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1 Introduction

It is conjectured that the type IIB superstring theory possesses SL(2,Z) non-perturbative

duality. The first evidence follows from the manifestly SL(2,R)-invariance of type IIB su-

pergravity effective action [1, 2] for recent excellent review see [3]. Further evidence follows

from the spectrum of non-perturbative objects that are present in type IIB theory:Dp-

branes with p = 1, 3, 5, 7, 9 [4], fundamental string and NS5-brane.1 It was argued that

under S-duality fundamental string maps to D1-brane, D5-brane maps to NS5-brane and

so on. On the other hand we know that macroscopic extend objects are sources of su-

pergravity fields and hence it is possible to find corresponding background solutions that

solve the supergravity equations of motions. Well known examples of such solutions are

fundamental string solution [9] or NS5-brane solution [10]. Then with the help of the

SL(2,R)-covariance of type IIB supergravity action new solutions corresponding to (p, q)-

string were found in [7]. In fact, the existence of this solution serves as a further evidence

of SL(2,Z)-duality of type IIB string theory. The main idea of this construction is to start

with fundamental string solution and performs SL(2,R) rotation. Then the requirement

that the resulting configuration has to have integer charge in some units fixes entries of this

matrix as functions of these charges and asymptotic values of dilaton and Ramond-Ramond

one form. It is important to stress that this solution depends on one harmonic function

with manifestly SL(2,R)-covariant coefficient. Then this method was applied for the con-

struction of (p, q)-five brane backgrounds in [17]. These very interesting backgrounds were

analyzed recently from the (m,n)-string probe point of view in [8] and it was shown that

when we perform SL(2,R) rotation that maps the macroscopic (p, q)-string background to

1For a review, see [5, 6].
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the fundamental string background the probe string does not transform in the expected way

since now it carries non-integer charge with respect to NSNS two form. The same situation

also occurs in case of (p, q)-five brane background. It was suggested there that the resolu-

tion of this puzzle could be found when we consider a full type IIB superstring theory that

is invariant under SL(2,Z)-subgroup of SL(2,R). This paper is devoted to this analysis.

We propose that it is natural to search for the (p, q)-macroscopic string solution with

the presence of the source which is manifestly SL(2,R) covariant (p, q)-string action [18–22].

However the fact that there is no fractional string or D-brane charges demands that the

proper invariant group of type superstring theory is SL(2,Z) rather than SL(2,R) group and

this group should be used for the construction of (p, q)-macroscopic string and five brane

solutions.2 With the help of this argument we will be able to find supergravity solutions

corresponding to (p, q)-macroscopic string and five branes that have correct NSNS and

RR charges and where the (m,n)-string probe has the expected properties. We show that

these solutions depend on two harmonic functions which is different from the solutions

found in [7, 17] which however reflects the fact that (p, q)-string can be considered as

the bound state of p-fundamental string and q-D1-branes even if this bound state is not

threshold and hence harmonic superposition rules cannot be applied for it [23].

As the next step we extend this analysis to the case of NS5-brane whose supergravity

solution has been known for a long time [10]. We perform SL(2,Z) transformation of

this solution and find new solution corresponding to (d,−b)-five brane. This solution

is characterized by two harmonic functions whose parameters depend on the charges of

(d,−b)-five brane and on the asymptotic values of moduli. We also analyze (m,n)-string

probe in this background and we show that it is equivalent to the dynamics of (m′, n′)-

string in original NS5-brane background where m′, n′ are integers that again explain the

puzzle found in [8].

Finally we consider SL(2,Z) transformed solution of a bound state of Q5 NS5-branes

wrapped on four torus andQ1 fundamental strings that are smeared over this four torus [11].

We find solution that is characterized by four harmonic functions that depend on the moduli

of this solution and charges with respect to RR and NSNS two forms. This solution has

also an interesting near horizon limit which is AdS3 × S3 with mixed three form fluxes

with integer charges. Integrability of superstring in this background was studied recently

in [28]. The main idea of this paper is to start with the pure RR background when the new

WZ term that represents the coupling to the NSNS flux is added. Using this construction

many new interesting results were derived [29–35]. It is important to stress that in all

these works the value of NSNS flux can be interpreted as the deformation parameter that

takes any real value from the interval (0, 1). This is perfectly consistent from the point

of view of perturbative string theory since classical string does not couple to the dilaton.

On the other hand this approximation certainly breaks down when we consider D1-brane

in this background that couples to the dilaton through Dirac-Born-Infeld action. In order

to analyze D1-brane in the AdS3 × S3 with mixed three form fluxes we have to have

2Even if five brane solutions are source free we can consider solutions where the source is covariant

(p, q)-five brane action [22] that electrically couples to doublets of six forms that are dual to NSNS and RR

two forms.

– 2 –



J
H
E
P
0
6
(
2
0
1
6
)
0
0
2

background with explicit values od dilaton and RR zero form too. It is natural to presume

that such a background arises as the near horizon limit of the SL(2,Z)-transformed solution

corresponding to the bound state of NS-five branes and fundamental strings. We show

that this is really true. More explicitly, we show that SL(2,Z)-transformation and near

horizon limit commutes which is a generalization of the commutativity of S-duality and

near horizon limit found in [14].3 Then we study (m,n)-string in AdS3 × S3 background

with mixed three form fluxes and using the fact that the near horizon limit and SL(2,Z)-

transformation commutes we can map this (m,n)-string to the (m′, n′)-string in AdS3×S3

background with NSNS two form flux. We show that for the special value of (m,n) charges

the (m,n)-string in the AdS3 × S3 background is equivalent to the fundamental string in

AdS3×S3 background with NSNS three form flux that can be described by standard CFT

techniques [12, 14–16]. Of course, this result does not solve the problem of the analysis of

fundamental string in AdS3×S3 with mixed fluxes which is very complicated and deserves

very special treatment [36].

This paper is organized as follows. In the next section 2 we review the basic fact about

type IIB low energy effective theory and suggest the main idea how to derive SL(2,Z)-

transformed solutions of type IIB supergravity equations of motion. In section 3 we apply

this procedure to the case of (p, q)-string background. In section 4 we perform the same

analysis in case of (p, q)-five brane background and we extend this analysis to the bound

state of NS5-branes and fundamental strings in section 5. In section 6 we take the near

horizon limit of this solution and analyze its properties. Finally in conclusion 7 we outline

our results and suggest possible extension of this work.

2 SL(2,Z) covariance of type IIB string theory

In this section we review the basic facts about bosonic content of the type IIB low energy

effective action and we present the general idea of how to find SL(2,Z) transformed solution.

The type IIB theory has two three-form field strengths H = dB, F = dC(2), where H

corresponds to NSNS three form while F belongs to RR sector and does not couple to the

usual string world-sheet. Type IIB theory has also two scalar fields that can be combined

into a complex field τ = χ+ ie−Φ. The dilaton Φ is in the NSNS sector while χ belongs to

the RR sector. The other bosonic fields are the metric gMN in Einstein frame and self-dual

five form field strength F5. However this field can be consistently set to zero for solutions

that we study in this paper and hence we do not include it to the action. Then it is possible

3In some way near horizon limit conforms to Geroch’s criteria of limiting spacetimes [38] which could

imply that the limiting process and duality transformations commute. On the other hand it is not completely

clear whether SL(2,Z)-duality of type IIB theory could be considered as an isometry of this space-time

so that it is useful to check explicitly the commutativity SL(2,Z)-duality transformations and the near

horizon limit. On the other hand SL(2,Z)-duality of type IIB theory can be considered as a symmetry

of the compactification of M-theory on two-torus so that it is possible that by uplifting NS5-brane and

funamdental string background solution to the corresponding M-theory background with manifest SL(2,Z)-

isometry Geroch’s criteria of limiting space-time can be applied.
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to write down SL(2,R) covariant form of the bosonic part of type IIB effective action

SIIB =
1

2κ̃2
10

∫
d10x
√
−g
(
R+

1

4
Tr(∂MM∂MM−1)− 1

12
HT
MNPMHMNP

)
,

2κ̃2
10 = (2π)7α′4 , (2.1)

where we have combined B,C(2) into

H = dB =

(
dB

dC(2)

)
(2.2)

and where

M = eΦ

(
ττ∗ χ

χ 1

)
= eΦ

(
χ2 + e−2Φ χ

χ 1

)
, detM = 1 . (2.3)

This action has manifest invariance under the global SL(2,R) transformation

M̂ = ΛMΛT , B̂ = (ΛT )−1B , (2.4)

where

Λ =

(
a b

c d

)
, detΛ = ad− bc = 1 . (2.5)

Let us now introduce an action for (m,n)-string that couples electrically to NSNS and RR

two form and hence can be considered as a source for corresponding fields. The action for

(m,n)-string has the form4

S(p,q) = −TD1

∫
dτdσ

√
mTM−1m

√
−detgMN∂αxM∂βxN+

+ TD1

∫
dτdσmTBMN∂τx

M∂σx
N , m =

(
m

n

)
, (2.6)

where TD1 = 1
2πα′ . The action (2.6) is invariant under global transformations (2.4) on

condition that m transforms as

m̂ = Λm . (2.7)

In this notation m counts the number of fundamental strings while n counts the number

of D1-branes and hence they have to be integer. This fact implies that Λ ∈ SL(2,Z). In

other words SL(2,R) invariance of type IIB low energy effective action is broken to its

SL(2,Z) subgroup due to the charge quantization condition. As a consequence the action

that includes both type IIB effective action and string probe action

S = SIIB + S(p,q) (2.8)

is invariant under SL(2,Z) group rather than under SL(2,R) group. This fact will have a

crucial consequence for the construction of (p, q)- string and five brane solutions.

4For recent discussion, see [8].
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Using this basic result we now present the main idea how to derive supergravity solution

with (p, q)-fundamental string as a source. Observe that we can write(
p

q

)
=

(
p b

q d

)(
1

0

)
⇒m(p, q) = Λ(p, q)mF , pd− bq = 1 (2.9)

and hence (p, q)-string action has the form

S(p,q) = −TD1

∫
dτdσ

√
mT
FM̃−1mF

√
−detgMN∂αxM∂βxN+

+ TD1

∫
dτdσmT

F B̃MN (p, q)∂τx
M∂σx

N , (2.10)

where

M̃ = Λ−1(p, q)M(p, q)(ΛT (p, q))−1 , B̃ = ΛT (p, q)B(p, q) . (2.11)

Then with the manifest SL(2,R) invariance of the Type IIB effective action we find that

it has the form

SIIB =
1

2κ̃2
10

∫
d10x
√
−g
(
R+

1

4
Tr(∂MM̃∂MM̃−1)− 1

12
H̃T
MNPM̃H̃MNP

)
(2.12)

so that M̃ and B̃ have the same functional form as corresponding fields in case of fun-

damental string as the source so that we denote its value with superscript F and omit

tilde over them. In other words we find following components of M(p, q) and B(p, q)

corresponding to the (p, q)-string as a source:

M(p, q) = Λ(p, q)MFΛT (p, q) ,B(p, q) = (ΛT )−1(p, q)BF . (2.13)

In this case the electric charge corresponding to this background has the form

q(p,q) =
1

2κ̃2
10

∫
S8

M ?H = Λ(p, q)
1

2κ̃2
10

∫
S8

MF ?HF =

(
p

q

)
qF , (2.14)

where qF = 1
2πα′ is the electric charge of the fundamental string.

In case of solitonic (p, q)-brane we can argue in the similar way with the difference that

this is a magnetic solution that is source free. Further, the charge transforms in the same

way as corresponding field strength

q5
(d,−b) =

1

2κ̃2
10

∫
S3

H(p, q) = (ΛT )−1(p, q)
1

2κ̃2
10

∫
S3

HF =

(
d

−b

)
qNS5 , (2.15)

where qNS5 = 1
(2π)5α′3 is the magnetic charge of NS5-brane. After the outline of this

general procedure we proceed in next sections to the explicit construction of the SL(2,Z)-

transformed solutions.
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3 SL(2,Z)-string solution

Let us start with the fundamental string solution [9]

ds2 = GFMNdx
MdxN =

1

HF
dx2

II + dx2
⊥ , Hm01 = ∂mH

−1
F ,

eΦ = gs
1√
HF

, HF = 1 +
αg2

s

r6
, α =

(2π)6α′3

6Ω7
, B01 =

1

HF
− 1 , (3.1)

where dx2
II = −dt2 + dx2

1 , dx
2
T = dxmdx

m ,m = 2, . . . , 9, r2 = xmx
m and where the line

element is expressed in string frame. We use the notation where small gMN corresponds to

the Einstein frame metric while GMN corresponds to the string frame metric. Note that

these two metrics are related by rescaling

gMN = e−Φ/2GMN . (3.2)

Since gMN is invariant under SL(2,Z) transformation we derive relation between trans-

formed and original string frame metrics

ĜMN = e
1
2

(Φ̂−Φ)GMN . (3.3)

Now we are ready to find solution that will be defined as SL(2,Z) transformation of the

solution (3.1) where the matrix Λ has the form Λ =

(
a b

c d

)

χ̂ =
ace−2Φ + bd

c2e−2Φ + d2
, e−Φ̂ =

e−Φ

c2e−2Φ + d2
,

ĜMN =
√
c2e−2Φ + d2GMN ,

B̂MN = dBMN , Ĉ
(2)
MN = −bBMN , ad− bc = 1 . (3.4)

As we argued in the previous section the new solutions have the charges(
qFNS

qFRR

)
=

(
a

c

)
gF . (3.5)

Now we write explicitly SL(2,Z)-transformed line element

dŝ2 =

√
c2 + d2g2

s

gs

√
1 +

c2

c2 + d2g2
s

αg2
s

r6
(H−1

F dx2
II + dx2

⊥) . (3.6)

We see that it is natural to perform rescaling of the coordinates

(c2 + d2g2
s)

1/4

√
gs

xM = x̂M ⇒ r6 = r̂6 g3
s

(c2 + d2g2
s)

3/2
. (3.7)

On the other hand the solution found above still depends on the string coupling gs of the

original solution and non-physical parameters b, d that appear in Λ. However we would

like to express the new solution using the assymptotic values of Φ̂ and χ̂ together with a

– 6 –
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and c that correspond to qFNS and qRNS charges. In order to do this we take the limit r →∞
in e−Φ̂ and χ̂ given in (3.4) and we obtain

lim
r→∞

e−Φ̂ =
1

ĝs
=

gs
c2 + d2g2

s

,

lim
r→∞

χ̂ ≡ χ0 =
ac+ bdg2

s

c2 + d2g2
s

. (3.8)

If we multiply the last equation with c and use the fact that ad− bc = 1 we obtain

gsd = ĝs(a− cχ0) , gs =
1

ĝs
(c2 + ĝ2

s(a− cχ0)2) . (3.9)

Then we define two harmonic functions

Ĥ ≡ HF (r̂) = 1 +
αĝs
√
c2 + ĝ2

s(a− cχ0)2

r̂6
,

Ĥ ′ = 1 +
c2√

c2 + ĝ2
s(a− cχ0)2

αĝs
r̂6

(3.10)

so that the line element has the final form

dŝ2 =
√
Ĥ ′(Ĥ−1dx̂2

II + dx̂2
⊥) . (3.11)

As a check note that for a = χ0 = 0 we obtain that Ĥ = Ĥ ′ ≡ H(0,1) and hence

dŝ2 =
1√
H(0,1)

dx̂2
II +

√
H(0,1)dx̂

2
⊥ , H(0,1) = 1 +

αĝs
r̂6

(3.12)

which corresponds to the line element of the D1-brane which is S-dual to the fundamental

string solution.

Finally we express dilaton as a function of Ĥ and Ĥ ′

e−Φ̂ =
1

ĝs

√
Ĥ

Ĥ ′
(3.13)

and find components of NSNS and RR two forms in the new coordinates x̂. To do this we

use the fact that

B̂ = dBMNdx
M ∧ dxN =

ĝs(a− cχ0)√
c2 + ĝ2

s(a− cχ0)2
BMNdx̂

M ∧ dx̂M (3.14)

and consequently

B̂01 =
ĝs(a− cχ0)√

c2 + ĝ2
s(a− cχ0)2

(
1

Ĥ(x̂)
− 1

)
. (3.15)

In the same way we find

Ĉ01 =
c− ĝ2

s(a− cχ0)χ0

ĝs
√
c2 + ĝ2

s(a− cχ0)2

(
1

Ĥ(x̂)
− 1

)

– 7 –
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using b = ad−1
c . In summary, we claim that the supergravity solution corresponding to

(a, c)-string has the form

dŝ2 =
√
Ĥ ′(Ĥ−1dx̂2

II + dx̂2
⊥) , e−Φ̂ =

1

ĝs

√
Ĥ

Ĥ ′
, (3.16)

B̂01 =
ĝs(a− cχ0)√

c2 + ĝ2
s(a− cχ0)2

(
1

Ĥ(x̂)
− 1

)
, Ĉ01 =

c− ĝ2
s(a− cχ0)χ0

ĝs
√
c2 + ĝ2

s(a− cχ0)2

(
1

Ĥ(x̂)
− 1

)

Ĥ = 1 +
αĝs
√
c2 + ĝ2

s(a− cχ0)2

r̂6
, Ĥ ′ = 1 +

c2√
c2 + ĝ2

s(a− cχ0)2

αĝs
r̂6

.

It is instructive to compare this solution with (a, c)-fundamental string solution found

in [7]. The main difference is that our solution depends on two harmonic functions as

opposite to the solution derived in [7]. In some way this is a reflection of the fact that

we have a bound state of D1-brane and fundamental string even if this superposition does

not correspond to the harmonic superposition rule [23] as this bound state is not marginal.

Further, the arguments of the harmonic functions are different from the expression used

in [7] which however implies that our solution is defined with the help of SL(2,Z) matrix

rather than SL(2,R) matrix that was used in [7]. As a consequence the solution (3.16)

behaves consistently from the probe (m,n)-string point of view. To see this explicitly let

us consider probe (m,n)-string in this background when the action has the form

S(m,n) = −TD1

∫
dτdσ

√
mTM̂−1m

√
−detĝMN∂αx̂M∂βx̂N+

+ TD1

∫
dτdσmT B̂MN∂τ x̂

M∂σx̂
N , (3.17)

where ĝMN is the Einstein frame metric in rescaled coordinates

ĝMN =
ĝs√

c2 + ĝ2
s(a− cχ0)2

gMN (r̂) . (3.18)

However due to the fact that the pullback of the Einstein metric and two forms is invariant

under rescaling by definition we can easily use the original variables x instead of x̂. Then

the probe action has the form

S(m,n) = −TD1

∫
dτdσ

√
m′2 + n′2e−2ΦF

√
−detGFMN∂αx

M∂βxN+

+ TD1

∫
dτdσm′BF

MN∂τx
M∂σx

N , (3.19)

where

m′ =

(
m′

n′

)
=

(
dm− bn
−cm+ an

)
. (3.20)

From the previous action we see that the problem of the analysis of the dynamics of

(m,n)-string in (a, c)-string background is reduced to the analysis of (m′, n′)-string in

the fundamental string background where m′, n′ are evaluated at (3.20). The beautiful

– 8 –
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analysis of this problem was performed in [24] and we will not reviewed it here. We

also see that for m = a, n = c we obtain that m′ = 1, n′ = 0 which is again consistent

with the picture of probe F-string in fundamental string background that is rotated by

SL(2,Z) transformation. In other words our solution solves the issue that was found in our

previous paper [8].

4 (d,−b)-five brane solution

In this section we find (d,−b)-five brane solution when we perform SL(2,Z) transformation

of NS5-brane supergravity solution. Recall that this solution has the form [10]

ds2 = GNS5
MNdx

MdxN = dx2
II +HNS5dx

2
⊥ , eΦ = gsH

1/2
NS5 ,

HNS5 = 1 +
α′

r2
, HNS5

mnp = εmnpq∂qHNS5 , (4.1)

where dx2
II = ηµνdx

µdxν , µ, ν = 0, . . . , 5, dx2
⊥ = dxmdx

m ,m = 6, . . . , 9 , r2 = xmx
m. As in

previous section we perform SL(2,Z) transformations

χ̂ =
ace−2Φ + bd

c2e−2Φ + d2
, e−Φ̂ =

e−Φ

c2e−2Φ + d2
,

ĜMN =
√
c2e−2Φ + d2GNS5

MN , B̂MN = dBNS5
MN , Ĉ

(2)
MN = −bBNS5

MN . (4.2)

We will argue below that d and b are proportional to NSNS and RR magnetic charges of

five brane. For that reason we would like to express transformed solution as a function of

d, b together with the string coupling constant ĝs and assymptotic values of χ̂(0).

To begin with we note that the transformed line element has the form

dŝ2 =
√
c2 + d2g2

sHNS5
1

gs
(H
−1/2
NS5 dx2

II +H
1/2
NS5dx

2
⊥) . (4.3)

Now we observe that we can write

√
c2 + d2g2

sHNS5 =
√
c2 + d2g2

s

√
1 +

d2

c2 + d2g2
s

Nα′g2
s

r2
=
√
c2 + d2g2

sĤ
′1/2 . (4.4)

For r →∞ we obtain

lim
r→∞

e−Φ̂ =
1

ĝs
=

gs
c2 + d2g2

s

,

lim
r→∞

χ ≡ χ0 =
ac+ bdg2

s

c2 + d2g2
s

. (4.5)

Now if we multiply the first expression with d and use the fact that ad − bc = 1 we can

express c in terms of χ0, ĝs, d, b as

c = ĝsgs(dχ0 − b) (4.6)

and consequently

gs =
ĝs

ĝ2
s(dχ0 − b)2 + d2

. (4.7)
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We further rescale coordinates as

(ĝ2
s(dχ0 − b)2 + d2)1/4xM = x̂M ⇒ r2 =

r̂2√
ĝ2
s(dχ0 − b)2 + d2

(4.8)

and hence Ĥ and Ĥ ′ have the form

Ĥ = 1 +
Nα′

r̂2

√
ĝ2
s(dχ0 − b)2 + d2 ,

Ĥ ′ = 1 +
Nα′

r̂2

d2√
ĝ2
s(dχ0 − b)2 + d2

. (4.9)

Finally we determine components of RR and NSNS two forms. It is useful to express them

in covariant independent formulation and we obtain

Ĥ = 2

(
d

−b

)
α′ε3 , (4.10)

where ε3 is the volume of three sphere. As a check let us calculate NSNS magnetic charge

of (d,−b)-five brane

q5
NS =

1

2κ̃2
10

∫
S3

Ĥ = dqNS5 . (4.11)

In the same way we determine RR charge

q5
RR = −bqNS5 (4.12)

which is in agreement with the general result (2.15). Finally we determine the space-time

dependence of the dilaton

e−Φ̂ =
1

ĝs

√
Ĥ

Ĥ ′
. (4.13)

Now we proceed to the analysis of the probe (m,n)-string in this background. In the same

way as in previous section we find that the action has the form

S(m,n) = −TD1

∫
dτdσ

√
m′2 + n′2e−2ΦNS5

√
−detGNS5

MN∂αx
M∂βxN+

+ TD1

∫
dτdσm′BNS5

MN∂τx
M∂σx

N , (4.14)

where

m′ =

(
d −b
−c a

)(
m

n

)
=

(
dm− bn
−cm+ an

)
. (4.15)

As we could expect the (m,n)-action in (d,−b)-five brane background is equivalent to

the action of (m′, n′) string in the background of NS5-brane. The most interesting case

occurs for

m = a , n = c (4.16)

that implies m′ = 1, n′ = 0 and hence the action corresponds to the fundamental string

in NS5-brane action. In order to analyze main properties of this configuration we consider
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string stretched along x0, x1 directions, impose the static gauge x0 = τ, x1 = σ and finally

consider time dependent radial coordinate only. Then the induced metric has the form

gττ =
1
√
gs

(−H−1/4
NS5 +H

3/4
NS5Ṙ

2) , gσσ =
1
√
gs
H−1/4 , Ṙ =

dR

dt
(4.17)

and hence the action (4.14) has the form

S(a,c) = − 1

2πα′

∫
dτdσ

√
1−HNS5Ṙ2 . (4.18)

From (4.18) we see that there is no potential for the fundamental string probe in the NS5-

brane background which nicely demonstrates the fact that fundamental string together

with NS5-brane background can form marginal bound state. Expressing this fact in the

original variables, we see that there is no potential for (a, c)-string in (d,−b)-five brane

background whenever ad− bc = 1.

Another interesting case occurs for

m = b , n = d (4.19)

that implies m′ = 0, n′ = 1. In other words the dynamics of (b, d)-string in (d,−b)-five

brane background is equivalent to the motion of D1-brane in NS5-brane background. The

dynamics of this configuration was analyzed in [25] and we will not repeat it here. Finally

note that the motion of the general (m′, n′)-string in NS5-brane background is simple

generalization of the case of the electrified brane [26, 27]. Since this generalization is

trivial we will not repeat it here and recommend the original papers for more details.

5 SL(2,Z) transformation of NS5-brane and F-string bound state

In this section we perform SL(2,Z) transformation of the supergravity solution with Q1

fundamental strings and Q5-five branes that has the form [11]

e−2Φ =
1

g2
s

f−1
5 f1 , B05 =

1

f1
− 1 , Hmnp = εmnpq∂qf5 ,m, n, p, q = 1, 2, 3, 4 ,

ds2 = f−1
1 (−dt2 + dx2

5) + f5(dx2
1 + · · ·+ dx2

4) + (dx2
6 + · · ·+ dx2

9) , (5.1)

and where

f1 = 1 +
r2

1

r2
= 1 +

16π4g2
sα
′3Q1

V4r2
, f5 = 1 +

r2
5

r2
= 1 +

α′Q5

r2
, (5.2)

where r2 =
∑4

m=1 x
2
m, where xm are coordinates in the space transverse to NS5-branes

wrapped over four torus with volume V4 = (2π)4α′2v. This fact implies that each xi, i =

6, . . . , 9 are identified with period 2πv1/4α′1/2. Note also that the fundamental strings are

smeared over this four torus.

Let us now perform SL(2,Z) transformation of the background (5.1) and we find that

the charges corresponding to the fundamental strings and NS5-branes are equal to(
qFNS

qFRR

)
=

(
a

c

)
Q1qF ,

(
q5

NS

q5
RR

)
=

(
d

−b

)
Q5qNS5 (5.3)
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while the line element has the form

dŝ2 =

√
c2 + d2g2

s

gs

√
1 +

c2r2
1 + d2g2

sr
2
5

c2 + d2g2
s

1

r2
×

×
(

1

f1
√
f5

(−dt2 + dx2
5) +

√
f5(dx2

1 + · · ·+ dx2
4) +

1√
f5

(dx2
6 + · · ·+ dx2

9)

)
. (5.4)

We see that it is again natural to perform rescaling

(c2 + d2g2
s)

1/4

√
gs

xM = x̂M ⇒ r2 = r̂2 gs√
c2 + d2g2

s

. (5.5)

Further, in the limit r →∞ we have

1

ĝs
=

gs
c2 + d2g2

s

, χ0 =
ac+ bdg2

s

c2 + d2g2
s

(5.6)

and we again want to express f1 and f5 as functions of ĝs and χ0 together with the numbers

that are proportional to the corresponding charges. If we proceed in the same way as in

previous two sections we find

f̂1 = 1 +
16π4α3ĝsQ1

V̂4r̂2

√
c2 + ĝ2

s(a− cχ0)2 , (5.7)

where we also used the fact that under rescaling given above the coordinates x̂i, i = 6, . . . , 9

have identifications 2πv1/4α′(c2+d2g2s)1/4√
gs

and hence

V4 = V̂4
c2 + ĝ2

s(a− cχ0)2

ĝ2
s

. (5.8)

In case of f5 we proceed as in section 3 and we obtain

f5 = 1 +
α′Q5

√
ĝ2
s(dχ0 − b)2 + d2

r̂2
. (5.9)

Finally we write

1 +
c2r2

1 + d2g2
sr

2
5

c2 + d2g2
s

1

r2
= f̂ ′1 + f̂ ′5 − 1

f̂ ′1 = 1 +
16π4α′3Q1c

2ĝs

r̂2V̂4

√
c2 + ĝ2

s(a− cχ0)2
,

f ′5 = 1 +
α′Q5

r̂2

d2√
d2 + ĝ2

s(dχ0 − b)2
. (5.10)

Collecting all these results together we obtain the line element in the form

dŝ2 =

√
f̂ ′1+f̂ ′5−1

 1

f̂1

√
f̂5

(−dx̂2
0+dx̂2

5)+

√
f̂5(dx̂2

1 + · · ·+ dx̂2
4) +

1√
f̂5

(dx̂2
6 + · · ·+ dx̂2

9)


(5.11)
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while the dilaton and RR zero form are equal to

e−Φ̂ =
1

ĝs

√
f̂1f̂5

f̂ ′1 + f̂ ′5 − 1
,

χ̂ =
1

c2 + ĝ2
s(a− cχ0)2

acf̂1 + bd
ĝ2s

(c2 + ĝ2
s(a− cχ0)2)f̂5

f̂ ′1 + f̂ ′5 − 1
. (5.12)

Finally the non-zero RR and NSNS two and three forms have the form

Ĉ05 = − b√
c2 + ĝ2

s(a− cχ0)2

(
1

f̂1

− 1

)
,

B̂05 =
d√

c2 + ĝ2
s(a− cχ0)2

(
1

f̂1

− 1

)
. (5.13)

For the contribution from 5-branes we obtain

Ĥmnp = 2dQ5α
′(εS3)mnp , F̂mnp = −2bQ5α

′(εS3)mnp . (5.14)

As the check of the validity of our solution let us consider S-duality transformation when

a = b = 0 and c = 1, b = −1 that also implies χ0 = 0. Then it is easy to see that the

harmonic functions defined above have the form

f̂1 = f̂ ′1 = 1 +
16π4α′3ĝsQ1

V̂4r̂2
, f̂5 = 1 +

α′Q5ĝs
r̂2

, f̂ ′5 = 1 (5.15)

and hence the line element has the form

dŝ2 =
1√
f̂1f̂5

(−dx̂2
0 + dx̂2

5) +

√
f̂1f̂5(dx̂2

1 + · · ·+ dx̂2
4) +

√
f̂1√
f̂5

(dx̂2
6 + · · ·+ dx̂2

9) (5.16)

and dilaton

e−Φ̂ =
1

ĝs

√
f̂5

f̂1

(5.17)

which is precisely the D1-D5-brane background [12], for nice review see [13].

We are mainly interested in the near horizon limit of the background specified by

the equations (5.11), (5.12), (5.13) and (5.14) since we expect that it leads to AdS3 × S3

background with mixed fluxes. We shall do it in the next section.

6 Near horizon limit

We consider two ways how to perform the near horizon limit of SL(2,Z) transformed so-

lution of the bound state of NS-five branes and fundamental strings. In the first case we

firstly take the near horizon limit and then perform the SL(2,Z) transformation. In the sec-

ond one we consider opposite situation when we firstly perform the SL(2,Z) transformation

and then we take the near horizon limit. Finally we compare these two results.
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In the first case we start with the solution (5.1) and take its near horizon limit r � r1,5

and we obtain the background in the form

ds2 =
r2

r2
1

(−dt2 + dx2
5) +

r2
5

r2
(dx2

1 + · · ·+ dx2
4) + (dx2

6 + · · ·+ dx2
9) . (6.1)

Let us rescale the time and x5 coordinate as

r5

r1
dr = dt̂ ,

r5

r1
dx5 = dx̂5 (6.2)

so that the line element has the form

ds2 =
r2

L2
(−dt̂2 + dx̂2

5) +
L2

r2
dr2 + L2dΩ3 + (dx2

6 + . . . dx2
9) , L2 = r2

5 (6.3)

while the dilaton is constant and equal to

e−2Φ =
1

g2
s

r2
1

r2
5

. (6.4)

Note that thanks to the rescaling we have

Hr05 = 2
r

L2
(6.5)

so that the form H can be written using the volume element of AdS3 as

H =
2

L
εAdS3 , εAdS3 =

√
detgAdS3dr ∧ dt̂ ∧ dx̂5 . (6.6)

The flux from the NS5-brane source has the form

H = 2L2εS3 . (6.7)

Finally we introduce dimensionless coordinates on AdS3 in the following way

t̂ = Lt̃ , x̂5 = Lx̃5 (6.8)

so that εAdS3 = L3ε̃AdS3 and hence we obtain the result

H = 2L2(ε̃AdS3 + εS3) (6.9)

and the line element in the form

ds2 = L2

[
r̃2(−dt̃2 + dx̃2) +

dr̃2

r̃2
+ dΩ3

]
+ ds2

T =

= L2
[
ds2

ÃdS3
+ ds2

Ω3

]
+ ds2

T , (6.10)

where ds2
T = dx2

6 + · · ·+ dx2
9 and where ds2

˜AdS3
is the line element of AdS3 space expressed

using dimensionless variables.
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Since the solution given above is a consistent solution of type IIB supergravity it is

possible to perform SL(2,Z) transformation of this solution. As a result we obtain

ds̃2 =

√
c2

g2
s

r2
1

r2
5

+ d2
[
L2
[
ds2

ÃdS3
+ ds2

Ω3

]
+ ds2

T

]
. (6.11)

We see that the new solution has the curvature radius

L̃2 =

√
c2

g2
s

r2
1

r2
5

+ d2L2 =
r5

gs

√
c2r2

1 + d2g2
sr

2
5 . (6.12)

Further, there are following NSNS and RR three forms

H̃ = 2dα′Q5(ε̃AdS3 + εS3) , F̃ = −2bα′Q5(ε̃AdS3 + εS3) (6.13)

and dilaton and zero RR form are equal to

e−Φ̃ ≡ 1

ĝs
=

√
Q1Q5v

c2Q1 + d2Q5v
, χ̃ =

acQ1 + bdvQ5

c2Q1 + d2Q5v
. (6.14)

Let us now consider the case when we firstly perform SL(2,Z) duality transformation

and then take the near horizon limit. Explicitly, we begin with the SL(2,Z) transformed

background

dŝ2 =
1

gs

√
c2r2

1 + d2g2
sr

2
5

(
r2

r2
1r5

(−dt2 + dx2
5) +

r5

r2
dr2 + r5dΩ3 +

1

r5
(dx2

6 + · · ·+ dx2
9)

)
.

(6.15)

We rescale t and x5 coordinates as

t
1

gsr1

√
c2

1r
2
1 + d2g2

sr
2
5 = t̂ , x5 1

gs

√
c2

1r
2
1 + d2g2

sr
2
5 = x̂5 , (6.16)

so that the line element has the form

dŝ2 = r2 gs

r5

√
c2r2

1 + d2g2
sr

2
5

(−dt̂2 + dx̂2
5) +

r5

gs

√
c2r2

1 + d2g2
sr

2
5

dr2

r2
+

+
r5

gs

√
c2r2

1 + d2g2
sr

2
5dΩ2

3 +
1

gsr5

√
c2r2

1 + d2g2
sr

2
5(dx2

6 + . . . dx2
9) ,

(6.17)

where the expression on the first line corresponds to the line element of AdS3 × S3 with

the curvature radius

L̂2 =
r5

√
c2r2

1 + d2g2
sr

2
5

gs
= α′

√
c2Q1Q5 + d2Q2

5v

v
(6.18)

and we see that L̂ and L̃ coincide. In the same way we obtain

e−Φ̂ =

√
Q1Q5v

c2Q1 + d2Q5v
, χ̂ =

acQ1 + bdvQ5

c2Q1 + d2Q5v
(6.19)
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and we again see that these expressions coincide with Φ̃ and χ̃. Now we focus on the near

horizon limit of forms. In case of B̂05 we obtain

B̂05 =
g2
s

c2
1r

2
1 + d2g2

sr
2
5

r2 (6.20)

so that using the rescaled coordinates

t̂ = L̂t̃ , r̂ = L̂r̃ , x̂5 = L̂x̃5 (6.21)

we obtain

Ĥ = 2dQ5α
′
(
ε
ÃdS3

+ εS3

)
, F̂ = −2bQ5α

′
(
ε
ÃdS3

+ εS3

)
(6.22)

that agree with H̃ and F̃ . In summary we have shown the important result that the near

horizon limit and SL(2,Z) transformation commutes which implies that the AdS3 × S3

background with mixed fluxes can be derived from AdS3×S3 background through SL(2,Z)

rotation.

We will now analyze the consequences of this result on the dynamics of a probe string

in this background. Using the same arguments as in previous section we find the action in

the form

S = −TD1

∫
dτdσ

√
m′2 + n′2e−2ΦNS

√
−det(GNS

MN∂αx
M∂βxN )+

+ TD1

∫
dτdσm′BNS

MN∂τx
M∂σx

N , (6.23)

where

m′ =

(
m′

n′

)
=

(
dm− bn
−cm+ an

)
, (6.24)

and where ΦNS, G
NS
MN and BNS

MN correspond to the AdS3 × S3 with NSNS flux.

Now the equations of motion that follow from the action have the form

0 = ∂α

[
GNS
MN∂βx

Ngβα
√
−detgαβ

√
m′2 + n′2e−2ΦNS

]
− 1

2
∂MG

NS
KL∂αx

K∂βx
L
√
m′2 + n′2e−2ΦNS

+m′HNS
MKN∂τx

K∂σx
N , (6.25)

where

HNS = dBNS . (6.26)

To proceed further we use the fact that AdS3 × S3 is isomorphic to the group manifold

G = SU(1, 1) × SU(2). Explicitly, let g be the group element from G. Then it is possible

to write the metric (6.10) as

GNS
MN = L2E A

M E B
N KAB , (6.27)

where for the group element g ∈ G we have

J ≡ g−1dg = E A
M TAdx

M , (6.28)
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where TA is the basis of Lie Algebra G of the group G. Note that KAB = Tr(TATB).

Further, from the definition (6.28) we obtain

dJ + J ∧ J = 0 (6.29)

that implies

∂ME
A
N − ∂NE A

M + fABCE
B
M E C

N = 0 , (6.30)

where

[TB, TC ] = TAf
A
BC . (6.31)

In case of the flux (6.9) we have following relation:

HNS
MNKE

M
AE

N
BE

K
C = L2fABC . (6.32)

With the help of (6.32) we can write

EMCHMKL∂τx
K∂σx

L = L2fCABJ
A
τ J

B
σ , (6.33)

where EMA is inverse to E B
M defined as

EMAE
B
M = δBA , EMAE

A
N = δMN . (6.34)

Now with the help of (6.30) and (6.33) we can rewrite the equations of motion (6.25) to

the form that contains the current JAα = E A
M ∂αx

M

L2TD1KAB∂α

[
JBβ g

βα
√
−detgαβ

√
m′2 + n′2e−2ΦNS

]
+

+ L2TD1m
′fABCJ

B
τ J

C
σ = 0 , (6.35)

where

gαβ = KABJ
A
α J

B
β .

The equation (6.35) can be rewritten into the form

∂αĴ
Aα = 0 , ĴAα = L2TD1

(
JAβ g

βα
√
−detgαβ

√
m′2 + n′2e−2ΦNS +m′εαβJAβ

)
. (6.36)

We see that the current ĴAα is conserved. Following [35] we introduce an auxiliary metric

γαβ that obeys the equation

Tαβ ≡
1

2
γαβγ

µνgµν − gαβ = 0 . (6.37)

It is easy to see that this equation has solution γαβ = gαβ . If we further introduce light-cone

coordinates

σ+ =
1

2
(τ + σ) , σ− =

1

2
(τ − σ) (6.38)

we can rewrite the equation (6.36) into the form

∂+Ĵ
A+ + ∂−Ĵ

A− = 0 , ∂± =
∂

∂σ±
, (6.39)
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where

ĴA+ =
1

2
(ĴAτ + ĴAσ) =

=

√
λ

2

[√
m′2 + e−2ΦNSn′2

√
−γ
(
γταJAα + γσαJAα

)
+m′(JAσ − JAτ )

]
,

ĴA− =
1

2
(ĴAτ − ĴAσ) =

=

√
λ

2

[√
m′2 + e−2ΦNSn′2

√
−γ(γταJAα − γσαJAα ) +m′(JAσ + JAτ )

]
, (6.40)

where
√
λ = L2

2πα′ . As the next step we fix the auxiliary metric to have the form γαβ =

ηαβ , ηαβ = diag(−1, 1) keeping in mind that currents still have to obey the equation (6.37).

In this gauge ĴA± simplify considerably and we obtain

ĴA+ = −1

2
ĴA− =

√
λ

2

[
JAσ

(√
m′2 + n′2e−2ΦNS +m′

)
− JAτ

(√
m′2 + e−2ΦNSn′2 +m′

)]
,

ĴA− = −1

2
ĴA+ = −TD1

2

[
JAτ

(√
m′2 + e−2ΦNSn′2 −m′

)
+ JAσ

(√
m′2 + n′2e−2ΦNS −m′

)]
, (6.41)

where we introduced the light-cone metric with η+− = η−+ = −2, η+− = η−+ = −1
2 so

that ĴA+ = η+−ĴA− = −1
2 Ĵ

A
− , ĴA− = η−+ĴA− = −1

2 Ĵ
A
+ . We see that for

n′ = 0 (6.42)

the current ĴA+ vanishes identically and the equation (6.39) gives

∂+Ĵ
A
− = 0 , ĴA− = 2

√
λm′(JAτ − JAσ ) . (6.43)

Note that we can write Ĵ− = ĴA−TA = 2g−1∂−g. Then from (6.43) we obtain

1

2
∂+Ĵ− = −g−1∂+gg

−1∂−g + g−1∂−∂+gg
−1g = g−1∂−[∂+gg

−1]g = 0 (6.44)

so that there is second current Ĵ+ = ∂+gg
−1 that obeys the equation

∂−Ĵ+ = 0 . (6.45)

Our result shows that (a, c)-string in the (d,−b)-mixed flux background has two holo-

morphic and anti-holomorphic currents and can be analyzed in the same way as WZW

model [37] using powerful conformal field theory techniques. On the other hand it is im-

portant to stress that (m,n)-string in (d,−b)-background is still classically integrable for

any values of m,n [35].
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7 Conclusion

Let us outline results derived in this paper. We found type IIB supergravity solutions

corresponding to (p, q)-string and (p, q)-five brane backgrounds using SL(2,Z) covariance

of type IIB superstring theory. We showed that these solutions have the correct values

of charges and also that the probe (m,n)-string in this background can be mapped to

the (m′, n′)-string in the original fundamental or NS5-brane background where m′, n′ are

integers whose values are predicted by SL(2,Z) duality of type IIB superstring theory.

We also derived background that arises by SL(2,Z) transformation of the bound state of

Q5 NS5-branes and Q1 fundamental strings. Then we considered its near horizon limit

and argued that it leads to the AdS3 × S3 background with mixed three form fluxes.

Then we analyzed (m,n)-string in given background and we argued that for m = a, n =

c the string equations of motion are equivalent to the conservation of two holomorphic

and antiholomorphic currents and hence this particular case can be analyzed using two

dimensional conformal field theory. This very interesting result shows that (a, c)-string is

the natural probe of AdS3 × S3 background with (d,−b)-fluxes.

The extension of this work is as follows. It would be nice to analyze solutions of (m,n)-

string equations of motion in AdS3 × S3 background with mixed fluxes. background. It

would be also nice to analyze integrability of general (m,n)-string in this background in

more details using the manifest covariant form of (m,n)-string action. We hope to return

to these problems in future.
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