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1 Introduction

Recently the idea of a certain kind of geometry underlying the U-duality symmetries of
toroidal compactifications of 11-dimensional supergravity [1] has gained a lot of attention.
Since the seminal works [2, 3] it has been known that the field content of supergravities
in lower dimensions can be organised into representations of the symmetry groups Ey (for
the T compactification) that appear to be the hidden symmetries of the theories.

These symmetries have found their geometrical interpretation in the formalism of ex-
tended geometry, which has grown out from Hitchin’s generalised geometry [4, 5] and
its extension to exceptional symmetry groups [6]. Building upon extended geometry tech-
niques, development of double field theory [7—11] and its extension to exceptional symmetry
groups [12-16] has brought forward the idea that not only the tangent space, but the target
space itself becomes extended by introduction of a set of new coordinates X™. From the
point of view of string or M-theory these correspond to the winding modes of the extended



objects, fundamental strings or M-branes. Essentially, construction of the extended geom-
etry underlying the U-duality symmetry group F4 of maximal supergravity compactified
on a torus T? is based on the two simple principles:

e infinitesimal general coordinate transformations are replaced by generalised Lie
derivatives that respect the E, structure;

e the dynamics is restricted by a differential constraint called the section condition.

The first principle may possibly allow one to consider non-geometric backgrounds, con-
sistent from the point of view of string or M-theory, on the same footing as geometric
ones [17-21]. The local dynamics of the theory is described by the so called generalised
Lie derivative (3.1) [15, 22], which combines the conventional translation term with and a
FE,; transformation of a special form, plus a possible weight term. The section condition
appears as a necessary constraint that must be included in order to keep the algebra of
generalised Lie derivatives closed and to make it satisfy the Jacobi identity. This constraint
is an extended geometry analogue of the level matching condition and its solutions cor-
respond to different choices of the U-duality frame. Geometric structure of the extended
space at finite distances is still not known in full detail, although there was certain progress
in this direction [23-27].

This geometrical formalism appears as a basis for building the so-called Exceptional
Field Theories (EFT), where the local duality transformations induced by the generalised
Lie derivative act as gauge symmetries. These were constructed in the series of works [28—
33] for the groups Eps7s and SL(2) x SL(3). The EFT’s for the groups Es 7 were further
extended to include fermions in a supersymmetry invariant way in [34-36]. Covariant
gravitational field theory based on the SL(IV) extended space was constructed in [37-39].
In this paper we continue building the chain and present the (bosonic) EFT for the group
SO(5,5) that corresponds to the maximal supergravity in D = 6 spacetime dimensions.
In addition to the EFT generalisation of the true action constructed by Tanii [40] and
used in [41] for maximal gauged supergravity, we construct a manifestly duality invariant
pseudo-action and comment on their relationship.

The full spacetime of a maximal D-dimensional supergravity is enlarged by inclusion
of the extended space and all the fields now live on the full (D + n)-dimensional spacetime.
Because of this natural split, the D coordinates x* are called external while the remaining
n coordinates XM are called internal. This is justified by the particular solution of the
section constraint when the fields have no dependence on XM, which corresponds to the
reduction of 11-dimensional supergravity on a torus T''~. However, the structure of
EFT is richer and we show that it gives both 11-dimensional supergravity and Type IIB
supergravity as less trivial solutions of the section constraint.

The central pillar of EFT is the notion of covariant derivative along the external
coordinates that respects the structure of extended geometry. Following the usual Yang-
Mills like approach, the full content of the corresponding maximal supergravity becomes
employed in the construction of covariant field strengths. Certain dual fields have to be
added to the construction to ensure the covariance. We show that dynamics of the scalar



sector, whose fields are encoded in the generalised metric, is determined by the so-called
scalar potential, which is proven to be duality invariant, although written in a non-covariant
form. Its truncation to the internal space was constructed in a series of works [14, 42, 43]
and its geometrical meaning was investigated in [15, 16, 44-47].

It is worth mentioning that although the duality symmetries of supergravities were
found in toroidal compactifications, the construction of extended geometry, and hence of
EFT’s, is not bound to this class of backgrounds. The torus is considered as a solution
of equations of motion of EFT that preserves all duality symmetries and the full set of
supersymmetries. One may be interested in searching for other solutions of EFT. Certain
progress in this direction has been made in the works [27] and [48].

This paper is structured as follows. In the section 2 we describe the field content of
the maximal D = 6 supergravity, the dualisations necessary for the covariant construction
and the pseudo-action formalism. In the section 3 the structure of extended geometry is
briefly reviewed and basic algebraic identities needed further are provided. In the section 4
we construct the covariant derivative and describe the tensor hierarchy in universal terms.
The corresponding true action and the pseudo-action together with the Einstein-Hilbert
term are presented in the section 5. Finally, in the section 6 we consider the solutions
of the section constraint that give the embedding of the 11-dimensional supergravity and
Type IIB supergravity. Our conventions and notations and details of the most laborious
calculations are collected in the appendix.

2 Field content and dualisations

The ungauged maximal 6-dimensional supergravity theory was originally constructed
in [40]. Under the 6 + 5 decomposition the metric and the 3-form of D = 11 supergrav-
ity give rise to the following fields in the 6-dimensional theory (m,n are internal indices
running from 1 to 5):

{g,uzl;A,umy¢mn70pupaBuumaAumn7¢mnp} . (2'1)

It is conventional to replace the 3-form C),,, by the 1-form that is its dual in 6 dimensions.
Together with five 1-forms A,,,, and ten 1-forms A, this gives a total of sixteen 1-form
fields, which are conveniently organized into a Majorana-Weyl spinor representation of
the duality group SO(5,5), Aﬁ/[, M =1,...,16. The 2-form fields B/, are in the 5 of
GL(5) € SO(5,5). Finally, the 25 scalar fields ¢y, ¢mnp are assembled into a 16 by 16
matrix V%, which parameterises the coset SO(5,5)/(SO(5) x SO(5)), a,& = 1,...,4.
This can be used to construct the generalised metric M ;n defined on the extended space:

Mun = Vir** Vi aa, (2:2)
where the inverse scalar matrix is defined by

VMad VadN = 5MN, VMad VBBM = 52 5?. (2.3)



The SO(5) spinor indices are raised and lowered by the USp(4) invariant tensor 2,3 which
satisfies Q(MQBV = —62. This construction justifies calling the scalars V3¢ the gener-
alised vielbein.

In order to be able to account for the different possible gaugings of the D = 6 theory,
we introduce the duals of the 2-forms and the 1-forms as independent fields [41]:

{Bullm) C;pr} . (24)

From the point of view of the gauged theory, the additional five 2-forms B,,," are added
into the construction to incorporate the magnetic gaugings corresponding to the subgroups
of the duality group G which are not off-shell realised in the ungauged theory. For theories
in D = 4 this was done in [49, 50]. Equations of motion for the magnetic 2-forms, which
are considered independent, give Bianchi identities for the 3-form field strength, while the
3-form potentials give self-duality equations, restoring the correct amount of degrees of
freedom. As it was shown in [41] in the six-dimensional theory this is possible only if
gaugings are turned on. Alternatively, one may consider the exceptional field construction
as it is done further.

While the Lagrangian itself is not duality invariant, the corresponding equations of
motion can be recast into a duality covariant form. To this end, the magnetic and the
electric 2-form potentials B, and B™ are combined into the 10 of SO(5,5), which we

denote by By, i = 1,...,10. In what follows it will be convenient to define
1
B KL _ iKLg
72 16\/57 N (2 5)
1 . '
Cp,l/pM’KL _ 7m'yzKL’YiMNCm/pN-

The coefficients here were chosen so as to make the normalisation of the fields B, ; and
Clwpm the same as in [41].

This field content of the SO(5,5) Exceptional Field Theory is in agreement with the
analysis [51] of decomposition of the Ej; representations under dimensional reduction.
Under the 6 4+ 5 decomposition we find the following representations R, for p-forms:

Ri1 =16, Ry=10, Rs=16. (2.6)

The 4-forms are dual to scalars and do not appear as independent fields in the formalism.
The 5-form potentials that live in the 144 of SO(5,5) are dual to mass deformations and
are encoded in the embedding tensor, which naturally appears in the generalised Scherk-
Schwarz reduction [52-54].

As we are working in even spacetime dimension D = 6, we have to face a common
subtlety when defining the action for the (% — 1)-form potential and its dual. Here one
distinguishes between the genuine action and the so-called pseudo-action. The genuine
action is not duality invariant itself, but the equations of motion may be cast into a duality
covariant form by considering them on the same footing with Bianchi identities for the
field strengths. Lagrangians of this kind were used by Tanii in his formulation of D = 6
supergravity [40] as well as in [41] in order to write down the gauged version of the theory.



In its turn a pseudo-action is written completely in terms of fully SO(5,5) covariant
objects and is invariant under the duality transformation. However, in order to compare
the equations of motion one has to impose self-duality condition on the SO(5,5) covariant
3-form field strength dressed up with scalar fields by hands.

Let us start with the kinetic term for the 2-form fields of the Tanii’s action, which can
be written in the following GL(5) covariant form:

Lo =— K™ PP, F,

2.3l purpns (27)

where e = det ez. This is a genuine action and it is written only for the field strengths
of the five electric 2-forms F),,,nm = dBjym. The matrix K™" is built up from the scalar
fields of the theory, and we are using the basis introduced in [41]:

K™= yme(V,M) Py — (V4T P (2.8)

where Py = 1/2(14+ %) is the projector on (anti)self-dual 3-forms and * denotes the Hodge
duality operator. Note, that one should understand the matrix K™" as an operator, acting
only on 3-forms. The coset representative is written in the following GL(5) C SO(5,5)

Voo = [Vm Vin ] ’ (2.9)

covariant form:

yma Vmiz

where a and @ are the vector indices of SO(5) x SO(5). Such choice of the basis for the
scalar matrix explicitly breaks SO(5,5) covariance, preserving only its GL(5) subgroup.
This reflects the fact that the Lagrangian (2.7) is not duality invariant.

Next, let us see how the equations of motion can be unified with the Bianchi identities
in a duality covariant manner. To this end, one defines another 3-form G,,,™ which is
on-shell dual to the field strengths F},,,m (see [55, 56] for reviews):

31 oL

*G™M = — e = K™F, G™" = K™ xF,,. (2.10)
€ m

Introducing a 10-plet of the 3-form field strengths as

F,uupm

m (2.11)
Guvp

G/u/pi =

the field equations and the Bianchi identities for Fj,,,,, can be written in an SO(5,5)
covariant form simply as *dG; = 0. We stress that the 3-form G™ is defined by the equa-
tion (2.10) and it is not considered as a field strength of some magnetic 2-form potential.
However, the duality covariant equations of motion can be understood as coming from the
following SO(5, 5)-covariant variation

6L = dG; NOB", (2.12)

where the variations 6B, and dB" of the magnetic and electric 2-form potentials are
considered as independent. This is precisely the idea behind the action for D = 6 maximal



gauged supergravity and the formulation of the true action for SO(5,5) exceptional field
theory provided here.
To turn to the pseudo-action formulation it is convenient to represent the scalar matrix
K™ as
K™ = K" + K", (2.13)

where K7 is symmetric and K5 is antisymmetric. Then, the Lagrangian (2.7) decomposes as

e 1
L = _ﬁ[({’m wpm PP —

Consider now a 10-plet of 3-forms F; whose components F},, and F™ are completely inde-

e/u/pmi)\KmnF

2.313! 2 ppmEoran- (2.14)

pendent on the level of the action and are understood as field strengths of the correspond-
ing potentials

Fuupm

m (2.15)
Fluvp

Fw/pi =

To be able to go back to five physical degrees of freedom one introduces the following
self-duality relation by hands (for a more detailed discussion see [57] and [55]):

1 _ .
F,pri = _g € 1€,uz/po/i/\ nijM]kFUHAka (216)

where the symmetric matrix M;; is built out of K; and K3 as blocks in the following way:

_ -1 -1
M=— [Kl ok ke Koy ] : (2.17)

~K{ 'K, Kt

The SO(5,5) invariant symmetric tensor n;; is just a flat metric chosen to be

Nij = [2 (1)] . (2.18)

The condition that the self-duality relation (2.16) is invertible gives the following constraint
for the scalar matrix:

M F My = M. (2.19)

Now, the self-duality equation relates the magnetic components F™ to the electric ones
precisely in the same way as (2.10). Indeed, let us work in the matrix notation denoting
F,, and F™ by F; and F; respectively. Then (2.16) translates into

Fi| |01 |Ky — KoK 'Ky KoKt | |+F) (2.20)
Bl |10 ~K{'K> Kb | xRy |’ '
that is . )
Fi=— K, "KoxI + K; xF>,
1 1 2 1 1 2 (2‘21)

Fy =(K) — KoK 'Ky) xFy + Ko K[+ Fy.
Multiplying the first equation by K5 from the left and subtracting the second one we obtain

F,=KoF| + Ky xF|, = « [T = KmnFn, (222)



where we used that the Hodge start squares to one acting on 3-forms in D = 6 with
Lorentzian signature, > = +1. Hence, under the self-duality condition (2.16) the magnetic
3-form field strength F™ can be identified with the dual 3-form G™.

Using the above relations one may show that the field equations of the genuine ac-
tion (2.7) together with the Bianchi identities can be obtained by varying the following
duality invariant pseudo-action:

1 .
Lr = =5 5y MY Fupi 75, (2.23)
and imposing the constraint (2.16). Indeed, variation of the above action gives the following

covariant equation of motion

*d*MIF; =0 (2.24)

Imposing the self-duality constraint we obtain *dG® = 0, since the magnetic component
F™ becomes equal to the dual field strength G™. With a more lengthy but straightforward
calculation one can show that the above pseudo-action reproduces field equations for the
scalar fields as well.

Note that the self-duality constraint has to be imposed after writing the field equation
for pseudo-action. One may check that the pseudo-action itself as well as its variation vanish
identically upon the self-duality condition. Thus, the pseudo-action is not a reformulation
of the true action but rather is a duality-invariant way to encode the equations of motion.

3 Extended geometry

The transformation of tensors that is consistent with the structure of extended geometry
is given by
SAVM = (LAVYM = (IaV)M + Y MNoNABVE = [N, V)Y, (3.1)

where [,]p denotes the Dorfman bracket. Here both the transformation parameter AM
and the vector VM are functions of the extended coordinate XM . Capital Latin indices
run from 1 to n, which depends on the U-duality group under consideration. The tensor
Y]\K/[I{V , which is an invariant tensor of the corresponding U-duality group, is essentially a

projector [15]:

O(d, d)strings : YN =nMNpgp, n=d,
SL(5): YMN=eMNe¢ . n = 10,
SO(5,5): YMN - %(yi)MN(%)KL, n = 16, (3.2)
Ege): Y[ =10d"NBdgpp, n =27,
Erzy:  YMN = 12cMNKL+5§§”5§)+%eMNeKL n = 56.

Here the Greek indices «, 3,7 = 1,...,5 label the representation 5 of SL(5) and the index
i labels the 10 of SO(5,5).! The invariant metric on O(d,d) is denoted by N, €anmrn =

!These notations are for this section only. For global notations see appendix A.



€a,Bv,5¢ 18 the SL(5) alternating tensor, the matrices +MN are 16 x 16 off-diagonal blocks of
the SO(5,5) gamma-matrices in the Majorana-Weyl representation, and the tensors dyn i

MN 1 are symmetric invariant tensors of Eg and E; respectively.

and c
The invariant tensor YI](V[LN is subject to several algebraic relations that ensure closure

of the algebra [22]:

Y Yy — vV ew =0, for d <5,
YN = —ag PN + 80060 + o) 6%, (3.3)

YUAYEN = (2 — ag) VYN + (DB + aa) Ba 035V + (g — 1) 61 6%

Here d = 11 — D is the number of compact dimensions and P42 -" is the projector on the
adjoint representation of the corresponding duality group. It is defined as P42 P PpC gl =
PABg" and PyBp4 = dim(adj). The coefficients oy and 84 depend on the duality group
and for the cases in question take numerical values (au, 1) = (3,1), (as5,85) = (4,1),
(a6, B6) = (6,%). The last line in (3.3) with n = ¢4 is a direct consequence of the second
relation and the properties of the projector. In addition for the tensor Y% iV to be invariant
the following identity must hold

Y {000 — YYo= 0. (3.4)

Using the expressions above it is useful to rewrite covariant derivative of a generalised
vector in the following form

SAVM = (LAV)M = ANONVM — g PM [ N ONAKVE + B0 A )VM (3.5)

Here the last term plays the role of a weight term, which could be added to any transfor-
mation. For a generalised vector that transforms as in (3.1) the weight is equal to 4. In
general for a tensor with k indices each transforming as in (3.1) the weight will be kf,.
However, one may consider generalised tensors of any weight and, as we will see later, these
are necessary for the EFT construction.

The second term in the expression above represents a projection of the term OyAX
on the U-duality algebra, since in general it does not belong to the structure group Eyqg).-
This in contrast to General Relativity where any non-degenerate matrix belongs to the
structure group GL(D) and one does not need a projector.

In addition one introduces a differential constraint on all fields in the theory that
restricts the dependence on the extended coordinate XM

YHENOy @ Oy = 0. (3.6)

This extra condition in particular implies the existence of trivial generalised transforma-
tions given by AgM = YAK/%V OnXEE, for any x5E. Indeed, the generalised Lie deriva-
tive (3.1) of a vector field VM along the trivial vector field Ag™ reads

1 1
S VM =Y 35 (aNXPQE)KVM + iaNKXPQVM) - iY%fY%ISK@NPXRSVL- (3.7)



It is straightforward to check that the parameter Ag™ itself transforms as a generalised
vector. Closure of the algebra and the Jacobi identity hold up to a trivial transformation
as well. Hence for the Jacobiator of generalised transformations we have

[0A1, 0Ags OAs] = OAgs (3.8)

where the r.h.s. acts on any extended vector trivially up to section condition. For closure
of the algebra we have

[£A17£A2] - E[Al,AQ}E7 (39)

which may be viewed as a definition of the E-bracket [,]g. Explicitly this is given by

B =200 O Ay + YR ON A Ay,
. (3.10)
[A1, Ao]g = [A1, A2]p — §Y%£VGN(A1KA2L)~

It is important to note that the E-bracket is antisymmetric while the Dorfman bracket is
not. This will play a crucial role in the construction of tensor hierarchy starting from the
covariant derivative to be defined in the next section. In what follows one finds important
the following Jacobi identity for the E-bracket

1
[[A[l, Ao, Ag]} M= SV on ([ Al Ay ). (3.11)

4 Covariant derivative for the D-bracket and tensor hierarchy

In the section 3 we have presented the algebra of generalised Lie derivatives that closes on
the E-bracket. In this construction the fields and the generalised diffeomorphism parameter
AM depend only on the extended coordinates XM. We now regard these coordinates
as internal in the spirit of Kaluza-Klein compactification. The fields and all the gauge
parameters are now allowed to depend on the external spacetime coordinates, which we
denote by z#. However, the corresponding derivative d,, is not a generalised scalar

570, VM £ La (9, VM). (4.1)

In order to fix this we introduce a long spacetime derivative, covariant with respect to the
D-bracket as in the ordinary Yang-Mills construction:

Dy =0u—La, =0u—[As®]p, (4.2)

where the generalised vector field Aﬁ/l plays the role of the gauge connection. We identify
this gauge connection with the vector field of the corresponding maximal supergravity that
always has exactly the desired number of degrees of freedom.

Covariance of the derivative D,, with respect to the generalised Lie derivative implies
the following transformation law of the gauge field Al]y :

SAAN = 9, AM — [A,, A]p™ =D, AM. (4.3)



Since D- and E-brackets differ by a trivial transformation (see (3.10)) the above choice is
a matter of convention. Here we take the transformation in this form to keep the analogy
with the conventional Yang-Mills construction.

As usual, the commutator of covariant derivatives defines the field strength of the
gauge field:

DD = L7,  Fu' = 20,40 —[A,, A" - Y OB " (4.4)
Here the extra term with the field B, was added since the first two terms do not form a
generalised vector under the gauge transformations. Note that this term does not contribute
to the generalised Lie derivative in (4.4) as it is a trivial transformation.

As in the maximal gauged supergravity, field strength for the 2-form potential BWK L
is defined by the Bianchi identity for the covariant field strength FWM :

o]

3 1
Fuvp®* = 3D, B, K" + D253 viL <A(P8,,AQ) B[A[#,A,,]E(PAP]Q)> (4.5)

vel D(1— 25, v T

—3(0n Chuvp™ ™ — Yf'% N CW/JQ’PN)v

where again the terms in the last line were added to make sure that the 3-form field strength
is indeed covariant, i.e. (5A]:WpKL = EA}"WPKL. This term will be constructed out of the
next field in the tensor hierarchy, which is the 3-form CWpM KL As above, these terms do
not contribute to the Bianchi identity since they vanish identically under the appropriate
contraction with the Y tensor.

Finally, we will find useful the Bianchi identity that gives the 4-form field strength:

3

KL __
P D55

KL P N,KL KL PN
YPg Fluw pr]Q =3 (aN]:WpG —Ypg aN]:MVPUQ ) :

(4.6)
Substituting the explicit form of the fields into this expression we obtain the 4-form:

]:MVPUMJ(L =4D},,0, MEL 4 (2B[MVKLfPU]M - B[WKLYJI%VaNBPU}PQ)

o]
+ mYPQ (A[# Ay 8/)140,] - ZALU‘ [Al/7 AP]E AO’]) .

Here one does not need to add any extra fields to covariantise the expression since it
does not appear in the Lagrangian. Moreover, all possible extra terms should disappear
from the Bianchi identity as well and hence do not show up at all. Due to the duality
relation between F,,, and F,,,, to be derived later as the field equation of the magnetic 2-
form potential B,,", one can also write down the external diffeomorphisms for the 3-form
potential C,,, using the 2-form field strength, rather than the 4-form.

,10,



Under arbitrary variations of the p-form potentials the covariant field strengths trans-
form as follows:

0Fu™ = 2D AAY — Y ONAB,,KF,

3
KL KL

0F ™" = 3PwABu "+ 555
— 3(ONAC,, VK — YEEONAC,,, 2N,

1
3D(1 - 284)

KL P Q
YPQ ]:[/141/ AAP]

8 Fpvpo ™ = 4 DY, AC, 0 MHEE +

o]

(4.8)

3 1
<8‘7:[WMABPU]KL - 4'7:[WpKL5AM>
where it proves useful to define “covariant” transformations

M M
AAM = 5AM,
o
D(1 —284)

ACMVpNJ(L — 5C,ul/pN’KL _ 5AaByp}KL _

AB,,*t = 5B, KL - Y ANGAY, (4.9)

1

KL AN 5sR
SD 25, e ADATIAD,

Iz

Identifying the field BWK L with the 2-form B-field of the maximal D = 6 supergravity, we
may expect its own gauge variation with a 1-form parameter EMK L to appear in the trans-
formation law as AB,,, KL = 2DEy KL 4 other terms. This will make the variations (4.8)
covariant. Apparently, the gauge variation of Aﬁ/f would also be affected, and the same
is true for the 3-form potential. Hence, requiring that the field strengths transform co-

variantly leads to the following gauge transformations of the fields corresponding to the
SO(5,5) duality group:?

AAY = DAY + YN onE, ST

1

)

KL = KL KL AMT N
AB;,LI/ = 2D[u‘:1/] — ﬁYMNA .Ful/
+3 (N, N EE — Y EEON T, P9
2
M,KL _ M,KL M= KL KL AP M
ACMV{) - 3D[,U«\IIVP} - f[l“/ \_‘p} + MYPQA f,quQ .
In what follows we explicitly determine the relation between the field C’WPN KL in the for-

malism above and the 3-form potentials of the corresponding gauged supergravities. These
have different structures of the indices and will be related by the SO(5, 5) invariant tensors.

In order to compare with [41], one has to use the identity for SO(5,5) gamma-matrices

yi(MN'yiK)L = 0. (4.11)

It is important to note a subtlety that arises in even dimensions. For the off-shell formulation of the
theory the field F.,%% in the last line of (4.10) should be replaced by G, *.

— 11 —



Then it is possible to rewrite the above relations in terms of the fields B, ; and C),,, p:

1 X
AAY =D AM + — 4 MYONE,;,

2V2
_ N
ABuyi = 2Dy,Z — V2yun A FuN — Vah MN 9, N, (4.12)

ACuwpm = 3DV + 3\/§7iMNf[MVNEp]i + \/ﬁ’yiMNAN]:w/pi.

For the Bianchi identities we obtain:
1
2v/2 7

V2
4D[,u]:1/po}i = 3\/§F[MVMFpU}N7i MN + T %MNaMFpraN-

3D, Fy M = —

i MN
ol Onr

F;,LVpi?
(4.13)

The covariant gauge transformation 5/\]-"WPKL implies that the 3-form field strength
is a rank 2 generalised tensor of weight A\(F(3)) = 1/2. Indeed, decomposing the Y-tensor
in terms of the projector one obtains

1
SaFupE = ANONFuKE = 8 Fu )R PRGN p Oy AT + 3 ONAN Fu K E. (4.14)

In what follows we will need the gauge transformation of the corresponding 10-plet .,
which takes the following suggestive form:

1, 1
5Afwlpi = AName,pi — §(tz‘])MN aNAMJ-"ij + 5 8NAN]:Ml,pi, (4.15)

where (t;;) N = Vi MPYj] PN represents the generators of SO(5,5) in terms of the gamma-
matrices. Here we have used the following identity

PX P oy @By pp = ()5 L, (4.16)

which is true since the left hand side is traceless with respect to 10-dimensional indices.
Note that the expression (4.15) again has the form of a translational term plus weight plus
an SO(5,5) local duality rotation.

5 Covariant exceptional field theory

In this section we present the invariant Lagrangian for the SO(5,5) Exceptional Field
Theory, which has the following schematic structure:

Lrrr = Lea(R) + Loe(DuMun) + Ly (Fu™) + L (Fuw,5F)

(5.1)
+ Etop - GV(MMN, guu)-

Here the Einstein-Hilbert term Lgpg, the kinetic term for the scalar fields L£s. and the
vector fields potential Ly can be written in a duality covariant form. In contrast, the
kinetic term for the rank 2 tensor potential L7 as well as the topological Lagrangian Liop,
should be considered on a separate basis. Due to the usual subtlety with (k — 1)-forms in
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even D = 2k dimensions, writing the Lagrangian for the 2-form potential in D = 6 in a
fully duality covariant manner is nontrivial. This can be achieved by giving up manifest
Lorentz invariance [58], or by introducing extra scalar fields [59, 60]. However, for our needs
only the variation of the corresponding kinetic and topological Lagrangians is enough. As
will be shown here, the extended geomtery allows to write this variation in a duality and
Lorentz covariant way.

Finally, one should include the potential term eV (Masn, gu) for the scalar fields,
which depends on derivatives along XM and transforms as a density under the generalised
Lie derivative, leaving the action invariant.

5.1 Universal kinetic Lagrangian

For the curvature of the external metric R,,,, to be a scalar of weight zero under the
gauge transformations induced by the generalised Lie derivative, the corresponding spin-
connection wu‘ﬂ; should have weight zero as well. To ensure this we set the external vielbein
to be a scalar of weight )\(ez) = B4. The usual equation that determines the spin-connection
can be written in the following covariant form:

_ 1 b
D[Mey}a - Zw[ “ eyp = 0. (5.2)
In addition, since all the fields are dependent on the extended coordinates, so are the
parameters A%, of Lorentz rotations. The corresponding Lorentz-invariant Riemann scalar
then differs from the usual expression and has the same form as in [30]:

R

ul/dl; = Rum’zg + 'FIWM 62 a1\/16;)17)' (53)

Hence, the full covariant Einstein-Hilbert term takes the following form:
1 n,. 3D > 1 n,. 3D Lovp ab
SEH:—§ d"zd XeR:—i d"vd”Xeegep R,". (5.4)

For the scalar degrees of freedom parameterised by the matrix M;n one writes the
general form of the Lagrangian as

1
Ly = — e g™ DMy Dy MMV, (5.5)
40éd
This expression is explicitly covariant with respect to the local gauge transformation gen-
erated by the generalised Lie derivative. Since we have for the weight of the vielbein

A(ef,) = Ba, the total weight counting gives (d — 2)8s = 1, which is in precise corre-

spondence with the pattern for 54 noticed in [22]. Indeed, if an expression T has weight
A(T) =1, then its transformation can be written as a full derivative:

OAT = ANONT + N(T) ONANT = an(ANT). (5.6)

This will prove useful in the verification of gauge invariance of the potential term
eV(MunN, guw)-
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The kinetic term for the 1-form potential Aﬂ/[ takes the following universal form:

1
Ly = 1 e Muyn ]:,LLVM]:#VN~ (5.7)

One can substitute (2.2) for the scalar matrix M;y. Again, counting of weights gives the
total weight of 1.
Hence, altogether we have for the kinetic terms that can be written in a universal form:

1 - 1 1
) — —5 e Rg, F] + o, eg"’" DyMun D, MMN _ 1 eMyn FWMFWN- (5.8)

kin

Because of the dualisation in even dimensions one has to consider the kinetic term for
the 2-form potential separately. This term together with the corresponding topological
Lagrangian is considered in the next two sections.

5.2 Kinetic and topological action for the p-forms

Comparing the transformation of the 2-form field (B.8) with that of [41] we define the
following fields in the 10 and 5 representations:

1 .
B KL _ ZKLB s
Qv 16\/57 Hvi (5 9)
1 , '
CMVpM,KL — _m,leL,%MNCquN'

In analogy with the prescription of the gauged maximal D = 6 supergavity we do the
following replacements:
F;wpm — -Fp,l/pmv

F,“,M N ]:,WM- (5.10)
It is important to note that the replacement F),,,m — Fuupm only refers to the 5 of the 10
components of the field F,,,;. The remaining dual components will be restricted by the
field equation of the 3-form field C},,, p7. Hence, as was described in section 2 the covariant

on-shell 10-plet field strength becomes

_ |9m | Fm
pp pp

Now we are able to write the full variation of the kinetic and topological Lagrangians
for the p-forms with respect to variations of the p-form potentials (4.10) as follows

(& K
§(Lyin + Liop) = — 5 MuynFMsFN — 3
V2K

A i M N
- T elvror g,ul/pi ")/ZMN—FUH 0A\

2
—I-\/;He

VPORA , 1]
e n JguypiDUABli)\j

R o N (5.12)
Hopor ]:,uz/ 'YzMN ]:pa ABpxi

V2K €;wpm£)\

3. 41 (Fuvpi = Guvpi) ¥ M N 00 ACpa nv-

+
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Although we are working with the true action that is not duality invariant, this variation
gives duality covariant equations of motion for the p-form field potentials. Note, that
variations of the magnetic and electric 2-form potentials are considered to be independent,
while the field strength G,,,,; contains only electric degrees of freedom. This is done to
obtain the duality-covariant equations of motion with the correct number of physical fields.
The magnetic degrees of freedom are encoded in the field strength F; defined as

]: vpm
Fuvpi = [F:me‘] (5.13)

The duality relation restricting F™ will follow from the equations of motion of the 3-form
potential Cpup -

The above variation is constructed in the following way. One starts with the first two
terms above with an arbitrary relative coefficient . These simply correspond to variations
coming from the kinetic terms for the 1- and 2-form potentials. Next, one adds the necessary
contributions to make the expression invariant under the gauge transformations generated
by Z,; and ¥, ps. The most straightforward way to see this invariance is to rewrite the
above expression using the equation (B.20) as follows:

5(»Ckin + »Ctop) = — gMMN ]:‘LWM 5.7:,W,N — %

V25

+ 8 eHvPIRA ]:le Y MmN ]:pUN ABgi (5.14)
V2K

A i MN
3.4 T Fuvpiy' T O ACuwp N,

The first two terms are trivially invariant under the variations Z,,; and ¥, of the 2-

VPoRA 1]
G n Jg;uzpi 5‘Fon)\i

and 3-forms respectively. To see that the =, ; variations of the other two terms cancel,
one integrates by parts dps in the second term and uses the Bianchi identity (B.30). This
gives a full derivative of the form D(FF =) and hence vanishes. Cancellation of ¥,
variations works in the very same way. Note that Z,,; is a generalised 10-plet of weight
Az = 1/2 (cf. (4.15)).

Let us look at the equations of motion for the 3-form potential C,,,, which give a
relation between the covariant field strength F,,,,; and G,

’YmMN 8N(fuupm - g;u/pm) =0. (515)
This is the EFT analogue of the equation
gOM(F™ — xK™F,) =0, (5.16)

which constrains the dual component F,,,". The above equation can be obtained from
its EF'T analogue by means of Scherk-Schwarz reduction, which expresses the components
of the embedding tensor M = (§M™ M) in terms of twist matrices. Covariance of the

equation (5.15) in the extended geometry sense follows from the identity
o (NN on — Y00 k1) = £a (080 g — Y £l 0m ¥ k1), (5.17)

which is true for any generalised tensor UF g = WP k.
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Using the Bianchi identity (4.6), the bosonic field equation of the magnetic 2-form
potential B, can be written in the following form

1
PYmKL 8]( <~/—':u,1/p0'L + — €uvpor eMLN fﬁ)\N) =0. (518)

4K

This is the EFT analogue of the on-shell duality relation between the 3-forms and the
1-forms (see the section 2). This equation will prove useful for establishing invariance of
the Lagrangian under external d = 5 + 1 diffeomorphisms, that will fix all the remaining
freedom in choosing relative coefficients in (5.12).

The relative factor x can not be fixed by gauge invariance and remains undetermined
here. Further we will see that in order to have the Lagrangian invariant under the external
(5 + 1)-dimensional diffeomorphisms generated by the shift z# — z* + &#(x), one should
set Kk = 1/2.

5.3 Field equations and pseudo-action

In the previous section the true action has been constructed. In its general form it repeats
the action of maximal D = 6 gauged supergravity, however with additional subtleties due
to dependency on the extended coordinates. However, in order to provide a fully duality-
covariant formulation of the theory one has to construct a pseudo-action.

The kinetic term for 1- and 2-form potentials has its usual form and can be easily

written as
e

Liin = — == FuwpiMIFHP; — 4]-"WM]-"“”NMMN, (5.19)

2. 3‘
where M% is the 10 x 10 duality covariant scalar matrix constructed of the matrices K7™
and K" as blocks (see section 2 and the lectures [57] for more details). Here we have
already set x = 1/2 for convenience. In addition, to obtain equations of motion consistent
with the first order self-duality equations and Bianchi identities one should add a topological
term, that is a term that does not contain the spacetime metric g,,, as well as the scalar
matrices My n or M%. As in the gauged case the easiest way to do this is to construct
its variation, since the topological Lagrangian itself is not covariant. Hence, we have

1 .
Da]:uupiABn)\Z +

i ]:,uupi]:oﬁlyi 5A>\

1
3v2
F,uufy pr'ABH)\’L + —F

5£t0p — 6—16,uz/pcm)\ < _

X (5.20)

_8\/§ '3\/» uupzly

where we have used the spinor notation for F,, and 5A£4 . Given the expressions (4.12) it

NaMAC,qu N) )

is straightforward to show that the above variation vanishes on the gauge transformation.
Hence, the corresponding pseudo-action is duality invariant. Note, that this topological
term has very similar structure to the one obtained in [61, 62].

Now using the general variations of the field strengths (4.8) the above variation can
be recast in the following nice covariant form

g [ L
OLiop = € e VPoA (36

= F'NOF; + Fu N6FY,

) 1 M
f,uz/pz 6~Fan)\ + 48~F,ul/paM 5]:/§/\ > (521)
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where we define a p-form w as

w= ;!wmmupdm“l A ANdxhr. (5.22)
Using the explicit form of the variations (4.8) together with Bianchi identities (4.13) after
a lengthy but straightforward calculation one shows that the variation d(Lgipn + Ltop) gives
the same equations of motion as the true action (5.12) upon the self-duality condition that
is imposed by hands.

It is a common situation for Exceptional Field Theories that the topological term is
most conveniently written as an integral of a full derivative over a higher-dimensional space
whose boundary is the 6-dimensional spacetime.> With some abuse of notation this can be
written as

Stop = / dSx dMOX Liop

1 (5.23)
= [ d"X d'X <2 IF; NDFj — —=F AY'F A ﬂ)
/ n J \/§ Y
where we used the following differential form notation
1

FM = ZF Maxr ndxY,

2 (5.24)
Fi= g}—m/pi dX* NdXY NdXP.

Again the above expression is very similar to the structure of the topological action
of [61, 62].

The particular form of the topological Lagrangian Liop, is not manifestly covariant and
therefore is not very useful for our further discussion. Invariance of the topological action
as well as equivalence of the variation of (5.23) to (5.20) goes precisely in the same way as
for the E7(7) and SL(2) x SL(3) exceptional field theories [31, 33]. Note that each term in
the topological action (5.23) is of weight 1. Given that each of the field strengths employed
here are gauge covariant, this ensures gauge invariance.

Hence, the full duality invariant formulation of the theory is given by the
following action

1 - 1 .
L=—ZecRlg,Fl+— eg" DyMuyn DyMMN — 7 MiTFrve,
2 40[d ’ 2. 3' e J (525)
e
- 1 ;LVMfMVNMMN —eV + £t0p7

with the topological Lagrangian given by (5.23). In addition one has to impose the following
self-duality condition by hands

1
3!
Note, that here we use the fully-covariant field strengths. It is important to mention, that

Fuupi = - eile,uupm@/\ niijk-FUm\k- (526)

equations of motion for the 3-form potential give this self-duality relation only under the
derivative y"N@y. To return to the true action and the GL(5) formulation one has to fix
the form of the SO(5, 5) invariant matrix M% as in (2.17).

3Note, that this is just a convenient way to encode the topological term and to reproduce its variation.
There is no physical meaning of the D = 7 spacetime in this setting.
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5.4 The invariant potential

Scalar fields of the theory are encoded in the generalised metric M sy, which transforms
as a tensor of weight A\(M) = 0. Recall the expression for the transformation law of a
tensor of weight A:

SATM = ANONTM — ag PM K L O APTN + N0 ATV (5.27)

Although a generalised vector on extended space transforming as (3.1) has the weight
A = By, in this section we will need a more general class of fields with a different weight.

Now we would like to construct a potential for the scalar fields M,y that is gauge
invariant and includes derivatives with respect to XM of the generalised metric as well as
the external metric g, and its determinant g = det g,,,. The desired expression turns out
to be:

1 1
V=- HdMMNE)MMKL@NMKL + §MMN8MMKL3LMNK
1 1 1
- i(g_laMg)aNMMN - ZMMN(Q_IaMg)(g_IaNQ) - ZMMNaMgWaNgW,

(5.28)
where the terms in the first line are precisely those of [42], while the rest of the terms
are needed to ensure gauge invariance. One should note the determinant  /—g in the
action (5.1).

The most convenient way to check that the above potential is invariant under the trans-
formations induced by generalised Lie derivative is to introduce a non-covariant variation:

Ap = 6p — L, (5.29)

which measures how much the variation § of an non-covariant expression differs from its
covariant variation. Then it is sufficient to check only the variations of non-covariant terms,
e.g. for the first term in the potential we have:

SA(MMN 9y MELON Micr)
= SAMMN Oy MEEON Mgcr, + MMV 5 (0 MEL)YON MK
+ MMN o MELS, (O M k1) (5.30)
= LA(MMNo MELON M)+ MMV AL (O MEBYON Mk,
+ MMNgy MEEA (O MKL).
The first term in the last line above automatically gives a gauge-covariant expression and
we are left only with the last two terms.

Let us now explicitly calculate the non-covariant variation of the term 9y, M&Z and
then list the corresponding variations for the other relevant expressions. Thus, we write:

5A(6MMKL) = Ou (ANaNMKL —2ay4 PPQ(KN ML)NapAQ) ,
L@y MELY = ANon oy MEL — 20, PP oy 9y MEIN9pAQ (5.31)
+ ag PPNy pACON MEL 4 X(OM) ONAN Oy MEL
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where we added a non-zero weight for 9y M® L. We simplify the last line by using the
section constraint and by setting the weight to be A(OM) = —f,4, which leads to:

AA<8MMKL) =-2 (6% PRP(KQ ML)QaMRAP. (5.32)

This choice of the weight A(OM) can be motivated by the fact that a geometric generalised
vector, i.e. an object transforming as (3.1), has a weight ;. Hence, a derivative with
respect to the coordinate XM should add a weight —f, to any expression.

Following the same steps one constructs non-covariant variations for the other relevant
expressions and obtains:

AN(ONMEL) =+ 20q PRp@ 1 Mp)gdnrAT,
Ax(g7'Ong) = 2d By OunAY,

A (Ong"™) = =2 Ba Oun AN g,

A (Om ) = 2 BaOunAY g

Note that the weight )\(62) = [y for the vielbein derived in the previous section implies

(5.33)

the following values:

Mg 'Omg) = —Ba, MNOmg"™) = —3B4, MNOmguw) = Ba- (5.34)

With these conventions the total weight of each term in the potential together with the
prefactor of e = det ez is precisely 1.

Putting all of this together we get for the variation (5.30) of the first term in the
potential:

5A< — & MMN g MEL 3NMKL> — e MMN PP g MR oy Micr, dppA©

doyg (5.35)

= e MMN MEL 9y My p Orn AL

In the second line we used the fact that the matrix MY parameterises the coset G /K

with G being the U-duality group. Then one is able to construct a current
(Jan)F g := MPROy Mpg, (5.36)

that belongs to the algebra g of the group G and is invariant under the action of the
projector on the adjoint. Hence, we write

PP L(In) K = (In)Fe (5.37)

For the non-covariant part of the variation of the second term in the potential we
obtain

oA <; MMNaMMKLaLMNK> —
— —g ag (PRP(KQ MBPCMMN g My e dprrAT
5.38

= —eaqy MMNIP’RPQN (JM)LQ 8LRAP + e By 8KMKL8LPAP
+edp M= O LY,
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where the section condition was used in the third line. To cancel the variation of the first
term in the potential (5.35) one has to modify the first term in the last line above. Using
the property (5.37) of the current me rewrite this term as

€eQyq MMN PRPQN (JM)LQ GLRAP = €0y MMN PRPQN PQLUV (JM)VU 8LRAP. (5.39)

Next, expressing the projectors back in terms of the tensor Y% év and using the invariance
condition in the first line of (3.3) we obtain for this term:

e Bg MMNPL VUL ()W 0rp A + e MMV PLLU G ()Y 1y O AT

5.40
= —e By O MM 9, p AT + e MMN MK 9y My p Orn AL . (5.40)

Hence, in total for the non-covariant part of the variation of the second term in the potential
we have:

oA (; MMN 3MMKL3LMNK> —

— —e MMN MEE 9y Mycp Oun AT + 2 By O MEL 9 p AT + e 0p MEL 9 AT
(5.41)
and the variation (5.35) is successfully cancelled. The remaining terms linear in M are
cancelled with the terms coming from the second line in the potential (5.28).
Indeed, consider the contraction

AA(BNMMN) = —(Q,Bd + 1) 8NPAPMMN - MNK 8NKAM, (5.42)

where the section constraint was taken into account. Then, the non-covariant variations of
the terms 3, 4 and 5 in the potential can be written as

AA3) = —dBgedypA’ ONMMN 128,00 e Onp AT MMN 4 MVE 9110 O AM
Ap(4) = —2d By MMN 9pre Oy p AT,
AA(5) = 2Bg MMN 9pre dnp AL
(5.43)
Altogether, combining these with the remaining pieces from (5.41) we obtain for the total
variation
SaleV) =0y (e ANV) + e AV
= On (e ANV) — e O p AT ONMMY e 0p MEL 9y AT
— Oyre MMN o p AT + MEL 9pe O AT
= In(e ANV — eOpoAT MON + e MEL 9 AN) — 0,

(5.44)

where we used the identity g~ '0y7g = 2e7! Oyre.

Hence, it has been explicitly shown that the potential for the scalar fields (5.28) is
invariant under the transformations induced by the generalised Lie derivative up to bound-
ary terms, which drop from the corresponding action. Remarkably, all the coefficients are
fixed by the gauge invariance, up to an overall prefactor. Moreover, weight counting for
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the terms in the potential together with the invariance of the Einstein-Hilbert term give
the correct pattern for By4. It is interesting to note, that although the invariance condition
for the Y-tensor looks differently for the Egg), the scalar potential is given by the same
expression (5.28).

Finally, in precise analogy with the E;) case [31], to compare with the previous
results [42] for the potential for Mpsn one uses the truncation Juv = e2AnW and rescales
the generalised metric as My — YA Misn. To ensure the U-duality invariance the field
A = A(X) must be an independent degree of freedom.

5.5 External D = 5 + 1 diffeomorphisms

We have seen that invariance of the Lagrangian with respect to gauge transformations
generated by the generalised Lie derivative fixes the relative coefficients of different terms
inside the potential. Same as in the EFT’s for the other duality groups, the relative coef-
ficients of different terms within (5.1) are fixed by imposing invariance with respect to the
external diffeomorphisms. For a diffeomorphism generated by a parameter & that does
not depend on the extended coordinates XM each term in the Lagrangian is manifestly
invariant. However, the situation becomes more subtle if one considers a general depen-
dence of the parameter on extended coordinates. In close analogy with the other EFT’s
we consider the following transformations:

562 = f“DVeZ + Duﬁyeg = LgDeZ,

SMuyn = "D Myy = LeP My,
SAN = ¢ Fp+ MMN g one” = LPAN + (5.45)
ABuui = gpgp/_wi = prBuui +...

(&
AM
AC;U/pN = ﬂeluupon)\éﬂ]:% Mun.

Here LgD denotes the conventional Lie derivative along &* built from the covariantised
derivatives D,,. Transformation of the 3-form potential is required to be of this particular
form by invariance of the Lagrangian. Note however, that this is equal to the conven-
tional form AC,,,N = {7 Fouvpm on the equations of motion of the “magnetic” 2-form
potential (5.18) for any k.

In what follows we will focus mainly on the terms that contain the derivative dps&*,
referring to them as new terms. By contrast, cancellation of the other contributions works
in a way similar to the maximal gauged supergravity and hence does not require a detailed
analysis.

Let us start first with transformation of the kinetic term for the scalar fields My,
whose cancellation with the kinetic term for vector fields is universal. Hence, we write

5§(DMMMN) = LgD(DMMMN) +2ay Mp(MPN)PRS fNVR 0s&”

— MKpaKMMN 8P§Vglw — 204 MP(M]P’N)PRS 65(MRQQ#V 8@6”).
(5.46)
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Substituting this into the variation of the kinetic term for scalars and keeping only the
relevant terms we obtain:

1
1 S¢(e g DMy Dy MM
o7}

= eg“prMMNMNK .FW,K(?M{V
(5.47)

+e <MNL8MMLK — QiZMKLaLMMN) 'D#MMNaKgu
d

+ ..

Here the dots denote the omitted part of the variation which is not relevant for setting up
the relative coefficients between the terms of (5.1). The first term above will be cancelled by
a corresponding contribution from the variation of the kinetic term of the 1-form potential.

In order to cancel the second term in the expression above we consider the variation of
the scalar potential V', which enters the Lagrangian with negative sign. Again, following
only the most indicative terms we write (cf. [30]):

aq

1 1
5V = 6¢ <2 My O MEE — o MEL aLMMN) O MMN 1
4
] (5.48)

= (MNL oy MR — 5 MKL aLMMN) Dy MMN el .
d

We observe that this variation successfully cancels the variation (5.47), in line with what
appears to be a common behaviour of every EFT.

To see the other cancellations, let us turn to the vector-tensor sector of the model. The
corresponding variation is given in the duality covariant form (5.12). In what follows we
will drop variations of the density e and the external metric g", which as usual complete
the variations of the other terms to full derivatives. Hence, for the terms in (5.12) we have:

1
(1) = -5 e Myn FPM5FLN

K

(2) = —g GMV'DJHA gp,z/piDcrABnAj nijv
V2E oo '
(3) = T E'u‘l/p RA funyszprO'N ABH}\Z? (549)
V2E e ;
(4) = _T e " g,uVPi ’Y’LMNFUNM AAAN?

\/§’I€ VpOK @
(5) = _ﬁ E'u p A (guypi - fp,ypi)7 MN BMACUK)\N7

where in the last term we have traded the field C,WpM KL for Cuwp m for convenience.
Let us start with the terms (3) and (4), which upon substitution of the explicit ex-
pressions for the variation (5.45) give:

\/§K’ VPOK )
(3) + (4) = - T P A g,ul/pi’)/ MN FURM-F@/\N&SO

V2K, ;
- 73' et PoRA g;u/pi’yZMN fURMMNKg)\gpgKE@ (550)

V25

A ; M N
+ T Gl gpg(pnkz"szN -F;w -Fpo .
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The first and the last terms together can be organised into an expression with seven indices
{pvpokAp} antisymmetrised and hence vanish.
To see further cancellations consider the variation of the 2-form field strength:

5eFu™ = 2D, AAM — Y MN ON B i

1
2v/2
1 .
= 2Dy (§°Fip™) + 2D (MM gy, OnEP) — 57 IN(E Gupi)y' MY
(5.51)

1 ) 1 )
D M i MN it MN
= L{ ]:,uzz - 2\/§ aN (guupi - ]:;wpi)gp'y - 2\/5 apr guupi/}/

+2 D[,u (MMN 9ulp aNé-p)7

where we have used the Bianchi identity for the field fm,M to organise the conventional
Lie derivatives LgD everywhere. One should note the remark at the end of the section 4.
The last term in the variation above being substituted into (1) cancels the corresponding
term coming from variation of the modified Einstein-Hilbert term precisely in the same
way as it takes place in the other EFT’s. The term LSD]:WM above forms a full derivative
together with the variation of the determinant e and the generalised metric My;n. The

remaining piece in the variation (1) together with (5) gives:

1 .
(1) + (5) - meMMN]:HVMaK(gMVpi - fw/pi) gp,yZNK
_©
4v2

2 .
\{GK (Guvpi — Fuwpi) VM Oy (e M €0 FH7 K,

+ MunF* MG piy' N Ot (5.52)

where we have used the explicit from of the variation A¢C),, p and contracted two epsilon
tensors. Observe that the first and the last terms above cancel each other off-shell.

The remaining term above cancels with the corresponding piece in (5.50) if one chooses
k = 1/2 and takes into account the self-duality condition for the field strengths G,
dressed up with the scalar matrix [63]:

%GW’DM}‘ Gorni ¥V unMVE = e ManGHe; VK. (5.53)
It is important to mention here that in the case of D = 6 maximal gauged super-
gravity the factor s remains undetermined unless one considers supersymmetry invari-
ance. The novel feature of the EFT approach is that it is fixed at the level of bosonic
equations of motion.
Finally, the term (2) works in the same way as for the D = 6 maximal gauged super-
gravity, forming a full derivative together with the variation of the determinant e and the

scalar matrix K.

6 Embeddings of D = 11 and Type IIB supergavity

The coordinate space of the SO(5,5) Exceptional Field Theory is parameterised by six
external coordinates z* and 16 extended coordinates X™. Dynamics along the latter is
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restricted by the section condition
Y MN O @ Ove = 0. (6.1)

In this section we consider two solutions of this equation that break the SO(5,5) duality
group to GL(5) ~ SL(5) x GL(1) and GL(4) x SL(2). The corresponding split of the field
content of EFT gives the field content of D = 11 and Type IIB supergravities respectively.
In the latter case one finds a manifest SL(2) covariant formulation.

Let us start with the decomposition with respect to the SL(5) x GL(1) subalgebra.
Since this contains a GL(1) subgroup this decomposition is performed by removing a node
from the Dynkin diagram for SO(5,5):*

ool — o000

The corresponding branching rules for the relevant representations take the following form

16 — 5,330101® 15,

B (6.2)
10 — 5+2 D 5_2,

where the subscript denotes weight with respect to GL(1) rescalings. Using the decompo-
sition of 16 we have for the coordinate XM:

{XM} — {xm’ Ymn, Zmnpqr}, (6.3)

where 2™ is the conventional geometric coordinate, while ¥, and znper correspond to the
winding modes of the M2- and Mb-branes. To solve the section condition one leaves only
the dependence of the five coordinates ™ that restores the eleven-dimensional spacetime
of the D = 11 supergravity.

In the on-shell formulation equations of motion for the 3-form fields ), give the
self-duality relation for the 2-form potentials leaving only five of ten. Hence, for the p-forms
we have the following:

AV — AT A, Ay

(6.4)
BHVi — B/Wm'

This nicely fits into the decomposition of eleven-dimensional fields under the split 11 = 6+5,
that is (see (2.1)):
GMN — 9uv, A’ZL’ Pmn; (65)
C]Ojﬁﬁ — Cuwn Buumv Aumna (Pmnp‘
Upon dualizing the 3-form field C),,, one identifies all the 1-forms here. The five 2-forms
are identified with five electric 2-form potentials B, ,, of the EFT. Note, that one is free

to choose the five electric forms among ten B, ; by choosing an appropriate U-duality

4All branching rules provided in this section were obtained by using the Mathematica package
LieART [64]. This reference is also recommended for theoretical background on subalgebra decomposi-
tion and branching rules, and for further references.
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frame. If one works off-shell and keeps the 3-forms one has to keep the magnetic 2-forms
as well and identify these to the fields coming from the magnetic 6-form potential of 11-
dimensional supergravity. However, since we are working in the true action formalism it is
more consistent to keep the discussion essentially on-shell.

The scalar matrix My is built from the coset representative Vy;“¢, which is an
element of SO(5,5). The adjoint representation 45 of SO(5,5) is decomposed under SL(5)
as follows

45 — 19+ 249+ 1044 + 10_4. (6.6)

The compact subgroup of the last two terms correspond to generators of one of the SO(5)
in the local subgroup SO(5) x SO(5) and hence drop. The other SO(5) appears as the
compact subgroup of the SL(5) generators given by 24y and should be dropped as well.
The remaining 25 degrees of freedom correspond to the symmetric matrix ,,, and the
3-form Yk

Decomposition of SO(5,5) with respect to a GL(4) that is not a subgroup of the GL(5)
above is performed by adding the most negative root to the Dynkin diagram. The resulting
diagram becomes linearly dependent and decomposes into a sum. Hence, for algebras in

the D,, class we have

(:>o—§§<2 = 0—0—0 O O

where the added root is denoted by the grey circle. Under this procedure the algebra
SO(5,5) is decomposed as

SO(5,5) < SL(4) ® SL(2) & SL(2). (6.7)

To identify geometric and winding coordinates among XM one writes the corresponding
branching rule for the 16 representation

16 — (4,1,2)® (4,2,1). (6.8)
One has here two pairs of four coordinates each pair transforming under one of the SL(2)
algebras in the decomposition. We identify the representation (4,2,1) with the doublet of
winding coordinates ¥, 4 corresponding to the fundamental F1-string and the D1-brane.
The corresponding SL(2) is then identified with S-duality group of Type IIB theory.

The remaining SL(2)-doublet (4,1,2) is composed of the geometric coordinates z™
corresponding to translational modes and the coordinates zpy, corresponding to windings
of the D3-brane. This explicit choice breaks the SL(2) symmetry leaving only its GL(1)
subgroup. Hence, we have the following decomposition for extended coordinates

XM — {2™ yma Zmnr}- (6.9)

Upon this choice of the solution of section condition one considers the embedding
GL(4) x SL(2) < SO(5,5) and the corresponding branching rules read

16 — (4, 1)+1 b (Zl, 2)0 ) (4, 1),1;

(6.10)
10 — (1, 2)+1 ) (6, 1)0 (S5) (1, 2)_1,

where the subscript denotes weight with respect to the GL(1).
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By construction it is manifest that the GL(4) group here is not a subgroup of the GL(5)
group above. Such a case would correspond to Type IIA supergravity that is a reduction
of D = 11 supergravity on a circle. A nice explicit example of the relation between Type
ITA and Type IIB supergravities in the O(3,3) formulation coming from reduction of the
SL(5) covariant field theory is provided in [65].

Field content of Type IIB supergravity is decomposed as follows:

Gun —  Guvs Auma Pmn;
Ca — Ya; (6.11)
Bwya — B,uz/da A,umda Pmn &

CMNKL — B,uuwa A,umnra Pmnrs; C,prcr’ C,ul/pm-

The last two fields and a half of d.o.f’s of the 2-form field in the last line should be dropped
due to the self-duality condition in 10 dimensions.

The representation 45 parameterised by the generalised vielbein V under the algebra
decomposition goes according to the following rule

45 — (1,142 + (1, 1)0+ (1,1)—2+ (2,6)41 + (2,6)—1 + (3,1)0 + (1,15).  (6.12)

We see, that the SO(5) x SO(5) subalgebra is broken and one can see here only the O(4) x
O(4) generators corresponding to the T-duality coset O(n,n)/O(n) x O(n). As in the
previous case, one of these O(4) appears as a compact part of (2,6); & (2,6)_; of SL(4)
and the other comes from (1, 15)o.

On the level of fields, the scalar matrix M ;n is composed of the 25 scalars in the
usual way [66]:

{@d,gﬁw, Somém@mm‘s} — Muyn. (6.13)

The vector fields are collected according to the decomposition of the 16:
{A%)AumdaAum} — Afy (6.14)

There are only five 2-form fields in the field content that correspond to the five electric
2-forms:
{B,uuda Bul/m} — Buum' (615)

Note that there remain only three of six 2-forms B, m, due to the self-duality condition.
Alternatively, one may switch to the so called democratic formulation of Type IIB super-
gravity [67], where all p-forms including their duals are present. In this case one has to
keep the 3-form field C},,, ps and all the ten 2-forms.

7 Outlook and conclusion

The bosonic SO(5,5) covariant field theory constructed here forms a link in the chain of
Exceptional Field Theories with their gauge groups being the exceptional groups Fy gy [30-
33]. The key feature of EF'T is the notion of generalised Lie derivative, which is an analogue
of the conventional Lie derivative with an appropriate exceptional group instead of GL(D).
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This transformation acts as a gauge symmetry of the theory, which is constructed in the
spirit of Yang-Mills model.

We have shown how the unusual properties of the new gauge transformation such as
the necessity of section condition and failure of the Jacobi identity naturally lead to tensor
hierarchy. The story is kept as general as possible and can be carried over to the SL(5) and
SL(2) x SL(3) groups as well. One needs to do small modifications in the identities (3.3)
and (3.4) in order to go to the Eg case (see [53] for more detailed discussion of this issue).

We construct both the true action, which gives covariant equations of motion as well
as all duality relation, and the pseudo-action, which is manifestly duality invariant. The
true action is not invariant under the gauge transformations induced by local coordinate
transformations of the extended space. The invariant pseudo-action takes the following
simple form:

» 1 e L
e Rlg, F] + 1oy eg"’ DyMuyn D, MMN _ —— FpupiMIFre,

L=—
2.3 (7.1)

DN | =

(&
— Z]—"WM]-"WNMMN — eV + Liop-

Here, the topological Lagrangian is defined by an integral of an exact form over a
non-physical seven-dimensional spacetime, whose boundary is the six-dimensional phys-
ical spacetime

Stop = / dSz d"°X Liop

1 (7.2)
—FNY'FNF; ).
N )
The pseudo-action is supplemented with the modified duality covariant Einstein-Hilbert
term R[g, F], that has the same form as in the other EFT’s, and the scalar potential V'

that governs the dynamics of the generalised metric Mj;n in the extended space. The

= / d'X d'°X (2 0 F; NDFj —

latter is written in the most general form as well. In addition one imposes the following
self-duality condition by hands

We have shown that in order to have the potential invariant under duality transfor-
mations generated by AM one has to fix the weights of the vielbein and generalised metric
to be B4 and 0 respectively. This in turn fixes the value of £, that perfectly reproduces
the value needed for consistency of the algebra [22]. One concludes that the construction
of EFT is very rigid and natural.

Gauge invariance constrains the action but leaves undetermined the relative coefficients
between the Einstein-Hilbert term, the scalar potential, the kinetic term for vector fields
and the action for 2-forms. We have demonstrated that all these are fixed by requiring
the invariance with respect to external diffeomorphisms along &* = #(z,X). The action
of external diffeomorphisms on the elementary fields of the theory is provided in (5.45).

Hence, the action becomes completely fixed. Note, that this is the novel feature of
EFT: normally the actions of maximal gauged supergravities become fixed only after im-
posing supersymmetry. The construction presented here considers only the bosonic sector
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of maximal supergravity in 6 dimensions. Fermions and supersymmetry can be added
following the similar approach as in [34, 35].

The section constraint, which one has always to keep in mind, effectively restricts
the dynamics in the extended space. There are two solutions of the condition that lead
to theories in 11 and in 10 dimensions. These are given by embeddings of GL(5) and
GL(4) x SL(2) in SO(5,5). We show that under the first embedding the field content of
the constructed EFT perfectly fits the field content of D = 11 supergravity, while the
second embedding gives D = 10 Type IIB supergravity with manifest SL(2) symmetry.
Note, that the GL(4) is not a subgroup of the GL(5). However, one is always allowed to
do further branching with respect to the embedding GL(4) C GL(5), which gives Type
ITA supergravity. Hence, the Exceptional Field Theory construction considers D = 11
supergravity and Type IIB theory on the same footing, which is possible due to lack of
10-dimensional Lorentz symmetry.

Of special interest is the additional SL(2) symmetry of Type IIB supergravity recovered
in the EFT construction. Upon decomposition of the extended coordinates ZM this corre-
sponds to rotations of the translational modes and the winding modes of the D3-branes.
The authors are not familiar with literature that mentions this kind of hidden symmetry
and avoid any interpretation based on such schematic derivation. One possibility is that
this is just an artefact of the EFT construction and appears only in the field decomposi-
tion rather than being a true symmetry of the Lagrangian. However, this seems to be an
interesting direction of further research.

Another possible way to solve the section constraint is to do a generalised Scherk-
Schwarz reduction that relaxes the differential constraint to a set of algebraic relations
on embedding tensor, known as quadratic constraints. For the E7 covariant theory this
was done in [68]. It is important to note, that as it was shown in [18], the quadratic
constraints are much weaker than the initial section condition, thus one may consider
certain gaugings that break the section condition. These are claimed to correspond to
the so called genuine non-geometric gaugings and are defined as such gaugings that do not
belong to any geometric U-duality orbit. It is expected that such gaugings can be employed
to stabilise moduli and construct inflationary potential [69]. Since classification of orbits
becomes more and more complicated as the rank of the gauge group increases, exceptional
field theories with simple duality groups can work as useful toy models for investigating
common features. In this sense, the model constructed here is a nice analogue of the Fr
theory where one encounters pseudo-action and self-dual forms as well.

Finally, an interesting problem is to look for lifts of the known solutions of lower dimen-
sional supergravities into EFT. Lift of the M2-brane solution into the E7 supersymmetric
EFT was recently found in [70]. A fascinating property of the constructed lift is that the
corresponding higher-dimensional solution is free of singularities.
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A Notations and conventions

We collect here all the notations for indices used in this paper.

M,N,...=0,...10, 11-dimensional spacetime indices;

M,N,...=0,...9, 10-dimensional spacetime indices;
wv,p...=0,...5 6-dimensional spacetime indices;

a,b,é...=0,...5, 6-dimensional spacetime flat indices;
m,n,p...=1,...5, 5-dimensional internal curved indices;
m,n,p...=1,...4 4-dimensional internal curved Type IIB indices; (A.1)
a=1,2, SL(2) Type IIB index;

M,N,K...=1,...16, SO(5,5) spinor indices labelling the extended space;
i,j,k,l=1,...10, SO(5,5) vector indices;

o,B,&,...=1,...4, spinor indices for each SO(5);

a,bya,b...=1,...5, vector indices for each SO(5);

The SO(5,5) gamma matrices are introduced by 16 x 16 blocks v; prx and 4* MY that
satisfy the usual anticommutation relations

Y mNY VE 4 iy N = 26868 (A.2)

The 10-dimensional vector indices labelled by i, j are raised and lowered by the SO(5,5)
invariant tensor 7;;, that is basically the flat metric.

B Covariant field strengths

B.1 Gauge transformations

The long spacetime derivative, covariant with respect to the D-bracket, was defined to be
of the following form
Dy=0u—La, =0 —[Ayp, (B.1)

where the generalised vector field A;‘/ plays the role of the gauge connection. Let us now
find how should the vector field transform in order for the derivative D,, to be covariant:

(0a — La) (D VM) = 0,60 VM — L5, VM — L4, 50V M
— Lp (0,VM) + LaLa, VY
= 3M£AVM — LA (8MVM) — ,C(;AHVM — [,CA#, ,CA]VM
= Lo VM — Loa, VM — ﬁ[AH,A]EVM7

(B.2)
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where in the second line we have used the closure condition and the linearity of £ with
respect to A. Since the E-bracket differs from the D-bracket by a trivial transforma-
tion (3.10), we may choose the transformation of Ai‘f to be of the form similar to the
conventional Yang-Mills:

SpAM = 9, AM — (A, A]p™ =D, AM. (B.3)

Since the E-bracket does not satisfy the Jacobi identity the commutator of covariant deriva-
tives in general does not give a covariant expression

Dy, D] = —Lp,,, Eu ™M =20,A,M — [Au, A ™. (B.4)

We refer to the quantity FW,M as a non-covariant field strength for the 1-form potential

Aﬁ/f and similar for the other potentials. Under an arbitrary variation of the gauge field
(5Aﬁ/[ the non-covariant field strength transforms as
SF M =200 A0 — 2[Ay,,04,)"

—9 (8[M5Aﬂ]” — (A, 5A,,]]DM) + YU Non(ARsAL) (B.5)

= 2D 0A) + YT ON(AfLGAL).

We see that if we restrict Aﬁ/f to transform as a gauge connection (B.3), then the transfor-
mation of FWM contains a covariant piece and some extra terms:

ONEu ™M = (LaFu) ™ = VAN O (AFF, b — AL D, AL). (B.6)

In the spirit of tensor hierarchy the non-covariant terms here may absorbed into variation
of some 2-form BM,,KL by defining the full covariant field strength

Fu =E,M - Y¥NonB,, "t (B.7)

Its general variation takes the form

0Fu™ = 2Dy, 6 A) — Y onAB, K., (B.8)
with 1
KL __ KL KL M N

(we have used the relation YAK%VY%CS = D(1—28,)Y¥N). Tt is important that the B-field
transforms under A-transformations in such a way that the term Y]\K4 iv 8NBWKL is not
covariant. Hence the expression (B.8) becomes a generalised tensor. Note that since the
full covariant field strength ]:WM differs from F; WM by a trivial gauge transformation, it
appears in the commutator of covariant derivatives as well:

[D,, D) = —Lp,, = —L7,,. (B.10)

Requiring that the newly introduced field strength ]:M,,M transform covariantly under
the transformations parametrized by AM should in principle fix the transformation law
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5ABWKL. However, if we identify the field BWKL with the 2-form B-field of the maximal
D = 5,6 supergravities, we may expect its own gauge variation with a 1-form parameter
EMK L to modify the transformation law. The gauge variation of A{Y would also be affected.

Overall, we may expect the following gauge transformations of the fields corresponding to
the SO(5,5) and SL(5) duality groups [41]:

SAN =D, A + YN onE ST,
1
D(1 - 284)

+3 (OnT N — Y ESOoN T, N9

AB,,*" = 2D, =, K" - Y i AN Fu

For this choice of gauge transformations, the covariant field strength .7-"WM transforms as
a generalised vector with the appropriate weight By:

(5Afm,N = (EA]'—;W) M (B.11)

Indeed, substituting the transformations (B.11) into (B.8) and taking into account the iden-
tity Y]\K/IJ{VYgé = D(1—-284)Y MY, one obtains 6F,,™ = [A, F,,] ¥, that is exactly (B.11).

The ¥ terms in the variation AB,, %L (B.11) were added to covariantise the transfor-
mation of the field strength for the 2-form field B, %, that we are about to construct. It
is important, that they do not contribute to the transformation of the 2-form F,,. One

can check that this combination of Y-contractions of a generalised tensor n-K % (= pM.LK)
forms a generalised tensor
oa (Onn™IE — Y E508n™NQ) = Lo (Onn™ B — Y 50NN ) (B.12)

Together with the term Y]\K%V On XKL these appear as extended geometry analogues of
differential forms in Riemannian geometry. Indeed, having a p-form wP one does not need
a covariant derivative to construct a (p + 1)-form wP™! = dwP. Since we have exceptional
groups instead of GL(D) one does not simply antisymmetrise the corresponding indices.

The next step is to construct such a covariant 3-form field strength for the B-field that
its first term has the usual form D[HBVP]K L The most straightforward way to proceed is
to start with the Bianchi identity for the covariant field strength ]:WM :

3D[;J,J:V M= _Y%ivaN]:/u/pKLy (Blg)

ol

where again the covariant field strength F is constructed of the non-covariant one F' by
adding an extra term to be determined

KL KL 3 KL ( 4Py 4@ _ 1 P A9
Fuwo ™" = 3DuBuy ™+ B —agy Y Pd | A 04y ~ gl A4 ) (B.14)

KL _ KL KL
Fuvp” " = Fuvp™ ™ = Puyp™ 7

The reader is referred to the next section for the details of this calculation. The last term
here will be constructed out of the next field in the tensor hierarchy, which is the 3-form
C’W,pM KL with some derivatives and possible contractions with the Y-tensor.
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Following the analogy with the gauged supergravity we would like the transformation
of the covariant field strength to be of the form

3
)Y{.%IWP A% — A®,,, . (B.15)

KL KL
OF ™" = 3DplABuy ™+ 555

Taking the variation of (B.14) and transforming it to the form above we see, that the
remaining terms can be organized into a full derivative:

A@#VPKL _ 5q),u1/PKL + 38N< — 5AaBup]KL + YgézB[uVPN(SA?]

(B.16)
1 KL ( AN gRs S RN 4P 2S5 2Q

~ 3 g5 (Afiafioas + v Ey AL AS6AS) ).

Defining the variation of the last remaining supergravity tensor field C’WI,M KL to be

1

NKL _ N,KL _ s 4N KL _ KL AN gRs 4S8
Aclwp — 60}“’/’ 5A[:U'Byp] 3D(]_ — QBd) YRS A[HAV (5Ap], (Bl?)
we write

AP, = 30NAC, N — 3Y EEONAC,L, SN, (B.18)

This leads to the following expression for the full covariant 3-form field strength:

3 1
KL _ KL KL (P Q) (P 4Q)

Fue ™ =3Bt o5y VPG <A[“ O = 3 Al Ay ) (B.19)

= 3(On K~ Y b Cuy @),

It is straightforward to show that upon imposing the section condition the last line above
does not contribute to the Bianchi identity (B.30). Using the equations (B.11) and (B.17),
the gauge transformation of the covariant field strength can be written as

3
§F oKL = 3D AB, ;5L + — 2 _yELr  PAAY
e =T D(1 28, Pl 7! (B.20)
— 3 (ONAC, ™ — Y EE ONACL,PTY) .
Let us show explicitly that the above transformation indeed reduces to the transfor-

mation law of a generalised tensor. First fix gauge transformations for the 3-form potential
to be:’

2
M,KL __ M,KL N= KL KL AP M
ACup = 3D, ¥, — Flu' Ep +3E(1—2Bd)YPQA Fup®™.  (B.21)

N,KL
W

Consider now the gauge transformations generated by , which give

SwFuvp™t = 3D, (ON T N — Y 50N T, mN9)
— 30NDu T, KL+ 3Y B5OND, 0, AN
= — 3L, (ONT," Y = Y 50N, PN9)
+ 30N LA, W, = 3Y BEON LA, VY.

(B.22)

®Note, that in the off-shell formulation for the SO(5,5) case the field strength in the last term here
should be replaced by G,..,"*.
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Since equation (B.12) implies that the particular combination transforms as a generalised
tensors, the above expression is identically zero.
Next, we turn to the gauge transformations generated by E“M N that give

(55.7:NVPKL = GD[MDVEP] + 3Y f[uu aN\_p] NQ + 38N(]-"WN_F,KL)

YgéaN(]:WQ:pPN) (B.23)
= 62,7 F9pF, P — 6Y po =, 00rF, }P '
+ 38N.7'—[MVNEP}KL — 3YPLH[ PROR NV] =0,
where the relation D, D, = —%L']:W and the identities (3.3) were used. In addition, one
should note here, that the gauge transformation parameter EMK L satisfies the relation
1
— KL KL = MN

Finally, one has to show that the rest indeed gives generalised Lie derivative of qupK L,

The corresponding terms in the variation read

3 3
KL _ M M N
InFug" " = — g VERDUNY P ™) + oV Py Dt
2
R QN _ KL R S0
D(1—25)8N<Y SAT Funy® = Y EGY RYARF,,59)
1
=V ERA" 3NfuupRN*m< Viiaod) — 2V KoY k) A on Fuwy®
L KL vEL y Rr Qs
~ D2y (V0% — 2V Y ) oA Fiuy

(B.25)
Using the covariance condition (3.4) and the relation Y31 F5) %% = D(1 — 284) F(5) MV
one obtains

1
5AFHVPKL = ANaNFMVpKL - W( YKL (5 ) P(QYP)]V)aNARFMVpQS
1
_ AN KL LsN KLy PN S
—A aNqup +M(YSQ6R_YPRYSQ>8NA ‘F'U'V/)Q
2 N(K <L N(K+-L
= AV ONFup™ " ~ m(ysc(g OF — Y Y §y ) ONARF 2

= ,CA]:,WPKL.
(B.26)
In the third line here we used the identity (3.3) for contractions of the Y-tensor.
Finally, we need to check covariance of the 4-form field strength ]-"ngMvKL which,
however, appears in the SL(5) EFT only under the following projection:

ONFrpe ™ = Y E5 ONFunpe @ (B.27)

This is in complete analogy with the maximal gauged D = 7 supergravity where the
corresponding field appears under a particular projection by the embedding tensor.
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The 4-form field strength is determined via the Bianchi identity for the covariant field
strength ]-'WpKL that reads

3

KL __
el = D5

Y B3 F i’ Foon)? = 3(ONFuvpe™ ™ = Y EG On Fups®™).
(B.28)
So defined field strength for the 3-form potential Gy, " takes the following form

.FMVPJM’KL = 4'D[MCVPU]M’KL (QBMVKprJM B[MVKLY 8NBPU] )

4 p 0 P .0 (B.29)
+my (A[#Ayc‘)pAg] 7AM1A, AlsP A ).

Again, for explicit derivation of this expression the reader is referred to the next section.

B.2 Bianchi identities

As in the gauged supergravity the field strength for the 2-form potential BWKL is con-
structed by considering Bianchi identity for the covariant field strength ]-"WM :
3D, Fyy™ = Y OnFLue" " (B.30)

Let us first extract the non-covariant 3-form field strength F,,,,~. Substituting the explicit
form of F ﬂ,{ we obtain for the left-hand side:

Dy Fog™ = DyuFyp™ — Dy (YN ON B, 50
1
= =0 [Av, A5] M = [Ap Fupl] ' = §YAK4£V On (A[u vp] )

~Y¥ND, 08B,

1

- [A[w [AwAp]]E}EM — YKL On (A[u vp) ) - Y%gaND[uBVP}KL

=Y o <D[MBVP] + Ao, AL - 1 5 [ 4] A )
(B.31)
where in the second line we have used the relation (3.10) between the E- and D-brackets.
In the third line the relation

YUNONDXEE = YIND, on K (B.32)

was used, which is valid for any symmetric generalised tensor xy*¥(= x*¥). Finally, in

the last line we have used the Jacobi identity for the E-bracket (3.11). Hence, we conclude
that the covariant field strength for the 2-form field can be taken in the following form:

A ] (PAQ)

3 P 1
Fuvp™ b = 3D[MBVP]KL + <A( 0, Ay - 3 34 1

D(1 — 25d) e
— (3 8NC/WPN KL 3YPL aNCWPQ’PN) ,

o

) (B.33)
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To construct the EFT for the U-duality group SL(5) one needs a covariant field strength
for the 3-form potential. The corresponding Bianchi identity takes the following form

3
ADFpo) " =Y 55 F 0 Fo© = (08 Frvpe™ ™ = Y 550N Frvpe®™N).
D(1 —254)
(B.34)
Where the field strength for the 3-form potential C’WPM KL reads
f‘u,l/po'MJ(L — 4D[MCV00_]M7KL + (2B;1,11KL~FpUM _ B[MVKLYgévaNBpU]PQ)
(B.35)

L KL M AP Q . 1 M P 4Q
+ D(i= 2/8d)YPQ <A[u Ay O Ay 4A[u [Av, Aple" A ) -

Indeed, let us show that the lL.h.s. and r.h.s. of the Bianchi identity match upon substi-
tuting the above expression and (B.19) into (B.34). Consider first the terms that depend
B KL.
on By, ™"
2D, D, By = —Lr, B, "

= — (FuNON By — 2B, N KON Fpo ) + 27 R Bl T 0N F o)

= (aN (fWNBpJKL) - Yf'% N (*FWPBWQN))

— Y 350nBo" T Fu @,

(B.36)
where we have used the Y-tensor identities (3.3) in the third line and total antisymmetri-
sation of the indices {uvrpo} is understood. We see that the terms in brackets in the last
line above already give precisely the BF-terms in (B.35).

Let us go further and consider the terms in brackets in (B.19), that give (dropping the
factor D(1 — 2f34) for a while):

1
YD, (409,49 - 114, 4,157 49 )

= BY 55 0, AL 0,AZ + Y 5[ A, [Av, A Ao

o]
2 1
-3 ([A[u, YpQAy 0pAq 5" + SV EG10uAv, Al" AT + Y BG[Av, Aplp" 0,47 ).

(B.37)
Using the identities (3.3) and (3.4), and the Jacobi identity (3.11) the first term here and

the terms in brackets can be simplified as follows

3Y 550, A% (0,48 — [A), As]g9) — ViS5 (On(AY Al 0,A%) — YR on (AGAf0,AT))

_3
4
— VG (On(A)A)8,AF) — Y5 On (A7 A9, A7)

3
= ZygéFMVPFPUQ Ygé[AwAV]EP[ApﬂAU]EQ

3 3
= Zy%prf,m@ +5D(1 - 284)Y 55 F " 00 Bopo M
3 3
+ ZY{%Y% Y 0 By 0y B,V — ZY{% [A,, A ET[A,, Ay E?

+Y 55 (On (A AJ0,AQ) + YR on (A9A]0,AD)) .
(B.38)
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Here in the second line we have used the explicit expression for the non-covariant field
strength (B.7). Restoring the factor D(1 — 253;) we see that the first term in the last
equation above exactly reproduces the FF term in the Bianchi identities (B.34) and the
second term above precisely cancels the last term in (B.36).

Now, to identify the 0 BJB-terms in ]-'WPUM KL we substitute the corresponding con-
tribution from (B.35) into the r.h.s. of Bianchi identities (B.34). This gives

— 30y (Y YL B, " FoxyBE?) + 3y BE (Y28 B, "N on BYY)
= 3D(1 — 284)Y 8500 BT On B @ — 3B, PNY BEY 2 OBy UV
(B.39)
The first term above is exactly what we had in (B.38) while the second term vanishes upon
the section condition. Indeed, consider only the Y-tensors contracted with the double
derivative

R R
YRGYEFY 2hong = (- 2 SEYED + 2y BLol, + YEESS )Y Efonn

B.40)
P R (
- _ 2Y{.§(€9Y§Y)1§2Y8V8NR + 2Y§VY5(L38T) R =0,

where in the first line we used the identity (3.3) with respect to the indices {QST}
while in the last line the Y-invariance identity from (3.3) was used with respect to the
indices {NRP}.

Finally, using the same identities for the Y-tensor the remaining AAAA terms can be
shown to exactly match the r.h.s. of Bianchi identities.
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