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1 Introduction

While recent years have seen tremendous advances in our understanding of scattering

amplitudes for N =4 SYM in the planar limit, much less is known beyond the planar limit

(despite some impressive inroads for four- and five-particle amplitudes — see e.g. [1, 2]).

And yet there are many indications that there is an even richer structure waiting to be

unearthed beyond the planar limit. For instance the amplitudes for different color-orderings

satisfy non-trivial relations between each other — such as the U(1) decoupling and Kleiss-

Kuijf (KK) identities, and the BCJ relations [3–5] — which cannot be understood within

each color ordering separately; and similarly, the remarkable relations between Yang-Mills

and gravitational amplitudes can not be seen in the planar limit.

The Grassmannian representation of planar N =4 scattering amplitudes [6, 7] is based

on a striking physical principle: all amplitudes in the theory can be directly represented as

on-shell processes, where the fundamental 3-particle amplitudes are glued together with all

intermediate particles taken to be on-shell, eliminating any reference to “virtual particles”.

Of course, on-shell diagrams have long been known to have direct physical interpretation

as “cuts” which compute discontinuities of loop amplitudes across branch-cuts. But this

connections exists much more generally: on-shell diagrams in any theory with massless

particles are most naturally computed and understood in terms of an associated structure

in the Grassmannian defined by its 3-particle amplitudes. The additional novelty described

in [7, 8] is that planar loop-amplitude integrands can be directly represented by on-shell

diagrams. While we do not yet know whether this is possible in general, the successes

of this picture in planar N = 4 SYM motivates us to try and find a completely on-shell

description of the physics for general theories.
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The main obstacle to finding an on-shell representation of N = 4 SYM beyond the

planar limit is a simple, almost kinematical one: that the notion of “the” integrand for

scattering amplitudes becomes ambiguous beyond the planar limit. But we can certainly

begin to explore on-shell diagrams beyond the planar limit, which minimally have the phys-

ical interpretation of leading singularities. Any on-shell diagram is associated with some

region in the Grassmannian together with a volume form that has logarithmic singularities

along its boundary. Recent studies [9, 10] have found evidence that loop integrands can be

represented in a “dlog”-form, with manifestly logarithmic singularities in loop-momentum

space. These two facts support the hope that some representation of an integrand can be

given in purely on-shell terms, making the logarithmic singularities of amplitudes manifest

at the integrand-level.

All of these considerations strongly motivate an investigation of non-planar on-shell

diagrams in N =4 SYM. We will consider an arbitrary diagram obtained by gluing black

and white 3-particle vertices together. Any diagram is associated with an obvious color

factor. The color-Jacobi relations will undoubtedly be important for the actual amplitudes,

and for the hope of an on-shell representation of them. However, they factor out of each on-

shell diagram, and we will omit them in what follows. In this note, we will further specialize

to on-shell diagrams for MHV amplitudes, which are especially simple but already reveal

essential new features that occur for non-planar amplitudes more generally.

In section 2.2 we show that all leading singularities can be characterized by a list of

(n 2) subsets of external leg labels; and in section 2.3 we show how this data directly

encodes the corresponding function. Analyzing the singularities of these functions geomet-

rically in section 3 will lead us to an extended notion of positivity in the Grassmannian and

allow us to discover the remarkable fact that all leading singularities of MHV amplitudes

can be expressed as the positive sum (with all coefficients +1) of planar leading singulari-

ties. These considerations provide a geometric basis for the U(1) decoupling identities and

the Kleiss-Kuijf (KK) relations [11] which relate amplitudes involving differently ordered

sets of external legs.

If all non-planar loop amplitude integrands in N = 4 SYM are in fact logarithmic as

conjectured in ref. [9], this suggests that all MHV loop amplitudes of N = 4 SYM can be

expressed in terms of polylogarithms with all coefficients being color factors times planar

tree amplitudes involving differently ordered sets of external legs.

2 General leading singularities of MHV amplitudes

2.1 General leading singularities and the reduction of diagrams

Leading singularities correspond to on-shell diagrams obtained by taking successive residues

of loop amplitude integrands — putting some number of internal particles on-shell. The

corresponding on-shell functions encode the coefficients of transcendental functions ap-

pearing in the loop expansion and thereby capture much about the structure of scattering

amplitudes beyond the leading order of perturbation theory.

Because all leading singularities are on-shell diagrams, they can be computed in terms

of an auxiliary Grassmannian integral as described in ref. [7]. For N =4 SYM, the volume-
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form on the auxiliary Grassmannian is just the product of dlog’s of edge variables. Naively,

the leading singularities could be as complicated as loop diagrams, with an infinite num-

ber of objects at higher and higher loops. At high enough loop-order, however, the cut

propagators don’t localize all the internal momenta, and we have a non-trivial form in

the remaining variables. We can take residues on enough of these to fully localize them

to the leading singularities. Naively, there are an infinite number of objects of this form,

descending from taking residues on arbitrarily complicated on-shell diagrams. However,

the Grassmannian representation makes an otherwise highly non-trivial fact completely

obvious: the number of leading singularities for any (n, k) is finite.

Starting from an arbitrary on-shell diagram, all but a small number of edges can always

be removed (via residues setting edge weights to zero) without encountering any enhanced

constraints on the external kinematical data. This is known as reduction, and the finiteness

of the set of reduced diagrams follows from simple dimensional arguments. We may define a

graph to be reduced if the dimension of its boundary measurement matrix (as a submanifold

ofG(k, n)) is equal to the number of independent edge weights. Unlike for the planar theory,

it is not always possible to transform a diagram using square moves and mergers to expose

a bubble somewhere in the diagram; this is related to another important difference with

the planar case: a non-reduced diagram can sometimes be reduced in inequivalent ways.

Both of these novelties are illustrated in the following example:

. (2.1)

For the rest of this work, we will focus our attention on the case of reduced on-

shell diagrams relevant to MHV amplitudes. We will describe in section 2.2 how all such

diagrams can be classified combinatorially, and show how this combinatorial data can be

used to directly construct the corresponding function in section 2.3.

2.2 Classification of reduced, MHV on-shell functions and diagrams

We begin by showing that any generically non-vanishing, reduced MHV on-shell diagram is

naturally labeled by a list of (n 2) triples of external legs — corresponding to the labels of

the (precisely) three external legs attached (via white vertices) to each of the (n 2) black

vertices in the diagram. This labeling is illustrated in the following example involving
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9 particles:

⇔



(1 2 4)

(1 8 9)

(2 9 3)

(3 6 4)

(4 6 5)

(6 8 7)

(6 8 9)


. (2.2)

Notice that each of the 7=(n 2) black vertices is labeled by three external legs according

to the rule described above.

The proof that all non-vanishing leading singularities of MHV amplitudes can be la-

beled in this way is fairly straightforward. We can characterize an arbitrary on-shell dia-

gram involving nV ≡nB+nW vertices and nI internal edges by defining:

k ≡ 2nB + nW − nI , and nδ ≡ 4nV − 3nI − 4, (2.3)

where diagrams related to MHV amplitudes have k = 2, and nδ counts the number of

δ-function constraints imposed on the external kinematics beyond overall momentum con-

servation; for a reduced diagram — an ordinary function of the kinematical data — we

have nδ=0. The number of external legs of any trivalent graph is given by,

n ≡ 3nV − 2nI , (2.4)

from which we see that nδ =n+nV nI 4. Using this, we see that any on-shell diagram

with k=2=nB+nV nI and nδ=0 will involve nB=n 2 black vertices.

Without loss of generality, we may suppose that every external leg attaches to the

graph at a white vertex — by adding bivalent white vertices to each external leg if necessary.

Observe that removing a white-to-white edge lowers both nW and nI by one; therefore,

k= 2nB+nW nI is left invariant by collapsing all internal trees of white vertices. Let us

suppose that this has been done, and let nW ′ denote the number of white multi-vertices.

For on-shell functions with kinematical support, no two legs can be connected to the same

white vertex; this requires that n≥ nW ′ .

Let us now show that n=nW ′ , which implies that there are no black-to-black internal

edges. Let us say the number of white multi-vertices is n+q; we want to show that q= 0.

From the definition of k,

k = 2nB + nW ′ − nI = 2nB + (n+ q)− nI = 3nB + 2 + q − nI , (2.5)

from which we see that for k= 2, 3nB =nI q. But 3nB ≥nI on general grounds, and so

we must have that q=0, and hence 3nB =nI . Because q=0, there is one leg connected to

each white multi-vertex (nW ′ =n); and because 3nB =nI , there can be no black-to-black

internal edges. Thus every black vertex connects to precisely three external legs via white

multi-vertices, as we wanted to prove.
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Therefore, any MHV (k= 2) on-shell diagram corresponding to an ordinary function

of the external data (nδ = 0) with kinematical support will involve precisely (n 2) black

vertices, each of which is attached to exactly three external legs via white vertices. Thus,

we can label any such diagram by a set T consisting of triplets τ ∈T of leg labels for each

of the (n 2) black vertices.

We can illustrate how this labeling works with the following examples:

{
(1 2 4)

(2 3 4)

} 
(1 2 3)

(1 3 4)

(1 3 5)

 (2.6)


(1 2 3)

(2 5 6)

(3 4 6)

(4 5 1)





(1 2 4)

(1 8 9)

(2 9 3)

(3 6 4)

(4 6 5)

(6 8 7)

(6 9 8)


. (2.7)

Notice that because there is no preferred way to order the external legs of a non-planar

diagram, there is no preferred way to order the triples. And so while we have chosen a

particular ordering for each triple in the examples above, these choices should be viewed

as completely arbitrary.

2.3 Grassmannian representations of MHV on-shell functions

As described in ref. [7], any on-shell diagram Γ of N = 4 SYM corresponds to an on-shell

function fΓ that can be computed in terms of an auxiliary Grassmannian C ∈ G(k, n)

according to,

fΓ =

∫
ΩC δk×4

(
C ·η̃

)
δk×2

(
C ·λ̃

)
δ2×(n−k)

(
λ·C⊥

)
, (2.8)

where ΩC is a volume form on the configuration C with strictly logarithmic singularities.

When expressed in terms of edge-variables αi associated with the graph, C(α) is determined

by boundary measurements, and ΩC = d log(α1) ∧ · · · ∧ d log(αd).

For any leading singularity of an MHV (k=2) amplitude, C(α) is a (2n 4)-dimensional

subspace, and so ΩC is a top-dimensional form on G(2, n). Thus, the (2n 4) constraints

δ2×(n−2)
(
λ·C⊥

)
entirely localize the 2-plane C(α) to be identical to the 2-plane λ. Let us

now describe how these constraints directly provide us with a formula for fΓ in terms of

the triples τ ∈T which label the graph.
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Each black vertex of the diagram encodes a linear relation among the three external

λ’s attached to it. Thus, a vertex labeled by the triple (τ1 τ2 τ3)∈T is associated with the

following contribution to (2.8):

(τ1 τ2 τ3)⇒ 1

vol(GL(1))

dατ1
ατ1

dατ2
ατ2

dατ3
ατ3

δ2×1
(
λτ1ατ1 + λτ2ατ2 + λτ3ατ3

)
, (2.9)

where “1/vol(GL(1))” is an instruction to eliminate any one of the redundant α’s. (The

reason for introducing such a redundancy here is that it makes all the singularities arising

from the vertex manifest.)

These δ-functions are very easy to integrate, as each encodes an instance of the unique

three-term identity satisfied by generic two-dimensional vectors:

λτ1〈τ2 τ3〉+ λτ2〈τ3 τ1〉+ λτ3〈τ1 τ2〉 = 0; (2.10)

from this, we see that on the support of the δ-functions,

{ατ1 , ατ2 , ατ3} 7→ {α∗τ1 , α
∗
τ2 , α

∗
τ3} = {〈τ2 τ3〉, 〈τ3 τ1〉, 〈τ1 τ2〉}. (2.11)

Because this argument is repeated for each triple τ ∈ T , it provides us with an explicit

representative of the plane C⊥(~α∗) satisfying the constraints δ2(n−2)
(
λ·C⊥(~α)

)
.

Combining the contributions to (2.8) from each black vertex, we find the following

expression for the leading singularity:

fΓ =
∏
τ∈T

(
1

〈τ1τ2〉〈τ2τ3〉〈τ3 τ1〉

)
δ2×4

(
C(~α∗)·η̃

)
δ2×2

(
C(~α∗)·λ̃

)
. (2.12)

Notice, however, that the δ-functions in this expression imposing supermomentum conser-

vation are not written in their standard form. Indeed, although C (~α∗) and λ are equivalent

as 2-planes in n dimensions, they can differ by a GL(2) transformation. (Once we have

chosen a Lorentz-frame, λ does not correspond to a ‘2-plane’, but rather a (2×n) matrix.)

To bring the expression (2.12) to its standard form requires a “gauge-fixing” factor — a

Jacobian — Ψ relating the two:

δ2×4
(
C(~α∗)·η̃

)
δ2×2

(
C(~α∗)·λ̃

)
≡ Ψ δ2×4

(
λ·η̃
)
δ2×2

(
λ·λ̃
)
. (2.13)

To determine the gauge-fixing factor Ψ, we need to be more explicit about how C⊥(~α∗)

is related to the matrix λ⊥. An explicit representative of λ⊥ can be obtained by choosing

to expand all the λ’s as 2-vectors in terms of a basis consisting of some pair of external

λ’s, {λa, λb}; this choice of coordinates for λ induces a Jacobian 〈a b〉−2 which contributes

to Ψ. Having chosen this gauge for λ, λ⊥ is completely fixed to have its (n 2) columns in

the complement of {a, b} equal to the identity matrix. But importantly, the representative

matrix C⊥(~α∗) constructed above is not in this gauge-fixed form; and so we must multiply

it on the left by the inverse of the matrix, denoted Mab, obtained from C⊥(~α∗) by deleting

its columns {a, b}. This gauge-fixing induces a Jacobian of det(Mab)
2 which constitutes

the final contribution to Ψ. Thus, having made the (arbitrary) choice of {λa, λb} as a basis

for the λ’s, the complete gauge-fixing factor Ψ of (2.13) is found to be:

Ψ =
(
det
(
Mab

)
/〈a b〉

)2
. (2.14)

(It can be shown that Ψ is independent of the choice of {a, b}.)
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Putting everything together, we find the following expression for any on-shell diagram

Γ labeled by triples τ ∈T :

fΓ =

(
det
(
Mab

)
/〈a b〉

)2∏
τ∈T 〈τ1τ2〉〈τ2τ3〉〈τ3τ1〉

δ2×4
(
λ·η̃
)
δ2×2

(
λ·λ̃
)
. (2.15)

This formula should really be viewed as defining a differential form on the space of external

kinematical data, f̃Γ, which is constrained by supermomentum conservation:

fΓ ≡ f̃Γ × δ2×4
(
λ·η̃
)
δ2×2

(
λ·λ̃
)
. (2.16)

To simplify our expressions below, we will leave supermomentum conservation implicit and

write f̃Γ in the particular examples discussed.

Let us see how this formula looks for some of the examples given in (2.6) and (2.7).

For the leading singularity involving 5 particles in (2.6) we have,


(1 2 3)

(1 3 4)

(1 3 5)

⇒ C⊥(~α∗) ≡

1 2 3 4 5〈2 3〉 〈3 1〉 〈1 2〉 0 0

〈3 4〉 0 〈4 1〉 〈1 3〉 0

〈3 5〉 0 〈5 1〉 0 〈1 3〉

 ,

from which we see that Ψ= 〈3 1〉4, yielding the expression:

=
〈3 1〉

〈1 2〉〈2 3〉〈3 4〉〈4 1〉〈3 5〉〈5 1〉
. (2.17)

Following the same procedure for the 6-particle example of (2.7), we see that


(1 2 3)

(2 5 6)

(3 4 6)

(4 5 1)

⇒ C⊥(~α∗) ≡

1 2 3 4 5 6
〈2 3〉 〈3 1〉 〈1 2〉 0 0 0

0 〈5 6〉 0 0 〈6 2〉 〈2 5〉
0 0 〈4 6〉 〈6 3〉 0 〈3 4〉
〈4 5〉 0 0 〈5 1〉 〈1 4〉 0

 ,
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from which we see that Ψ=
(
〈34〉〈51〉〈62〉+〈14〉〈25〉〈63〉

)2
, allowing us to write:

=

(
〈34〉〈51〉〈62〉+〈14〉〈25〉〈63〉

)2
〈12〉〈23〉〈31〉〈25〉〈56〉〈62〉〈34〉〈46〉〈63〉〈45〉〈51〉〈14〉

. (2.18)

And finally, for the 9-particle example of (2.7), we find the formula:

=

(
〈91〉〈32〉〈46〉 〈16〉〈43〉〈29〉

)2
〈12〉〈24〉〈41〉〈18〉〈91〉〈29〉〈93〉〈32〉〈36〉〈43〉〈65〉〈54〉〈87〉〈76〉〈69〉

.

(2.19)

3 Extended positivity in the Grassmannian

The formula given above for any MHV leading singularity, (2.15), is remarkably concise

and directly encodes all its singularities. But there is a beautiful fact that is obscured by

such compact expressions: although the collection of possible on-shell functions grows very

rapidly in number and complexity with the number of external legs, it turns out that all

such functions can be expanded as a positive sum — with all coefficients 1 — of planar on-

shell functions involving differently ordered legs. This fact is best understood in terms of a

generalized notion of positivity for the geometry of the auxiliary Grassmannian associated

with the graph through equation (2.8).

As we have seen, the formula (2.15) can be understood geometrically in terms of a

top-dimensional volume form on the Grassmannian:

ΩC ≡
∏
τ∈T

1

vol(GL(1))

dατ1
ατ1

dατ2
ατ2

dατ3
ατ3

=
∏
τ∈T

dlog

(
(τ1 τ2)

(τ3 τ1)

)
dlog

(
(τ2 τ3)

(τ3 τ1)

)
, (3.1)

where (a b)≡det{ca, cb}. This differential form is entirely fixed by its logarithmic singular-

ities, which can be thought to enclose some open region of the Grassmannian G(2, n).

As described in ref. [7], given any planar on-shell diagram whose external legs are

ordered in the clockwise direction around the graph, the configuration C(α) appearing

in (2.8) is associated with the “positive part” [12–16] of the (real) Grassmannian — where

all the ordered minors (a b) > 0 for a < b when the edge variables αi > 0. The form

– 8 –
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has logarithmic singularities on the boundaries of this positive region. Labeling the legs

clockwise around the boundary of the graph by {1, 2, . . . , n}, it was shown in ref. [7] that

the canonical volume form ΩC can always be written:

ΩC =
dα1

α1
∧ · · · ∧ dα2n−4

α2n−4
=

d2×nC

vol(GL(2))

1

(1 2)(2 3) · · · (n 1)
. (3.2)

To see that this follows from positivity, observe that the codimension one boundaries of

a generic positive configuration (viewed as an ordered set of points along S1) correspond

to configurations where two neighboring points collide, sending 〈a a+1〉→ 0. Because the

constraints δ2×(n−2)
(
λ·C⊥

)
in (2.8) localize C 7→C∗'λ, we find the following expression

for the on-shell function:

f̃Γ =
1

〈1 2〉〈2 3〉〈3 4〉 · · · 〈n 1〉
. (3.3)

This on-shell function is the same for all reduced, planar on-shell diagrams with this

ordering of the external legs. Moreover, (3.3) is the complete “tree-level” MHV scattering

amplitude for n particles. This remarkably simple expression was first guessed by Parke

and Taylor in ref. [17], and so we will refer to the on-shell differential form (3.3) as the

‘Parke-Taylor factor’ for the specified ordering of external legs:

PT (1, 2, . . . , n) ≡ 1

〈1 2〉〈2 3〉〈3 4〉 · · · 〈n 1〉
. (3.4)

Notice that each Parke-Taylor factor is cyclically symmetric; and so there are (n 1)!

distinct (but not independent) Parke-Taylor factors. In particular, for three particles there

are two cyclically-distinct Parke-Taylor factors, PT (1, 2, 3) and PT (1, 3, 2), which differ

from each other by an overall sign:

PT (1, 2, 3) = −PT (1, 3, 2). (3.5)

3.1 Geometry of extended positivity and Parke-Taylor decompositions

Given the connection between on-shell forms and Grassmannian positivity for planar

graphs, it is natural to ask whether the general non-planar on-shell forms also have some

“positive” interpretation. The obvious obstacle is that the notion of positivity seems to

depend on ordering the columns of the matrix C, and there is no natural ordering beyond

the planar limit. However as we will now see, associated with this, there are in fact many

different “positive regions” associated with a single on-shell diagram. Too see this, let us

look at the black vertices of an MHV leading singularity — each of which contributes a

factor equivalent to a 3-particle Parke-Taylor factor involving the legs attached to it:

(τ1 τ2 τ3)⇒
∫
dατ1 dατ2 dατ3

vol(GL(1))

δ2×1
(
λτ1ατ1 +λτ2ατ2 +λτ3ατ3

)
ατ1 ατ2 ατ3

=
1

〈τ1 τ2〉〈τ2 τ3〉〈τ3 τ1〉
. (3.6)

Each black vertex can be seen to be in correspondence with the geometric constraint that

{λτ1 , λτ2 , λτ3} (viewed as point in RP1) are positive with respect to one of the two cyclic

orderings of the three points. Thus, each triple τ ∈ T can be understood to impose the
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constraint that either (τ1 τ2 τ3) or (τ1 τ3 τ2) are cyclically ordered as points in RP1. To

indicate how each black vertex is to be ordered, will henceforth distinguish between a

triple denoted (τ1 τ2 τ3) from one denoted (τ1 τ3 τ2).

We can equivalently describe this picture as an extended positive region in the Grass-

mannian. Let us use “little group rescaling” on each column of C, ca 7→ ta ca, to bring

the columns to the projectivized form ca 7→
(

1
ĉa

)
. The positivity of a minor det{ca, cb}> 0

simply means that ĉa < ĉb. Then, for every triple (τ1, τ2, τ3) associated with our on-shell

diagram, we can choose an ordering for the associated (ĉτ1 , ĉτ2 , ĉτ3). Any (mutually con-

sistent) choice of such orderings thus defines an extended positive region in the GR(2, n),

and our on-shell form has logarithmic singuarities on the boundaries of this region.

Although the choice of how each black vertex is cyclically ordered can change the final

expression by at most an overall sign, it can significantly alter its geometric interpretation.

For example, it is not hard to see that if every black vertex of a planar diagram were

ordered consistently with the graph (all ordered clockwise, for example), then the cyclic

ordering of all the λ’s will be completely fixed to match the ordering of legs around the

boundary of the graph. In this case, the geometric region associated with the graph is

simply the positive region of G(2, n) associated with the ordering of external legs around

the graph and the resulting on-shell function must be a single Parke-Taylor factor. This

can be seen in the following example:

{
(1 3 4)

(3 2 4)

}
⇔




PT (1, 3, 2, 4)

. (3.7)

Notice that the constraint that (1 3 4) be cyclically ordered together with the constant that

(3 2 4) be cyclically ordered fixes the overall cyclic ordering of legs to be (1 3 2 4); and so all

the poles of the leading singularity lie along the boundary of the positive region of G(2, 4)

with the columns ordered according to (1 3 2 4).

However, the region of G(2, 4) we associate with this on-shell function changes impor-

tantly if we choose to reorient either of the two black vertices. For example, by changing

the orientation of the first black vertex from (1 3 4) to (1 4 3), the constraints would no

longer fix the cyclic ordering of all the λ’s:

{
(1 4 3)

(3 2 4)

}
⇔

 or


PT (1, 4, 3, 2) , PT (1, 2, 4, 3)

. (3.8)

As illustrated above, cyclically ordering the legs so that (1 4 3) and (3 2 4) are correctly or-

dered allows for two possible overall orderings: (1 4 3 2) or (1 2 4 3). Because the constraints
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on overall ordering are weaker, the region of G(2, 4) associated with this function is larger

than a single positive region. And we now have a geometric basis for the identity:

− PT (1, 3, 2, 4) = PT (1, 4, 3, 2) + PT (1, 2, 4, 3). (3.9)

(Here, the minus sign follows from the reorientation of a single triple according to, (3.5).)

More generally, there can be many orderings of the external legs consistent with a

choice of orientation for each triple. When this is the case, the combined region will span

more than one of the different positive parts of G(2, n) — those for which all the triples

are cyclically ordered correctly. Because the boundary of the combined region exactly

corresponds to the boundary determined by the triples, we know the volume form in (2.8)

is cohomological to the positive sum of positroid volume forms. Expressed in terms of

functions of the external kinematical data:

f̃Γ =
∑
{σ∈(Sn/Zn)|∀τ ∈T :στ1<στ2<στ3}

PT (σ1, . . . , σn), (3.10)

where Sn/Zn denotes the set of cyclically-inequivalent permutations, and the sum is taken

over all σ∈(Sn/Zn) for which each triple τ ∈T is cyclically ordered correctly.

This identity is quite non-trivial. Let’s illustrate it for the 6-particle leading singularity

written explicitly in (2.18). For one choice of how to order each triple, we see that the

compact expression becomes the sum of seven Parke-Taylor factors as follows:

T ≡{(1 2 3), (2 5 6), (3 4 6), (4 5 1)}

= PT (1, 2, 3, 4, 5, 6) + PT (1, 2, 4, 5, 6, 3)

+PT (1, 4, 2, 5, 6, 3) + PT (1, 4, 5, 6, 2, 3)

+PT (1, 4, 6, 2, 3, 5) + PT (1, 4, 6, 2, 5, 3)

+PT (1, 6, 2, 3, 4, 5) .

(3.11)

Notice that each of the triples τ ∈T are cyclically ordered correctly in each of the Parke-

Taylor factors above. Changing the orientation of the last two triples, we could have

labeled the diagram by T ′ ≡ {(1 2 3), (2 5 6), (3 6 4), (4 1 5)}, resulting in the Parke-Taylor

decomposition:

PT (1, 2, 3, 5, 6, 4) + PT (1, 2, 5, 3, 6, 4) + PT (1, 2, 5, 4, 3, 6) + PT (1, 2, 5, 6, 4, 3)

+PT (1, 5, 6, 2, 4, 3) + PT (1, 5, 6, 4, 2, 3) + PT (1, 6, 2, 5, 4, 3).
(3.12)

Notice that each of the choices for how to orient the triples produces a different expres-

sion of the form (3.10). Moreover, each of these formulae connects the leading singularity

with a different region within the Grassmannian — providing a geometric basis for a large

number of relations satisfied by Parke-Taylor amplitudes involving different leg orderings.
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3.2 Geometry of U(1) decoupling and KK relations

As we have seen in the example (3.8), even a planar diagram can be decomposed into a

sum of different Parke-Taylor factors if the black vertices are oriented in a way contrary to

the planar ordering; and the equivalence of these different formulae for the same on-shell

function follow geometrically from the fact that they correspond to cohomologically equiv-

alent volume forms on the Grassmannian. Indeed, it turns out that the U(1) decoupling

identities and KK relations [11] can both be given a geometric interpretation in this way.

We can also understand these relations as residue theorems which can be graphically rep-

resented as a sum over certain deleted edges of the on-shell diagram, as has been observed

independently by Andrew Hodges, [18].

Although the U(1) decoupling identities are of course included among the KK relations,

they are often presented in different ways. And so for the sake of clarity and illustration,

it is useful to consider the two cases separately. In their most familiar form, the U(1)

decoupling identities can be seen to follow from the equivalence of two representations of

the following planar diagram (with different orientations chosen for one black vertex):

(−1)



(2 n 1)

(2 3 4)

(2 4 5)
...

(2n 1n)


−PT (1, 2, . . . , n)

=



(2 1 n)

(2 3 4)

(2 4 5)
...

(2n 1n)


= PT (1, n, 2, . . . , n 1)+. . .+PT (1, 3, . . . , n, 2).

(3.13)

Similarly, we can derive the KK relations in their standard form by choosing different

orientations for the black vertices of the following planar diagram:



( 1 α 1 n )

(α 1 α 2 n )
...

(α-2 α-1 n )

( n β 1 β 2)
...

( n β-2 β-1)

( n β-1 1 )


= (−1)nβ



( 1 α 1 n )

(α 1 α 2 n )
...

(α-2 α-1 n )

( n β 2 β 1)
...

( n β-1 β-2)

( n 1 β-1)


. (3.14)

Notice that this relates a planar diagram involving legs ordered (1, α1, . . . , α-1, n, β1, . . . , β-1)

a sum of Parke-Taylor factors:

(−1)nβ × PT (1, α1, . . . , α-1, n, β1, . . . , β-1) =
∑
σ∈
(
{α1, . . . , α-1}�{β-1, . . . , β1}

)PT (1, σ1, . . . , σn-2, n). (3.15)
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3.3 Two views of MHV leading singularities

We have now described two quite different ways to represent MHV leading singularities in

terms of combinatorial data describing the on-shell diagram: the compact formula given in

equation (2.15), and as the positive sum of Parke-Taylor factors given in equation (3.10).

Each of these representations makes different aspects of the functions manifest. In partic-

ular, the compact expression (2.15), makes all of the physical singularities manifest at the

cost of obscuring the fact that all these singularities are strictly logarithmic; in contrast, the

Parke-Taylor expansion (3.10) makes manifest the fact that all singularities are logarithmic,

but at the cost of introducing spurious boundaries which join each of the positive regions.

This distinction can be illustrated in the case of the 6-particle leading singularity

given above in (2.18). Taking the residue about 〈12〉→0 by sending λ1 λ2 results in the

expression:(
〈34〉〈51〉〈62〉+〈14〉〈25〉〈63〉

)2
〈12〉〈23〉〈31〉〈25〉〈56〉〈62〉〈34〉〈46〉〈63〉〈45〉〈51〉〈14〉

−−−→
λ1 λ2

(
〈34〉〈52〉〈62〉+〈24〉〈25〉〈63〉

)2
〈23〉2〈25〉2〈56〉〈62〉〈34〉〈46〉〈63〉〈45〉〈24〉

.

The presence of the double poles 〈23〉2 and 〈2 5〉2 in the denominator above would seem to

suggest non-logarithmic behavior. However, closer inspection indicates that the numerator

Ψ factorizes in the limit λ1 λ2. Making use of Schouten relations, the numerator becomes:(
〈34〉〈52〉〈62〉+〈24〉〈25〉〈63〉

)2
=
(
〈23〉〈25〉〈46〉

)2
. (3.16)

The ability of the numerator Ψ to correctly cancel all apparent double poles is quite re-

markable, but follows from the fact that its representation in the Grassmannian, (2.8),

involves a measure with only logarithmic singularities.

Of course, the fact that all the iterated singularities of (3.3) are purely logarithmic

is made clear by its representation in terms of Parke-Taylor factors, (3.11). However,

the Parke-Taylor expansion introduces spurious boundaries which are cancelled only in

combination. For example, both PT (1, 2, 3, 4, 5, 6) and PT (1, 6, 2, 3, 4, 5) have a pole when

〈16〉→0; but this does not correspond to any singularity of the on-shell function, and the

corresponding residue cancels between the two terms.

4 Concluding remarks

We have seen that non-planar MHV leading singularities can always be written as a sum

of the planar ones with different orderings of legs. Already for the case of k=3 and n=6,

we have checked that this is no longer the case — not all leading singularities can be

decomposed into differently ordered planar ones, and new objects appear. But since we

know on general grounds that there are a finite number of objects that can appear for any

(n, k), it is likely that a complete combinatorial characterization of them should be possible.

It is for instance clear that by cutting enough legs, any non-planar on-shell diagram can

be made planar (as in [19]), and this is one avenue towards a non-planar classification.

We have also given a geometric interpretation of the U(1) decoupling and KK relations

for Parke-Taylor factors. For general k, these relations (as well the BCJ relations) are

usually associated with statements about complete amplitudes; it would be interesting to
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explore whether they have on-shell avatars for general k, with an interpretation in terms

of Grassmannian geometry.

Finally, it is natural to combine the results of this note with the conjecture of ref. [9],

that non-planar loop amplitude integrands have logarithmic singularities and can be ex-

pressed in “dlog-form”. Since all the leading singularities can be written as a linear com-

bination of Parke-Taylor factors, we expect that the integrand can be represented as dlog-

forms in the loop momentum variables, multiplied by color factors and Parke-Taylor am-

plitudes. This suggests that after integration, the non-planar MHV amplitudes in N = 4

SYM at all loop orders are expressible as a sum of polylogarithms weighted by color and

(unordered) Parke-Taylor factors.
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[15] A. Postnikov, Total positivity, Grassmannians and networks, math/0609764 [INSPIRE].

[16] A. Knutson, T. Lam and D. Speyer, Positroid Varieties: Juggling and Geometry, Compos.

Math. 149 (2013) 1710 [arXiv:1111.3660].

[17] S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56

(1986) 2459 [INSPIRE].

[18] A. Hodges, private communication.

[19] B. Chen et al., Nonplanar On-shell Diagrams and Leading Singularities of Scattering

Amplitudes, arXiv:1411.3889 [INSPIRE].

– 15 –

http://dx.doi.org/10.1007/JHEP01(2011)041
http://arxiv.org/abs/1008.2958
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2958
http://dx.doi.org/10.1103/PhysRevLett.113.261603
http://arxiv.org/abs/1410.0354
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0354
http://arxiv.org/abs/1412.8584
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8584
http://dx.doi.org/10.1016/0550-3213(89)90574-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B312,616
http://dx.doi.org/10.1090/S0894-0347-1990-1035415-6
http://dx.doi.org/10.1090/S0894-0347-1990-1035415-6
http://inspirehep.net/search?p=find+Am.Math.Soc.,3,447
http://dx.doi.org/10.1090/S1088-4165-98-00046-6
http://dx.doi.org/10.1007/978-1-4612-0261-5_20
http://arxiv.org/abs/math/0609764
http://inspirehep.net/search?p=find+EPRINT+math/0609764
http://dx.doi.org/10.1112/S0010437X13007240
http://dx.doi.org/10.1112/S0010437X13007240
http://arxiv.org/abs/1111.3660
http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://dx.doi.org/10.1103/PhysRevLett.56.2459
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,56,2459
http://arxiv.org/abs/1411.3889
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3889

	Introduction
	General leading singularities of MHV amplitudes
	General leading singularities and the reduction of diagrams
	Classification of reduced, MHV on-shell functions and diagrams
	Grassmannian representations of MHV on-shell functions

	Extended positivity in the Grassmannian
	Geometry of extended positivity and Parke-Taylor decompositions
	Geometry of U(1) decoupling and KK relations
	Two views of MHV leading singularities

	Concluding remarks

