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1 Introduction

A fundamental result in the study of black holes is Hawking’s theorem concerning the topol-

ogy of black hole horizons [1]. Hawking showed that the two-dimensional event horizon

cross sections of four-dimensional asymptotically flat stationary black holes satisfying the

dominant energy condition necessarily have topology S2. This result indicates that asymp-

totically flat, stationary black holes in four dimensions are highly constrained systems.

More interesting black hole solutions are permitted in four and higher dimensions if

one relaxes some of the assumptions going into Hawking’s theorem. For example, since

Hawking’s argument relies on the Gauss-Bonnet theorem, it does not directly extend to

higher dimensions. It is then not so surprising that higher-dimensional spacetimes permit

a much richer variety of black hole topologies. The most famous example of this type is the
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black ring solution of Emparan and Reall which has horizon topology S2 × S1 [2]. Despite

the failure of Hawking’s result in higher dimensions, Galloway and Schoen proved the less

restrictive condition that the (d− 2)-dimensional cross section of the event horizon (in the

stationary case) and outer apparent horizons (in the general case) are of positive Yamabe

type, i.e., admit metrics of positive scalar curvature [3].

Another possibility is to relax asymptotic flatness. For example, in four-dimensional

(locally) asymptotically anti de Sitter (AdS) space the Einstein equations admit black

hole solutions with the horizons being Riemann surfaces of any genus g [4–8]. Higher-

dimensional asymptotically AdS spacetimes are also known to yield interesting horizon

topologies, for example, black rings with horizon topology S1 × Sd−3 [9] and rotating

black hyperboloid membranes with horizon topology H
2×Sd−4 [10]. More generally, event

horizons which are Einstein manifolds of positive, zero, or negative curvature are possible

in d-dimensional asymptotically AdS space [5, 11].

Recently a new type of four-dimensional rotating black hole solution has been con-

structed in [12] and elaborated upon in [13, 14] for both N = 2 gauged supergravity

coupled to vector multiplets and Einstein-Maxwell-Λ theory. Supergravity solutions such

as this are generically interesting since they correspond to string theory ground states, and

therefore topics such as microscopic degeneracy can be studied utilizing the AdS/CFT cor-

respondence [15]. Interest in this particular solution is further motivated by the fact that

these black holes possess a non-compact event horizon of finite area (and therefore finite

entropy), providing the first example of such objects in the literature to date. Topologi-

cally, the event horizon is a sphere with two punctures, demonstrating that the landscape

of possible event horizon topologies is even richer than previously thought.

These black holes, in a sense, correspond to a new type of ultraspinning limit of the

Kerr-Newman-AdS solution. Ultraspinning black holes were first studied by Emparan and

Myers [16] in an analysis focusing on the stability of Myers-Perry black holes [17] in the

limit of large angular momentum. The analogous limit for rotating Kerr-AdS black holes is

the case where the rotation parameter, a, approaches the AdS radius, l; however, the result

of the limit is not unique and depends on how the limit is performed. Caldarelli et al. [10]

considered the case where a → l keeping the physical mass M fixed while simultaneously

zooming in to the pole. This limit is sensible only for d ≥ 6 and yields a static black brane.

Armas and Obers later showed that the same solution can be obtained by taking a → ∞
while keeping the ratio a/l fixed, their approach having the advantage of being directly

applicable to dS solutions as well [18]. Caldarelli et al. have also studied the a → l limit in

the case of fixed r+ while zooming into the pole [10, 19]. This prescription, valid for d ≥ 4,

yields a rotating black hyperboloid membrane with horizon topology H
2 × Sd−4. To avoid

confusion in what follows we shall refer to the first mentioned AdS ultraspinning limit as

the black brane limit, to the second as the hyperboloid membrane limit, and (for reasons

that will become clear shortly) to the ultraspinning limit considered in this work as the

super-entropic limit. Interestingly, as shown in [13], the super-entropic limit coincides with

the hyperboloid membrane limit near the poles, but globally they are distinct.

More recently, a simple technique was introduced in [14] allowing one to perform the

super-entropic limit directly from the Kerr-Newman-AdS solution. The essence of this
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procedure is as follows: one begins with the Kerr-Newman-AdS metric written in rotating-

at-infinity coordinates then transforms the azimuthal coordinate φ and takes the a → l

limit in a way that keeps the metric finite, but results in a non-compact azimuthal co-

ordinate. One can then compactify the new azimuthal coordinate to obtain the solution

presented in [12, 13]. The resulting metric rotates with the speed of light at infinity,

and so the structure of the spacetime has been qualitatively changed through this limit.

This ‘generating procedure’ can be applied to the singly rotating Kerr-AdS solution in d-

dimensions [14], generalizing the original 4-dimensional solution [13] to higher-dimensions.

The d-dimensional black holes resulting from this procedure have horizons that are topo-

logically (d− 2)-spheres with two punctures.

The analysis of the extended phase space thermodynamics (see, e.g., review [20]) for

these unique black holes provided more motivation for their study. Indeed, it was recently

shown [14] that in extended thermodynamic phase space, these black holes provide the first

counterexample to the conjectured ‘Reverse Isoperimetric Inequality ’ [21]: the physical

statement asserting that for a black hole of given thermodynamic volume the entropy will

be maximal for the (charged) Schwarzschild AdS black hole. As such, these black holes

exceed their expected maximal entropy and so we refer to them as ‘super-entropic’.

The purpose of this paper is to further explore the applicability of the super-entropic

limit. In particular, we shall investigate whether such a limit can be taken for multi-

spinning black holes and/or combined with the traditional ultraspinning limits. In so

doing we will generate a broad class of new multi-spinning super-entropic black holes (with

one super-entropic direction) in higher dimensions and, in particular, obtain new super-

entropic black holes in minimal gauged supergravity. We find that while the black brane

limit can be taken simultaneously in several directions (i.e. for several rotation parameters),

this seems impossible for the super-entropic limit. While it seems that the black brane and

super-entropic limits cannot be combined, we managed to combine the super-entropic limit

with the hyperboloid membrane limit, obtaining a new interesting solution that we describe

in appendix B.

Our paper is organized as follows. We begin in section 2 with the discussion of singly-

spinning super-entropic black holes: we review how these solutions can be obtained by

taking the super-entropic limit of singly-spinning Kerr-AdS black holes and discuss their

extended phase space thermodynamics. We then use the straightforward super-entropic

limit procedure to obtain a broad class of new black hole solutions. In particular, in

section 3 we generate a new solution of minimal gauged supergravity, and in section 4 gen-

eralize the singly spinning super-entropic black holes to the case of multiple rotations. In

all cases we discuss the extended phase space thermodynamics and investigate the isoperi-

metric ratio to determine whether the newly constructed black holes are super-entropic or

not. Our conclusions are in section 5, after which we have three appendices containing

supplementary material about the various ultraspinning limits. Appendix A is devoted

to the black brane limit of multiply spinning Kerr-AdS black holes, appendix B to the

hyperboloid membrane limit, and appendix C to the ‘uniqueness’ of the ‘special rotating

frame’ employed in the super-entropic limit procedure.
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2 Singly spinning super-entropic black holes

2.1 Super-entropic limit of Kerr-AdS black hole

In what follows we shall construct new AdS black hole solutions by employing the novel

super-entropic ultraspinning limit in which the rotation parameter a attains its maximal

value, equal to the AdS radius l. The procedure consists of the following steps. i) We start

from a given rotating AdS black hole and, to eliminate any possible divergent terms in the

metric that would prevent us from taking the a → l limit, recast it in a rotating-at-infinity

coordinate system that allows one to introduce a rescaled azimuthal coordinate. ii) We

then take the a → l limit, effectively ‘boosting’ the asymptotic rotation to the speed of

light. iii) Finally, we compactify the corresponding azimuthal direction. In so doing we

qualitatively change the structure of the spacetime since it is no longer possible to return

to a frame that does not rotate at infinity. The obtained black holes have non-compact

horizons with topology of a sphere with two punctures. After analyzing some of their

properties, we study the extended phase space thermodynamics of such black holes. As

we shall see, they exceed the maximal entropy bound implied by the reverse isoperimetric

inequality. Such black holes are super-entropic.

Let us first demonstrate this procedure on the Kerr-Newman-AdS black hole in four

dimensions [22]. We write the metric in the ‘standard Boyer-Lindquist form’ [24],

ds2 = −∆a

Σa

[

dt− a sin2θ

Ξ
dφ

]2

+
Σa

∆a
dr2 +

Σa

S
dθ2 +

S sin2θ

Σa

[

adt− r2 + a2

Ξ
dφ

]2

,

A = − qr

Σa

(

dt− a sin2θ

Ξ
dφ

)

, (2.1)

where

Σa = r2 + a2 cos2θ , Ξ = 1− a2

l2
, S = 1− a2

l2
cos2θ ,

∆a = (r2 + a2)

(

1 +
r2

l2

)

− 2mr + q2, (2.2)

with the horizon rh defined by ∆a(rh) = 0. As written, the coordinate system rotates at

infinity with an angular velocity Ω∞ = −a/l2 and the azimuthal coordinate φ is a compact

coordinate with range 0 to 2π. The choice of coordinates (2.1), while convenient, is not

necessary to obtain the metric (2.3) below, as we demonstrate in appendix C.

We now want to take the limit a → l. To avoid a singular metric in this limit, we

need only define a new azimuthal coordinate ψ = φ/Ξ (the metric is already written in

coordinates that rotate at infinity) and identify it with period 2π/Ξ to prevent a conical

singularity. After this coordinate transformation the a → l limit can be straightforwardly

taken and we get the following solution:

ds2 = −∆

Σ

[

dt− l sin2θdψ
]2

+
Σ

∆
dr2 +

Σ

sin2θ
dθ2 +

sin4θ

Σ

[

ldt− (r2 + l2)dψ
]2
,

A = −qr

Σ
(dt− l sin2θdψ) , (2.3)
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where

Σ = r2 + l2 cos2θ , ∆ =

(

l +
r2

l

)2

− 2mr + q2. (2.4)

Note that coordinate ψ is now a noncompact azimuthal coordinate, which we now choose

to compactify by requiring that ψ ∼ ψ+µ. The result is equivalent to the metric presented

in [13] for the case of vanishing magnetic and NUT charges, as can be seen directly using

the following coordinate transformation:

τ = t , p = l cos θ , σ = −ψ/l , L = µ/l . (2.5)

Originally, this solution was found as a limit of the Carter-Plebański solution and

corresponds to the case where the angular quartic structure function has two double

roots [12, 13].

2.2 Basic properties

Although the metric (2.3) have been previously investigated insofar as its the basic proper-

ties [13] and thermodynamics [14] are concerned, for completeness we review and elaborate

upon them here. We find that the metric (2.3) indeed describes a black hole, with horizon

at r = r+ (the largest root of ∆(r+) = 0), and whose topology is that of a cylinder, i.e. a

sphere with two punctures. Indeed any fixed (r, t) sections have the same topology: they

are non-compact and approach Lobachevsky space near the axis. The θ = 0, π axis is

removed from the spacetime, and the ψ coordinate becomes null as r → ∞.

We first note that there is a minimum value of the mass required for horizons to exist.

Examining the roots of ∆ in eq. (2.4) we find

m ≥ m0 ≡ 2r0

(

r20
l2

+ 1

)

, (2.6)

where

r20 ≡ l2

3

[

− 1 +

(

4 +
3q2

l2

)
1
2

]

. (2.7)

For m > m0 horizons exist while for m < m0 there is a naked singularity. When m = m0

the two roots of ∆ coincide and the black hole is extremal.

Since

gψψ =
l4 sin4 θ

l2 cos2 θ + r2
(2mr − q2) , (2.8)

it follows (using m > m0 and r+ > r0) that gψψ is strictly positive outside the horizon,

indicating that the spacetime is free of closed timelike curves.

To gain a deeper understanding of the spacetime, let us consider the geometry of

constant (t, r) surfaces. The induced metric on such a surface reads,

ds2 =
r2 + l2 cos2 θ

sin2 θ
dθ2 +

l2 sin4 θ(2mr − q2)

r2 + l2 cos2 θ
dψ2. (2.9)
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This metric appears to be ill-defined for θ = 0, π. To ensure there is nothing pathological

occurring near these points let us examine the metric in the small θ limit (due to symmetry,

the θ = π limit will be identical). We introduce the change of variables,

κ = l(1− cos θ) , (2.10)

and examine the metric for small κ. This yields

ds2 = (r2 + l2)

[

dκ2

4κ2
+

4(2mr − q2)

(r2 + l2)2
κ2dψ2

]

, (2.11)

which is nothing but a metric of constant negative curvature on a quotient of the hyperbolic

space H
2. This implies that the t, r = const. slices are non-compact manifolds and that

the space is free from pathologies near the poles.1 In particular, this analysis applies to

the case of the black hole horizon, for which,

ds2h = (r2+ + l2)

[

dκ2

4κ2
+

4κ2

l2
dψ2

]

, (2.12)

showing that the horizon is non-compact.

The above argument has allowed us to conclude that, near the poles, the spacetime

is free of pathologies. However, using this argument alone we cannot conclude anything

definitive about what happens precisely at θ = 0, π. Shortly we shall return to this ques-

tion and move towards an answer through a study of geodesic motion in the spacetime.

The corresponding analysis indicates that the θ = 0 axis appears to be excised from the

spacetime.

To visualize the geometry of the horizon, we embed it in Euclidean 3-space [12]. The

induced metric on the horizon is

ds2h = gψψdψ
2 + gθθdθ

2
∣

∣

r=r+
. (2.13)

We identify this line element with the line element in cylindrical coordinates,

ds23 = dz2 + dR2 +R2dφ2,

yielding

R2(θ) =

(

µ

2π

)

gψψ , (2.14)

(

dz(θ)

dθ

)2

= gθθ −
(

dR(θ)

dθ

)2

, (2.15)

where the prefactor in eq. (2.14) comes from the manner in which we have compactified

ψ. Unfortunately, the resulting equations cannot be solved analytically. However it is

straightforward to integrate them numerically for various values of r+, l and q, as shown

in figure 1. We stress that the reader should not confuse the fact that z(θ) extends to ±∞
at the poles with the horizon extending to spatial infinity in the bulk spacetime.

1The statement that these surfaces are non-compact should not be confused with the idea that they

extend to r = ∞: they are, after all, a surface at r = const.. The notion is better understood as meaning

that there is infinite proper distance between any fixed θ ∈ (0, π) and either pole.
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Figure 1. Horizon embedding. The horizon geometry of a 4d super-entropic black hole is embedded

in E
3 for the following choice of parameters: q = 0, l = 1, r+ =

√
10 and µ = 2π.

The ergosphere is the region for which the Killing vector ∂t is no longer timelike,

given by

∆− l2 sin4θ ≤ 0 , (2.16)

with equality corresponding to its outer boundary. Although at θ = 0, π the ergosphere

appears to touch the horizon, this does not take place since this axis is excised from the

spacetime as we shall see.

On the conformal boundary the metric (2.3) takes the following form (the conformal

factor being given by l2/r2)

ds2bdry = −dt2 − 2l sin2θdtdψ +
l2

sin2θ
dθ2 (2.17)

and we see that ψ becomes a null coordinate there. Writing again κ = l(1 − cos θ), the

small κ limit gives

ds2bdry = −dt2 − 4lκdψdt+
l2

4κ2
dκ2, (2.18)

which is nothing else but an AdS3 written as a Hopf-like fibration over H
2. Due to the

symmetry of the metric, an identical result holds for θ = π. This shows that there is no

pathology near the poles while the poles themselves are excised from the boundary (see

next subsection).

– 7 –
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In fact, more generally for any fixed r > r+, and after a substitution sin θ = e−y, the

expansion for small θ i.e. large y gives in the leading order

ds2 = − ∆

r2 + l2
dt2 + (r2 + l2)dy2 +

2l∆e−2y

r2 + l2
dtdψ + . . . . (2.19)

To leading order in e−2y, this metric is AdS3 with ψ a null coordinate, indicating that as

we approach the poles the coordinate ψ becomes null (the component gψψ vanishing as

e−4y). Retention of this latter term yields (2.12) as r → r+.

2.3 Geodesics and the symmetry axis

In order to understand the role of the symmetry axis θ = 0, π, we shall now study the

geodesics. The geometry admits a closed conformal Killing-Yano 2-form, h = db,

b = (l2 cos2θ − r2)dt− l(l2 cos2θ − r2 sin2θ)dψ , (2.20)

inherited from the Kerr-AdS spacetime. Such an object guarantees separability of the

Hamilton-Jacobi, Klein-Gordon, and Dirac equations in this background. In particular, it

generates a Killing tensor kab = (∗h)ac(∗h)cb, ∇(akbc) = 0, whose existence implies a Carter

constant of motion [25], kabu
aub, rendering geodesic motion (with 4-velocity ua) completely

integrable.

The fastest way to obtain the explicit expressions for the 4-velocity is to separate the

Hamilton-Jacobi equation [25]

∂S

∂λ
+ gab

∂S

∂xa
∂S

∂xb
= 0 , (2.21)

where the inverse metric to (2.3) reads

∂2
s = − 1

Σ∆

[

(r2 + l2)∂t + l∂ψ
]2

+
∆

Σ
∂2
r +

sin2θ

Σ
∂2
θ +

1

Σ sin4θ

[

l sin2θ∂t + ∂ψ
]2

(2.22)

and where one can identify ∂S with the momentum 1-form u

∂aS = ua . (2.23)

We seek an additive separated solution (with the constants E , h, σ = −u2 corresponding

to explicit symmetries)

S = σλ− Et+ hψ +R(r) + Λ(θ) , (2.24)

giving from (2.21)

σ − 1

Σ∆

[

− (r2 + l2)E + lh
]2

+
∆

Σ
R′2 +

sin2θ

Σ
Λ′2 +

1

Σ sin4θ

[

h− l sin2θE
]2

= 0 , (2.25)

where R′ = dR/dr and Λ′ = dΛ/dθ. Multiplying by Σ and reshuffling the terms, we obtain

C = −σr2 +
1

∆

[

− (r2 + l2)E + lh
]2 −∆R′2

= sin2θΛ′2 + σl2 cos2θ +
1

sin4θ

[

h− l sin2θE
]2
, (2.26)

where C is Carter’s constant, the additional (hidden) integral of geodesic motion.
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Hence the geodesic 4-velocity (ut = −E , uψ = h) is given by

ṫ =
E(2mr − q2)l2

Σ∆
+

lh
(

∆− sin2θ(r2 + l2)
)

Σ∆sin2θ
,

ψ̇ =
h(∆− sin4θl2)

Σ∆ sin4θ
− lE

(

∆− sin2θ(r2 + l2)
)

Σ∆sin2θ
,

ṙ =
σr
Σ

√

[

lh− (r2 + l2)E
]2−∆C − σ∆r2 , (2.27)

θ̇ =
σθ sin θ

Σ

√

C − 1

sin4θ

[

h− l sin2θE
]2 − σl2 cos2θ ,

where σr = ± and σθ = ± are independent signs.

To fully understand these geodesics a further analysis going beyond the scope of this

paper is required (as in [26]). In what follows we limit ourselves to presenting an argument

showing that the symmetry axis θ = 0, π cannot be reached by null geodesics (σ = 0)

emanating from the bulk in a finite affine parameter. This indicates that the axis is some

kind of a ‘boundary’ that is to be excised from the spacetime.

Let us probe the behavior close to θ = 0 (the discussion for θ = π is due to the

symmetry analogous). Consider ‘ingoing’ null geodesics for which θ decreases. For any

finite value of C, it is obvious from the expression underneath the square root in the last

equation (2.27) that when h 6= 0, θ = 0 cannot be reached (the term [h− lE sin2θ]2/ sin4θ

dominates for small θ driving the square root imaginary).

Consider next h = 0. Then we have

θ̇ = −sin θ

Σ

√

C − l2E2 . (2.28)

It is straightforward to show from the third equation in (2.27) that there exists a constant

C = C∗ > 0 and r = r∗ > r+ such that ṙ(r∗) = 0; or in other words there exists a constant-

r surface along which such photons are confined. Such geodesics will spiral towards θ = 0

with ψ̇ 6= 0. For small θ we obtain θ̇/θ ≈ −b2 = −
√
C∗ − l2E2/r2∗ = constant, i.e.,

θ → e−b2τ . Photons moving on constant r = r∗ surfaces spiral toward θ = 0 in infinite

affine parameter. Moreover, using the first equation (2.27) together with (2.28), we have

dθ

dt
= −k sin θ , k =

∆∗

√
C∗ − l2E2

E l2(2mr∗ − q2)
> 0 . (2.29)

Hence, starting from some finite θ0, we have

t = −1

k

∫

dθ

sin θ
= −1

k
ln

(

tan
θ

2

)

+ const. (2.30)

Evidently, as θ approaches zero, t ∝ − 1
k ln θ → ∞; the axis is reached in infinite coordinate

time t. Hence photons of this type can never reach the symmetry axis.2

2For comparison, let us review here the behavior of radial geodesics in AdS space. Writing the metric

in static coordinates, ds2 = −fdt2 + dr2/f , f = 1 + r2/l2, we have 2 constants of motion u2 = −σ and

ut = −ǫ, giving

ṫ =
ǫ

f
, ṙ = ±

√

ǫ2 − σf . (2.31)

Specifically, radial null geodesics (σ = 0) starting from r = 0 reach AdS boundary situated at r = ∞

in infinite affine parameter, τ = r/ǫ → ∞, but (integrating dr/dt = f) at finite coordinate time t =

l arctan(r/l) = πl/2.
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The final possibility is that (while h = 0) the coordinate r changes as the photon

approaches θ = 0. Dividing the last two equation in (2.27) and introducing the following

dimensionless quantities:

x =
r

l
, A =

2m

l(1− l2E2/C)
> 0 , B =

q2

2ml
, (2.32)

we find that
∫

dθ

sin θ
= ln

(

tan
θ

2

)

= −σr

∫

dx
√

P (x)
, (2.33)

where P (x) is the fourth-order polynomial given by

P (x) = A(x−B)− (1 + x2)2. (2.34)

It is easy to see that P (x) can have at most 2 positive roots 0 < x1 < x2 and that geodesic

motion occurs for r = xl obeying x1 ≤ x ≤ x2. The case x1 = x2 corresponds to motion

on fixed r = r∗ discussed in the previous paragraph. To reach θ = 0, the l.h.s. of eq. (2.33)

diverges as ln θ. However, in the region of allowed motion, the r.h.s. of (2.33) remains finite

(as only simple roots of P (x) occur). This excludes the final possibility that the axis θ = 0

can be reached by null geodesics emanating from some finite θ0 in the bulk.

Finally, a much simpler argument, based on studying null geodesics on the conformal

boundary, indicates that the axis of symmetry is in fact removed from the spacetime.

Writing sin θ = e−y, the metric on the conformal boundary reads

ds2 = −dt2 + l2dy2 + 2le−2ydtdψ . (2.35)

The geodesic motion on this space admits 3 constants of motion u2 = −σ, ut = −E and

uψ = h, giving the following 3 equations for null geodesics:

ṫ =
h

l
e2y, ψ̇ =

e4y

l2
(h− E le−2y) ,

ẏ = ±e2y

l2

√

h(2E le−2y − h) . (2.36)

From the last equation it is obvious that no null geodesic emanating from finite y0 can

reach the pole y = ∞ (θ = 0) on the conformal boundary.

To summarize, the above arguments clearly demonstrate that the symmetry axis

θ = 0, π is actually not part of the spacetime and represents instead some kind of a bound-

ary. It is an interesting question as to whether such a boundary has similar properties to

those of the boundary of AdS space (cf. footnote 2).

2.4 Thermodynamics and the reverse isoperimetric inequality

We shall now study the thermodynamics of the obtained ultraspinning black hole (2.3).

We do this in an extended phase space framework [20], where the cosmological constant is

identified with the thermodynamic pressure according to

P = − 1

8π
Λ =

(d− 1)(d− 2)

16πl2
, (2.37)
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in d spacetime dimensions, with its conjugate quantity treated as thermodynamic volume

V . The first law of black hole thermodynamics then reads

δM = TδS +
∑

i

ΩiδJi +ΦδQ+ V δP , (2.38)

a result supported by geometric arguments [27]. Note that the mass of the black hole

M is no longer interpreted as internal energy but rather as chemical enthalpy [27]. The

angular velocities Ωi and the electric potential Φ are measured with respect to infinity.

The corresponding Smarr relation

d− 3

d− 2
M = TS +

∑

i

ΩiJi +
d− 3

d− 2
ΦQ− 2

d− 2
V P , (2.39)

can be derived from a scaling (dimensional) argument [27].

A remarkable property of the thermodynamic volume is that (prior to the cases stud-

ied in [14]) for all black holes studied to date it satisfies what is known as the reverse

isoperimetric inequality [21]. Indeed, it was conjectured in [21] that the isoperimetric ratio

R =

(

(d− 1)V

ωd−2

)
1

d−1
(

ωd−2

A

)
1

d−2

(2.40)

always satisfies R ≥ 1. Here V is the thermodynamic volume, A is the horizon area, and ωd

stands for the area of the space orthogonal to constant (t, r) surfaces; in the d-dimensional

super-entropic spacetime it is

ωd =
µπ

d−1
2

Γ
(

d+1
2

) , (2.41)

due to the compactification of the ‘super-entropic azimuthal coordinate’; the result for

a standard unit sphere is recovered upon setting µ = 2π. This inequality deepens our

mathematical understanding of black hole thermodynamics insofar as it places a constraint

on the entropy of an AdS black hole. Physically, this inequality is the statement that for a

black hole of a given thermodynamic volume, the entropy will be maximal for the (charged)

Schwarzschild-AdS black hole.

In the framework of extended phase space thermodynamics the thermodynamic quan-

tities associated with the solution (2.3) read [13, 14]

M =
µm

2π
, J = Ml , Ω =

l

r2+ + l2
, A = 2µ(l2 + r2+) ,

S =
A

4
, T =

1

4πr+

(

3
r2+
l2

− 1− q2

l2 + r2+

)

,

V =
r+A

3
, Φ =

qr+
r2+ + l2

, Q =
µq

2π
. (2.42)

Note that, due to the singular nature of the ultraspinning limit performed, these cannot be

obtained by taking the a → l limit of the Kerr-Newman-AdS thermodynamic quantities.
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The isoperimetric ratio now reads (note that, due to the compatification of ψ, the

volume of the 2-dimensional unit ‘sphere’ in this spacetime is 2µ)

R =

(

r+A

2µ

)1/3(2µ

A

)1/2

=

(

r2+
r2+ + l2

)1/6

< 1 . (2.43)

In other words, the obtained black holes provide a counterexample to the conjectured Re-

verse Isoperimetric Inequality — for a given thermodynamic volume their entropy exceeds

that of the Schwarzschild-AdS black hole. As such, these black holes are super-entropic [14].

2.5 Singly spinning super-entropic black holes in all dimensions

To generalize the super-entropic black hole solution to higher dimensions, we start from

the singly spinning d-dimensional Kerr-AdS geometry [24],

ds2 = −∆a

ρ2a

[

dt− a

Ξ
sin2 θdφ

]2

+
ρ2a
∆a

dr2 +
ρ2a
Σa

dθ2 (2.44)

+
Σa sin

2 θ

ρ2

[

adt− r2 + a2

Ξ
dφ

]2

+ r2 cos2 θdΩ2
d−4 ,

where

∆a = (r2 + a2)

(

1 +
r2

l2

)

− 2mr5−d, Σa = 1− a2

l2
cos2 θ ,

Ξ = 1− a2

l2
, ρ2a = r2 + a2 cos2 θ . (2.45)

Replacing φ = ψΞ everywhere and then taking the limit a → l we obtain

ds2 = −∆

ρ2
(dt− l sin2θdψ)2 +

ρ2

∆
dr2 +

ρ2

sin2θ
dθ2

+
sin4θ

ρ2
[

ldt− (r2+l2)dψ
]2

+ r2 cos2θdΩ2
d−4 , (2.46)

where

∆ =

(

l +
r2

l

)2

− 2mr5−d, ρ2 = r2 + l2 cos2θ , (2.47)

and dΩ2
d denotes the metric element on a d-dimensional sphere. As before, ψ is a noncom-

pact coordinate, which we now compactify via ψ ∼ ψ + µ. It is straightforward to show

that the metric (2.46) satisfies the Einstein-AdS equations. Horizons exist in any dimen-

sion d > 5 provided m > 0 and in d = 5 provided m > l2/2. We pause to remark that a

method similar to that of [12, 13] could be used to generate these solutions beginning with

a d-dimensional generalization of a Carter-Plebanski-like solution [23] and then choosing

its parameters so that the metric function has two double roots. We do not explore this

alternative here.

Similar to the 4-dimensional case, the solution inherits a closed conformal Killing-Yano

2-form from the Kerr-AdS geometry, h = db, where

b = (l2 cos2θ − r2)dt− l(l2 cos2θ − r2 sin2θ)dψ . (2.48)
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This object guarantees complete integrability of geodesic motion as well as separability of

the Hamilton-Jacobi, Klein-Gordon, and Dirac equations in this background; see [28] for

analogous results in the Kerr-AdS case. In particular, the geodesics can be discussed in a

way analogous to the previous subsection.

Also the arguments concerning the behavior near the symmetry axis at θ = 0, π for

the 4-dimensional case can be repeated here. The induced metric on the horizon is

ds2h =
r2+ + l2 cos2 θ

sin2 θ
dθ2 +

sin4 θ(r2+ + l2)2

l2 cos2 θ + r2+
dψ2 + r2+ cos2 θdΩ2

d−4 , (2.49)

and introducing as before κ = l(1− cos θ) we find

ds2h = (r2+ + l2)

[

dκ2

4κ2
+

4κ2

l2
dψ2

]

+ r2+dΩ
2
d−4 . (2.50)

This is a product metric of two spaces H2×Sd−4 of constant curvature; the horizons of these

black holes are non-compact and have finite horizon area. Similar to the four-dimensional

case, they have topology of a cylinder as the actual axis is excised from the spacetime.

The thermodynamic quantities for these black holes in extended phase space are

given by,

M =
ωd−2

8π
(d− 2)m, J =

2

d− 2
Ml , Ω =

l

r2+ + l2
,

T =
1

4πr+l2
[

(d− 5)l2 + r2+(d− 1)
]

,

S =
ωd−2

4
(l2 + r2+)r

d−4
+ =

A

4
, V =

r+A

d− 1
, (2.51)

with ωd given by (2.41). Here Ω is the angular velocity of the horizon and J and M

have been computed via the method of conformal completion as the conserved quantities

associated with the ∂ψ and ∂t Killing vectors, respectively. These quantities satisfy both

the first law (2.38) and the Smarr relation (2.39) [14].

The isoperimetric ratio for these black holes reads

R =

(

r+A

ωd−2

)
1

d−1
(

ωd−2

A

)
1

d−2

=

(

r2+
l2 + r2+

)

1
(d−1)(d−2)

< 1 , (2.52)

and so, similar to their 4-dimensional cousins, these black holes are also super-entropic.
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3 Black holes of minimal gauged supergravity

3.1 Super-entropic limit

Let us consider the general rotating charged black hole in five dimensions, a solution of

minimal gauged supergravity constructed in [29],

ds2 = dγ2 − 2qνω

Σ
+

fω2

Σ2
+

Σdr2

∆
+

Σdθ2

S
,

A =

√
3qω

Σ
, (3.1)

where we have defined

dγ2 = −Sρ2dt2

ΞaΞbl2
+

r2+a2

Ξa
sin2θdφ2 +

r2+b2

Ξb
cos2θdψ2,

ν = b sin2 θdφ+ a cos2 θdψ ,

ω =
Sdt

ΞaΞb
− a sin2θ

dφ

Ξa
− b cos2θ

dψ

Ξb
, (3.2)

and

S = Ξa cos
2 θ + Ξb sin

2 θ ,

∆ =
(r2 + a2)(r2 + b2)ρ2/l2 + q2 + 2abq

r2
− 2m,

Σ = r2 + a2 cos2 θ + b2 sin2 θ , ρ2 = r2 + l2,

Ξa = 1− a2

l2
, Ξb = 1− b2

l2
,

f = 2mΣ− q2 +
2abq

l2
Σ . (3.3)

The black hole rotates in two different directions, corresponding to rotation parameters a

and b, parameter q is related to the black hole charge.

Our goal here is to perform the super-entropic limit. As we will see, this is only possible

along one azimuthal direction, which we take to be the φ-direction. In so doing, we cannot

apply directly the procedure used for the singly spinning solution to the metric in [29] since

this metric is written in coordinates which do not rotate at infinity. For this reason we

perform the following coordinate transformation of φ and/or ψ:

φ = φR +
a

l2
t , ψ = ψR +

b

l2
t , (3.4)

where φR and ψR are new ‘rotating at infinity coordinates’. We then have

ν =
ab sin2θ

l2
dt+ b sin2θdφR + a cos2θdψ

=
ab

l2
dt+ b sin2θdφR + a cos2θdψR , (3.5)

ω =

(

1− b2

l2
sin2 θ

)

dt

Ξb
− a sin2θdφR

Ξa
− b cos2θdψ

Ξb

= dt− a sin2θdφR

Ξa
− b cos2θdψR

Ξb
. (3.6)
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At the same time, we find

dγ2 =
sin2θ

Ξa

[

(r2 + a2)dφ2
R +

2a

l2
(r2 + a2)dtdφR − dt2

l2

(

ρ2 − (r2 + a2)
a2

l2

)]

+
cos2θ

Ξb

[

(r2 + b2)dψ2 − ρ2dt2

l2

]

, (3.7)

or,

dγ2 =
sin2θ

Ξa

[

(r2 + a2)dφ2
R +

2a

l2
(r2 + a2)dtdφR − dt2

l2

(

ρ2 − (r2 + a2)
a2

l2

)]

+
cos2θ

Ξb

[

(r2 + b2)dψ2
R +

2b

l2
(r2 + b2)dtdψR − dt2

l2

(

ρ2 − (r2 + b2)
b2

l2

)]

, (3.8)

giving the solution in transformed coordinates.

We are now ready to perform the super-entropic limit in the φ-direction. We begin by

setting

ϕ = φR/Ξa , (3.9)

while we keep b as is, and then take the limit a → l. We have S → sin2θΞb,

ν → νs =
b

l
sin2θdt+ l cos2θdψ

=
b

l
dt+ l cos2θdψR , (3.10)

ω → ωs =

(

1− b2

l2
sin2 θ

)

dt

Ξb
− l sin2θdϕ− b cos2θdψ

Ξb

= dt− l sin2θdϕ− b cos2θdψR

Ξb
, (3.11)

and dγ2 → dγ2s , where

dγ2s = −sin2θ

l2
[

(ρ2 + l2)dt2 − 2lρ2dtdϕ
]

+
cos2θ

Ξb

[

(r2 + b2)dψ2 − ρ2dt2

l2

]

= −sin2θ

l2
[

(ρ2 + l2)dt2 − 2lρ2dtdϕ
]

+
cos2θ

Ξb

[

(r2 + b2)dψ2
R +

2b

l2
(r2 + b2)dtdψR − dt2

l2

(

ρ2 − (r2 + b2)
b2

l2

)]

. (3.12)

So we get the doubly-spinning charged super-entropic black hole metric

ds2 = dγ2s −
2qνsωs

Σ
+

fω2
s

Σ2
+

Σdr2

∆
+

Σdθ2

Ξb sin
2θ

,

A =

√
3qωs

Σ
, (3.13)
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where νs, ωs, and dγ2s are given by (3.10)–(3.12), coordinate ϕ is identified with period µ,

ϕ ∼ ϕ+ µ, and

∆ =
ρ4(r2 + b2)/l2 + q2 + 2lbq

r2
− 2m,

f = 2mΣ− q2 +
2bq

l
Σ , Ξb = 1− b2

l2
,

Σ = r2 + l2 cos2 θ + b2 sin2 θ . (3.14)

One can show that this metric satisfies the Einstein-Maxwell-AdS equations. Horizons

exist provided ∆′(r+) > 0.

Note that the super-entropic limit in the ψ (instead of φ) direction would be exactly

analogous. However, once the super-entropic limit in the φ-direction is taken, it is no

longer possible to perform an additional b → l (ψ-direction) super-entropic limit. This is

because of the 1/Ξb factor in the gθθ component of the super-entropic metric (3.13) — the

corresponding divergence cannot be absorbed into a new azimuthal coordinate. So we con-

clude that it is not possible to take successively super-entropic limits in several directions.

Neither does it seem possible to set several rotation parameters equal and then perform

simultaneously the super-entropic limit in all such directions. What is, however, possible is

to combine the super-entropic limit in one direction with the hyperboloid membrane limit

in another direction; we discuss this in appendix B.

3.2 Basic properties

We now turn to a brief discussion of the horizon and extended thermodynamics of the

obtained charged black hole solution. For concreteness we discuss these in coordinates

(t, ϕ, ψ, r, θ), where the coordinate ψ does not rotate at infinity.

The induced metric on the horizon takes the form

ds2h =
cos2θ(r2+ + b2)

Ξb
dψ2 +

f+
Σ2
+

(

l sin2θdϕ+
b cos2θdψ

Ξb

)2

+
Σ+dθ

2

Ξb sin
2θ

+
2ql cos2θdψ

Σ+

(

l sin2θdϕ+
b cos2θdψ

Ξb

)

, (3.15)

where all quantities are evaluated at r = r+ given by the largest root of ∆(r+) = 0. For

b = 0 and q = 0, this reduces to the case studied in the previous section.

Let us for simplicity set q = 0 and examine the behavior close to the pole θ = 0. As

before, we perform the change of coordinates,

κ = l(1− cos θ) (3.16)

and consider the limit κ → 0. The metric becomes,

ds2h =
ρ2+
Ξb

[

dκ2

4κ2
+

4κ2(r2+ + b2)Ξb

l2r2+
dϕ2 +

4bκ(r2+ + b2)

l2r2+
dϕdψ

]

+
(r2+ + b2)2

r2+Ξ
2
b

dψ2. (3.17)

In particular, the ψ = constant slice reduces to a metric of constant negative curvature on

a quotient of the hyperbolic space H
2 showing that the horizon is non-compact. The slice

of constant (θ, ϕ) is just S1.
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Figure 2. Horizon embeddings in 5d. Diagrams display the 2-dimensional ψ = const. horizon slices

embedded in E
3 for the following choice of parameters: b = 0, q = 0 (left), b = 0.8, q = 0 (middle),

and b = 0.8, q = 45 (right). In all plots we have set µ = 2π, r+ =
√
10 and l = 1.

The embedding procedure for constant ψ slices of the horizon proceeds as before — the

results are shown in figure 2, where we have displayed them for µ = 2π, l = 1, r+ =
√
10

and for various values of b and q. These 2-dimensional slices are visually similar to those of

the metric (2.50): the function z(θ) → ∞ for θ → π, 0. Decreasing b results in “squashing”

the horizon, while an increase in the charge parameter causes the horizon to “bulge out”.

The obtained solution is characterized by the following thermodynamic quantities:

M =
µ

8

(m+ bq/l)(2 + Ξb)

Ξ2
b

,

Jϕ =
µ

4

lm+ bq

Ξb
, Jψ =

µ

8

2bm+ q(b2 + l2)/l

Ξ2
b

,

Ωϕ =
l(b2 + r2+) + bq

ρ2+(b
2 + r2+) + lbq

, Ωψ =
bρ4+/l

2 + ql

ρ2+(b
2 + r2+) + lbq

,

T =
r4+[2 + (2r2+ + b2)/l2]− (bl + q)2

2πr+[ρ2+(b
2 + r2+) + lbq]

,

S =
µπ[(b2 + r2+)ρ

2
+ + blq]

4r+Ξb
=

A

4
,

Φ =

√
3qr2+

(b2 + r2+)ρ
2
+ + blq

, Q =
µ
√
3q

8Ξb
. (3.18)

To calculate the mass and angular momenta, the technique of conformal completion [30–32]

was employed using the Killing vectors ∂t, ∂ϕ and ∂ψ. The electric potential is given by

Φ = ℓνAν where ℓν is the null generator of the horizon. The electric charge was computed

using Gauss’ law, Q = (1/16π)
∮

(⋆F − F ∧A/
√
3).
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Identifying the mass as the enthalpy of the spacetime, one finds that the extended first

law (2.38) holds if

V =
µπ

12r2+l
2Ξ2

b

(

[

(b2+3r2+)l
2−2b2r2+

]

ρ2+(b
2+r2+)+qbl

[

(2b2+3r2+)l
2+lbq−b2r2+

]

)

(3.19)

is identified as the thermodynamic volume. These definitions are also found to satisfy the

Smarr relation (2.39). Furthermore, the thermodynamic quantities are found to reduce to

those presented earlier for the case of a singly-spinning 5-dimensional super-entropic black

hole in the limit b → 0, q → 0.

Let us now discuss the fate of the reverse isoperimetric inequality for this black hole.

In the case where b = q = 0 we recover the 5-dimensional singly rotating solution discussed

earlier, which we know to be super-entropic. Here we find that for non-zero b, q this result

is not strictly true: these black holes are super-entropic for some range of q and b, but not

for all possible q and b.

Consider first the case where b = 0 and q 6= 0. In this circumstance, the isoperimetric

ratio (2.40) is given by,

Rb=0 =

(

r2+
l2 + r2+

)1/12

< 1 . (3.20)

This indicates that, when b = 0 these black holes violate the Reverse Isoperimetric In-

equality, satisfying the Isoperimetric Inequality instead.

However, for non-zero b the situation is more complicated. To study this case we will

employ the dimensionless parameters x = r+/l, y = b/l and z = q/l2. In terms of these

parameters, the criteria for the existence of black holes (namely ∆′(r+) > 0) takes the form,

x4(2 + 2x2 + y2) ≥ (y + z)2 (3.21)

and we shall enforce this in what follows. The simplest case one can consider is the case

of nonzero b, but vanishing q. In this case we have,

R12
q=0 =

(

1

27

)

(3x2 + y2 − 2x2y2)3

x2(1− y2)2(x2 + 1)(x2 + y2)
. (3.22)

This relationship suggests that, for some y, the Reverse Isoperimetric Inequality holds. For

example, the factor 1 − y2 in the denominator ensures that as y → 1, R → ∞. However,

the Reverse Isoperimetric Inequality does not strictly hold for these black holes. To see

one example of this, consider eq. (3.22) for small values of y. In this case we can write,

R12 =
x2

x2 + 1
(1 + 4y2) +O(y4) , (3.23)

which, for example, is is less than one when y2 < 1/(4x2). So we see that the Reverse

Isoperimetric Inequality is not saved by the addition of another rotation, provided this

rotation is sufficiently small. Figure 3 (left) shows a plot of R (with condition (3.21)

enforced) for the case q = 0 highlighting the effects just discussed.
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Figure 3. Isoperimetric ratio. Left. A plot of R (curved blue sheet) for q = 0; note that a small

region of x is excluded due to condition (3.21). Right. A plot of R for x = 0.5.

The situation is very similar when charge is included. The additional effect of the

charge can be understood in the following way: for a given value of x the minimum value

of y for which R > 1 decreases as z increases. This is illustrated in figure 3 (right).

To summarize, not all newly constructed ultraspinning charged AdS black holes violate

the Reverse Isoperimetric Inequality (and so are not ‘super-entropic’). Depending on the

value of parameters q and b, some of them do and some of them do not satisfy R ≥ 1.

However we shall continue to refer to this entire class of black holes as super-entropic

since there is always a range of parameters in the metric (3.13) for which the Reverse

Isoperimetric Inequality is violated.

4 General Kerr-AdS black holes

4.1 Super-entropic limit

In this section we shall apply the super-entropic limit to the general multi-spinning

Kerr-AdS black hole spacetimes [33, 34]. Such spacetimes generalize the d-dimensional

asymptotically-flat rotating black hole spacetimes of Myers and Perry [35] and represent

the most general vacuum with cosmological constant,

Rab = − 1

l2
(d− 1)gab , (4.1)

black hole spacetimes of spherical horizon topology without NUT charges [36]. In the

generalized Boyer-Lindquist coordinates the metric takes the following form:

ds2 = dγ2 +
2m

U
ω2 +

Udr2

F − 2m
+ dΩ2, (4.2)
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where, following the 5-dimensional case, we have defined

dγ2 = −Wρ2

l2
dt2 +

N
∑

i=1

r2 + a2i
Ξi

µ2
i dφ

2
i ,

dΩ2 =

N+ε
∑

i=1

r2 + a2i
Ξi

dµ2
i −

1

Wρ2

(N+ε
∑

i=1

r2 + a2i
Ξi

µidµi

)2

,

ω = Wdt−
N
∑

i=1

aiµ
2
i dφi

Ξi
, (4.3)

and, as usual ρ2 = r2 + l2, while

W =
N+ε
∑

i=1

µ2
i

Ξi
, U = rε

N+ε
∑

i=1

µ2
i

r2 + a2i

N
∏

j

(r2 + a2j ) ,

F =
rε−2ρ2

l2

N
∏

i=1

(r2 + a2i ) , Ξi = 1− a2i
l2

. (4.4)

To treat even (ε = 1) odd (ε = 0) spacetime dimensionality d simultaneously, we have

parametrized

d = 2N + 1 + ε (4.5)

and in even dimensions set for convenience aN+1 = 0. The coordinates µi are not indepen-

dent, but obey the following constraint:

N+ε
∑

i=1

µ2
i = 1 . (4.6)

In general the spacetime admits N independent angular momenta Ji, described by N

rotation parameters ai. Namely, the mass M , the angular momenta Ji, and the angular

velocities of the horizon Ωi read [37]

M =
mωd−2

4π
(
∏

j Ξj

)

( N
∑

i=1

1

Ξi
− 1− ε

2

)

,

Ji =
aimωd−2

4πΞi

(
∏

j Ξj

) , Ωi =
ai
(

1 +
r2+
l2

)

r2+ + a2i
, (4.7)

while the temperature T , the horizon area A, and the entropy S are given by

T =
1

2π

[

r+

(

r2+
l2

+ 1

) N
∑

i=1

1

a2i + r2+
− 1

r+

(

1

2
− r2+

2l2

)ε]

,

A =
ωd−2

r1−ε
+

N
∏

i=1

a2i + r2+
Ξi

, S =
A

4
. (4.8)

The horizon radius r+ is determined as the largest root of F − 2m = 0 and ωd is given by

eq. (2.41).
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Our goal is to take the super-entropic limit of these spacetimes. Similar to the doubly-

spinning 5-dimensional case, it is possible to take this limit only in one direction, which we

choose to be that of the φj 2-plane.

Let us start by looking at the dΩ2 part of the metric. The trick is to ‘separate’ the φj

direction and take the limit aj → l, the important observation being that

WΞj → µ2
j . (4.9)

We have

dΩ2 =
∑

i 6=j

r2 + a2i
Ξi

dµ2
i −

Ξj

WΞjρ2

(

∑

i 6=j

r2 + a2i
Ξi

µidµi

)2

−
2(r2 + a2j )

WΞjρ2
µjdµj

(

∑

i 6=j

r2 + a2i
Ξi

µidµi

)

+
r2 + a2j

Ξj
dµ2

j

(

1−
r2 + a2j
WΞjρ2

µ2
j

)

. (4.10)

Obviously, the limit can be straightforwardly taken for the first 3 terms, while the last

term reads

r2 + a2j
WΞj

dµ2
j

(

W −
r2 + a2j
Ξjρ2

µ2
j

)

=
r2 + a2j
WΞj

dµ2
j

(

∑

i

µ2
i

Ξi
− ρ2 − Ξjl

2

Ξjρ2
µ2
j

)

=
r2 + a2j
WΞj

dµ2
j

(

∑

i 6=j

µ2
i

Ξi
+

l2

ρ2
µ2
j

)

. (4.11)

Putting everything together, we have dΩ2 → dΩ2
s, where

dΩ2
s =

∑

i 6=j

r2 + a2i
Ξi

dµ2
i − 2

dµj

µj

(N+ε
∑

i 6=j

r2 + a2i
Ξi

µidµi

)

+
dµ2

j

µ2
j

(ρ2Ŵ + l2µ2
j ) , (4.12)

where we have defined

Ŵ =
∑

i 6=j

µ2
i

Ξi
. (4.13)

Note that there is no further scope for setting any other ai → l — this additional limit will

cause the preceding expression to diverge.

To proceed further, we switch to the rotating frame by setting

φj = φR
j +

aj
l2
t . (4.14)

Then we have

ω = (Ŵ + µ2
j )dt−

ajµ
2
jdφ

R
j

Ξj
−
∑

i 6=j

aiµ
2
i dφi

Ξi
. (4.15)

Upon setting

ϕj =
φR
j

Ξj
, (4.16)
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and taking the limit aj → l, we have ω → ωs,

ωs = (Ŵ + µ2
j )dt− lµ2

jdϕj −
∑

i 6=j

aiµ
2
i dφi

Ξi
. (4.17)

Similarly we have

dγ2 =

(

−Wρ2 +
a2j
l2

µ2
j

Ξj
(r2 + a2j )

)

dt2

l2
+

r2 + a2j
Ξj

µ2
j (dφ

R
j )

2

+ 2ajµ
2
j (r

2 + a2j )
dtdφR

j

l2Ξj
+

∑

i 6=j

r2 + a2i
Ξi

µ2
i dφ

2
i , (4.18)

which limits to

dγ2s = −
(

(Ŵ + µ2
j )ρ

2 + µ2
j l

2
)dt2

l2
+

2ρ2µ2
jdtdϕ

l
+
∑

i 6=j

r2 + a2i
Ξi

µ2
i dφ

2
i . (4.19)

Putting everything together we arrive at multiply spinning super-entropic black holes,

given by

ds2 = dγ2s +
2m

U
ω2
s +

Udr2

F − 2m
+ dΩ2

s , (4.20)

where dΩ2
s, Ŵ , ωs, dγ

2
s are given by (4.12), (4.13), (4.17), (4.19) and we have

U = rε
(

µ2
j +

∑

i 6=j

µ2
i ρ

2

r2 + a2i

) N
∏

k 6=j

(r2 + a2k) , (4.21)

F =
rε−2ρ4

l2

N
∏

i 6=j

(r2 + a2i ) , Ξi = 1− a2i
l2

for i 6= j .

We stress that the µ’s are not independent as they still satisfy the constraint (4.6). We

also identify the coordinate ϕj ∼ ϕj + µ.

4.2 Basic properties

Let us briefly discuss some of the basic properties of the newly constructed multispinning

super-entropic black holes.

First, the super-entropic geometry inherits from the Kerr-AdS spacetimes a remarkable

property — it possesses a hidden symmetry associated with the principal Killing-Yano

tensor, h = db [38]. After the transformation (4.14), the Killing-Yano potential in the

original Kerr-AdS spacetime reads (cf. eq. (B.14) in [39])

2b =

(

r2+a2jµ
2
j+

∑

i 6=j

a2iµ
2
i

[

1+
r2+a2i
l2Ξi

])

dt−ajµ
2
j

r2+a2j
Ξj

dφR
j −

∑

i 6=j

aiµ
2
i

r2+a2i
Ξi

dφi . (4.22)

After the ultraspinning limit, this gives a Killing-Yano potential for the super-entropic

black holes (4.20), given by

2bs =

(

r2 + l2µ2
j +

∑

i 6=j

a2iµ
2
i

[

1 +
r2+a2i
l2Ξi

])

dt− lµ2
jρ

2dϕj −
∑

i 6=j

aiµ
2
i

r2+a2i
Ξi

dφi . (4.23)
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Similar to the original Kerr-AdS spacetimes, such a tensor guarantees complete integra-

bility of geodesic motion as well as separability of various test field equations in these

spacetimes [28]. In particular, this implies that one can study geodesic completeness in a

way similar to what we did in section 2.3 for 4-dimensional super-entropic black holes.

Let us now turn to the horizon. The corresponding induced metric reads

ds2h =
F

U

(

lµ2
jdϕj +

N
∑

i 6=j

aiµ
2
i dφi

Ξi

)2

+
N
∑

i 6=j

r2+ + a2i
Ξi

µ2
i dφ

2
i + dΩ2

s , (4.24)

where all the quantities are evaluated at r = r+. As before, we are interested in the

behavior near µj = 0. Considering the φi = const. and µi = const. slice, and in the limit

µj → 0, the previous expression has the following leading order expansion:

ds2h ≈ ρ2Ŵ

(

dµ2
j

µ2
j

+
Fl2

Uρ2Ŵ
µ4
jdϕ

2
j

)

. (4.25)

As before, this is a metric of constant negative curvature on H
2 and so the super-entropic

limit has yielded a non-compact horizon here as well.

Finally, we shall discuss the thermodynamics of the obtained solution. Employing the

same technique as before, we recover the following thermodynamic quantities:

M =
mωd−2

4π
∏

k 6=j Ξk

(

∑

i 6=j

1

Ξi
+

1 + ε

2

)

,

Ωj =
l

ρ2+
, Ωi 6=j =

a(l2 + r2+)

l2(r2+ + a2i )
,

Jj =
lmωd−2

4π
∏

k 6=j Ξk
, Ji 6=j =

aimωd−2

4πΞi
∏

k 6=j Ξk
,

T =
1

2π

[

r+
l2

(

1 +
N
∑

i 6=j

ρ2+
a2i +r2+

)

− 1

r+

(

1

2
− r2+

2l2

)ε]

,

A =
ωd−2

r1−ε
+

ρ2+

N
∏

i 6=j

r2+ + a2i
Ξi

, S =
A

4
. (4.26)

One can verify that these satisfy the traditional first law. If we now identify the black

hole mass as the enthalpy of the spacetime, we find that the extended first law is satisfied

provided the thermodynamic volume is given by

V =
r+A

d− 1
+

8π

(d− 1)(d− 2)

∑

i 6=j

aiJi . (4.27)

It is easy to see that, in the case of a single rotation, eq. (4.27) reduces to the expression

presented in (2.51) for the thermodynamic volume — namely the naive geometric volume.

This allows us to make some immediate conclusions regarding the Reverse Isoperimetric

Inequality. We see that for small rotation parameters ai, the thermodynamic volume will

be close to the naive geometric volume, V0 = r+A/(d−1). As was discussed in the context
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of the singly spinning super-entropic black hole, the naive geometric volume satisfies the

Isoperimetric Inequality. Therefore, we can immediately conclude that in the general case

the Reverse Isoperimetric Inequality is violated for small values of the rotation parameters

ai. Thus it is only for some parameter values that these ultraspinning black holes violate

R ≥ 1 and so are super-entropic, though we shall refer to this entire class by that name.

5 Conclusions

We have utilized the novel super-entropic ultraspinning limit to generate a broad new class

of black hole solutions, significantly deepening the analysis performed in [12–14]. Namely,

we have constructed new higher-dimensional multiply spinning super-entropic black holes

starting from the general Kerr-AdS metrics in all dimensions and the general rotating black

hole of minimal gauged supergravity in five dimensions. All such new solutions are super-

entropic in one direction. It seems impossible to perform the super-entropic limit in several

directions, neither successively for several rotation parameters nor simultaneously for equal

spinning black holes. However we found that it is possible to combine the super-entropic

limit in one direction with a hyperboloid membrane limit in another direction, obtaining a

novel super-entropic hyperboloid membrane solution of Einstein’s equations. The technical

aspects of these various limits are discussed in the appendices.

The super-entropic limit can be thought of as a simple generating procedure. Starting

from a known rotating asymptotically AdS black hole solution, one performs a coordinate

transformation that puts the metric into “rotating at infinity” coordinates in one azimuthal

direction. This rotation is then boosted to the speed of light by taking the (naively) singular

a → l limit in a sensible way. The result is a nontrivial change in the structure and topology

of the spacetime, since it is no longer possible to return to non-rotating coordinates and

the axis of rotation is excised from the spacetime. In all cases examined, the resulting

black holes possess the unique feature of having a non-compact event horizon of finite area.

Topologically, the event horizons are spheres with two punctures (i.e. cylinders), and as

such these black holes could be considered the AdS generalization of the asymptotically

flat black cylinders considered in [18, 40], though they do not have a smooth flat-space

limit.

In the context of extended phase space thermodynamics the entropy per given thermo-

dynamic volume of all solutions was found to exceed the naive limit set by the conjectured

Reverse Isoperimetric Inequality [21], for at least some range of the parameters. For this

reason we refer to all such black holes as “super-entropic”. This feature is attributed to

be a result of the non-compact horizons of these black holes. As suggested in [14], these

super-entropic black holes do not necessarily spell the end of the Reverse Isoperimetric

Inequality Conjecture, but rather suggest that it applies to black holes with compact hori-

zon, in analogy to the standard geometric isoperimetric inequality in Euclidean space. The

proof of this (restricted) conjecture remains an interesting open problem.
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A Black brane limit

Ultraspinning black holes were first studied by Emparan and Myers [16] in an analysis

focusing on the stability of Myers-Perry black holes [17] in the limit of large angular mo-

mentum. As briefly discussed in the introduction, for AdS black holes several physically

distinct ultraspinning limits are possible. In this appendix we review the first type — the

black brane ultraspinning limit — first studied by Caldarelli et al. [10] for Kerr-AdS black

holes. The procedure consists of taking a limit where one or more rotation parameters,

ai, approach the AdS radius, l, ai → l, keeping the physical mass M of the black hole

spacetime fixed while simultaneously zooming in to the pole. This limit is sensible only for

d ≥ 6 and yields a vacuum solution of Einstein equations (with zero cosmological constant)

describing a static black brane. Armas and Obers later showed that the same solution can

be obtained by taking a → ∞ while keeping the ratio a/l fixed, their approach having the

advantage of being directly applicable to dS solutions as well [18].

In this appendix we follow the original reference [10] and demonstrate the procedure

for the multiply spinning Kerr-AdS black hole spacetimes discussed in section 4. We also

comment on an (im)possibility of taking the black brane limit starting from the newly

constructed super-entropic black holes.

A.1 Limit in one direction

Let us first discuss how to take the black brane limit in one direction, associated with the

j 2-plane. Starting from the Kerr-AdS metric (4.2) we perform the following scaling:

t = ǫ2t̂ , r = ǫ2r̂ , µj = ǫ
d−1
2 σ/l , (A.1)

where

ǫ = Ξ
1

d−5

j → 0 as aj → l . (A.2)

Since we want to keep the physical mass M and angular momenta Ji finite for all i, we

have to have m ∼ ǫ2(d−5). Namely, we set

m → ǫ2(d−5)m̂l2, (A.3)
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where the factor l2 was chosen to cancel a factor of l2 in U after the rescaling. For the

limit to work, we must have also keep m/U finite. Using the scalings (A.1),

U = rε
N+ε
∑

i=1

µ2
i

r2 + a2i

N
∏

k

(r2 + a2k) (A.4)

= ǫ2εr̂ε
(

σ2

l2
ǫd−1 +

N+ε
∑

i 6=j

µ2
i (ǫ

4r̂2 + a2j )

ǫ4r̂2 + a2i

) N
∏

k 6=j

(ǫ4r̂2 + a2k) .

We see from this that we will not have U ∼ ǫ2(d−5)Û unless we rescale the ai’s so that

ai → ǫ2âi for i 6= j . (A.5)

Let us define the following two functions for future reference:

Û = r̂ε
(N+ε

∑

i 6=j

µ2
i

r̂2 + â2i

) N
∏

k 6=j

(r̂2 + â2k) ,

F̂ = r̂ε−2
N
∏

i 6=j

(r̂2 + â2i ) . (A.6)

Then we find

U = ǫ4N−8+2εr̂ε
(

σ2

l2
ǫd+3 +

N+ε
∑

i 6=j

µ2
i (ǫ

4r̂2 + a2j )

r̂2 + â2i

) N
∏

k 6=j

(r̂2 + â2k)

= ǫ2(d−5)a2j Û +O(ǫ2d−6) , (A.7)

giving (in the limit ǫ → 0)

m

U
∼ ǫ2(d−5)m̂l2

ǫ2(d−5)a2j Û
→ m̂

Û
. (A.8)

Also the limits of W and F are now easy to take

F = rε−2

(

1+
r2

l2

) N
∏

i=1

(r2 + a2i ) = ǫ2(d−5)a2j F̂ +O(ǫ2d−6) ,

W =
N+ε
∑

i=1

µ2
i

Ξi
= ǫ4

σ2

l2
+

N+ε
∑

i 6=j

µ2
i

(1−ǫ4â2i /l
2)

=
N+ε
∑

i 6=j

µ2
i +O(ǫ4) = 1 +O(ǫ4) . (A.9)

– 26 –



J
H
E
P
0
6
(
2
0
1
5
)
0
9
6

Hence we get the correct scaling of F to keep U/(F − 2m) finite. We also have

N
∑

i=1

aiµ
2
i dφi

Ξi
= ǫ4

ajσ
2dφj

l2
+

N
∑

i 6=j

ǫ2âiµ
2
i dφi

(1− ǫ4â2i /l
2)

= ǫ2
N
∑

i 6=j

âiµ
2
i dφi +O(ǫ4) ,

N
∑

i=1

r2 + a2i
Ξi

µ2
i dφ

2
i =

ǫ8r2 + ǫ4a2j
l2

σ2dφ2
j + ǫ4

N
∑

i 6=j

r̂2 + â2i
(1− ǫ4â2i /l

2)
µ2
i dφ

2
i

= ǫ4
a2j
l2
σ2dφ2

j + ǫ4
N
∑

i 6=j

(r̂2 + â2i )µ
2
i dφ

2
i +O(ǫ8) , (A.10)

and the dµi terms give

N+ε
∑

i=1

r2+a2i
Ξi

dµ2
i =

ǫ8r̂2+ǫ4a2j
l2

dσ2 + ǫ4
N+ε
∑

i 6=j

r̂2 + â2i
(1−ǫ4â2i /l

2)
dµ2

i

= ǫ4
a2j
l2
dσ2 + ǫ4

N+ε
∑

i 6=j

(r̂2 + â2i )dµ
2
i +O(ǫ8) ,

(N+ε
∑

i=1

r2 + a2i
Ξi

µidµi

)2

=

(

ǫ8r̂2 + ǫ4a2j
l2

σdσ + ǫ4
N+ε
∑

i 6=j

r̂2 + â2i
(1− ǫ4â2i /l

2)
µidµi

)2

= O(ǫ8) . (A.11)

Now that we know how all the components of the metric scale at lowest order as we take

the black brane ultraspinning limit, we can set φj = ϕ, and rescale the metric by a constant

conformal factor, s = ǫ2ŝ. There are no components of order less than 4 in the rescaled

metric, so we may cancel the ǫ4 and complete the limit aj → l.

The obtained metric is a vacuum solution of Einstein equations with zero cosmological

constant that describes a (static in the original 2-plane) black brane

dŝ2 = −dt̂2 +
2m̂

Û

(

dt̂−
N
∑

i 6=j

âiµ
2
i dφi

)2

+
Ûdr̂2

F̂ − 2m̂

+ dσ2 + σ2dϕ2 +
N+ε
∑

i 6=j

(r̂2 + â2i )dµ
2
i +

N
∑

i 6=j

(r̂2 + â2i )µ
2
i dφ

2
i . (A.12)

Here, the metric functions F̂ and Û are given by (A.6), and the coordinates µi are bound

to satisfy the following constraint:
N+ε
∑

i 6=j

µ2
i = 1 . (A.13)

Note that in the process of taking the black brane limit we have ‘lost’ the AdS radius l

and no longer have an asymptotically AdS space. This is in contrast to the super-entropic
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and hyperboloid membrane limits which retain their asymptotic AdS structure. Another

difference is that the black brane limit can be simultaneously taken in several directions,3

whereas this is impossible for the super-entropic limit. We shall discuss this next.

A.2 Limit in multiple directions

The black brane limit, contrary to the super-entropic limit, can be simultaneously taken

in several directions [40, 41]. Let us start from the Kerr-AdS solution (4.2) where we set

several rotation parameters equal, aj = a for j = 1, . . . , n. We want to take the limit

a → l. The procedure is very similar to the above, but we must choose the various scalings

more carefully. We begin as before: to keep the mass finite, we must now have m ∼ Ξn+1
j

from (4.7). In this case all the angular momenta Jj also remain finite. If r and the

remaining ak scale as before, then, after writing aj = a for j = 1 . . . n, reindexing âk to

k = 1, . . . N − n+ ε, and defining

Ûn = r̂ε
(N−n+ε

∑

i 6=j

µ2
i

r̂2+â2i

)N−n
∏

k=1

(r̂2+â2k) ,

F̂n = rε−2
N−n
∏

i=1

(r̂2 + â2i ) , (A.14)

we have

U = ǫ4N−4n+2εr̂ε
N−n
∏

k=1

(r̂2 + â2k)
n
∏

k=1

(ǫ4r̂2 + a2k)

( n
∑

j=1

µ2
j

ǫ4r̂2 + â2j
+

1

ǫ4

N−n+ε
∑

i 6=j

µ2
i

r̂2 + â2i

)

= ǫ2(d−2n−3)l2nÛn + · · · . (A.15)

Since we want m/Un ∼ ǫ0, in the multispinning case we must have the following scaling:

t = ǫ2t̂ , m = l2nǫ2(d−2n−3)m̂ , ǫ = Ξ
n+1

2(d−2n−3)

j . (A.16)

Choosing further

µj = ǫ
d−1
n+1σj/l for j = 1, . . . , n , (A.17)

we also have

W →
N+ε
∑

k=n+1

µ2
k +O(ǫ4) = 1 ,

F = rε−2

(

1 +
r2

l2

) N
∏

i=1

(r2 + a2i )

= ǫ2(d−2n−3)l2nF̂n . (A.18)

3Since the result of the black brane limit is no longer AdS it is not possible to take several such limits

successively.
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The other limits are similar, and so the black brane limit taken in n directions gives the

following metric (s = ǫ2ŝ):

dŝ2 = −dt̂2 +
2m̂

Ûn

(

dt̂−
N−n
∑

i 6=j

âiµ
2
i dφi

)2

+
Ûndr̂

2

F̂n − 2m̂

+
n
∑

j=1

(dσ2
j + σ2

jdϕ
2
j ) +

N−n+ε
∑

i=1

(r̂2 + â2i )dµ
2
i +

N−n
∑

i=1

(r̂2 + â2i )µ
2
i dφ

2
i , (A.19)

where we have set ϕi = φi for i = n+1, . . . N + ε, functions Û and F̂ are defined in (A.14),

and the constraint now reads
N−n+ε
∑

i=1

µ2
i = 1 . (A.20)

As when this limit is taken in only one direction, it can only be done for d ≥ 6 and the

resulting space is no longer AdS.

Let us finally mention that we were unable to obtain the black brane limit of the

super-entropic black holes (4.20) — the super-entropic and the black brane limits seem

incompatible. However, as we discuss in the next appendix, it is possible to combine the

super-entropic limit with the hyperboloid membrane limit.

B Hyperboloid membrane limit

In this appendix, we examine another type of the ultraspinning limit — the hyperboloid

membrane limit — and its compatibility with the super-entropic limit. The hyperboloid

membrane limit was first studied in [10, 19], where it was found applicable to the Kerr-AdS

spacetime for d ≥ 4. In this limit, one lets the rotation parameter a approach the AdS

radius l, a → l, while scaling the polar angle θ → 0 in a way so that the coordinate σ

defined by

sin θ =
√
Ξ sinh(σ/2) (B.1)

remains fixed. Contrary to the super-entropic limit, this limit does not require any special

rotating frame. We shall now demonstrate how this works for black holes in four and five

dimensions.

In four dimensions, applying the coordinate transformation (B.1) to the Kerr-Newman-

AdS metric (2.1) and taking the limit a → l, we find

ds2 = −f
(

dt− l sinh2(σ/2) dφ
)2

+
dr2

f
+

ρ2

4
(dσ2 + sinh2σdφ2) , (B.2)

where

f = 1− 2mr

ρ2
+

r2

l2
, ρ2 = r2 + l2. (B.3)

Note that whereas the black brane limits discussed in the previous appendix yield asymp-

totically flat metrics, this limit retains the asymptotically AdS structure of the spacetime.
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Let us next consider the doubly spinning black hole of minimal gauged supergravity

studied in section 3. For concreteness and future reference we shall perform the hyperboloid

membrane limit in the ψ-direction, that is send b → l, in a coordinate system (t, r, θ, φR, ψ)

where the coordinate φR rotates at infinity. Starting from the metric (3.1) with ν, ω, dγ2

given by (3.5), (3.7), we apply the following substitution analogous to (B.1):

cos θ =
√

Ξb cosh(σ/2) . (B.4)

Note that while (B.1) “zooms in” on θ = 0, this substitution zooms in on θ = π/2, so that

we may take b → l instead of a → l.

Upon the limit b → l we then have ν → νm, ω → ωm, dγ2 → dγ2m, where

νm =
a

l
dt+ ldφR ,

ωm = dt− a

Ξa
dφR − l cosh2(σ/2)dψ ,

dγ2m =
1

Ξa

[

(r2 + a2)dφ2
R +

2a

l2
(r2 + a2)dtdφR − dt2

l2

(

ρ2 − (r2 + a2)
a2

l2

)]

+ cosh2(σ/2)ρ2
[

dψ2 − dt2

l2

]

. (B.5)

The hyperboloid membrane solution then reads

ds2 = dγ2m − 2qνmωm

ρ2
+

fmω2
m

ρ4
+

ρ2dr2

∆m
+

ρ2 sinh2(σ/2)

Ξa cosh
2(σ/2) + 1

dσ2

4
,

A =

√
3qωm

ρ2
, (B.6)

where

∆m =
(r2 + a2)ρ4/l2 + q2 + 2alq

r2
− 2m, ρ2 = r2 + l2,

f = 2mρ2 − q2 +
2aq

l
ρ2, Ξa = 1− a2

l2
. (B.7)

This is a consistent solution of the Einstein-Maxwell-AdS equations in 5 dimensions.

Obviously, no additional hyperboloid membrane limit can be taken in the a-direction

(neither it were possible to take simultaneously two hyperboloid membrane limits of the

original equal spinning metric). However, the form of the metric (B.6) suggests that an ad-

ditional super-entropic limit can be taken. Indeed, beginning with this metric and rescaling

φR = Ξaϕ in the usual way, followed by the a → l limit, we have νm → dt,

ωm → ωs = dt− ldϕ− l cosh2(σ/2)dψ ,

dγ2m → dγs =
1

l2
(

2lρ2dtdϕ− (ρ2 + l2)dt2
)

+ ρ2 cosh2(σ/2)

(

dψ2 − dt2

l2

)

. (B.8)
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Hence we recovered the following super-entropic hyperboloid membrane solution of minimal

gauged gravity:

ds2 = dγ2s −
2qdtωs

ρ2
+

fsω
2
s

ρ4
+

ρ2dr2

∆s
+

ρ2 sinh2(σ/2)

4
dσ2,

A =

√
3qωm

ρ2
, (B.9)

where

∆s =
ρ6/l2 + q2 + 2l2q

r2
− 2m, fs = 2mρ2 − q2 + 2qρ2 (B.10)

demonstrating that the super-entropic and hyperboloid membrane limits are compatible.

Furthermore, they are commutative: one is free to take the limits in either order and the

resultant solution will yield the metric (B.9). We leave a further analysis of the properties

of this solution for future work.

C Uniqueness of the rotating frame

Throughout our analysis we have employed rotating-at-infinity coordinates when taking

the super-entropic ultraspinning limit. Here we will examine the uniqueness of the choice

of rotating frame, discussing for simplicity the four-dimensional Kerr-AdS case.

Let us begin with the Kerr-AdS solution written in the standard Boyer-Lindquist

form, given by (2.1), (2.2) in the main text. In this form, the metric is already written

in ‘rotating coordinates’, characterized by Ω∞ = −a/l2. The fact that these coordinates

are ‘rotating’ is crucial for the super-entropic limit — working in non-rotating coordinates

leads to a singular limit. We can ask, though, what restrictions (if any) are there on the

rotating coordinates we use? That is, are there other frames (besides that characterized by

Ω∞ = −a/l2) in which it is possible to perform the super-entropic limit? Let us begin to

answer this question by writing the metric in ‘non-rotating coordinates’ by transforming,

Φ = φ+
a

l2
t , (C.1)

where Φ is the non-rotating coordinate. We find,

ds2 = −∆a

Σa

[(

1 +
a2 sin2θ

l2Ξ

)

dt− a sin2θ

Ξ
dΦ

]2

+
Σa

∆a
dr2 +

Σa

S
dθ2

+
S sin2θ

Σa

[(

a+
a

l2
r2 + a2

Ξ

)

dt− r2 + a2

Ξ
dΦ

]2

.

It is now be clear that the limit cannot be directly taken in the non-rotating coordinates:

the gtt and gtΦ components of the metric are singular in the a → l limit and cannot be

made finite through our rescaling of φ. There appears to be two possible ways to fix this:

one could simply re-scale t as t → Ξt while simultaneously taking φ → Ξφ or we could

transform to a rotating frame and then take φ → Ξφ. It turns out that the first method

does not work (it leads to a singular metric) and so transforming to a rotating frame is

essential.

– 31 –



J
H
E
P
0
6
(
2
0
1
5
)
0
9
6

Now, starting from the non-rotating metric let us transform to an arbitrary rotating

frame via the transformation,

ϕ = Φ− x
a

l2
t , (C.2)

where x is (for now) an arbitrary parameter. Note that with the choice x = 1 eq. (2.1) is

recovered. We then have for the metric in rotating-at-infinity coordinates,

ds2 = −∆a

Σa

[(

1 +
a2 sin2θ

l2Ξ
(1− x)

)

dt− a sin2θ

Ξ
dϕ

]2

+
S sin2θ

Σa

[(

1 +
r2 + a2

l2Ξ
(1− x)

)

adt− r2 + a2

Ξ
dϕ

]2

+
Σa

∆a
dr2 +

Σa

S
dθ2. (C.3)

Considering this metric we see that gtt and gtϕ components can be made finite with the

choice

x = 1 + yΞ + o(Ξ) , (C.4)

where y is a parameter, with y = 0 yielding the coordinates we have used throughout the

paper, and o(Ξ) denotes terms of higher order in Ξ. Note that we cannot have y ∝ Ξ−1 or

the argument will not work. We then have, in these coordinates,

Ω∞ = − a

l2
(1 + Ξy) . (C.5)

This result tells us that we do face some restrictions in our choice of coordinates. For

example, it is not possible to perform the super-entropic limit if one begins in coordinates

that rotate at infinity with Ω∞ = −2a/l2 since this would require y = 1/Ξ, which is not

valid. Now we must ask: when we perform the super-entropic limit in coordinates with an

arbitrary (but valid) choice of y, how is the result related to our standard choice of y = 0?

The answer is that different values of y correspond simply to coordinate transforma-

tions of the solutions discussed in this paper — there is nothing qualitatively different

about the solution. To see this consider the transformation we made to the rotating frame

ϕ = Φ− x
a

l2
t = Φ− a

l2
t− yΞ

a

l2
t . (C.6)

Now recall that, at this point, when taking the super-entropic limit, we rescale ϕ via

ϕ = Ξψ and then take a → l. So, with a non-vanishing y we have:

ψ =
ϕ

Ξ
=

Φ− a
l2
t

Ξ
− y

a

l2
t
a→ l
= ψSE − y

l
t , (C.7)

where ψSE denotes the azimuthal coordinate from the super-entropic solutions. So be-

ginning in other rotating-coordinate systems just turn out to yield a simple coordinate

transformation applied to the solution we have already obtained.

We need to move to a rotating coordinate system because otherwise we will have a

divergence in gtt and gtφ. While there is some freedom in the choice of starting frame,

we cannot perform the super-entropic limit from any rotating frame whatsoever. When

an appropriate coordinate system is chosen, however, we always recover the ‘standard’

super-entropic solution (up to a simple coordinate transformation).
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