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trino masses at 2-loop level, can fit oscillation data and yields a large contribution to the

long-range 0νββ decay amplitude, in some detail.
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1 Introduction

Majorana neutrino masses, lepton number violation and neutrinoless double beta decay

(0νββ) are intimately related. It is therefore not surprising that many models contributing

to 0νββ have been discussed in the literature, see for example the recent reviews [1, 2]. How-

ever, the famous black-box theorem [3] guarantees only that — if 0νββ decay is observed

— Majorana neutrino masses must appear at the 4-loop level, which is much too small [4]

to explain current oscillation data [5]. Thus, a priori one does not know whether some “ex-

otic” contribution or the mass mechanism dominates the 0νββ decay rate. Distinguishing

the different contributions would not only be an important step towards determining the

origin of neutrino masses, but would also have profound implications for leptogenesis [6–8].

In terms of only standard model (SM) fields, ∆L = 2 terms can be written as non-

renormalizable operators (NROs) of odd mass dimensions. At mass dimension d = 5,

there is only one such operator, the famous Weinberg operator [9], OW = 1
Λ(LLHH). At

tree-level the Weinberg operator can be understood as the low-energy limit of one of the

three possible seesaw realizations [10–14]. All other ∆L = 2 operators up to d = 11 —

excluding, however, possible operators containing derivatives — have been listed in [15].

When complemented with SM Yukawa interactions (and in some cases SM charged current

interactions), these higher dimensional operators always also generate Majorana neutrino

masses (at different loop-levels), leading again to the Weinberg operator1 at low energies.

All ∆L = 2 operators also contribute to 0νββ decay. From the nuclear point of view,

the amplitude for 0νββ decay contains two parts: the long-range part and the short-range

1Or to operators of the form OW × (H†H)n, n = 1, 2, · · · . For neutrino mass models based on this type

of effective operators, see e.g., [16–23].
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part. The so-called long-range part [24] describes all contributions involving the exchange of

a light, virtual neutrino between two nucleons. This category contains the mass mechanism,

i.e. the Weinberg operator sandwiched between two SM charged current interactions, and

also contributions due to d = 7 lepton number violating operators.2 The short-range part

of the 0νββ decay amplitude [25], on the other hand, contains all contributions from the

exchange of heavy particles and can be described by a certain subset of the d = 9 ∆L = 2

operators in the list of [15]. In total there are six d = 9 operators contributing to the short-

range part of the amplitude at tree-level and the complete decomposition for the (scalar

induced) operators has been given in [26]. The relation of all these decompositions with

neutrino mass models has been studied recently in [27].3 The general conclusion of [27]

is that for 2-loop and 3-loop neutrino mass models, the short-range part of the amplitude

could be as important as the mass mechanism, while for tree-level and 1-loop models one

expects that the mass mechanism gives the dominant contribution to 0νββ decay.4

In this paper we study d = 7 ∆L = 2 operators, their relation to neutrino masses and

the long-range part of the 0νββ decay amplitude. We decompose all d = 7 ∆L = 2 opera-

tors and determine the level of perturbation theory, at which the different decompositions

(or “proto-models”) will generate neutrino masses. Tree-level, 1-loop and 2-loop neutrino

mass models are found in the list of the decompositions. We then compare the contribu-

tion from the mass mechanism to the 0νββ decay amplitude with the long-range d = 7

contribution. Depending on which particular nuclear operator is generated, limits on the

new physics scale Λ >∼ geff(17−180) TeV can be derived from the d = 7 contribution. Here,

geff is the mean of the couplings entering the (decomposed) d = 7 operator. This should

be compared to limits of the order of roughly Λ >∼
√
Yeff 1011 TeV and Λ >∼ Y 2

eff 50 TeV,

derived from the upper limit on 〈mν〉 for tree-level and 2-loop (d = 7) neutrino masses.

(Here, Yeff is again some mean of couplings entering the neutrino mass diagram. We use a

different symbol, to remind that Yeff is not necessarily the same combination of couplings

as geff .) Thus, only for a certain, well-defined subset of models can the contribution from

the long-range amplitude be expected to be similar to or dominate over the mass mech-

anism. Note that, conversely a sub-dominant contribution to the long-range amplitude

always exists also in all models with mass mechanism dominance.

We then give the complete classification of all models contributing to the d = 7 opera-

tors in tabular form in the appendix of this paper. In this list all models giving long-range

contributions to 0νββ decay can be found, such as, for example, supersymmetric models

with R-parity violation [34, 35] or scalar leptoquarks [36]. There are also models with

non-SM vectors, which could fit into models with extended gauge sectors, such as the

left-right symmetric model [37–39]. And, finally, there are new models in this list, not

considered in the literature previously. In particular, we have found contributions with

2We save the term “long-range contribution” for the contribution from the d = 7 operators and call the

standard contribution from Majorana neutrino mass separately the “mass mechanism”.
3Neutrino mass models based on the ∆L = 2 effective operators were discussed in [15, 28] The decom-

position of the ∆L = 2 operators was also discussed in [29, 30].
4Possible LHC constraints on short-range operators contributing to 0νββ decay have been discussed

in [31, 32] See also [33].
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coloured vector-like fermions and exotic coloured vectors, for more details see tables 4

and 5 in the appendix.

We mention that our paper has some overlap with the recent work [40]. The authors

of this paper also studied d = 7 ∆L = 2 operators. They discuss 1-loop neutrino masses

induced by these operators, lepton flavour violating decays and, in particular, LHC phe-

nomenology for one example operator in detail. The main differences between our work

and theirs is that we (a) focus here on the relation of these operators with the long-range

amplitude of 0νββ decay, which was not studied in [40] and (b) also discuss tree-level and

2-loop neutrino mass models. In particular, we find that 2-loop neutrino mass models are

particularly interesting, because the d = 7 long-range contribution dominates 0νββ only

in the class of models. Our study also has some relation to [41, 42]. The d = 7 operators

(including the operators with derivatives) are fully listed in [41], and their decomposition

and collider phenomenology are discussed in [42]. However, they do not discuss the rela-

tion between the lepton number violating operators, double beta decay and neutrino mass

models, which we focus on.

The rest of this paper is organized as follows. In the next section we lay the basis

for the discussion, establishing the notation and recalling the main definitions for ∆L = 2

operators and 0νββ decay amplitude. In the following section we then discuss an example

of each: tree-level, 1-loop and 2-loop neutrino mass models. In each case we estimate the

contribution to the mass mechanism and the constraints from the long-range amplitude.

We study a 2-loop d = 7 model in some more detail, comparing also to oscillation data

and discuss the constraint from lepton flavour violating processes. In section 4 we then

discuss a special case, where a d = 9 operator can give an equally important contribution

to the 0νββ decay amplitude as a d = 7 operator. The example we discuss is related to

the left-right symmetric extension of the standard model and, thus, of particular interest.

We then close the paper with a short summary. The complete list of decompositions for

d = 7 operators is given as an appendix.

2 General setup

The 0νββ decay amplitude can be separated into two pieces: (a) the long-range part [24],

including the well-known mass mechanism, and (b) the short-range part [25] of the decay

rate describing heavy particle exchange. Here, we will concentrate exclusively on the long-

range part of the amplitude.

The long-range part of the amplitude exchanges a light, virtual neutrino between two

point-like vertices. The numerator of the neutrino propagator involves two pieces, (mνi+p/ ).

If the interaction vertices contain standard model charged current interactions, the mνi-

term is projected out. This yields the “mass mechanism” of 0νββ decay. However, if one

of the two vertices involved in the diagram produces a neutrino in the wrong helicity state,

i.e. (νL)c, the p/ -term is picked from the propagator. Since the momentum of the virtual

neutrino is typically of the order of the Fermi momentum of the nucleons, pF ' 100 MeV,

the 0νββ amplitude from the operators proportional to p/ is enhanced by pF /mν & O(108)

with respect to the amplitude of the standard mass mechanism. Consequently, any operator
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Isotope |εV+A
V−A| |εV+A

V+A| |εS+P
S−P | |εS+P

S+P | |εTRTL | |εTRTR|
136Xe 2.0 · 10−9 3.9 · 10−7 4.7 · 10−9 4.7 · 10−9 3.3 · 10−10 5.6 · 10−10

Table 1. Limits on εβRα from non-observation of 136Xe 0νββ decay, where βR ∈ {S+P, V +A, TR}.
These limits were derived in [1] and have been updated with the combined limit from KamLAND-

Zen and Exo-200 [46].

proportional to p/ will be tightly constrained from non-observation of double beta decay.

Following [24] we write the effective Lagrangian for 4-fermion interactions as

L4-Fermi = LSM + LLNV =
GF√

2

[
jµV−AJV−A,µ +

∑
α, β 6= V −A

εβα jβJα

]
. (2.1)

The leptonic (hadronic) currents jβ (Jα) are defined as:

JµV±A = (JR/L)µ ≡ uγµ(1± γ5)d , jµV±A ≡ eγµ(1± γ5)ν , (2.2)

JS±P = JR/L ≡ u(1± γ5)d , jS±P ≡ e(1± γ5)ν ,

JµνTR/L = (JR/L)µν ≡ uγµν(1± γ5)d , jµνTR/L ≡ eγ
µν(1± γ5)ν ,

where γµν is defined as γµν = i
2 [γµ, γν ]. The first term of eq. (2.1) is the SM charged

current interaction, the other terms contain all new physics contributions. We normalize

the coefficients εβα relative to the SM charged current strength GF /
√

2. Recall, PL/R =
1
2(1∓γ5) and we will use the subscripts L and R for left-handed and right-handed fermions,

respectively. Note also that all leptonic currents with (1 − γ5) will pick mνi from the

propagator, leading to an amplitude proportional to εβLα ×〈mν〉 (βL ∈ {S−P, V −A, TL}),
which is always smaller than the standard mass mechanism contribution and thus is not

very interesting. Thus, only six particular εβα can be constrained from 0νββ decay. For

convenience, we repeat the currently best limits, all derived in [1], in table 1.

Recently, several papers have discussed QCD corrections to the decay rate for the

short-range part [43, 44] and the pion-exchange (medium range) part [45] of the double

beta decay amplitude. In these papers it was pointed out, that operator mixing can lead

to significant changes in the limits obtained from 0νββ decay for some specific operators.

No calculation for the QCD corrections for the long-range part of the amplitude exists up

to now. Thus, the limits in table 1 do not take into account the effect of these higher order

corrections.

Eq. (2.1) describes long-range 0νββ decay from the low-energy point of view. From the

particle physics point of view, these ∆L = 2 currents can be described as being generated

from d = 7 operators. Disregarding the d = 7 “Weinberg-like” operator OW × (H†H),

there are four of these operators in the list of Babu & Leung [15]:

O2 ∝ LiLjLkecH lεijεkl, (2.3)

O3 ≡ {O3a,O3b} ∝ {LiLjQkdcH lεijεkl, L
iLjQkdcH lεikεjl},

O4 ≡ {O4a,O4b} ∝ {LiLjQ̄iūcHkεjk, L
iLjQ̄kū

cHkεij},
O8 ∝ LiēcūcdcHjεij .

– 4 –
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Here, O2 is included for completeness, although it is trivial that the mass mechanism will

be the dominant contribution to 0νββ decay for this operator, since it does not involve

any quark fields. We will therefore not discuss the detailed decomposition of O2, which

can be found in [40]. The operators O3b,4a,8 will contribute to the long-range amplitudes

jβJα, and the coefficient of the amplitudes is described as

GF εd=7√
2
' g3

effv

4Λ3
7

, (2.4)

where Λ7 is the energy scale from which the d = 7 operators originate, and εd=7 is one of

(or a combination of two of) the εβα of table 1. The factor 1/4 is included to account for the

fact that eq. (2.2) is written in terms of (1± γ5) while chiral fields are defined using PL/R.

This leads to the numerical constraints on the scale Λ7 mentioned in the introduction,

taking the least/most stringent numbers from table 1.

All ∆L = 2 operators generate Majorana neutrino masses. However, operators O3a

and O4b will generate neutrino mass matrices without diagonal entries, since LiLjεij = 0

within a generation. Neutrino mass matrices with such a flavour structure result in very

restricted neutrino spectra, and it was shown in [47] that such models necessarily predict

sin2(2θ12) = 1 − (1/16)(∆m2
21/∆m

2
31)2. This prediction is ruled out by current neutrino

data at more than 8 σ c.l. [5]. Models that generate at low energies only O3a or O4b can

therefore not be considered realistic explanation of neutrino data.5

Flavour off-diagonality of O3a and O4b does also suppress strongly their contribution

to long-range double beta decay, in case the resulting leptonic current is of type jS+P (see

appendix6). This is because the final state leptons are both electrons, while the virtual

neutrino emitted from the L in O3a,4b is necessarily either νµ or ντ . In the definition of the

“effective” εβα, then neutrino mixing matrices appear with the combination
∑

j UejU
∗
µj (or

UejU
∗
τj), which is identically zero unless the mixing matrices are non-unitary when summed

over the light neutrinos.

Departures from unitarity can occur in models with extra (sterile/right-handed) neu-

trinos heavier than about ∼ 1 GeV. While the propagation of the heavy neutrinos also

contributes to 0νββ, the nuclear matrix element appearing in the amplitude of the heavy

neutrino exchange is strongly suppressed, when their masses are larger than 1 GeV [49, 50].

Consequently, the heavy neutrino contribution is suppressed with respect to the light neu-

trino one and the sum over
∑

j UejU
∗
µj is incomplete, appearing effectively as a sum over

mixing matrix elements which is non-unitary. Current limits on this non-unitary piece of

the mixing are of the order of very roughly percent [51–54], thus weakening limits on the

coefficients for O3a and O4b (for jS+P ), compared to other operators, by at least two orders

of magnitude.

5However, models that produce these operators usually allow to add additional interactions that will

generateO5 (O6) in addition toO3a (O4b), as for example in the model discussed in [48]. These constructions

then allow to correctly explain neutrino oscillation data, since O5/O6 produce non-zero elements in the

diagonal entries of the neutrino mass matrix.
6Decomposition #8 of O3a also generates jTR which can contribute to 0νββ without the need for a

non-unitarity of the mixing matrix.
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To the list in eq. (2.3) one can add two more ∆L = 2 operators involving derivatives:

ODµ1 ≡ {ODµ1a ,O
Dµ
1b } ∝ {LiLjDµDµH

kH lεijεkl, L
iLjDµDµH

kH lεikεjl} (2.5)

ODµ2 ∝ LiecDµH
jHkH lεijεkl

We mention these operators for completeness. As shown in [55], tree-level decompositions

of ODµ1 always involve one of the seesaw mediators, and thus one expects this operator to

be always present in tree-level models of neutrino mass. As we will see, if neutrino masses

are generated from tree-level, the mass mechanism contribution in general dominates 0νββ,

and consequently the new physics effect from ODµ1 cannot make a measurable impact. The

second type of the derivative operators, ODµ2 , has also been discussed in detail in [55] with

an example of tree-level realization, we thus give only a brief summary for this operator in

the appendix.

3 Classification

In this section we will discuss a classification scheme for the decompositions of the ∆L = 2

operators of eq. (2.3), based on the number of loops, at which they generate neutrino

masses. We will discuss one typical example each for tree-level, 1-loop and 2-loop models.

The complete list of decompositions for the different cases can be found in the appendix.

3.1 Tree level

If the neutrino mass is generated at tree-level, one expects mν ∝ v2/Λ, which for coeffi-

cients of O(1) give Λ ∼ 1014 GeV for neutrino masses order 0.1 eV. The amplitude of the

mass mechanism of 0νββ decay is proportional to AMM ∝ 〈mν〉/p2
F × (1/m2

W )2, while the

amplitude provided from the d = 7 operator is ALR ∝ pF v/(Λ
3p2
F )× (1/m2

W ). The d = 7

contribution is therefore favoured by a factor pF /〈mν〉, but suppressed by (v/Λ)3. Inserting

Λ ∼ 1014, the d = 7 amplitude should be smaller than the mass mechanism amplitude by a

huge factor of order O(10−27). However, this naive estimate assumes all coefficients in the

operators to be order O(1). Since these coefficients are usually products of Yukawa (and

other) couplings in the UV complete models, this is not necessarily the case in general and

much smaller scales Λ could occur.

To discuss this in a bit more detail, we consider a particular example based on O3,

decomposition #4, where two new fields, (1) a Majorana fermion ψ with the SM charge

(SU(3)c, SU(2)L,U(1)Y ) = (1, 1, 0) and (2) a scalar S with (3, 2, 1/6), are introduced to

decompose the effective operator, see table 3 and figure 1. The Lagrangian for this model

contains the following terms:

L3,#4 = YνψH · L+ YdcLdRL · S + YQψψQ · S† +mψψcψ + h.c. (3.1)

Here, we have suppressed generation indices for simplicity. The first term in eq. (3.1) will

generate Dirac masses for the neutrinos. The Majorana mass term for the neutral field ψ

(equivalent to a right-handed neutrino) can not be forbidden in this model. We will discuss

– 6 –
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L

Q dc

L
H

S3,2,1/6
ψ1,1,0

L L

H

ψ1,1,0

H

Figure 1. To the left: diagram leading to long-range 0νββ decay via charged scalar exchange

for Babu-Leung operator O3 (BL#3). To the right: tree-level neutrino mass generated via seesaw

type-I, using the same vertices as in the diagram on the left. Here and in all Feynman diagrams

below, arrows on fermion lines indicate the flow of particle number, not the chirality of the fermion.

The double arrow on ψ1,1,0 indicates its Majorana nature.

first the simplest case with only one copy of ψ and comment on the more complicated cases

with two or three ψ below.

The contribution to 0νββ decay can be read off directly from the diagram in figure 1

on the left. It is given by

GF εO3,#4√
2

' (Yν)ev

mψ

(YdcL)1e(YQψ)1

m2
S

. (3.2)

With only one copy of ψ, the effective mass term contributing to 0νββ decay is 〈mν〉 =

(Yν)2
ev

2/mψ and we can replace (Yν)e by 〈mν〉 to arrive at the rough estimate of the

constraint derived from the d = 7 contribution to 0νββ:

(YdcL)1e(YQψ)1 <∼ 3× 10−3

( 〈mν〉
0.5 eV

)−1/2 ( mψ

100 GeV

)1/2 ( mS

1 TeV

)2
(3.3)

Eq. (3.3) shows that the upper limit on the Yukawa couplings disappears as 〈mν〉 ap-

proaches zero. When the masses are greater than roughly mψ ' mS ∼ 10 TeV, the Yukawa

couplings must be non-perturbative to fulfil the equality in eq. (3.3). This implies that

the mass mechanism will always dominate the 0νββ contribution for scales Λ larger than

roughly this value, independent of the exact choice of the couplings.

We briefly comment on models with more than one ψ. As is well-known, neutrino

oscillation data require at least two non-zero neutrino masses, while a model with only one

ψ leaves two of the three active neutrinos massless. Any realistic model based on eq. (3.1)

will therefore need at least two copies of ψ. In this case eq. (3.2) has to be modified

to include the summation over the different ψi and εO3,#4
∝ ∑

i
(Yν)eiv
mψi

. 〈mν〉, on the

other hand, is proportional to 〈mν〉 ∝
∑

i
(Yν)2

ei
mψi

. In this case, one still expects in general

that limits derived from the long-range part of the amplitude are proportional to 〈mν〉.
However, there is a special region in parameter space, where the different contributions

to 〈mν〉 cancel nearly exactly, leaving the long-range contribution being the dominant

part of the amplitude. Unless the model parameters are fine-tuned in this way, the mass

mechanism should win over the d = 7 contribution for all tree-level neutrino mass models.

The tables in the appendix show, that all three types of seesaw mediators appear in

the decompositions of O3, O4 and O8: ψ1,1,0 (type-I), ψ1,3,0 (type-III) and S1,3,1 (type-II).

– 7 –
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Lα

Q

S S ′

H

Lβ

dR

λS λD
µ

να H0

H0 νβ

S−1/3

S′−1/3

dL

dR

λS yd

µ λD

Figure 2. Decomposition #2 of O3 operator (left) and one-loop diagram for neutrino masses based

on the decomponsition (right).

In order to generate a seesaw mechanism, for some of the decompositions one needs to

introduce new interactions, such as S†1,3,1HH, not present in the corresponding decom-

position itself. However, in all these cases, the additional interactions are allowed by the

symmetries of the models and are thus expected to be present. One then expects for all

tree-level decompositions that the mass mechanism dominates over the long-range part of

the amplitude, unless (i) the new physics scale Λ is below a few TeV and (ii) some param-

eters are extremely fine-tuned to suppress light neutrino masses, as discussed above in our

particular example decomposition.

3.2 One-loop level

We now turn to a discussion of one-loop neutrino mass models. For this class of neutrino

mass models, naive estimates would put Λ at Λ ∼ O(1012) GeV for coefficients of O(1)

and neutrino masses of O(0.1) eV. Thus, in the same way as tree neutrino mass models,

the mass mechanism dominates over the long-range amplitude, unless at least some of the

couplings in the UV completion are significantly smaller than O(1), as discussed next.

As shown in [56], there are only three genuine 1-loop topologies for (d = 5) neutrino

masses. Decompositions of O3, O4 or O8 produce only two of them, namely Tν-I-ii or Tν-

I-iii. We will discuss one example for Tν-I-ii, based on O3 decomposition #2, see table 3

and figure 2. The underlying leptoquark model was first discussed in [36, 57], and for

accelerator phenomenology see, e.g., [58]. The model adds two scalar states to the SM

particle content, S(3, 1,−1/3) and S′(3, 2, 1/6). The Lagrangian of the model contains

interactions with SM fermions

LLQ
3,#2 = (λS)αiLcα ·QiS† + (λD)iαdRiLα · S′ + · · · , (3.4)

and the scalar interactions and mass terms:

Lscalar
3,#2 = µSH · S′† +m2

S |S|2 +m2
D|S′|2 + · · · (3.5)

Lepton number is violated by the simultaneous presence of the terms in eq. (3.4) and the

first term in eq. (3.5) [57]. Electro-weak symmetry breaking generates the off-diagonal

– 8 –
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element of the mass matrix for the scalars with the electric charge −1/3. The mass matrix

is expressed as

M2
LQ =

(
m2
S µv

µv m2
D

)
(3.6)

in the basis of (S−1/3, S′−1/3), which is diagonalized by the rotation matrix with the mixing

angle θLQ that is given as

tan 2θLQ =
2µv

m2
S −m2

D

. (3.7)

The neutrino mass matrix, which arises from the 1-loop diagram shown in figure 2, is

calculated to be

(mν)αβ =
Nc sin 2θLQ

2(16π2)

∑
k

mdk∆B0(m2
dk
,m2

1,m
2
2)
{

(λS)αk(λD)kβ + (α↔ β)
}
, (3.8)

where Nc = 3 is the colour factor. The loop-integral function ∆B0 is given as

∆B0(m2
dk
,m2

1,m
2
2) =

m2
1 ln(m2

1/m
2
dk

)

m2
1 −m2

dk

−
m2

2 ln(m2
2/m

2
dk

)

m2
2 −m2

dk

. (3.9)

with the eigenvalues m2
1,2 of the leptoquark mass matrix eq. (3.6) and the mass mdk of

the down-type quark of the k-th generation. Due to the hierarchy in the down-type quark

masses, it is expected that the contribution from mb dominates the neutrino mass eq. (3.8).

For mb � M̄ and µv � M̄2 where M̄ = m2
D = m2

S , eq. (3.8) is reduced to

(mν)αβ =
3

16π2

µv

M̄2
mb

{
(λS)α3(λD)3β + (α↔ β)

}
, (3.10)

and this gives roughly

(λS)e3(λD)3e = 10−2

( 〈mν〉
0.2eV

)(
1 MeV

µ

)(
M̄

1 TeV

)2

. (3.11)

The constraint on the effective neutrino mass 〈mν〉 . 0.2 eV is derived from the combined

KamLAND-Zen and EXO data [46], which is T1/2 ≥ 3.4 × 1025 ys for 136Xe. The same

experimental results also constrain the coefficient of the d = 7 operator generated from the

Lagrangians eqs. (3.4) and (3.5) as εTRTR
<∼ 5.6× 10−10 (cf. table 1), which gives

(λS)e1(λD)1e .3 · 10−2

(
1MeV

µ

)(
M̄

1TeV

)4

(3.12)

Therefore, for (λS)e1(λD)1e ' (λS)e3(λD)3e, the mass mechanism and the d = 7 con-

tribution are approximately of equal size with M̄ ' 750 GeV. Since 〈mν〉 ∝ M̄−2,

while εO3,#2
∝ M̄−4, the mass mechanism will dominate 0νββ decay for M̄ larger than

M̄ ' 750 GeV, unless the couplings (λS)e1(λD)1e are larger than (λS)e3(λD)3e. We note

that, leptoquark searches by the ATLAS [59, 60] and the CMS [61–63] collaborations have

provided lower limits on the masses of the scalar leptoquarks, depending on the lepton

generation they couple to and also on the decay branching ratios of the leptoquarks. The
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limits derived from the search for the pair-production of leptoquarks are roughly in the

range 650− 1000 GeV [59–63], depending on assumptions.

The other 1-loop models are qualitatively similar to the example discussed above.

However, the numerical values for masses and couplings in the high-energy completions

should be different, depending on the Lorentz structure of the d = 7 operators, see also the

appendix.

3.3 Two-loop level

We now turn to a discussion of 2-loop neutrino mass models. As shown in the appendix, in

case of the operators O3 and O4, 2-loop models appear only for the cases O3a and O4b. As

explained in section 2, these operators alone cannot give realistic neutrino mass models.

We thus base our example model on O8. The 2-loop neutrino mass models based on O8

are listed in table 5 in the appendix. In this section, we will discuss decomposition #15,

since it has not been discussed in detail in the literature before.

In this model, we add the following states to the SM particle content:

(ψL,R)3,2,7/6 =

(
ψ

5/3
L,R

ψ
2/3
L,R

)
, (3.13)

(S3,2,1/6)k =

(
S

2/3
k

S
−1/3
k

)
. (3.14)

With the new fields, we have the interactions

L8,#15 = YdiLαSkdR,iLα · Sk + YuiψHuR,iψLH
† + YeαψSkeRα

cψRS
†
k + h.c., (3.15)

which mediate O8 operator, as shown in the left diagram of figure 3. Here, i runs over the

three quark generations. While YdiLαSk and YuiψH could be different for different i, for

simplicity we will assume the couplings to quarks are the same for all i and drop the index

i in the following. We will comment below, when we discuss the numerical results, on how

this choice affects phenomenology. For simplicity, we introduce only one generation of the

new fermion ψ, while we allow for more than one copy of the scalar S3,2,1/6. Note that, in

principle, the model would work also for one copy of S3,2,1/6 and more than one ψ, but as

we will see later, the fit to neutrino data becomes simpler in our setup.

The fermion ψ2/3 mixes with the up-type quarks through the following mass term:

Lmass = Yu〈H0〉uLuR +Mψψ
2/3
L ψ

2/3
R + Y †uψH〈H0〉ψ2/3

L uR + h.c., (3.16)

=
(
tL ψ

2/3
L

)(mt 0

∆ Mψ

)(
tR

ψ
2/3
R

)
+ h.c.,

where ∆ ≡ Y †uψH〈H0〉. Due to the strong hierarchy in up-type quark masses, we have

assumed the sub-matrix for the up-type quarks in eq. (3.16) is completely dominated by

the contribution from top quarks. The mass matrix eq. (3.16) is diagonalized with the
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Lα

dR

S ψ

eRβ

uR

H

YdLαSk Y †
uψH

YeβψSk

να νβ

H0

H0

H0

H0

WdR

dL

uL

uR

ψ+2/3

S
−1/3
k

eRβ eLβ g

g

yeβ

yu

yd

YdLαSk YeβψSk

Y †
uψH

Figure 3. Decomposition #15 of O8 operator (left) and two-loop diagram for neutrino masses

based on the decomposition (right).

unitary matrices VL and VR as

V †L

(
mt 0

∆ Mψ

)
VR = diag(MΨi), (3.17)

and the mass eigenstates Ψ
2/3
i are give as(

tL

ψ
2/3
L

)
a

= (VL)aiΨ
2/3
Li and

(
tR

ψ
2/3
R

)
a

= (VR)aiΨ
2/3
Ri , (3.18)

where the index a for the interaction basis takes a ∈ {t, ψ}. The interactions are written

in the mass eigenbasis as follows:

LW =
g√
2

(V †L)itΨ
2/3
i γρPLbW

+
ρ + h.c., (3.19)

LS = YdLαSkdRLαεSk + YeαψSk(VR)ψieαcPRΨ
2/3
i S

−1/3†
k + YeαψSkeα

cPRψ
5/3S

2/3†
k + h.c..

(3.20)

The 2-loop neutrino mass diagram generated by this model is shown in figure 3. Using the

formulas given in [64], one can express the neutrino mass matrix as

(mν)αβ =
Ncg

2mb(V
†
L)it(VR)ψi

2(16π2)2 MΨi

[
meαYdLβSkYeαψSk +meβYdLαSkYeβψSk

]
I(zk,i, ri, ti).

(3.21)

Here Nc = 3 is the colour factor and I(zk,i, ri, ti) is the loop integral defined as

I(zk,i, ri, ti) =

[
4Î(zk,i, ri, ti)−

1

ti
Î(k2)(zk,i, ri, ti)

]
, (3.22)

with

Î(zk,i, ri, ti) =
1

π4

∫
d4q

∫
d4k

1

(q2 − zk,i)(q2 − ri)(k2 − ti)k2((q + k)2 − 1)
, (3.23)

Î(k2)(zk,i, ri, ti) =
1

π4

∫
d4q

∫
d4k

k2

(q2 − zk,i)(q2 − ri)(k2 − ti)k2((q + k)2 − 1)
, (3.24)
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The dimensionless parameters zk,i, ri, ti are defined as

zk,i ≡
m2
Sk

M2
Ψi

, ri ≡
m2
b

M2
Ψi

, and ti ≡
M2
W

M2
Ψi

(3.25)

and loop momenta q and k are also defined dimensionless. Due to the strong hierarchy in

down-type quark masses, we expect that neutrino mass given in eq. (3.21) is dominated by

the contribution from bottom quark. If we assume in eq. (3.21) that all Yukawa couplings

are of the same order, then the entries of the neutrino mass matrix will have a strong

hierarchy: (mν)ee : (mν)µµ : (mν)ττ = me : mµ : mτ . Such a flavor structure is not

consistent with neutrino oscillation data. Therefore, in order to reproduce the observed

neutrino masses and mixings, our Yukawa couplings need to have a certain compensative

hierarchy in their flavor structure.

Since the neutrino mass matrix, and thus the Yukawa couplings contained in the neu-

trino mass, have a non-trivial flavour pattern, these Yukawas will be also constrained by

charged lepton flavour violation (LFV) searches. Here we discuss only µ→ eγ which usu-

ally provides the most stringent constraints in many models. In order to calculate the

process µ → eγ we adapt the general formulas shown in [65] for our particular case. The

amplitude for µ→ eγ decay is given by

M(µ→ eγ) = eε∗αqβū(pe)iσ
αβ(σRPR + σLPL)u(pµ). (3.26)

Here, εα is the photon polarization vector and qβ is the momentum of photon. Three

different diagrams contribute to the amplitude for µ → eγ, which are finally summarized

with the two coefficients σR and σL given by

σR = i
mµ

16π2

[
Y †dL2Sk

YdL1Sk

2F2(xb,k)− F1(xb,k)

m2
Sk

]
, (3.27)

σL = i
mµ

16π2

[
Y †e2ψSkYe1ψSk

−F2(xψ,k)− 7F1(xψ,k)

m2
Sk

]
, (3.28)

where xψ,k ≡
M2
ψ

m2
Sk

and xb,k ≡ m2
b

m2
Sk

. Here, we have assumed that both the ψ−2/3 and the

ψ−5/3 have the same mass Mψ. This neglects (small) mass shifts in the ψ−2/3 state, due to

its mixing with the top quark. Due to the large value of Mψ, that we use in our numerical

examples, this should be a good approximation. Note also, that the contribution from the

top quark is negligible for those large values of Mψ used below. The functions F1(x) and

F2(x) are defined in eqs. (40) and (41) in [65] as

F1(x) =
x2 − 5x− 2

12(x− 1)3
+

x lnx

2(x− 1)4
, (3.29)

F2(x) =
2x2 + 5x− 1

12(x− 1)3
− x2 lnx

2(x− 1)4
, (3.30)

The branching ratio for µ→ eγ can be expressed with the coefficients σR and σL as

Br(µ→ eγ) =
e2m3

µ(|σR|2 + |σL|2)

16π Γµ
, (3.31)
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where Γµ is the total decay width of muon. Later, we will numerically calculate the

branching ratio to search for the parameter choices that are consistent with the oscillation

data and the constraint from µ→ eγ.

Before discussing constraints from lepton flavour violation, we will compare the long-

range contribution to 0νββ with the mass mechanism in this model. This model manifestly

generates a d = 7 long-range contribution to 0νββ. The half-life of 0νββ induced by the

long-range contribution is proportional to the coefficient εV+A
V+A which is expressed in terms

of the model parameters as

εV+A
V+A =

√
2

GF

∆

Mψ

Ye1ψSkYdL1Sk

2m2
Sk

<∼ 3.9× 10−7. (3.32)

Here, we use the limit on εV+A
V+A from non-observation of 136Xe 0νββ decay, see table 1.

With one copy of the new scalar, the bound of eq. (3.32) is directly related to the effective

neutrino mass eq. (3.21) and places the stringent constraint:

〈mν〉 . 2× 10−5[eV]

(
mS

10[TeV]

)2(I(zk,1, r1, t1)

5× 10−2

)
, (3.33)

where we have used the approximate relation

(V †L)it(VR)ψiI(zk,i, ri, ti)

MΨi

' I(zk,1, r1, t1)∆

Mψmt
, (3.34)

with zk,1 = (mSk/mt)
2, r1 = (mb/mt)

2, t1 = (MW /mt)
2, and I(zk,1, r1, t1) ∼ 5 × 10−2

for a scalar mass of mS = 10 TeV and Mψ ' 0.8 TeV. Note that this parameter choice is

motivated by the fact that the model cannot fit neutrino data with perturbative Yukawa

couplings with scalar masses larger than mS >∼ 10 TeV. As one can see from eq. (3.33), the

long-range contribution to 0νββ clearly dominates over the mass mechanism in this setup.

In short, this neutrino mass model predicts large decay rate of 0νββ but tiny 〈mν〉.
This implies that, if future neutrino oscillation experiments determine that the neutrino

mass pattern has normal hierarchy but 0νββ is discovered in the next round of experiments,

the 0νββ decay rate is dominated by the long-range part of the amplitude. Recall that

O8 contains ec. This implies that the model predicts a different angular distribution than

the mass mechanism, which in principle could be tested in an experiment such as Super-

NEMO [66].

Note that, to satisfy the condition eq. (3.33), cancellations among different contri-

butions to 〈mν〉 are necessary. This can be arranged only if we consider at least two

generations of the new particles in the model (either the scalar S or the fermion ψ).

Here we discuss more on the consistency of our model with the neutrino masses and

mixings observed at the oscillation experiments. Instead of scanning whole the parameter

space, we illustrate the parameter choice that reproduces the neutrino properties and is

simultaneously consistent with the bound from lepton flavour violation. To simplify the

discussion we use the following ansatz in the flavour structure of the Yukawa couplings:

YdLαSk =
YeαψSk
y

meα

mµ
(3.35)
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with a dimensionless parameter y. With eq. (3.35), the neutrino mass matrix eq. (3.21) is

reduced to

(mν)αβ = (Λ)αkIk(ΛT )kβ , (3.36)

where Λ is defined as

Λαk ≡ YdLαSk =
YeαψSk
y

meα

mµ
, (3.37)

and I is given as

Ik =
Ncg

2ymbmµ(V †L)it(VR)ψi
(16π2)2MΨi

I(zk,i, ri, ti). (3.38)

We introduce three copies of the new scalar S
−1/3
k . The resulting mass matrix eq. (3.36)

has the same index structure as that of the type-I seesaw mechanism, and therefore, the

matrix Λ can be expressed as(
ΛT
)
kα

=
(√
I−1

)
k
Rki

(√
m̂ν

)
i

(
U †ν

)
iα
, (3.39)

following the parameterization developed by Casas and Ibarra [67].

Here, m̂ν is the neutrino mass matrix in the mass eigenbasis, and the mass matrix mν

is diagonalized with the lepton mixing matrix Uν as

(m̂ν)i ≡ diag
(
mν1 mν2 mν3

)
= (UTν )iα (mν)αβ (Uν)βj (3.40)

for which we use the following standard parametrization

Uν =

 c12c13 s12c13 s13e
iδ

−s12c23 − c12s23s13e
−iδ c12c23 − s12s23s13e

−iδ s23c13

s12s23 − c12c23s13e
−iδ −c12s23 − s12c23s13e

−iδ c23c13


 1 0 0

0 eiα21 0

0 0 eiα31

 .

(3.41)

Here cij = cos θij , sij = sin θij with the mixing angles θij , δ is the Dirac phase and α21,

α31 are Majorana phases. The matrix R is a complex orthogonal matrix which can be

parametrized in terms of three complex angles as

R =

 c2c3 −c1s3 − s1s2c3 s1s3 − c1s2c3

c2s3 c1c3 − s1s2s3 −s1c3 − c1s2s3

s2 s1c2 c1c2

 . (3.42)

Note that it is assumed in this procedure that the charged lepton mass matrix is diagonal.

After fitting the neutrino oscillation data with the parametrization shown above, there

remain y, YuψH and the masses Mψ, mSk for k = 1, 2, 3 as free parameters. For simplicity,

we assume a degenerate spectrum of the heavy scalars mS = mSk .

In figure 4-(a), we plot the half-life T 0νββ
1/2 as a function of mν1 for fixed values of the

coupling YuψH = 0.6 and the masses Mψ = 800 GeV and mS = 10 TeV. The parameter y

is taken to be 10−3, since this minimizes the decay rate of µ→ eγ, as we will discuss below.
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Figure 4. Calculated half-lives for 0νββ decay of 136Xe considering the long-range contribution

to the decay rate versus mν1 (left) and mS (right). The gray region is the current lower limit in

0νββ decay half-life of 136Xe. In the plot to the left the region between the red curves is the one

allowed by the long-range contribution to the decay rate of 0νββ calculated scanning over oscillation

parameters for the case of normal hierarchy and mS = 10 TeV. We also show the allowed region

for the half-live for the mass mechanism as blue lines for comparison. The cyan region correspond

to the parametric region where our model can be consistent with current 0νββ experimental data.

In the plot to the right the red curve is the long-range contribution to the decay rate for the fixed

oscillation parameters mν1 = 1.23 × 10−3 eV , α21 = 0, α31 = π/2, s223 = 1/2 and s212 = 1/3 and

the remaining oscillation parameters ∆m2
31 and ∆m2

21 fixed at their best-fit values for the case of

normal hierarchy.

We have used oscillation parameters for the case of normal hierarchy. The region enclosed

by the red curves is d = 7 long-range contribution to 0νββ, and the blue curves correspond

to the mass mechanism contribution only, which is shown for comparison. The gray region

is already excluded by 0νββ searches, and for the model under consideration only the

cyan region is allowed. As one can see from figure 4-(a), the total contribution to 0νββ

is dominated by the d = 7 long-range contribution. Note that the mass mechanism and

the long-range contribution are strictly related only under the assumption that YuψH and

YdLαSk are independent of the quark generation i. This is so, because the 2-loop diagram

is dominated by 3rd generation quarks, while in 0νββ decay only first generation quarks

participate. If we were to drop this assumption and put the first generation couplings

to Yu1ψH
<∼ 10−2 × Yu3ψH and Yd1LαSk

<∼ 10−2 × Yd3LαSk , the half-life for the long-range

amplitude would become comparable to the mass mechanism, without changing the fit to

oscillation data.

Note that non-zero Majorana phases are necessary to allow for cancellations among

the mass mechanism contributions, so as to make 〈mν〉 small as required by eq. (3.33).

In figure 4-(b), we plot the half-life T 0νββ
1/2 as a function of the scalar mass mS . Here we

fixed the oscillation parameters to mν1 = 1.23 × 10−3 eV , α21 = 0, α31 = π/2, s2
23 = 1/2

and s2
12 = 1/3 and the remaining oscillation parameters ∆m2

31 and ∆m2
21 to their best-fit

values for the case of normal hierarchy. The plot assumes that the matrix R is equal to the

identity. The plot shows that the half-life increases to reach approximately T 0νββ
1/2 ∼ 1026

yr for mS = 10 TeV.

Now we discuss the constraint from lepton flavour violating process µ→ eγ. In figure 5,

we show Br(µ → eγ) as a function of the scalar mS and the parameter y for fixed values
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Figure 5. Br(µ → eγ) versus the scalar mS (left) and the parameter y (right). In the plot

to the left the red, orange and purple solid curves are the Br(µ → eγ) for different values of

y = 10−1, 10−2, 10−3. The gray region is the current experimental upper limit on Br(µ→ eγ) from

the MEG experiment [68]. In the plot to the right the red, orange and purple solid curves are

the Br(µ → eγ) for different values of the mass mS = 1, 5, 10 TeV. We have fixed the oscillation

parameters to mν1 = 1.23× 10−3 eV , α21 = 0, α31 = π/2, s223 = 1/2 and s212 = 1/3. The remaining

oscillation parameters ∆m2
31 and ∆m2

21 are fixed at their best-fit values for the case of normal

hierarchy. For discussion see text.

of the coupling YuψH = 0.6 and the fermion mass Mψ = 800 GeV, which is the same

parameter choice adopted in figure 4. These plots show that the current experimental

limits on Br(µ→ eγ) put strong constraints on the model under consideration. In figure 5-

(a), we plot Br(µ → eγ) with different values of the parameter y = {10−1, 10−2, 10−3}.
We have used again the parameters mν1 = 1.23× 10−3 eV, α21 = 0, α31 = π/2, s2

23 = 1/2

and s2
12 = 1/3 fixing the remaining oscillation parameters ∆m2

31 and ∆m2
21 at their best-fit

values for the case of normal hierarchy. With the choice of y = 10−1, the entire region of

mS is not consistent with the current experimental limits. On the other hand, we can easily

avoid the constraint from µ → eγ by setting the parameter y to be roughly smaller than

10−2. Note that the curves with y = 10−1 and y = 10−3 do not cover the full range of mS .

This is because the fit to neutrino data would require Yukawa couplings in the perturbative

regime. (We define the boundary to perturbativity as at least one entry in the Yukawa

matrix being smaller than
√

4π.) It is necessary to have smaller values of the parameter y

to obey the experimental bound. This feature is also shown in figure 5-(b) where we plot

the Br(µ→ eγ) as a function of y with different values of the mass mS = {1, 5, 10}TeV. As

shown, for y . 10−2 it is possible to fulfil the experimental limit, having the Br(µ → eγ)

a minimum around y = 10−3. Because of the perturvative condition, the curves with

mS = 5 TeV and mS = 10 TeV end in the middle of the y space. The reason for the strong

dependence of Br(µ→ eγ) on the parameter y can be understood as follows: as shown in

eq. (3.37) the Yukawa couplings YdLαSk and YeαψSk are related in the neutrino mass fit,

but only up to an overall constant, 1
y . For values of y of the order of 10−3 both Yukawas

are of the same order and this minimizes Br(µ → eγ). If y is much larger (much smaller)

than this value YdLαSk (YeαψSk) becomes much larger than YeαψSk (YdLαSk) and since the

different diagrams contributing to Br(µ→ eγ) are proportional to the individual Yukawas

(and not their product) this leads to a much larger rate for Br(µ→ eγ).
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In summary, for all 2-loop d = 7 models of neutrino mass, which lead to O8, the

long-range part of the amplitude will dominate over the mass mechanism by a large factor,

unless there is a strong hierarchy between the non-SM Yukawa couplings to the first and

third generation quarks. Such models are severely constrained by lepton flavour violation

and 0νββ decay. We note again, that these models predict an angular correlation among

the out-going electrons which is different from the mass mechanism.

4 Left-right symmetric model: d = 7 versus d = 9 operator

Writing new physics contributions to the SM in a series of NROs assumes implicitly that

higher order operators are suppressed with respect to lower order ones by additional inverse

powers of the new physics scale Λ. However, there are some particular example decom-

positions for (formally) higher-order operators, where this naive power counting fails. We

will discuss again one particular example in more detail. The example we choose describes

the situation encountered in left-right symmetric extensions of the standard model.

Consider the following two Babu-Leung operators:

O8 = Liec ucdcHjεij O7 = LiQjecQkH
kH lHmεilεjm (4.1)

O8 can be decomposed in a variety of ways, decomposition #14 (see table 5) is shown

in figure 6 to the left. The charged vector appearing in this diagram couples to a pair

of right-handed quarks and, thus, can be interpreted as the charged component of the

adjoint of the left-right symmetric (LR) extension of the SM, based on the gauge group

SU(3)C × SU(2)L × SU(2)R × U(1)B−L. In LR right-handed quarks are doublets, Qc =

Ψ3̄,1,2,−1/6, the ψ1,1,0 can be understood as the neutral member of Lc, i.e. the right-handed

neutrino, and the Higgs doublet is put into the bidoublet, Φ1,2,2,0. The resulting diagram

for 0νββ decay is shown in figure 6 on the right.

Figure 6 gives a long-range contribution to 0νββ decay. We can estimate the size of

εO8 from these diagrams:

GF εO8,#14√
2

=
YLψg1g2vSM

m2
Vmψ

=
YLLcg

2
Rvu

m2
WR

mνR

(4.2)

The first of these two equations shows εO8 for figure 6 on the left (notation for SM gauge

group), the second for figure 6 on the right (notation for gauge group of the LR model).

Here, g1 and g2 could be different, in principle, but are equal to gR in the LR model. vSM

is the SM vev, fixed by the W -mass. In the LR model, the bi-doublet(s) contain in general

two vevs. We call them vd and vu here and v2
SM = v2

d + v2
u. In eq. (4.2) only vu = vSM sinβ,

with tan β = vu/vd, appears. Note that we have suppressed again generation indices and

summations in eq. (4.2). We will come back to this important point below.

Now, however, first consider O7. From the many different possible decompositions we

concentrate on the one shown in figure 7. The diagram on the left shows the diagram in SM

notation, the diagram on the right is the corresponding LR embedding. It is straightforward

to estimate the size of these diagrams as:

GF εO7√
2

=
YLψg1g2g

2
3v

3
SM

m2
V1,3,0

m2
V1,1,1

mψ
=
YLLcg

2
Lg

2
Rv

2
uvd

m2
WR

m2
WL
mνR

∝ YLLcg
2
Rvu

m2
WR

mνR

(4.3)
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Figure 6. O8 decomposed as #14: (ucdc)(ec)(LH) under the SM gauge group (left) and for the

LR gauge group (right).

Arbitrarily we have called the 4-point coupling in the left diagram g2
3. In the LR model

again the couplings are fixed to gL and gR. In the last relation in eq. (4.3) we have used

v2
SM ∝ m2

WL
/g2
L. This shows that eq. (4.3) is of the same order than eq. (4.2), despite coming

from a d = 9 operator. This a priori counter-intuitive result is a simple consequence of

the decomposition containing the SM WL boson. Any higher-order operator which can be

decomposed in such a way will behave similarly, i.e. 1/Λ5 ⇒ 1/(Λ3v2
SM).7

We note that in this particular example the contribution of O7 is actually more strin-

gently constrained than the one from O8. This is because O8 leads to a low-energy current

of the form (V +A) in both, the leptonic and the hadronic indices, i.e. the limit corresponds

to εV+A
V+A. O7, on the other hand, leads to εV+A

V−A, which is much more tightly constraint due

to contribution from the nuclear recoil matrix element [69], compare values in table 1.

We note that, one can identify the diagrams in figure 6 and figure 7 with the terms

proportional to λ and η in the notation of [69], used by many authors in 0νββ decay. For

recent papers on double beta decay in left-right symmetric models, see for example [70, 71]).

For the complete expressions for the long-range part of the amplitude, one then has to sum

over the light neutrino mass eigenstates, taking into account that the leptonic vertices in

the diagrams in figures 6 and 7 are right-handed. Defining the mixing matrices for light

and heavy neutrinos as Uαj and Vαj , respectively, as in [69], the coefficients εO8 and εO7 of

the d = 7 and d = 9 operators are then the effective couplings [69]:

〈λ〉 =
3∑
j=1

UejVejλ , 〈η〉 =
3∑
j=1

UejVejη. (4.4)

Orthogonality of Uej and Vej leads to
∑6

j=1 UejVej ≡ 0. However, the sum in eq. (4.4)

runs only over the light states, which does not vanish exactly, but rather is expected to

be of the order of the light-heavy neutrino mixing. In left-right symmetric models with

seesaw (type-I), one expects this mixing to be of order mD/MM ∼
√
mν/MM , where

mD is (MM ) the Dirac mass (Majorana mass) for the (right-handed) neutrinos and mν

7In addition to the case of the SM W-boson, discussed here, similar arguments apply to decompositions

containing the scalar S1,2,1/2, which can be interpreted as the SM Higgs boson.
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Figure 7. O7 d = 9 contribution to 0νββ decay decomposed as (QQ)(HH)(ec)(LH) in the SM

(left) and in the LR model (right).

is the light neutrino mass. This, in general, is expected to be a small number of order∑3
j=1 UejVej ∼ 10−5

√
( mν

0.1 eV )(1TeV
MM

). In this case one expects the mass mechanism to

dominate over both 〈λ〉 and 〈η〉, given current limits on WL −WR mixing [72] and lower

limits on the WR mass from LHC [73, 74]. However, as in the LQ example model discussed

previously in section 3.1, contributions to the neutrino mass matrix contain a sum over

the three heavy right-handed neutrinos. In the case of severe fine-tuning of the parameters

entering the neutrino mass matrix, the connection between the light-heavy neutrino mixing

and 〈mν〉 can be avoided, see section 3.1. In this particular part of parameter space, the

incomplete
∑3

j=1 UejVej could in principle be larger than the naive expectation. Recall that

the current bound on non-unitarity of U is of the order of 1 % [54]. For
∑3

j=1 UejVej as

large as
∑3

j=1 UejVej ∼ O(10−2) 〈λ〉 and/or 〈η〉 could dominate over the mass mechanism,

even after taking into account all other existing limits. We stress again that this is not the

natural expectation.

In summary, there are some particular decompositions of d = 9 operators containing

the SM W or Higgs boson. In those cases the d = 9 operator scales as 1/(Λ3v2
SM) and can

be as important as the corresponding decomposition of the d = 7 operator.

5 Summary

We have studied d = 7 ∆L = 2 operators and their relation with the long-range part of

the amplitude for 0νββ decay. We have given the complete list of decompositions for the

relevant operators and discussed a classification scheme for these decompositions based on

the level of perturbation theory, at which the different models produce neutrino masses.

For tree-level and 1-looop neutrino mass models we expect that the mass mechanism is

more important than the long-range (p/ -enhanced) amplitude. We have discussed how

this conclusion may be avoided in highly fine-tuned regions in parameter space. For 2-loop

neutrino mass models based on d = 7 operators, the long-range amplitude usually is more

important than the mass mechanism. To demonstrate this, we have discussed in some

detail a model based on O8.
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We also discussed the connection of our work with previously considered long-range

contributions in left-right symmetric models. This served to point out some particularities

about the operator classification, that we rely on, in cases where higher order operators,

such as d = 9 (O9 ∝ Λ−5
LNV), are effectively reduced to lower order operators, i.e. d = 7

(Oeff
9 ∝ Λ−3

LNV × Λ−2
EW).

Our main results are summarized in tabular form in the appendix, where we give the

complete list of possible models, which lead to contributions to the long-range part of

the amplitude for 0νββ decay. In particular, table 4 and table 5 contain several exotic

possibilities not discussed in the literature before: models with vector-like fermions and

vectors with exotic quantum numbers, such as V1,2,3/2. From this list one can deduce,

which contractions can lead to interesting phenomenology, i.e. models that are testable

also at the LHC.
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A Decompositions of the long range 0νββ operators

Here we present the summary tables of all tree-level decompositions of the Babu-Leung

operators #3 (table 3), #4 (table 4), and #8 (table 5) with mass dimension d = 7. The

effective operators are decomposed into renormalizable interactions by assigning the fields

to the outer legs of the tree diagram shown in figure 8. The assignments of the outer

fields are shown at the “Decompositions” column, and the (inner) fields required by the

corresponding decompositions are listed at the “Mediators” column. The symbols S and

ψ represents the Lorentz nature of the mediators: S(′) is a scalar field, and ψL(R) is a

left(right)-handed fermion. The charges of the mediators under the SM gauge groups are

identified and expressed with the format (SU(3)c, SU(2)L)U(1)Y . It is easy to find the

contributions of the effective operators to neutrinoless double beta decay processes at the

“Projection to the basis ops.” column. The basis operators are defined as

O3a(α, β) ≡ (iτ2)ij(iτ2)kl{(Lcα)ai (Lβ)ja}{(dR)Ib(Q)Ikb}Hl

⊃ 1

4

[
j†S+P (α, β)− j†S+P (β, α)

]
J†S+PH

0, (A.1)

O3b(α, β) ≡ (iτ2)ik(iτ2)jl{(Lcα)ai (Lβ)ja}{(dR)Ib(Q)Ikb}Hl

⊃ − 1

4
j†S+P (β, α)J†S+PH

0 +
1

4
{`cα(1− γ5)`β}J†S+PH

+, (A.2)
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A

B C

D

E

Figure 8. Topology for tree-level decompositions of Babu-Leung operator #3, #4, and #8. Once

the SM fields, A,B,C,D, and E, are assigned to the outer legs, the Lorentz nature and the SM

gauge charges of the mediation fields are uniquely determined. The assignments of the outer fields

are expressed as (AB)(C)(DE) and listed at the “Decompositions” column in tables 3–5.

Oten.
3a (α, β) ≡ (iτ2)ij(iτ2)kl{(Lcα)ai (σ

ρσ)a
b(Lβ)jb}{(dR)Ic(σρσ)c

d(Q)Ikd}Hl

⊃ − 1

16

[
(j†TR)ρσ(α, β) + (j†TR)ρσ(β, α)

]
(J†TR)ρσH

0, (A.3)

Oten.
3b (α, β) ≡ (iτ2)ik(iτ2)jl{(Lcα)ai (σ

ρσ)a
b(Lβ)jb}{(dR)Ic(σρσ)c

d(Q)Ikd}Hl

⊃ − 1

16
(j†TR)ρσ(β, α)(J†TR)ρσH

0 − 1

16
{`cαγρσ(1− γ5)`β}(J†TR)ρσH

+, (A.4)

O4a(α, β) ≡ (iτ)jk(Lcα)ai (Lβ)ja(Q)Iiȧ (uR)ȧIHk

⊃ 1

4
j†S+P (β, α)J†S−PH

0 − 1

4
`cα(1− γ5)`βJ

†
S−PH

+, (A.5)

O4b(α, β) ≡ (iτ2)ij(Lcα)ai (Lβ)ja(Q)Ikȧ (uR)ȧIHk

⊃ 1

4

[
j†S+P (α, β)− j†S+P (β, α)

]
J†S−PH

0, (A.6)

O8(α, β) ≡ (Lcα)ai (σ
ρ)aȧ(eRβ)ȧ(dR)Ib(σρ)bḃ(uR)ḃI(iτ

2)ijHj

⊃ 1

4
(j†V+A)ρ(J†V+A)ρH

0 − 1

4

{
`cαγ

ρ(1 + γ5)`β
}

(J†V+A)ρH
+. (A.7)

Here we explicitly write all the indices: α, β for lepton flavour, the lower (upper) I for 3

(3̄) of SU(3) colour, i, j, k, l for 2 of SU(2) left, ρ, σ for Lorentz vector, and a, b, c, d (ȧ, ḃ)

for left(right)-handed Lorentz spinor. The lowest-loop contributions (i.e., dominant con-

tributions) to neutrino masses are found at the columns “mν”. We are mainly interested

in decompositions (=proto-models) where new physics contributions to 0νββ can compete

with the mass mechanism contribution mediated by the effective neutrino mass 〈mν〉. An

annotation “w. (additional interaction)” is given in the column of “mν@1loop” for some

decompositions. This shows that one can draw the 1-loop diagram, putting the interactions

that appear in the decomposition and the additional interaction together. The additional

interactions given in the tables are not included in the decomposition but are not forbid-

den by the SM gauge symmetries, nor can they be eliminated by any (abelian) discrete
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symmetry, without removing at least some of the interactions present in the decomposi-

tion. For example, using the interactions appear in decomposition #11 of Babu-Leung

operator #8 (see table 5), one can construct two 2-loop neutrino mass diagrams mediated

by the Nambu-Goldstone boson H+, whose topologies are T2B2 and T2B4 of [64]. This

also corresponds to the 2-loop neutrino mass model labelled with O1
8 in [40]. However, to

regularize the divergence in diagram T2B4 , the additional interaction (Qc)aIi(iτ
2)ij(L)iaS

I

is necessary, and this interaction generates a 1-loop neutrino mass diagram. Consequently,

this decomposition should be regarded as a 1-loop neutrino mass model.8 We also show

the 1-loop neutrino mass models that require an additional interaction with an additional

field (second Higgs doublet H ′) with bracket.9

The two contributions to 0νββ are compared in section 3 with some concrete examples.

The comparison is summarized at table 2. In short, the mass mechanism dominates 0νββ

if neutrino masses are generated at the tree or the 1-loop level. When neutrino masses are

generated from 2-loop diagrams, new physics contributions to 0νββ become comparable

with the mass mechanism contribution and can be large enough to be within reach of

the sensitivities of next generation experiments. However, the 2-loop neutrino masses

generated from the decompositions of the Babu-Leung operators of #3 and #4 are anti-

symmetric with respect to the flavour indices, such as the original Zee model and, thus, are

already excluded by oscillation experiments. Therefore, if we adopt those decompositions as

neutrino mass models, we must extend the models to make the neutrino masses compatible

with oscillation data. In such models, the extension part controls the mass mechanism

contribution and also the new physics contribution to 0νββ, and consequently, we cannot

compare the contributions without a full description of the models including the extension.

Nonetheless, it might be interesting to point out that decomposition #8 of the Babu-

Leung #3 contains the tensor operator Oten.
3a (e, e), which gives a contribution to 0νββ and

generates neutrino masses with the (e, e) component at the two-loop level. On the other

hand, 2-loop neutrino mass models inspired by decompositions of Babu-Leung #8 possess

a favourable flavour structure. This possibility has been investigated in section 3.3 with a

concrete example.

Note that reference [40] gives the decompositions for the d=7 operators, but does

not discuss long-range double beta decay. The long-range contribution [69] in left-right

symmetric models [37–39] corresponds to decomposition #14 in table 5. The leptoquark

mechanism [36] is encoded in decomposition #2 in tables 3 and 4, as well as decompositions

#2 and #3 in table 5. Further references to models studied previously in the literature are

given in the tables.

There is another category of lepton-number-violating effective operators, not contained

in the catalogue by Babu and Leung: operators with covariant derivatives Dρ. These

8We note that the same argument holds for all decompositions containing the scalar S3̄,1,1/3 listed in [27]

as 2-loop d = 7 models.
9Although the interaction (∂ρH)i(iτ

2)ijHjV
ρ listed in table 5 can be constructed only with the SM

Higgs doublets H and the vector mediator V of the d = 7 operator, the interaction does not appear in the

models where the vector mediator V is the gauge boson of an extra gauge symmetry. However, if we allow

the introduction of an additional Higgs doublet H ′, we can have the (∂ρH)iH
′†iV ρ through the mixing

between H and H ′.
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Eff. op. Decom. (mν)αβ

Λ7 [GeV]

suggested

by mν = 0.05 eV

AMM/ALR

LLdRQH #1,3,4,5,6,9 v2

Λ ∼ 1015 Λ2

pF v
∼ 1028

#2,7,8 yb
16π2

v2

Λ ∼ 1011 yb
16π2

Λ2

pF v
∼ 1017[

#1, 3, 5, 8 ybg
2

(16π2)2
v2

Λ (α 6= β) ∼ 108 ybg
2

(16π2)2
Λ2

pF v
∼ 109

]
LLQuRH #1,3,4,5,6,8,9 v2

Λ ∼ 1015 Λ2

pF v
∼ 1028

#2,7,8 yt
16π2

v2

Λ ∼ 1012 yt
16π2

Λ2

pF v
∼ 1021[

#1, 3, 5, 8 ytg2

(16π2)2
v2

Λ (α 6= β) ∼ 1010 ytg2

(16π2)2
Λ2

pF v
∼ 1014

]
LeRdRuRH #5,8,14 v2

Λ ∼ 1015 Λ2

pF v
∼ 1028

#2,12 yt
16π2

v2

Λ ∼ 1012 yt
16π2

Λ2

pF v
∼ 1021

#3,11 yb
16π2

v2

Λ ∼ 1011 yb
16π2

Λ2

pF v
∼ 1017

#1,4,6,7,9,
10,13,15 y`β

ybytg
2

(16π2)2
v4

Λ3 ∼ 103 (β = τ) ye
ybytg

2

(16π2)2
v
pF
∼ 10−9

Table 2. Comparison between the amplitude ALR of new physics long-range contributions to 0νββ

and that AMM of the mass mechanism. When the neutrino mass is generated at the tree and one-

loop level, the new physics scale Λ7 must be sufficiently high to reproduce the correct size of neutrino

masses, consequently, the long-range contributions ALR are suppressed and the mass mechanism

dominates the contribution to 0νββ. As usual in such operator analysis, these estimates do not

take into account that some non-SM Yukawa couplings, appearing in the ultra-violet completion of

the operators, could be sizably smaller than one, which would lead to lower scales Λ7. Also, for loop

model the scales could be overestimated, since they neglect loop integrals. The neutrino masses

generated at the two-loop level from the decompositions of the Babu-Leung #8 operator should

be estimated with d = 7 LLHHHH† operator (as illustrated in section 3.3). In addition, they

receive additional suppression from the lepton Yukawa coupling y`β , which further lowers the new

physics scale Λ7. Note that in particular for the 2-loop d = 7 models, as the concrete example in

section 3.3 shows, the estimate for AMM/ALR can vary by several orders of magnitude, depending

on parameters. However, both the estimate shown here and the explicit calculation in section 3.3

give numbers AMM/ALR � 1 , such that the long-range contribution dominates always over the

mass mechanism for these decompositions.

have been intensively studied in refs. [41, 42, 55]. The derivative operators with mass

dimension seven are classified into two types by their ingredient fields; one is DρD
ρLLHH

and the other is DρLγ
ρeRHHH. With the full decomposition, it is straightforward to

show that the tree-level decompositions of the first type must contain one of the seesaw

mediators. Therefore, the neutrino masses are generated at the tree level and the mass

mechanism always dominate the contributions to 0νββ. The decompositions of the second

type also require the scalar triplet of the type II seesaw mechanism when we do not employ

vector fields as mediators, and the new physics contributions to 0νββ become insignificant

again compared to the mass mechanism. In ref. [55], the authors successfully obtained

the derivative operator (eRcγ
ρLiτ2~τ ~WρH

′)(Hiτ2H ′) at the tree level and simultaneously
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# Decompositions Mediators Projection to the basis ops. mν@tree mν@1loop mν@2loop

#1 (LαLβ)(H)(dRQ) S(1,1)+1 S′(1,2)+ 1
2

−O3a(α, β) —
TνI-ii

w.`RLS
′†

T2B
4 (α 6= β)

O7
3 in [40]

S(1,3)+1 S′(1,2)+ 1
2

−O3b(α, β)−O3b(β, α) type II

#2 (LαQ)(H)(dRLβ) S(3,1)+ 1
3

S′(3,2)− 1
6

1
2O3b(α, β)− 1

2Oten.
3b (α, β) —

TνI-ii [58]

O8
3 in [40]

[15, 75]

S(3,3)+ 1
3

S′(3,2)− 1
6

1
2O3a(α, β)− 1

2Oten.
3a (α, β)

−1
2O3b(β, α)− 1

2Oten.
3b (β, α)

—
TνI-ii [58]

O9
3 in [40]

[15]

#3 (LαLβ)(Q)(dRH) S(1,1)+1 ψL,R(3,2)− 5
6

−O3a(α, β) —

[
TνI-ii

w.S†HH ′

]
T2B

1 (α 6= β)

O1
3 in [40]

S(1,3)+1 ψL,R(3,2)− 5
6

−O3b(α, β)−O3b(β, α) type II

#4 (LαH)(Q)(dRLβ) ψR(1,1)0 S(3,2)− 1
6

1
2O3b(β, α) + 1

2Oten.
3b (β, α) type I

ψR(1,3)0 S(3,2)− 1
6

−1
2O3a(α, β) + 1

2Oten.
3a (α, β)

−1
2O3b(α, β) + 1

2Oten.
3b (α, β)

type III

#5 (LαLβ)(dR)(QH) S(1,1)+1 ψL,R(3,1)+ 2
3

O3a(α, β) —

[
TνI-ii

w.S†HH ′

]
T2B

2 (α 6= β)

O2
3 in [40]

S(1,3)+1 ψL,R(3,3)+ 2
3

−O3b(α, β)−O3b(β, α) type II

#6 (LαQ)(dR)(LβH) S(3,1)+ 1
3

ψR(1,1)0 −1
2O3b(α, β) + 1

2Oten.
3b (α, β) type I

S(3,3)+ 1
3

ψR(1,3)0

1
2O3a(α, β)− 1

2Oten.
3a (α, β)

−1
2O3b(β, α)− 1

2Oten.
3b (β, α)

type III

#7 (LαQ)(Lβ)(dRH) S(3,1)+ 1
3

ψL,R(3,2)− 5
6

1
2O3b(α, β)− 1

2Oten.
3b (α, β) —

TνI-iii

O4
3 in [40]

S(3,3)+ 1
3

ψL,R(3,2)− 5
6

1
2O3a(α, β)− 1

2Oten.
3a (α, β)

−1
2O3b(β, α)− 1

2Oten.
3b (β, α)

—
TνI-iii

O5
3 in [40]

#8 (dRLα)(Lβ)(QH) S(3,2)+ 1
6

ψL,R(3,1)+ 2
3
−1

2O3a(α, β)− 1
2Oten.

3a (α, β) — —

T2B
2 (mν)α 6=β

O3
3 in [40],

[48]

S(3,2)+ 1
6

ψL,R(3,3)+ 2
3

1
2O3b(α, β) + 1

2Oten.
3b (α, β)

+1
2O3b(β, α)− 1

2Oten.
3b (β, α)

—
TνI-iii

O6
3 in [40]

#9 (LαH)(Lβ)(dRQ) ψR(1,1)0 S(1,2)+ 1
2

O3b(β, α) type I

ψR(1,3)0 S(1,2)+ 1
2

O3a(α, β) +O3b(α, β) type III

Table 3. Decompositions and projections of the LLdRQH operator. New physics contributions

to 0ν2β are given as the combinations of the basis operators in the “Projection to the basis ops.”

column. The tensor operators Oten. play an important role in the long-range contribution. The long-

range contribution in R-parity violating SUSY models corresponds to decomposition #2 [34, 35].
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# Decompositions Mediators Projection to the basis ops. mν@tree mν@1loop mν@2loop

#1 (LαLβ)(H)(QuR) S(1,1)+1 S′(1,2)+ 1
2

−O4b(α, β) —
TνI-ii

w.eRLS
′†

T2B
4 (α 6= β)

O3
4 in [40]

S(1,3)+1 S′(1,2)+ 1
2

O4a(α, β) +O4a(β, α) type II

#2 (QLα)(H)(LβuR) V (3,1)+ 2
3

V ′(3,2)+ 1
6

2O4a(α, β) — TνI-ii

V (3,3)+ 2
3

V ′(3,2)+ 1
6

2O4a(β, α)− 2O4b(α, β) — TνI-ii

#3 (LαLβ)(Q)(uRH) S(1,1)+1 ψL,R(3,2)+ 7
6

O4b(α, β) —

[
TνI-ii

w.S†HH ′

]
T2B

1 (α 6= β)

O3
4 in [40]

S(1,3)+1 ψL,R(3,2)+ 7
6

O4a(α, β) +O4a(β, α) type II

#4 (LαH)(Q)(LβuR) ψR(1,1)0 V (3,2)+ 1
6

2O4a(β, α) type I

ψR(1,3)0 V (3,2)+ 1
6

−2O4a(α, β) + 2O4b(α, β) type III

#5 (LαLβ)(uR)(QH) S(1,1)+1 ψL,R(3,1)+ 1
3

O4b(α, β) —

[
TνI-ii

w.S†HH ′

]
T2B

2 (α 6= β)

O2
4 in [40]

S(1,3)+1 ψL,R(3,3)+ 1
3

O4a(α, β) +O4a(β, α) type II

#6 (QLα)(uR)(LβH) V (3,1)+ 2
3

ψR(1,1)0 2O4a(α, β) type I

V (3,3)+ 2
3

ψR(1,3)0 −2O4b(α, β)− 2O4a(β, α) type III

#7 (QLα)(Lβ)(uRH) V (3,1)+ 2
3

ψL,R(3,2)+ 7
6

−2O4a(α, β) — TνI-iii

V (3,3)+ 2
3

ψL,R(3,2)+ 7
6

2O4b(α, β) + 2O4a(β, α) — TνI-iii

#8 (LuR)(L)(QH) V (3,2)− 1
6

ψL,R(3,1)− 1
3

2O4b(α, β) — — T2B
2 (α 6= β)

V (3,2)− 1
6

ψL,R(3,3)− 1
3

2O4a(α, β) + 2O4a(β, α) — TνI-iii

#9 (LH)(L)(QuR) ψR(1,1)0 S(1,2)+ 1
2

−O4a(β, α) type I

ψR(1,3)0 S(1,2)+ 1
2

−O4a(α, β) +O4b(α, β) type III

Table 4. Decomposition and projection of the LLQuRH operator.
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# Decompositions Mediators
Projection to

the basis ops.
mν@tree mν@1loop mν@2loop

#1 (LαeRβ)(H)(dRuR) V (1,2)+ 3
2

V ′(1,1)−1 O8(α, β) —

[
TνI-i

w. ∂HHV ′

]
2× T2B

4

#2 (LαuR)(H)(dReRβ) V (3,2)− 1
6

V ′(3,1)− 2
3

O8(α, β) —
TνI-ii

w. QLV ′†
T2B

2 +T2B
4

#3 (dRLα)(H)(uReRβ) S(3,2)+ 1
6

S′(3,1)− 1
3

1
2O8(α, β) —

TνI-ii

w. QLS′†

T2B
2 +T2B

4

O4
8 in [40],

[75]

#4 (LαeRβ)(uR)(dRH) V (1,2)+ 3
2

ψL,R(3,2)− 5
6

O8(α, β) — — T2B
1 +T2B

2

#5 (LαH)(uR)(dReRβ) ψR(1,1)0 V (3,1)− 2
3

O8(α, β) type I

#6 (dRLα)(uR)(eRβH) S(3,2)+ 1
6

ψL,R(1,2)− 1
2

1
2O8(α, β) — —

T2B
1 +T2B

2

O2
8 in [40]

#7 (LαeRβ)(dR)(uRH) V (1,2)+ 3
2

ψL,R(3,2)+ 7
6

O8(α, β) — — T2B
1 +T2B

2

#8 (LαH)(dR)(uReRβ) ψR(1,1)0 S(3,1)− 1
3

1
2O8(α, β) type I

#9 (LαuR)(dR)(eRβH) V (3,2)− 1
6

ψL,R(1,2)− 1
2

O8(α, β) — — T2B
1 +T2B

2

#10 (eRβH)(Lα)(dRuR) ψL,R(1,2)+ 1
2

V (1,1)+1 −O8(α, β) —

[
TνI-ii

w. ∂HHV

]
2× T2B

4

#11 (eRβuR)(Lα)(dRH) S(3,1)+ 1
3

ψL,R(3,2)− 5
6

−1
2O8(α, β) —

TνI-iii

w. QLS
T2B

2 +T2B
4

O1
8 in [40]

#12 (dReRβ)(Lα)(uRH) V (3,1)+ 2
3

ψL,R(3,2)+ 7
6

O8(α, β) —
TνI-iii

w. QLV
T2B

2 +T2B
4

#13 (LαuR)(eRβ)(dRH) V (3,2)− 1
6

ψL,R(3,2)− 5
6

−O8(α, β) — — 2× T2B
2

#14 (LαH)(eRβ)(dRuR) ψR(1,1)0 V (1,1)+1 O8(α, β) type I

#15 (dRLα)(eRβ)(uRH) S(3,2)+ 1
6

ψL,R(3,2)+ 7
6

1
2O8(α, β) — —

2× T2B
2

O3
8 in [40]

Table 5. Decomposition of the LeRuRdRH operator. The long-range contribution [69] in left-right

symmetric models [37–39] corresponds to decomposition #14 .

avoided the tree-level neutrino mass with the help of a second Higgs doublet H ′(1,2)+1/2

and a Z2 parity which is broken spontaneously. Here we restrict ourselves to use the

ingredients obtained from decompositions and do not discuss such extensions. Within our

framework, the derivative operators are always associated with tree-level neutrino masses.

In this study, we have mainly focused on the cases where the new physics contributions

give a considerable impact on the 0νββ processes. Therefore, we do not go into the details

of the decompositions of the derivative operators.
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