting solution can be easily

embedded in a non-abelian theory, as in refs. [55, 56]. Note that the abelian character of this theory also

implies that we make the replacement Mκ

2
→ g (cf. eq. (38) from ref. [55]).

4The relative sign between hµν and Aµ is necessary in our conventions to ensure that positive masses

yield attractive gravitational fields while positive scalar potentials A0 are sources for electric field lines

E = −∇A0.
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of the accelerated point particle in empty space, since the radiation fields must fall off as

1/r and are linear in the acceleration. Secondly, this tensor is manifestly constructed from

Lorentz covariant quantities. In the instantaneous rest frame of the particle, λµ = (1, 0, 0, 0)

and kµ = (1, r̂), and in this frame it is easy to see that the field strength is simply

the Coulomb field of the point charge. Therefore, in a general inertial frame, our field

strength tensor describes precisely the boosted Coulomb field of a point charge, omitting

the radiation field completely.

The absence of radiation in the electromagnetic field strength makes the interpretation

of the current density jKS in the Maxwell equation obvious. This source must describe

the radiation field of the point particle. To see this more concretely, let us compare our

Kerr-Schild gauge field to the standard Liénard-Wiechert solution Aµ
LW = g

4πrλ
µ, which

describes a point particle moving in an arbitrary manner in empty space (see e.g. [64]).

This comparison is facilitated by defining a “radiative gauge field”

Aµ
rad =

g

4πr
(λµ − kµ), (3.15)

which satisfies

Fµν
rad ≡ ∂µAν

rad − ∂νAµ
rad =

g

4πr
(kµβν − βµkν) , (3.16)

where βµ = λ̇µ − λµk · λ̇. Thus, Fµν
rad is the radiative field strength of the point particle: it

is linear in the particle acceleration, and falls off as 1/r at large distances.

Now, since the Liénard-Wiechert field is a solution of the vacuum Maxwell equation,

we know that ∂µ
(

Fµν + Fµν
rad

)

= 0 and, consequently,

∂µF
µν
rad = −jνKS. (3.17)

We interpret jKS as a divergence of the radiative field strength: we have put the radiation

part of the gauge field on the right-hand side on the Maxwell equations, rather than the left.

Let us now summarise what has happened. By choosing Kerr-Schild coordinates for

the accelerating particle in gravity, an extra energy-momentum tensor Tµν
KS appeared on

the right-hand side of the Einstein equations. The single copy turns an energy density

into a charge density (as in refs. [55, 56, 59]). Thus, the energy-momentum tensor in the

gravity theory becomes a charge current jµKS in the gauge theory. We have now seen that

this current represents the radiation coming from the accelerating charged particle, and

this also allows us to interpret the corresponding energy-momentum tensor on the gravity

side: it represents gravitational radiation from an accelerating point mass.

Indeed, our use of Kerr-Schild coordinates forced the radiation to appear in this form.

The vector kµ which is so crucial for our approach is twist-free: ∂µkν = ∂νkµ. It is known

that twist-free, vacuum, Kerr-Schild metrics are of Petrov type D, and therefore there is

no gravitational radiation in the metric; see ref. [63] for a review. Correspondingly, the

radiation is described by the Kerr-Schild sources.

The radiation fields of the accelerating charge in gauge theory, and the accelerating

point mass in gravity, are described in Kerr-Schild coordinates by sources jµKS and Tµν
KS . The

structure of these sources reflects the Kerr-Schild double copy procedure: up to numerical

– 8 –



J
H
E
P
0
6
(
2
0
1
6
)
0
2
3

factors, one replaces the vector kµ by the symmetric trace-free tensor kµkν to pass from

gauge theory to gravity. This relationship between the sources, which describe radiation, is

highly suggestive. Indeed, it is a standard fact that scattering amplitudes can be obtained

from (amputated) currents. We may therefore anticipate that the structural relationship

between the Kerr-Schild currents is related to the standard double copy for scattering

amplitudes.

Nevertheless, there are still some puzzles regarding the analysis above. What, for

example, are we to make of the different numerical factors appearing in the definitions

eqs. (3.8) and (3.13) of the Kerr-Schild stress tensor and current density? If these sources

are related to amplitudes, we expect a double copy which is local in momentum space.

How can our currents be local in position space? More generally, how can we be sure that

the Kerr-Schild double copy is indeed related to the standard BCJ procedure? The answer

to these questions is addressed in the following section, in which we interpret the radiative

sources directly in terms of scattering amplitudes.

Before proceeding, however, let us comment on the physical interpretation of the par-

ticle in the solutions under study. We considered how the particle affects the gauge or

gravity fields, but we did not consider the cause of the acceleration of the particle, i.e. its

own equation of motion. In the standard Liénard-Wiechert solution, the acceleration is due

to a background field. It is therefore required that this background field does not interact

with the radiation, otherwise the solution is not valid. This is true in electromagnetism or

in its embedding in Yang-Mills theory. However, in the gravity case, one cannot envisage

such a situation. Therefore, one should think of this particle merely as a boundary con-

dition, and not as a physical particle subject to forces which would inevitably affect the

Einstein equations. What we are describing here is a mathematical map between solutions

in gauge theory and gravity, a map which exists irrespective of physical requirements on

the solutions. In a similar vein, ref. [59] showed that energy-momentum tensors obtained

through the classical double copy do not necessarily obey the positivity of energy conditions

in general relativity.

4 From Kerr-Schild sources to amplitudes

In the previous section, we saw that the Kerr-Schild double copy can indeed describe

radiating particles. The radiation appears as a source term on the right-hand side of

the field equations. In this section, we consider a special case of this radiation, namely

Bremsstrahlung associated with a sudden rapid change in direction. By Fourier transform-

ing the source terms in the gauge and gravity theory to momentum space, we will see that

they directly yield known scattering amplitudes which manifestly double copy. Moreover,

the manipulations required to extract the scattering amplitudes in gauge theory and in

gravity are precisely parallel. We will preserve the double copy structure at each step, so

that the double copy property of the scattering amplitudes emerges from the kµ → kµkν
structure of the Kerr-Schild double copy. In this way, we firmly establish a link between

the classical double copy and the BCJ double copy of scattering amplitudes.
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In order to study Bremsstrahlung, we consider a particle which moves with velocity

λµ(τ) = uµ + f(τ)(u′
µ
− uµ), (4.1)

where

f(τ) =

{

0, τ < −ǫ

1, τ > ǫ
(4.2)

and, in the interval (−ǫ, ǫ), f(τ) is smooth but otherwise arbitrary. This describes a particle

which moves with constant velocity λµ = uµ for τ < −ǫ, while for τ > ǫ the particle moves

with a different constant velocity λµ = u′µ. Thus, the particle undergoes a rapid change

of direction around τ = 0, assuming ǫ to be small. The form of f(τ) acts as a regulator

needed to avoid pathologies in the calculation that follows. However, dependence on this

regulator cancels out, so that an explicit form for f(τ) will not be needed. Owing to the

constant nature of u and u′, the acceleration is given by

λ̇µ = ḟ(τ)
(

u′
µ
− uµ

)

. (4.3)

The acceleration vanishes for τ < −ǫ and τ > ǫ, but is potentially large in the interval

(−ǫ, ǫ). Without loss of generality, we may choose the spatial origin to be the place at

which the particle changes direction, so that yµ(0) = 0.

4.1 Gauge theory

We first consider the gauge theory case, and start by using the definitions of eqs. (3.2) to

write the current density of eq. (3.13) as

jνKS =
2g

4π

∫

dτ
λ̇(τ) · (x− y(τ))

[λ(τ) · (x− y(τ))]4
(x− y(τ))νδ(τ − τret), (4.4)

where we have introduced a delta function to impose the retarded time constraint. Using

the identity
δ(τ − τret)

λ · (x− y(τ))
= 2θ(x0 − y0(τ))δ

(

(x− y(τ))2
)

, (4.5)

one may rewrite eq. (4.4) as

jνKS =
4g

4π

∫

dτ
λ̇(τ) · (x− y(τ))

[λ(τ) · (x− y(τ))]3
(x− y(τ))νθ(x0 − y0(τ))δ

(

(x− y(τ))2
)

. (4.6)

Any radiation field will be associated with the non-zero acceleration only for |τ | < ǫ, where

yµ(τ) is small. We may thus neglect this with respect to xµ in eq. (4.6). Substituting

eq. (4.3) then gives

jνKS =
4g

4π
xνθ(x0)δ(x2)

∫ ǫ

−ǫ

dτ
bḟ(τ)

(a+ bf(τ))3
, (4.7)

where

a = x · u, b = x · u′ − x · u. (4.8)
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The integral is straightforwardly carried out to give

jνKS = −
2g

4π
xνθ(x0)δ(x2)

[

1

(x · u′)2
−

1

(x · u)2

]

=
2g

4π
θ(x0)δ(x2)

[

∂

∂u′ν

(

1

x · u′

)

− (u′ → u)

]

. (4.9)

One may now Fourier transform this expression, obtaining a current depending on a mo-

mentum k conjugate to the position x. As our aim is to extract a scattering amplitude

from the Fourier space current, j̃µKS(k), we consider only the on-shell limit of the current

where k2 = 0; we also drop terms in j̃µKS(k) which are proportional to kµ as these terms are

pure gauge. The technical details are presented in appendix A, and the result is

j̃νKS(k) = −ig

(

u′ν

u′ · k
−

uν

u · k

)

. (4.10)

We may now interpret this as follows. First, we note that the current results upon acting

on the radiative gauge field with an inverse propagator, consistent with the LSZ procedure

for truncating Green’s functions. It follows that the contraction of j̃νKS with a polarisation

vector gives the scattering amplitude for emission of a gluon. Upon doing this, one obtains

the standard eikonal scattering amplitude for Bremsstrahlung (see e.g. [65])

Agauge ≡ ǫν(k)j̃
ν
KS = −ig

(

ǫ · u′

u′ · k
−

ǫ · u

u · k

)

. (4.11)

We thus see directly that the additional current density in the Kerr-Schild approach cor-

responds to the radiative part of the gauge field.

4.2 Gravity

We now turn to the gravitational case. Our goal is to extract the eikonal scattering ampli-

tude for gravitational Bremsstrahlung from the Kerr-Schild stress-energy tensor Tµν
KS for a

particle of mass M moving along precisely the same trajectory as our point charge. Thus,

the acceleration of the particle is, again,

λ̇µ = ḟ(τ)
(

u′
µ
− uµ

)

. (4.12)

The calculation is a precise parallel to the calculation of the Bremsstrahlung amplitude

for the point charge. However, as we will see, the presence of an additional factor of the

Kerr-Schild vector kν in the gravitational case leads to a slightly different integral which

we encounter during the calculation. This integral cancels the factor of 3 which appears

in Tµν
KS , restoring the expected numerical factors in the momentum space current. Let us

now turn to the explicit calculation.

We begin by writing the stress tensor as an integral over a delta function which enforces

the retardation and causality constraints

Tµν
KS =

3M

2π

∫

dτ
λ̇(τ) · (x− y(τ))

[λ(τ) · (x− y(τ))]4
(x− y(τ))µ(x− y(τ))νθ(x0 − y0(τ))δ

(

(x− y(τ))2
)

,

(4.13)
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corresponding to eq. (4.6) in the gauge theoretic case. The fourth power in the denominator

in the gravitational case arises as a consequence of the additional factor of kµ = (x −

y(τ))µ/[λ(τ) · (x − y(τ))]. As before, the integral is strongly peaked around yµ = 0, and

we may perform the integral in this region to find that

Tµν
KS = −

2M

4π
xµxνθ(x0)δ(x2)

[

1

(x · u′)3
−

1

(x · u)3

]

= −
M

4π
θ(x0)δ(x2)

[

∂

∂u′µ

∂

∂u′ν

(

1

x · u′

)

− (u′ → u)

]

. (4.14)

Notice that the factor 3 in the numerator of the stress-energy tensor has cancelled due

to the additional factor of λ(τ) · (x − y(τ)) in the denominator of the integrand in the

gravitational case. The double copy structure is evidently now captured by a replacement

of one derivative ∂
∂u′

ν
in gauge theory with two derivatives ∂

∂u′

µ

∂
∂u′

ν
in gravity.

Our next step is to Fourier transform to momentum space. The calculation is extremely

similar to the gauge theoretic case (again, see appendix A). As our goal is to compute a

scattering amplitude, we work in the on-shell limit k2 = 0 and omit pure gauge terms.

After a short calculation, we find

T̃µν
KS (k) = −iM

(

u′µu′ν

u′ · k
−

uµuν

u · k

)

. (4.15)

To construct the scattering amplitude, we must contract this Fourier-transformed stress-

energy tensor with a polarisation tensor, which may be written as an outer product of two

gauge theory polarisation vectors:

ǫµν(k) = ǫµ(k)ǫν(k). (4.16)

The scattering amplitude is then given by

Agrav ≡ ǫµ(k)ǫν(k)T̃
µν
KS (k) = −iM

(

ǫ · u′ ǫ · u′

u′ · k
−

ǫ · u ǫ · u

u · k

)

, (4.17)

corresponding to the known eikonal amplitude for gravitational Bremsstrahlung [66]. Again

we see that the additional source term in the Kerr-Schild approach corresponds to the

radiative part of the field. Furthermore, in this form the standard double copy for scattering

amplitudes is manifest: numerical factors agree between eqs. (4.10) and (4.15), such that

the mass in the gravity theory is replaced with the colour charge in the gauge theory, as

expected from the usual operation of the classical single copy [55, 56].

Let us summarise the results of this section. We have examined the particular case of

a particle which undergoes a rapid change in direction, and confirmed that the additional

source terms appearing in the Kerr-Schild description (in both gauge and gravity theory)

are exactly given by known radiative scattering amplitudes. This directly links the classical

double copy to the BCJ procedure for amplitudes.

It is interesting to compare the BCJ double copy for scattering amplitudes with the

Kerr-Schild double copy, which has been formulated in position space. It is clear that

momentum space is the natural home of the double copy. For scattering amplitudes, the

– 12 –
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amplitudes themselves and the double copy procedure are local in momentum space. In our

Bremsstrahlung calculation, the numerical coefficients in the sources are also more natural

after the Fourier transform. On the other hand, the currents Tµν
KS and jνKS are also local

in position space. This unusual situation arises because the scattering amplitudes do not

conserve momentum: in any Bremsstrahlung process, some momentum must be injected in

order to bend the point particle trajectory. Of course, in the case of a static point particle

locality in both position space and momentum space is more natural. This is reflected by

the structure of the Fourier transform in the present case: as explained in appendix A,

the factor 1/x · u describing a particle worldline Fourier transforms to an integrated delta

function
∫

∞

0 dm δ4(q −mu) (see eq. (A.3)).

5 Gravitational energy conditions

In this section, we consider the null, weak and strong energy conditions of general relativity.

These were recently examined in the context of the Kerr-Schild double copy in ref. [59],

where it was shown that extended charge distributions double copy to matter distributions

that cannot simultaneously obey the weak and strong energy conditions, if there are no

spacetime singularities or horizons. Although the point particle solution of interest to us

has both singularities and horizons, it is still interesting to examine the energy conditions.

The null energy condition on a given energy-momentum tensor can be expressed by

Tµνℓ
µℓν ≥ 0, (5.1)

where ℓµ is any future-pointing null vector. The weak energy condition is similarly given by

Tµνt
µtν ≥ 0, (5.2)

for any future-pointing timelike vector tµ. The interpretation of this condition is that

observers see a non-negative matter density. The null energy condition is implied by the

weak energy condition (despite the names, the former is the weakest condition). One

may also stipulate that the trace of the tidal tensor measured by such an observer is

non-negative, which leads to the strong energy condition

Tµνt
µtν ≥

T

2
gµνt

µtν , T ≡ Tα
α . (5.3)

Let us now examine whether these conditions are satisfied by the Kerr-Schild energy-

momentum tensor of eq. (3.8). First, the null property of the vector kµ implies that the

trace vanishes, so that the weak and strong energy conditions are equivalent. We may

further unify these with the null energy condition, by noting that eq. (3.8) implies

Tµν
KS VµVν = (k · λ̇)

[

3M(k · V )2

4πr2

]

. (5.4)

for any vector V µ. The quantity in the square brackets is positive definite, so that whether

or not the energy conditions are satisfied is purely determined by the sign of k · λ̇. This

– 13 –
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Figure 2. Physical interpretation of (k · λ̇), where this denotes the component of acceleration in

the direction nµ.

scalar quantity is easily determined in the instantaneous rest-frame of the point particle; it

is the negative of the component of acceleration in the direction nµ of the observer (at the

retarded time), see figure 2. Thus the energy conditions are not satisfied throughout the

spacetime. In particular, any observer which sees the particle accelerating towards (away

from) her will measure a negative (positive) energy density.

We remind the reader that the energy-momentum tensor is, in the case under study, an

effective way of representing the full vacuum solution. The latter will have no issues with

energy conditions. Analogously, the Liénard-Wiechert vacuum solution in gauge theory

can be represented, as we have shown in section 3, by a boosted Coulomb field, together

with a charged current encoding the radiation.

6 Discussion

In this paper, we have extended the classical double copy of refs. [55, 56] to consider accel-

erating, radiating point sources. This significantly develops previous results, which were

based on stationary Kerr-Schild solutions, to a situation involving explicit time dependence.

The structure of the double copy we have observed in the radiating case is precisely as one

would expect. Passing from the gauge to the gravity theory, the overall scalar function

φ is left intact; indeed it is the well-known scalar propagator in four dimensions. This is

the same as the treatment of scalar propagators in the original BCJ double copy proce-

dure for amplitudes. Similarly, the tensor structure of the gravitational field is obtained

from the gauge field by replacing the vector kµ by the symmetric, trace-free tensor kµkν .

Finally, our use of Kerr-Schild coordinates in gravity linearised the Einstein tensor (with

mixed indices). Reflecting this linearity, the associated single copy satisfies the linearised

Yang-Mills equations.

It is worth dwelling a little on the physical implication of our work. The classical

double copy is known to relate point sources in gauge theory to point sources in general

relativity, in accordance with intuition arising from scattering amplitudes. In this article,

we have simply considered the case where the point sources move on a specified, arbitrarily

accelerated, timelike worldline. On general grounds we expect radiation to be emitted
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due to the acceleration. Our use of Kerr-Schild coordinates organised the radiation into

sources appearing on the right-hand side of the field equations: a current density in gauge

theory, and a stress-energy tensor in gravity. Intriguingly, we found that the expressions

for these sources also have a double copy structure: one passes from the gauge current

to the gravitational stress-energy tensor by replacing kµ by kµkν while leaving a scalar

factor intact, up to numerical factors which are canonical in momentum space. Since these

sources encode the complete radiation fields for the accelerating charge and black hole,

there is a double copy between the radiation generated by these two systems. This double

copy is a property of the exact solution of gauge theory and general relativity.

We further extracted one simple perturbative scattering amplitude from this radia-

tion field, namely the Bremsstrahlung scattering amplitude. The double copy property

was maintained as we extracted the scattering amplitude, which firmly establishes a link

between the double copy for amplitudes and the double copy for classical solutions.

However, we should emphasise one unphysical aspect of our setup. We mandated

a wordline for our point particle in both gauge theory and general relativity. In gauge

theory, this is fine: one can imagine that an external force acts on the particle causing its

worldline to bend. However, in general relativity such an external force would contribute

to the stress-energy tensor in the spacetime. Since we ignored this component of the stress-

energy tensor, our calculation is not completely physical. Instead, one should regard the

point particle in both cases as a specified boundary condition, rather than as a physical

particle. We have therefore seen that the radiation generated by this boundary condition

enjoys a precise double copy.

There are a number of possible extensions of our results. One may look at time-

dependent extended sources in the Kerr-Schild description, for example, or particles ac-

celerating in non-Minkowski backgrounds (for preliminary work in the stationary case, see

ref. [56]). It would also be interesting to examine whether a double copy procedure can be

set up in other coordinate systems, such as the more conventional de Donder gauge. One

particularly important issue is to understand the generalisation of the colour-dual require-

ment on kinematic numerators to classical field backgrounds. The Jacobi relations satisfied

by colour-dual numerators hint at the existence of a kinematic algebra [12, 67] underlying

the connection between gauge theory and gravity; revealing the full detail of this structure

would clearly be an important breakthrough. The study of the classical double copy is in

its infancy, and many interesting avenues have yet to be explored.
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A Fourier transform of source terms

In this appendix, we describe how to carry out the Fourier transform of eqs. (4.9), (4.14),

to get the momentum-space expressions of eqs. (4.10), (4.15).

One may first consider the transform of (u · x)−1, where we work explicitly in four

spacetime dimensions:

F

{

1

u · x

}

=

∫

d4x
eiq·x

u · x

=
1

u0

∫

d3xe−iq·x

∫

dx0
eiq

0x0

x0 − x·u

u0

. (A.1)

Closing the x0 contour in the upper half plane gives a positive frequency solution q0 > 0:

F

{

1

u · x

}

=
2πi

u0

∫

d3x e
−ix·

[

q−
q0

u0
u

]

=
i(2π)4

u0
δ(3)

(

q −
q0

u0
u

)

. (A.2)

It is possible to regain a covariant form for this expression by introducing a mass variable

m, such that

F

{

1

u · x

}

=
i(2π)4

u0

∫

∞

0
dmδ

(

m−
q0

u0

)

δ(3)(q −mu)

= i(2π)4
∫

∞

0
dmδ(4)(q −mu), (A.3)

where the integral is over non-negative values of m only, given that q0 > 0. Given that

θ(x0)δ(x2) is a retarded propagator,5 one may also note the transform

F
{

θ(x0)δ(x2)
}

= −
2π

q2
. (A.4)

We then use the convolution theorem to obtain the Fourier transform of the current from

eq. (4.9). The theorem states that the Fourier transform of a product is equal to the

convolution of the transforms of each term. That is,

F{f · g} = F{f} ∗ F{g}, (A.5)

where the convolution operation in four dimensions takes the form

(F ∗G)(k) =
1

(2π)4

∫

d4qF (q)G(k − q). (A.6)

Then, we can compute the Fourier transform of the current

j̃ν(k) = F{jνKS(x)}

=
2g

4π

∂

∂u′ν

[

F{θ(x0)δ(x2)} ∗ F

{

1

x · u′

}]

− (u ↔ u′), (A.7)

5The retarded nature of the propagator is implemented by the prescription 1
(p0+iε)2−p2 , where ε ensures

convergence of the integrals in what follows.
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so inserting eqs. (A.4) and (A.3), and using the convolution definition eq. (A.6) we obtain

the expression

j̃ν(k) =
2g

4π

∂

∂u′ν

[

1

(2π)4

∫

d4q

(

−
2π

q2

)(

i(2π)4
∫

∞

0
dmδ(4)(k − q −mu′)

)]

− (u ↔ u′)

= −ig

∫

∞

0
dm

(

∂

∂u′ν

[

1

(k −mu′)2

]

− (u ↔ u′)

)

. (A.8)

where we have carried out the integral over q in the last line. The derivative in the m

integral can be carried out to give

∫

∞

0
dm

2m(k −mu′)ν

(k −mu′)4
= −

∫

∞

0
dm

2m2u′ν

(m2 − 2mu′ · k)2
, (A.9)

where, on the right-hand side, we have used the onshellness condition k2 = 0, and also

neglected terms ∼ kµ, which vanish upon contraction of the current with a physical polar-

isation vector. The remaining integral over m is easily carried out, and leads directly to

the result of eq. (4.10).

Similar steps to those leading to eq. (A.8) can be used to rewrite eq. (4.14) in the form

Tµν
KS =

iM

2

∫

∞

0
dm

(

∂

∂u′µ

∂

∂u′ν

[

1

(k −mu′)2

]

− (u ↔ u′)

)

. (A.10)

Carrying out the double derivative gives

∂

∂u′µ

∂

∂u′ν

[

1

(k −mu′)2

]

= −
2m2ηµν

(m2 − 2mu′ · k)4
+

8m2(k −mu′)µ(k −mu′)ν

(m2 − 2mu′ · k)3

≃
8m4u′µu′ν

(m2 − 2mu′ · k)3
, (A.11)

where in the second line we have again used onshellness (k2 = 0), and ignored terms which

vanish when contracted with the graviton polarisation tensor. Substituting eq. (A.11) into

eq. (A.10), the m integral is straightforward, and one obtains the result of eq. (4.15).
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