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1 Introduction

Event-shape variables are designed to measure geometrical properties of energy flow in

collider events. They were among the first observables proposed to test quantum chromo-

dynamics (QCD), and can also be used to discriminate beyond-the-Standard-Model (BSM)

physics against the QCD background. Numerous event-shape studies have appeared over

the years, notably including extractions of the strong coupling, αs. The majority of the
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existing work has focused on leptonic collisions, and on deep-inelastic scattering (DIS).

Nevertheless, event shapes are also of great interest in the much richer environment of

hadronic collisions. Indeed, a lot of recent work is using event shapes as a tool to study

jet substructure. Event shapes could also be instrumental to get a better handle on some

poorly understood aspects of hadronic collisions, such as the underlying event.

Several event-shape variables for hadronic collisions were studied in refs. [1, 2]. They

were defined in analogy to the ones in leptonic collisions, but in terms of the components

of the three-momenta transverse to the beam direction. In this paper we focus on the

archetypal event shape, thrust. Transverse thrust, which we denote by T⊥, is defined, in

analogy to ordinary thrust, as

T⊥ = max
~n⊥

∑
i |~pi⊥ · ~n⊥|∑
i |~pi⊥|

, (1.1)

where the sum is over all the particles in the final state, with momenta ~pi. Throughout the

paper, the subindex ⊥ denotes the (two) momentum components transverse to the beam

direction. The vector ~n⊥ which maximizes the ratio on the right-hand side of eq. (1.1) is

called the transverse-thrust axis. Transverse thrust has been measured at the Large Hadron

Collider (LHC) [3–6] and previously also at the Tevatron [7]. Here, we will study this

quantity in the dijet limit, where T⊥ → 1, and obtain a factorization formula that allows

us to resum the enhanced terms arising in this limit. Resummation for hadron-collider

event shapes in the dijet limit at next-to-leading-logarithmic (NLL) accuracy was studied

in refs. [1, 2] within the automated resummation framework CAESAR [8]. In the present

paper we analyze transverse thrust using Soft Collinear Effective Theory (SCET) [9–11]

(see [12] for an introduction), and obtain an all-order factorization formula that allows for

resummation at any desired accuracy.

To derive the factorization theorem, we start with the lepton-collider case. There is

no need to restrict oneself to the plane transverse to the beam in this case, but doing so

provides us with a simpler environment to analyze the factorization of transverse observ-

ables. In contrast to standard thrust, T⊥ → 1 does not imply that the event consists of

two low-mass jets. Nevertheless, the terms which are enhanced in this limit do arise from

two-jet configurations, such as the one shown on the left-hand side of figure 1, in which

all the radiation is soft or collinear to the two low-mass jets. The resulting factorization

formula has the same structure as the one for thrust. It involves a hard function which col-

lects the virtual corrections to the hard scattering process, two jet functions describing the

collinear emissions and a soft function. The energy of the soft emissions is parametrically

lower than the typical mass of the jets.

In the hadron-collider case also the incoming partons carry color charge and the ef-

fective theory involves additional collinear fields which describe the initial-state radiation.

The proton matrix element of these fields defines beam functions, which can be factorized

into a perturbative kernel, describing the emissions, convolved with the standard parton

distribution functions (PDFs). Interestingly, the virtuality of the initial-state collinear

fields is parametrically of the same order as the one of the soft fields, and is lower than

the virtuality of the collinear fields of the final-state jets. As is typical for problems which
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Figure 1. Schematic representation of a dijet event in the T⊥ → 1 limit for leptonic (left panel)

and hadronic (right panel) collisions. The soft radiation s and the collinear emissions c1, c2, ca, cb
are represented by different fields in the effective theory. The typical virtuality of the fields ca, cb
and s is the same, and is lower than the virtuality of c1 and c2.

involve soft and collinear fields of the same virtuality, transverse thrust suffers from a

collinear anomaly: the soft and beam functions are not well defined individually and their

product involves large logarithms associated with the large rapidity difference between the

emissions from the two incoming particles [13]. To compute the beam and soft functions

individually, one needs to introduce an additional regulator, which can be removed after

combining the functions. Traditionally, this regularization was achieved by taking the Wil-

son lines describing soft and collinear emissions in these functions off the light-cone, see

e.g. [14]. However, in an effective theory context, it is more convenient to use an analytic

regulator which does not introduce additional scales into the problem. The cancellation of

the divergences in the additional regulator imposes constraints on the form of the large log-

arithms generated by the collinear anomaly. These constraints are particularly interesting

in our case due to the nontrivial color structure and angular dependence of the soft func-

tion for transverse thrust. The fact that the problem involves nontrivial color structure,

collinear fields at different virtualities and a collinear anomaly illustrates that factorization

for transverse thrust is quite nontrivial.

The resummation of large logarithms is achieved by solving the renormalization group

(RG) equations of the ingredients in Laplace space. Transforming back to momentum

space, we provide an analytic form of the resummed partonic cross section. Towards

the goal of achieving next-to-next-to-leading logarithmic (N2LL) accuracy we evaluate all

the constituents of the theorem at one-loop accuracy. The other ingredients for N2LL

resummation are the two-loop anomalous dimensions and the two-loop anomaly coefficient.

Using factorization constraints, we show that the only unknown quantities are three two-

loop coefficients. We determine one of these coefficients numerically by comparing to the

next-to-next-to-leading order (N2LO) fixed-order result for transverse thrust in leptonic

collisions. This also provides a numerical check on our factorization formula. We then
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show that also the remaining coefficients can be extracted numerically, by considering

transverse thrust in Drell-Yan and Higgs production events, and using existing N2LO fixed-

order codes for Higgs and Drell-Yan production. This determination, together with a

numerical implementation and phenomenological analysis of the resummed cross section,

will performed in a future publication.

Our paper is organized as follows: we derive the factorization formula for the

transverse-thrust differential distribution in section 2 and compute its ingredients at the

one-loop level in section 3. Solving the associated RG equations, we derive in section 4

resummed expressions for the cross section in the dijet limit. In section 5, we first com-

pare our resummed results for the lepton-collider case with the fixed-order computation.

This allows us to determine the two-loop anomalous dimensions, so that we have all the

ingredients for N2LL resummation in the lepton-collider case. We then show that a similar

procedure can be used in the hadron-collider case. Our conclusions and an outlook on

future work are presented in section 6. The appendices collect anomalous dimensions, and

provide details on the one-loop computations of the jet, soft and beam functions.

2 Factorization formula

Our goal is to derive a factorization formula for the transverse-thrust differential distribu-

tion that is valid in the dijet limit. If we define, as usual,

τ⊥ := 1− T⊥, (2.1)

the dijet limit, where the event contains two low-mass jets, corresponds to τ⊥ → 0. However

unlike the usual thrust case, the limit τ⊥ → 0 contains not only dijet configurations but also

configurations where all the particles lie in a plane which contains the beam, see figure 2.

The dijet configurations give singular perturbative contributions to the cross section at

low τ⊥
dσ

dτ⊥
∼ αs
τ⊥

, (2.2)

while the multi-jet configurations are regular and thus power-suppressed at low τ⊥. In

the following, we will study the singular terms in the limit τ⊥ → 0 in detail, and resum

their contribution to all orders in perturbation theory. The power-suppressed terms can be

added by matching to fixed-order results. We will find that the matching corrections are

larger for transverse than for regular thrust, the reason could be the presence of multi-jet

configurations even at low τ⊥.

In order to understand how one should treat event-shape variables that involve only

momenta transverse to the beam direction in SCET, we will first consider leptonic collisions.

At lepton colliders, there is not much experimental motivation to restrict event shapes to

the transverse plane, but doing so provides us with a simplified environment to analyze

factorization for such observables. A typical dijet configuration in a leptonic collision is

depicted in the left panel of figure 1. The incoming electron and positron are taken in the

z direction, and are represented by the black arrows in the figure. The jets are emitted

at an angle θ with respect to the beam. As for the usual lepton-collider event shapes,
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Figure 2. Left: a two-jet configuration with low τ⊥. The figure shows the thrust axis ~n (green),

the transverse thrust axis ~n⊥ (red), and the beam as a dashed line in the z-direction (blue). Right:

a planar three-jet configuration with τ⊥ = 0. Any distribution of particles that is restricted to a

plane which contains the beam has τ⊥ = 0.

the effective theory needs two collinear modes, which we call c1 and c2, to account for the

energetic particles in the final state (represented by the red lines in figure 1), and a soft

mode s which describes final-state soft radiation (represented by the orange wavy lines in

figure 1). We will perform the detailed factorization analysis below, but the astute reader

will have guessed that the result will be a factorization formula of the form

dσ

dτ⊥dθ
∝ H(Q) · (Jc2⊥ ⊗ Jc1⊥ ⊗ S⊥)(τ⊥) . (2.3)

The hard function H(Q) collects the virtual corrections to the hard-scattering process and

is the same as for regular thrust. The jet and soft functions, on the other hand, differ from

the standard case, because the phase-space constraints associated with τ⊥ only act in the

transverse plane.

The lepton-collider case can be contrasted with the hadronic case depicted in the right

panel of figure 1. A complication on the kinematic level is that the partonic collisions,

which produce the jets at hadron colliders, are not taking place in the hadronic center-of-

mass frame and do not have fixed energy. Therefore the jets are not back-to-back and their

energies are not fixed. To be able treat the process perturbatively, one needs to ensure

that each event involves an underlying hard collision. One way to do this is to impose a

minimum transverse momentum.

A complication for the theoretical description is that there is also initial-state radiation

and the effective theory includes two additional collinear modes ca and cb along the beam

directions. The initial-state radiation is described by beam functions, which are proton

matrix elements of these collinear fields. For perturbative values of τ⊥, these can be

factorized into PDFs convolved with perturbative kernels describing the emissions. We

will show below that the collinear modes ca and cb have a low virtuality, of the same

size as the one of the soft fields, and that the convolution of the beam functions and the

soft function suffers from a collinear anomaly [13], i.e. the functions are not individually

well-defined and their product has a logarithmic dependence on the hard scale.
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2.1 Leptonic collisions

Let us now analyze the leptonic case in detail. In the dijet limit the final state X consists of

particles Xc1 and Xc2 with large energies flying along the jet direction, defined by the thrust

axis ~n, and soft particles Xs which are radiated at arbitrary angles. Up to power suppressed

terms, we can thus simplify the denominator in the transverse-thrust expression as∑
i∈c1,c2,s

|~pi⊥| =
∑

i∈c1,c2,s
Ei| sin θi| ' | sin θ|

∑
i∈c1,c2

Ei +
∑
i∈s
| sin θi|Ei ' Q| sin θ|, (2.4)

where Ei is the energy of the particle with 3-momentum ~pi, and Q is the total center-of-

mass energy. The sum over i in eq. (2.4) runs over the three sectors in the effective theory.

In the second step we used the approximation that the collinear particles fly approximately

along the jet direction θi ' θ, and we have neglected the small contribution of the soft

particles in the final step. In order for this approximation to be valid, the angle θ cannot

be too small (the scaling of the fields derived below will yield the condition θ > τ⊥, which

is always satisfied in the dijet τ⊥ → 0 limit).

For a final state X in the dijet limit, we thus have

τ⊥(X) =
1

Q| sin θ|
∑
i∈X

(|~pi⊥| − |~n⊥ · ~pi⊥|) = τ⊥(Xc1) + τ⊥(Xc2) + τ⊥(Xs) . (2.5)

Eq. (2.5) is in a suitable form to derive a factorization theorem in SCET, because the

sum over particles naturally separates into the different sectors of the effective theory, as

indicated by the right-hand side of eq. (2.5). From eq. (2.5) one can also read off the

relevant scaling of the different modes. To do so, let us first introduce the light-like vectors

ni := (1, ~ni) and n̄i := (1,−~ni), where ~ni is the direction of jet i. Therefore, in the lepton-

collider case we are considering in this section, we have n1 = n̄2, n̄1 = n2, and the vector

~n1 =: ~n is the thrust axis. Throughout the paper, we denote momentum components

transverse to the thrust vector ~n with the subindex >. Table 1 summarizes the notations

we employ for the different axis and relevant directions. To analyze the scaling, we split a

generic momentum pµ into components along the jet and a remainder which is transverse

to the jet:

pµ = (n̄1 · p)
nµ1
2

+ (n1 · p)
n̄µ1
2

+ pµ> =: p+
nµ1
2

+ p−
n̄µ1
2

+ pµ> . (2.6)

Please note that we use the notation pµ> and ~p> to indicate quantities transverse to the

thrust axis. The notation pµ⊥ is instead used to indicate quantities transverse to the beam

axis and we use the notation pµ⊥> for quantities which are transverse to both axes. The

contribution of a collinear particle to regular thrust is driven by the small light-cone com-

ponent of its momentum, i.e. by p− = ~p 2
>/p+ for the c1 particles. For transverse thrust,

we will see that the relevant quantity is ~p 2
⊥>/p+ which scales in the same way. Eq. (2.5)

then tells us that the components of the soft modes scale like the small components of the

collinear modes. The components (p+, p−, ~p>) of the different momenta therefore scale as

c1 : (1, τ⊥,
√
τ⊥)Q , c2 : (τ⊥, 1,

√
τ⊥)Q , s : (τ⊥, τ⊥, τ⊥)Q , (2.7)
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direction vector perp. dir.

beams
a nµa = (1, 0, 0, 1) ⊥
b nµb = (1, 0, 0,−1)

jets
1 nµ1 = (1, sin θ1, 0, cos θ1) >
2 nµ2 = (1,− sin θ2, 0,− cos θ2)

thrust ~n = (sin θ, 0, cos θ) >
transverse thrust ~n⊥ = ( 1, 0, 0)

Table 1. Summary of the notation used in the text for the relevant axes and directions. The

last column shows the symbol we use to denote the momentum components perpendicular to the

respective directions. We use the notation pµ⊥> for the component of pµ which is transverse to

both axes. At e+e− colliders one has θ1 = θ2 = θ. At hadron colliders, the same is true in the

center-of-mass frame of the underlying hard collision.

which is the same scaling that is relevant for ordinary thrust. The associated effective

theory is usually called SCETI. Given this scaling, one can further expand the contribution

of the collinear particles to transverse thrust by using the fact that |~pi⊥>| � |~n⊥ · ~pi⊥|,
and write

τ⊥(Xc1,2)Q⊥ =
∑
i∈c1,2

(|~pi⊥| − |~pi · ~n⊥|) =
∑
i∈c1,2

(√
(~pi · ~n⊥)2 + p2

i⊥> − |~pi · ~n⊥|
)

'
∑
i∈c1,2

1

2

p2
i⊥>

|~pi · ~n⊥|
'
∑
i∈c1,2

1

2

p2
i⊥>
|~pi⊥|

' 1

| sin θ|
∑
i∈c1,2

p2
i⊥>

2Ei
, (2.8)

where Q⊥ := Q| sin θ|.
To put forward a factorization formula in SCET, we start from the expression for the

QCD cross section differential in τ⊥

dσ

dτ⊥
=

1

2Q2

∑
X

|M(e+e− → X)|2(2π)4δ(4)(q − pX)δ(τ⊥ − τ⊥(X)), (2.9)

where τ⊥(X) is given by eq. (2.5). At leading order in the electroweak couplings, the matrix

element squared can be written as

|M(e+e− → X)|2 =
∑
i=V,A

Liµν 〈0| jµ†i (0) |X〉 〈X| jνi (0) |0〉 , (2.10)

where

jµi (x) =
∑
a,f

q̄af (x)Γ̂µi q
a
f (x), (2.11)

are the vector (V ) and axial (A) currents, with Γ̂µV = γµ, and Γ̂µA = γµγ5; a is a color

index, and f denotes flavor. In the following we will leave the sum over color and flavor

implicit. The photonic contribution to the lepton tensor Liµν is given by

LVµν = − e4

2Q2

(
gµν − 2

p1µp2ν + p2µp1ν

Q2

)
Q2
f ; LAµν = 0, (2.12)
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with p1 and p2 the electron and positron momenta, respectively, e the charge of the electron,

and Qf the electric charge of fermion f .

The steps needed to obtain a factorized form of the cross section in eq. (2.9) above

are analogous to other SCET derivations that exist in the literature, the main difference

being only that we want to leave the angle θ unintegrated.1 For this reason, we will just go

through the main points of the derivation here; we refer to ref. [16] for further details. The

first step is to match the currents onto SCET operators; then we perform field redefinitions

on the SCET fields to decouple the soft gluons. After the decoupling, the different sectors

no longer interact and we can write the final state as

|X〉 = |Xs〉 |Xc1〉 |Xc2〉 (2.13)

and the transverse thrust constraint in the form

δ(τ⊥ − τ⊥(X)) = δ (τ⊥ − τ⊥(Xs)− τ⊥(Xc1)− τ⊥(Xc2))

=

∫
dτc1⊥dτc2⊥dτs⊥ δ(τ⊥ − τs⊥ − τc1⊥ − τc2⊥)

× δ(τc1⊥ − τ⊥(Xc1))δ(τc2⊥ − τ⊥(Xc2))δ(τs⊥ − τ⊥(Xs)) . (2.14)

We then obtain the cross section as a convolution of matrix elements in the different sectors

of the effective theory

dσ

dτ⊥
=

1

2Q2

∑
i=V,A

Liµν |C̃(Q2)|2
∫
dτc1⊥dτc2⊥dτs⊥ δ(τ⊥ − τs⊥ − τc1⊥ − τc2⊥)

×

∑
Xc2

〈0| χ̄jc2,α(0) |Xc2〉 〈Xc2 |χk
′
c2,β′(0) |0〉 δ(τc2⊥ − τ⊥(Xc2))


×

∑
Xc1

〈0|χj′c1,β(0) |Xc1〉 〈Xc1 | χ̄kc1,α′(0) |0〉 δ(τc1⊥ − τ⊥(Xc1))


×
(∑
Xs

〈
0
∣∣∣ [Y †c2(0)Yc1(0)

]
jj′

∣∣∣Xs

〉〈
Xs

∣∣∣ [Y †c1(0)Yc2(0)
]
kk′

∣∣∣0〉δ(τs⊥ − τ⊥(Xs))

)
× Γµi,αβΓνi,α′β′ (2π)4δ(4)(q − pXc1 − pXc2 − pXs) , (2.15)

where C̃ is the Fourier transform of the matching coefficient from the QCD current to

the SCET operators. We use latin indices to denote color and greek indices for the Dirac

structure. The χ’s are quark-jet fields in SCET, which include the quark coming out of the

hard collision and its interactions with collinear particles. The Y ’s are soft Wilson lines,

which encode soft interactions at leading power. As a final step, we want to expand away

small components in the momentum conservation δ-function and make the dependence on

the angle θ explicit. Up to power suppressed terms, we have

δ(4)(q − pXc1 − pXc2 − pXs) = 2 δ(n̄1 · pXc1 −Q)δ(n̄2 · pXc2 −Q)δ(2)(p>Xc1
+ p>Xc2

) . (2.16)

1For regular e+e− event-shape variables, the dependence on θ has been considered in ref. [15].
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To make the dependence on the angle θ explicit, we now explicitly distinguish the reference

vector ~n in SCET from the thrust axis ~nT , which is derived from the particles in a given

event. We then introduce

1 =

∫
d3~n δ(3)(~n− ~nT ), (2.17)

into eq. (2.15). In the effective theory, the thrust axis is given by ~nT = ~pXc1/|~pXc1 | up to

power corrections. Inserting this into the above equation and using the fact that momentum

conservation fixes |~pXc1 | = Q/2, we can rewrite it in the form∫
d3~n δ(3)(~n− ~nT ) = (2π)

∫
d cos θ

(
Q

2

)2

δ(2)(p>Xc1
) . (2.18)

After these manipulations, the momentum conservation δ functions only act on a single

sector and the cross section factorizes into separate collinear and soft matrix elements. The

collinear matrix elements define jet functions and can be written in the form

δjk

2(2π)3

[
n/1

2

]
βα

Jc1⊥(τc1⊥) :=
∑
Xc1

〈0|χjc1,β(0) |Xc1〉 〈Xc1 | χ̄kc1,α(0) |0〉

× δ(τc1⊥ − τ⊥(Xc1))δ(Q− n̄1 · pXc1 )δ(2)(pXc1>) , (2.19)

δjk

2(2π)3

[
n/2

2

]
βα

Jc2⊥(τc2⊥) :=
∑
Xc2

〈0| χ̄jc2,α(0) |Xc2〉 〈Xc2 |χkc2,β(0) |0〉

× δ(τc2⊥ − τ⊥(Xc2))δ(Q− n̄c2 · pXc2 )δ(2)(pXc2>) , (2.20)

where the collinear-sector transverse-thrust constraint has been expanded according to

eq. (2.8). The soft matrix element has the form

S⊥(τs⊥) :=
1

Nc

∑
Xs

〈
0
∣∣∣ [Y †c2(0)Yc1(0)

]
jk

∣∣∣Xs

〉〈
Xs

∣∣∣ [Y †c1(0)Yc2(0)
]
kj

∣∣∣0〉δ(τs⊥−τ⊥(Xs)).

(2.21)

Expanding away power suppressed terms in the δ-functions in eq. (2.15), inserting the

definitions of the jet and soft functions, and contracting the Dirac structure, we obtain the

desired factorized expression for the cross section

dσ

dτ⊥d cos θ
=
πNcQ

2
fα

2

2Q2
(1 + cos2 θ)H(Q2)

∫
dτc1⊥dτc2⊥dτs⊥

δ(τ⊥ − τs⊥ − τc2⊥ − τc1⊥)Jc2⊥(τc2⊥)Jc1⊥(τc1⊥)S⊥(τs⊥), (2.22)

with H(Q2) := |C̃(Q2)|2, and where α = e2/(4π) is the fine structure constant and Nc the

number of colors. To include also the contributions from Z exchange, one should substitute

Q2
fe

4/(2Q2)→ (LV + LA), where LV,A are defined in appendix C.

We already stressed above that the jet functions that appear in eq. (2.22) are not the

inclusive jet functions that one needs, for instance, in ordinary thrust. At lowest order, we

have

S⊥(τs⊥) = δ(τs⊥) ; Jc⊥(τc⊥) = δ(τc⊥) ; H(Q2) = 1. (2.23)

We compute all these functions at one loop in section 3.
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2.2 Hadronic collisions

Having obtained the factorization formula in the lepton-collider case in the previous section,

we now move to hadronic collisions, which is the actual situation of interest. The right

panel of figure 1 depicts a typical dijet configuration in a hadronic collision. The final-state

jets do not need to be back-to-back in the lab frame, since the momentum fractions of the

partons entering the hard interaction can be very different. To define the jet axes, one can

use a jet algorithm. Since our treatment concerns events with two narrow energetic jets,

any choice of the algorithm will lead to the same jet directions in the limit τ⊥ → 0, up to

terms which are power-suppressed in this limit. The jet algorithm provides us with the two

angles θ1 and θ2 of the two energetic jets, as indicated in figure 1, and with their energies

EJ1 and EJ2 . Since the jets are massless, these angles are in one-to-one correspondence to

the rapidities of the two jets. To ensure that we indeed deal with hard collisions, one needs

to require that the two jets are hard. This can, for example, be achieved by imposing that

Q⊥ := | sin θ1|EJ1 + | sin θ2|EJ2 > Q0 , (2.24)

note that the definition of Q⊥ now involves θ1,2 and EJ1,2 , as adequate for hadronic col-

lisions. The scale Q0 must be large enough so that the soft scale is still perturbative,

Q⊥τ⊥ � ΛQCD. In the limit τ⊥ → 0, the two contributions to Q⊥ correspond to the

transverse momenta of the two, approximately massless jets and momentum conservation

in the transverse plane requires that the two contributions to Q⊥ must be equal. Below, we

will perform a boost along the beam axis to the frame in which the jets are back-to-back

and their energies are equal. In the limit τ⊥ → 0 this is simply the center-of-mass frame

of the hard scattering after initial-state radiation.

The modes that we need in the effective theory include the collinear modes c1,2 for

the final-state jets and the soft mode s that were already present in the lepton-collider

case. On top of this, we need two additional collinear modes in the beam directions, which

we denote by ca,b and describe the initial-state radiation. They are represented by the

green lines in figure 1. To derive the desired factorization theorem, we start by writing the

expression for the QCD cross section differential in τ⊥, in a proton-proton collision,

dσ

dτ⊥
=

1

2E2
CM

∑
X

|M (pp→ X)|2 (2π)4δ(4) (Pa+Pb−pX) δ(τ⊥−τ⊥(X))θ(Q⊥−Q0), (2.25)

where Pa and Pb are the momenta of the protons, pX is the total final-state momentum,

and ECM is the hadronic center-of-mass energy.

Before moving to the factorization analysis, it is useful to set up the kinematics. The

momenta of the protons are given by

Pµa = ECM
nµa
2

; Pµb = ECM
nµb
2
, (2.26)

and we assume that the partons which produce the two jets carry fractions xa and xb of

the proton momenta.2 Following ref. [17], we write the total final-state collinear momenta

2The quantities xa and xb are the momentum fractions after initial-state radiation, they are not equal

to the momentum fractions inside the PDFs.

– 10 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
1

in the beam directions as

pµXca = (1− xa)ECM
nµa
2

+ bµa⊥ + ba−
n̄µa
2
, (2.27)

pµXcb
= (1− xb)ECM

nµb
2

+ bµb⊥ + bb−
n̄µb
2
. (2.28)

The first term is the proton remnant, the remainder arises because the leading parton

radiates into the final state. The momenta of the partons that enter the hard interaction are

pµa = xaECM
nµa
2
− bµa⊥ − ba−

n̄µa
2
, (2.29)

pµb = xbECM
nµb
2
− bµb⊥ − bb−

n̄µb
2
. (2.30)

The total final-state momentum pX is given by

pX = pXs + pXc1 + pXc2 + pXca + pXcb , (2.31)

and momentum conservation Pa + Pb = pX then implies the partonic relation

pa + pb = pXs + pXc1 + pXc2 . (2.32)

As in the lepton-collider case, we can simplify the denominator in the expression for

transverse thrust by dropping power-suppressed contributions∑
i

|~pi⊥| =
∑
i

Ei| sin θi| ' | sin θ1|
∑
i=c1

Ei + | sin θ2|
∑
i=c2

Ei +
∑

i=s,ca,cb

Ei sin θi ,

' | sin θ1|EJ1 + | sin θ2|EJ2 = Q⊥. (2.33)

We see that the denominator reduces to Q⊥ in the dijet limit. To obtain this result,

we have used that in the c1,2 sectors the angles between each particle and the beam are

approximately equal to the jet direction. The contribution from the soft sector is negligible,

as in the leptonic case, and also the ca,b sectors do not contribute to eq. (2.33) at leading

power, since sin θi ' 0 for particles collinear to the beam. As in the leptonic case, we

thus have

Q⊥τ⊥(X) =
∑
i

(|~pi⊥| − |~n⊥ · ~pi⊥|) , (2.34)

and the particle sum separates into sums in the different sectors of the theory

τ⊥(X) = τ⊥(Xs) + τ⊥(Xc1) + τ⊥(Xc2) + τ⊥(Xca) + τ⊥(Xcb) . (2.35)

From this, we can read off the relevant scaling of the different modes. Obviously, the c1,2

and s modes have the same scaling as in the lepton-collider case. In order to contribute, the

transverse components bµa,b⊥ of the ca,b modes need to scale like τ⊥, and therefore the small

components of these modes scale like τ2
⊥. We are thus in a situation where the collinear

modes ca,b and the soft mode s have the same virtuality, which is usually called a SCETII

problem. The virtualities of all the different modes are summarised in figure 3. Since the
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c1 c2

ca cb s

hard1

τ

Figure 3. Virtualities of the different modes present in the hadron-collider case.

collinear fields in the jets have a large virtuality, the study of transverse thrust in hadronic

collisions thus involves, quite uniquely, SCETI and SCETII together in the same problem.

Since we have collinear and soft modes with virtualities that are parametrically of the

same order, we should expect a collinear factorization anomaly in the effective theory [13].

Below, we will find that such an anomaly is indeed present.

There are many different partonic channels that contribute to the cross section since

all four partons involved in the hard collision can be quarks or gluons. The different hard-

scattering channels correspond to different leading-power operators in the effective theory.

These operators are built from collinear quark fields χi and collinear gluon fields A>i , and

involve one field for each direction. The corresponding operators and their one-loop Wilson

coefficients were given in [18], and recently these results were extended to two-loop order

in [19]. To keep the following discussion simple, we focus on the hard process qq̄ → q′q̄′

where the outgoing quarks have a different flavor than the incoming ones. For this case a

basis of the relevant SCET operators is given by

O1(x; s, t, u, v) = χ̄b(x+ tn̄b)γµt
Aχa(x+ sn̄a) χ̄2(x+ vn̄2)γµtAχ1(x+ un̄1) ,

O2(x; s, t, u, v) = χ̄b(x+ tn̄b)γµχa(x+ sn̄a) χ̄2(x+ vn̄2)γµχ1(x+ un̄1) . (2.36)

As usual, the operators are smeared over the light-cone direction conjugate to the large

momentum flow and their contribution to the effective Lagrangian is obtained after con-

volution with the Wilson coefficients:

∆LSCET =

∫
d4x

∫
ds dt du dv CI(s, t, u, v)OI(x; s, t, u, v) , (2.37)

where the sum over the different operators I is implied. The Fourier transforms of the Wil-

son coefficients C̃I(n̄a ·pa, n̄b ·pb, n̄1 ·p1, n̄2 ·p2) depend on the large momentum components

of the collinear fields and are directly related to the relevant scattering amplitudes [20]; for

brevity we will not write the arguments explicitly in the following. In our channel only the

single diagram shown in figure 4 contributes to the coefficients at leading order.

Due to its color structure, it only generates a nonzero Wilson coefficient C1, but at

higher orders also the second operator will be present. Under renormalization the two
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Figure 4. Feynman diagram for the Born level qq̄ → q′q̄′ channel.

operators mix, so that the RG equation becomes matrix-valued. As usual, one can perform

the necessary field redefinitions in SCET to achieve the decoupling of the soft gluons and

finds that the resulting soft function is a matrix in color space. After the decoupling, the

final state is decomposed as

|X〉 = |Xs〉 |Xc1〉 |Xc2〉 |Xca〉 |Xcb〉 , (2.38)

and using manipulations analogous to the lepton-collider case one obtains

dσ

dτ⊥
=

1

2E2
CM

∫
dτc1⊥dτc2⊥dτca⊥dτcb⊥dτs⊥δ(τ⊥ − τs⊥ − τc1⊥ − τc2⊥ − τca⊥ − τcb⊥)

×

∑
Xc1

〈0|χc1,δ |Xc1〉 〈Xc1 | χ̄c1,δ′ |0〉 δ(τc1⊥ − τ⊥(Xc1))


×

∑
Xc2

〈0| χ̄c2,γ |Xc2〉 〈Xc2 |χc2,γ′ |0〉 δ(τc2⊥ − τ⊥(Xc2))


×

∑
Xca

〈Pa| χ̄ca,α |Xca〉 〈Xca |χca,α′ |Pa〉 δ(τca⊥ − τ⊥(Xca))


×

∑
Xcb

〈Pb|χcb,β |Xcb〉 〈Xcb | χ̄cb,β′ |Pb〉 δ(τcb⊥ − τ⊥(Xcb))

 C̃IC̃
∗
J

× 1

N3
c

SJI(τs⊥)γµαβγ
µ
γδγ

ν
δ′γ′γ

ν
β′α′(2π)4δ(4)(Pa + Pb − pX) θ(Q⊥ −Q0). (2.39)

In writing the above formula, we have made use of the fact that all four collinear matrix

elements are color-diagonal and have replaced

χ̄icm,αχ
j
cm,α′

→ 1

Nc
δijχ̄cm,αχcm,α′ , (2.40)

where it is understood that the color indices of the fields on the right-hand side are con-

tracted. The resulting color contractions then act on the soft Wilson lines and produce the

soft function

SIJ(τs⊥) :=
1

Nc

∑
Xs

〈0|
[
Y †caTIYcb

]
ij

[
Y †c2TIYc1

]
kl
|Xs〉 〈Xs|

[
Y †c1TJYc2

]
lk

[
Y †cbTJYca

]
ji
|0〉

× δ(τs⊥ − τ⊥(Xs)), (2.41)
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which, as anticipated, is a matrix in the color indices I and J . For the qq̄-channel we are

considering here, there are two possible color structures T1 = tA and T2 = I, see eq. (2.36),

and the soft function is therefore a 2 × 2 matrix.

In a next step, we again expand out the power-suppressed components in the mo-

mentum conservation δ-function. After this step, only the large components of the four

different collinear fields remain in the δ-function. We already anticipated this step in our

definition of the soft function in eq. (2.41), which was defined without a constraint on the

soft momenta other than their thrust. Next, we take the matrix elements of the collinear

fields along the beam which then define quark beam functions Bq/ci⊥(τci⊥, xi), according to

1

2

[
n/a
2

]
α′α

Bq/ca⊥(τca⊥, xa) :=
∑
Xca

δ(τca⊥ − τ⊥(Xca))δ
(
n̄a · Pa (1− xa)− n̄a · pXca

)
× 〈Pa| χ̄ca,α(0) |Xca〉 〈Xca |χca,α′(0) |Pa〉 ,

1

2

[
n/b
2

]
ββ′
Bq̄/cb⊥(τcb⊥, xb) :=

∑
Xcb

δ(τcb⊥ − τ⊥(Xcb))δ
(
n̄b · Pb (1− xb)− n̄b · pXcb

)
× 〈Pb|χcb,β(0) |Xcb〉 〈Xcb | χ̄cb,β′(0) |Pb〉 , (2.42)

where n̄a · Pa = n̄b · Pb = ECM . We can introduce the integrations over the momentum

fractions, xa,b, in the expression for the cross section by writing

1 = (n̄a ·Pa)(n̄b ·Pb)
∫
dxadxb δ(n̄a ·Pa(1−xa)−n̄a ·pXca )δ(n̄b ·Pb(1−xb)−n̄b ·pXcb ). (2.43)

We then have

dσ

dτ⊥
=

1

4N3
c

∫
dτc1⊥dτc2⊥dτca⊥dτcb⊥dτs⊥δ(τ⊥ − τs⊥ − τc1⊥ − τc2⊥ − τca⊥ − τcb⊥)

×
∫
dxa

∫
dxb Bq/ca⊥(τca⊥, xa)Bq̄/cb⊥(τcb⊥, xb)

(
−g⊥µν

)
γµγδγ

ν
δ′γ′

×

∑
Xc1

〈0|χc1,δ |Xc1〉 〈Xc1 | χ̄c1,δ′ |0〉 δ(τc1⊥ − τ⊥(Xc1))


×

∑
Xc2

〈0| χ̄c2,γ |Xc2〉 〈Xc2 |χc2,γ′ |0〉 δ(τc2⊥ − τ⊥(Xc2))

 C̃IC̃
∗
J SJI(τs⊥)

× (2π)4δ(4)(xaPa + xbPb − pXs − pXc1 − pXc2 ) θ(Q⊥ −Q0), (2.44)

where g⊥µν = gµν− nµan
ν
b+nµb n

ν
a

2 . At this point, the cross section has the form which is usually

obtained in perturbative QCD, except that the initial state is described by beam functions

instead of PDFs. To make the following discussion similar to the lepton collider case, it is

convenient to now perform a boost to the frame where the jets are back-to-back, i.e. the

frame where θ1 = θ2. Up to terms suppressed by powers of τ⊥, the total momentum of the

partons that enter the hard interaction in the original lab frame is given by

qµ = xaP
µ
a + xbP

µ
b = xaECM

nµa
2

+ xbECM
n̄µa
2
, (2.45)
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where we used that nb = n̄a. At leading power a boost along the z-direction is thus

sufficient to make the jets back-to-back. We need to perform a boost such that the total

momentum of the partons that enter the hard interaction is given by

qµ → q̂µ = Q
nµa
2

+Q
n̄µa
2

+O(Qτ⊥), (2.46)

where we denote quantities in the boosted frame with a hat. The plus and minus compo-

nents of the ca particles transform under a boost in the z direction according to n̄a · p →
eξn̄a · p, na · p→ e−ξna · p, therefore the boost we need is given by

ξ =
1

2
ln
xb
xa

; Q = ECM
√
xaxb. (2.47)

Since the constraint for transverse thrust only involves momenta transverse to the beam

direction, the expression for the cross section in eq. (2.25) is invariant under the boost.

The beam functions are invariant and can be evaluated in the lab frame, while we will

adopt the boosted frame for the jet and soft functions. From now on we will exclusively

work in the boosted frame, and for simplicity drop the hats on the momenta. We then

rewrite the momentum conservation δ-function as in eq. (2.16) and, also as in the lepton

case, introduce an integration over the angle θ of the jet in the boosted frame by writing

1 =

∫
d3~n δ(3)(~n− ~n1) = (2π)

∫
d cos θ

(
Q

2

)2

δ(2)(p>Xc1
) . (2.48)

Finally, we take the collinear matrix elements, which are the jet functions defined in

eqs. (2.19)–(2.20), where Q is now given by eq. (2.47). Putting all the ingredients to-

gether we obtain

dσ

dτ⊥d cos θ
=

∫
dτc1⊥dτc2⊥dτs⊥dτca⊥dτcb⊥δ(τ⊥ − τs⊥ − τc2⊥ − τc1⊥ − τcb⊥ − τca⊥)

×
∫
dxa

∫
dxb Bq/ca⊥(τca⊥, xa)Bq̄/cb⊥(τcb⊥, xb)Jc2⊥(τc2⊥)Jc1⊥(τc1⊥)

×HIJ(Q, θ)SJI⊥(τs⊥) θ(Q⊥ −Q0) , (2.49)

where we defined the hard function as

HIJ(Q, θ) =
Q2

32πNc
(1 + cos2 θ)C̃IC̃

∗
J . (2.50)

Note that, unlike in the lepton-collider case above, we have not normalized it such that the

entries of the matrix are only ones and zeros at tree level. The angle θ, which corresponds

to the angle between jet 1 and the beam in the partonic center-of-mass frame, is typically

not measured experimentally, but it is convenient to keep the expressions differential in

cos θ for the present discussion.

We can verify that we reproduce the lowest-order cross section for two-jet production by

evaluating the ingredients at leading order. The LO hard coefficient is C̃I = g2
s(1, 0)/Q2. Its

denominator Q2 is from the hard gluon propagator which is integrated out when matching

onto SCET. The relevant entry of the soft-function matrix is S11⊥(τs⊥) = CF
2 δ(τs⊥). The

LO jet functions are equal to δ(τci⊥) and the beam functions are given by the standard

PDFs multiplied by the same δ-function. Putting the ingredients together, and integrating

over τ⊥, one reproduces the standard LO partonic cross section for qq̄ → q′q̄′.
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2.3 Collinear anomaly

For leptonic collisions, the theorem eq. (2.22) achieves the complete factorization of scales

we are aiming for, but the same is not true for the hadron collider formula eq. (2.49).

The reason is that the beam and soft functions, as given above, are not individually well

defined. Beyond leading order, one encounters phase-space integrals that are ill-defined

within dimensional regularization. To properly define them, one needs to introduce an

additional regulator. The convolution of the regularized beam and soft functions is then

regulator independent, as it needs to be since the cross section is a physical observable,

but contains an additional dependence on the hard scale, on top of the one encoded in the

hard function. This effect, i.e. the appearance of a hidden additional dependence on the

hard scale, is called the collinear anomaly [13]. One encounters it when the effective theory

contains collinear and soft modes which have virtualities that are parametrically of the same

order. Consistency conditions restrict the form of this additional hard-scale dependence to

be a pure power to all orders in perturbation theory [13, 21]. The additional dependence

can be factorized and in this way one achieves the desired separation of scales. One can

show that for transverse-momentum dependent quantities, such as the one we consider

here, only real-emission diagrams need additional regularization and one can use a simple

analytic regulator to render them well defined [22]. In this way, gauge invariance and the

eikonal structure of the soft and collinear emissions in the effective theory are explicitly

maintained. Alternatively, one can regularize the soft and collinear Wilson lines [23].

To discuss the form of the collinear anomaly it is convenient to perform a Laplace

transform of the cross section, since the Laplace-transformed expression is a simple product,

rather than a convolution, of the jet, beam, and soft functions. We write

t̃(κ) =

∫
dτ⊥e

−τ⊥z
(

dσ

dτ⊥d(cos θ)dxadxb

)
= HIJ(Q, θ) S̃JI⊥(κ, θ) j̃c2⊥(κ) j̃c1⊥(κ) B̃q/ca⊥(κ, xa) B̃q̄/cb⊥(κ, xb), (2.51)

where z = 1/(eγEκ). The factor eγE is included to avoid a proliferation of such factors in

the Laplace transforms of the jet, soft, and beam functions, which are indicated by a tilde.

For example, for the jet function we define

j̃c1⊥(κ) =

∫
dτ⊥e

−τ⊥zJc1⊥(τ⊥), (2.52)

and analogously for the other ingredients. For later convenience we also define the dimen-

sionful variable κ̄ = 2κQ sin θ, which is of the order of the soft energy scale. As mentioned

before, the soft and beam functions in eq. (2.51) depend on the analytic regulator, and

contain hidden dependence on the hard scale. Their product is regulator independent and,

to all orders in perturbation theory, has the form

S̃JI⊥(κ, θ) B̃q/ca⊥(κ, xa) B̃q̄/cb⊥(κ, xb) =

(
Q2

c2
0κ̄

2

)−F qq̄⊥ (κ)

W̃JI(κ, θ, xa, xb) , (2.53)

where

W̃JI(κ, θ, xa, xb) = S̃JI⊥(κ, θ) B̃q/ca⊥(κ, xa) B̃q̄/cb⊥(κ, xb). (2.54)
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All the dependence on the hard scale Q2 is now manifest. The structure we find here closely

resembles the one encountered in previous applications involving the collinear anomaly, see

e.g. refs. [24, 25], and the derivation of eq. (2.53) parallels the steps presented there. We call

the function F qq̄⊥ (κ) the anomaly exponent, and WJI(κ) the remainder function. We split

the remainder function into three parts in eq. (2.54). This decomposition is not unique, but

it is useful because it shows that the dependencies on xa, xb and θ factorize. The constant

c0 is conventional and will be given in section 3. We can now write the final factorized

form for the Laplace transformed cross section. For a general partonic channel, ab → 12,

the corresponding factorization formula reads

t̃ab→12(κ) = Hab→12
IJ (Q, θ)

(
Q2

c2
0κ̄

2

)−Fab⊥ (κ)

S̃ab→12
JI⊥ (κ, θ)

B̃a/ca⊥(κ, xa) B̃b/cb⊥(κ, xb)j̃c1⊥(κ)j̃c2⊥(κ) , (2.55)

where we explicitly indicated the partons upon which each term depends. Equation (2.55)

is the main result of this work. In section 3, we compute all the ingredients that enter in

this formula at the one-loop level.

As discussed above, the cross section must be independent of the analytic regulator,

while the individual pieces have divergences as the regulator goes to zero. This cancellation

of divergences is non-trivial in our case because the soft function is a color matrix, while the

beam functions are color-diagonal. It is interesting to look at the structure of the analytic

divergences in the soft function in detail to check how they cancel the divergences in the

beam functions. In our computations in the next section, we will use the standard form of

the phase-space regulator [22]∫
ddk δ(k2) θ(k0) →

∫
ddk δ(k2) θ(k0)

(
ν

nb · k

)α
, (2.56)

with nb · k = k0 + kz, but for the discussion in this paragraph, it is convenient to introduce

the analytic regulator as follows [26]∫
d4k δ(k2) θ(k0)

[(
ν

nb · k

)α
θ(nb · k − na · k) +

(
ν

na · k

)β
θ(na · k − nb · k)

]
, (2.57)

where n̄a = nb and n̄b = na. This second form distinguishes the divergences from left- and

right-moving particles and is symmetric if one chooses α = β. The implications of having

separate regulators for left and right sectors were first discussed in ref. [27]. Since the

components k+ and k− scale differently in the collinear regions, the regulator (2.57) must

be expanded in the small components. In the collinear region ca we have nb · k � na · k
and the term involving the regulator β vanishes upon expanding the θ-functions, while the

α term vanishes in the collinear region cb. We conclude that the divergences in the ca
beam function only involve the regulator α and vice versa for the cb beam function. The

question is then how the cancellation can be possible, given that the soft function depends

on the color charges of all four particles participating in the hard scattering, while the

beam functions only involve the color generators of the incoming partons.
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To see how the cancellation arises, it is instructive to consider the one-loop case, where

the soft function is given by a sum of diagrams in which a gluon is emitted from leg i and

absorbed at leg j (see figure 7 below). The amplitude squared associated with this process

has the form

|M(k)|2 ∝ Ti · Tj
ni · nj

(ni · k) (nj · k)
. (2.58)

We use the notation of the color-space formalism [28], in which Ti denotes the color gener-

ator associated with parton i. Only the contributions which involve leg a (i = a or j = a),

can give rise to divergences in the regulator α. Computing the corresponding diagrams

explicitly, we find that they have the structure

1

α
(Ta · Tb + Ta · T1 + Ta · T2) =

1

α

(
−T 2

a

)
, (2.59)

where we have used color-conservation
∑

i Ti = 0. The quantity T 2
a = Ca is the quadratic

Casimir operator of the representation of parton a. Similarly, we find

1

β
(Ta · Tb + Tb · T2 + Tb · T1) =

1

β

(
−T 2

b

)
. (2.60)

From eqs. (2.59)–(2.60) one clearly sees that the divergences in each hemisphere can cancel

with the corresponding analytic-regulator divergences in the beam functions, which are

proportional to the corresponding Casimir. The same structure must also arise at higher

orders. Factorization thus imposes nontrivial constraints on the structure of the divergences

in the analytic regulator, similar to the constraints it imposes on the infrared structure

of the scattering amplitudes [20, 29–31]. The above structure implies that the collinear

anomaly has the form

F ab⊥ (κ) =
(Ca + Cb)

2
F⊥(κ) . (2.61)

The anomaly is thus given by a universal function F⊥(κ). Casimir scaling of the anomaly

was observed earlier in the simpler case of transverse-momentum resummation [13].

3 One-loop ingredients

In this section we compute all the different ingredients that appear in the factorization for-

mula at the one-loop level. We work in dimensional regularization with d = 4− 2ε dimen-

sions, and αs = g2
s/(4π) is always understood to be the coupling constant in the MS scheme

at scale µ. The relation to the bare coupling is α0
s = Zααsµ̃

2ε, with µ̃2 = µ2eγE (4π)−1,

and Zα = 1 at the order we are working. We expand the anomalous dimensions appearing

in our expressions according to

γ⊥ =
∞∑
n=0

γn⊥

(αs
4π

)n+1
; γcusp =

∞∑
n=0

Γn

(αs
4π

)n+1
, (3.1)

where the coefficients Γn of the cusp anomalous dimension are collected in appendix A.
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3.1 Jet functions

For simplicity we denote n̄ci → n̄ and ci → c in this section, since the diagrams only

involve one collinear direction, and represent the quark jet function by Jq⊥(τc⊥) and the

gluon jet function by Jg⊥(τc⊥). The definition of the quark jet functions was given in

eqs. (2.19) and (2.20). For hadronic collisions, we also need the gluon jet function whose

definition reads

δab

2Q(2π)d−1
(−g>µν) Jg⊥(τc⊥) :=

∑
Xc

〈0| Aac>µ(0) |Xc〉 〈Xc| Abc>ν(0) |0〉

× δ(τc⊥(Xc)− τc⊥)δ(Q− n̄ · pXc)δ(d−2)(pXc,>), (3.2)

where A>µ is the SCET gluon jet field (normalized such that A>µ = A>µ at lowest order

in the coupling constant), and g>µν =
(
gµν − n̄µnν+nµn̄ν

2

)
. The normalization is chosen such

that Jg⊥(τc⊥) = δ(τc⊥) at lowest order. To ensure that the same is true for the quark jet

function in d dimensions one has to replace (2π)3 → (2π)d−1 in the definitions in eqs. (2.19)

and (2.20) and work with a (d− 2)-dimensional transverse-momentum δ-function.

The diagrams that contribute to the jet functions at the one-loop level are shown in

figure 5. We only show real-emission diagrams since the one-loop virtual diagrams are

scaleless and vanish in dimensional regularization. It is convenient to follow ref. [35] and

perform the calculation of the jet functions in light-cone gauge n ·A(x) = 0. In this gauge,

the collinear Wilson lines which multiply the fields χc and Aµc become trivial, therefore only

the first diagram contributes to the quark jet function and only the first two diagrams in

the second line to the gluon jet function. The relevant phase-space integrals can easily be

performed in d-dimensions and we then obtain the bare quark jet function at one loop as

Jbare
q⊥ (τc⊥) = δ(τc⊥)− αsCF

(4− ε)2−3+2εeγEεΓ(2− ε)
εΓ
(

1
2 − ε

)
Γ
(

3
2 − ε

) 1

τc⊥

(
τc⊥Q

2 sin2 θ

µ2

)−ε
. (3.3)

The explicit expressions for the two diagrams contributing to the gluon jet function are

given in appendix B.

The bare jet function has divergences for ε → 0. Since the jet functions are distribu-

tions in τc⊥, it is convenient to perform a Laplace transform

j̃i⊥(L, µ) =

∫ ∞
0

dτc⊥ e
−τc⊥/(κeγE )Ji⊥(τc⊥, µ), (3.4)

where, for later convenience, we have written the Laplace transform as a function of the log-

arithm L = ln(4κQ2 sin2 θ
µ2 ) of the Laplace variable κ. The renormalized Laplace-transformed

jet function is related to the bare one according to j̃i⊥ = Zji⊥ j̃
bare
i⊥ . Since the bare func-

tion is µ-independent, the renormalized jet function, j̃i⊥, and Zji⊥ fulfill both the same

RG equation
d

d lnµ
j̃i⊥(L, µ) =

[
−2Ciγcusp L− 2γJi⊥

]
j̃i⊥(L, µ), (3.5)

where γcusp is the cusp anomalous dimension, which gets multiplied by the relevant Casimir

operator Cq = CF and Cg = CA. Solving the RG equation for Zji⊥ one gets

lnZji⊥ =
αs
4π

[
−CiΓ0

ε2
+

1

ε
(CiΓ0L+ γJi0⊥)

]
. (3.6)
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Figure 5. Next-to-leading order real-emission diagrams for the quark jet function (first line), and

for the gluon jet function (second and third lines). The red vertical lines represent the final-state

cut. The crosses indicate the collinear Wilson lines.

Expanding j̃bare
i⊥ and Zji⊥ in ε and αs, we find that the divergences in j̃i⊥ cancel with

γ
Jq
0⊥ = γq0 = −3CF , γ

Jg
0⊥ = γg0 = −β0 . (3.7)

The one-loop anomalous dimensions are thus identical to the inclusive jet-function with

our choice of the scale of the logarithm L. The renormalized function j̃i⊥ is given by

j̃i⊥(L, µ) = 1 +
αs
4π

(
CiΓ0

L2

2
+ γJi0⊥L+ cJi1⊥

)
, (3.8)

with

c
Jq
1⊥ = CF

(
7− 4π2

3

)
, c

Jg
1⊥ = CA

(
67

9
− 4π2

3

)
− 20

9
TFnf . (3.9)

3.2 Beam functions

The definition of the quark beam function was given in eq. (2.42) in section 2.2. In addition,

we also need the gluon beam function which is defined as

Bg/ca⊥(τca⊥, xa) := −xa(n̄a · Pa)
∑
Xca

〈Pa| Aµ,aca>(0) |Xca〉 〈Xca | Aaca>µ(0) |Pa〉

× δ(τca⊥(Xca)− τca⊥)δ
(
(n̄a · Pa)(1− xa)− n̄a · pXca

)
. (3.10)

For perturbative values of τ⊥, we can compute the final-state radiation in perturbation

theory and match the beam functions onto standard PDFs, fj/N (x) for the hadron N ,
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convolved with a perturbative coefficient, Ii←j(x, τ⊥). The corresponding matching relation

takes the form [13, 17, 36]

Bi/ck⊥(τ⊥, ξ) =
∑
j

∫ 1

ξ

dx

x
Ii←j(ξ/x, τ⊥) fj/Nk(x). (3.11)

At lowest order in perturbation theory the matching coefficients take the form

Ii←j(x, τ⊥) = δijδ(1− x)δ(τ⊥) , (3.12)

so that the beam function reduces to the PDF times δ(τ⊥). When computing the matching

coefficients, it is convenient to evaluate the beam-function matrix elements eqs. (2.42)

and (3.10) with quark and gluon states instead of hadrons. In this case the PDFs are

trivial fj/k(x) = δjkδ(1 − x) and the partonic computation directly yields the matching

coefficients Ii←k(ξ/x, τ⊥).

As explained in section 2.2, the transverse-thrust beam functions are not well defined

within dimensional regularization and require an additional regulator. We regularize them

using the analytic regulator of ref. [22] which modifies the phase-space integration measure

as follows ∫
ddk δ(k2) θ(k0) →

∫
ddk δ(k2) θ(k0)

(
ν

k0 + kz

)α
. (3.13)

Note that the beam functions in both ca and cb directions are regularized with the same

regulator. To discuss the renormalization of the beam functions, and the cancellation of

the dependencies on the analytic regulator, we again perform a Laplace transform

B̃q/ca⊥(κ, xa) =

∫
dτ⊥e

−τ⊥/(κeγE )Bq/ca⊥(τ⊥, xa). (3.14)

We have discussed the cancellation of the divergences in the analytic regulator in sec-

tion 2.3. The divergences of the soft function with the form of the analytic regulator given

in eq. (3.13) can be obtained from those in eqs. (2.59)–(2.60) by replacing β → −α. We see

that the analytic divergences cancel in the soft function for channels involving the same

color representation of the incoming partons, such as qq̄ and gg. In these cases, the remain-

ing divergences must cancel out in the product of the Laplace transformed beam functions

which takes the form

B̃q/ca⊥(κ, xa) B̃q̄/cb⊥(κ, xb) =

(
Q2

c2
0κ̄

2

)−CFF⊥(κ,µ)

B̃q/ca⊥(κ, xa, µ) B̃q̄/cb⊥(κ, xb, µ) , (3.15)

and analogously for the gg channel. Computing the product of the Laplace transforms of

the quark beam functions, we find that this is indeed the case, and obtain the corresponding

anomaly exponent and refactorized matching coefficients. The diagrams that contribute to

it at one loop are shown in figure 6. The diagrams need to be evaluated both in the ca and

cb sectors because the analytic regularization is not symmetric, as we stressed above. The

explicit expressions for each of the individual diagrams are listed in appendix B. Proceeding

as discussed, we get

F⊥(κ, µ) =
αs
4π

Γ0 L⊥ , (3.16)
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with L⊥ = ln µ2

c20κ̄
2 , with ln c0 = 4G

π , and where G ≈ 0.915966 is the Catalan constant. The

characteristic scale of the logarithm is κ̄ = 2κQ sin θ. The refactorized matching coefficients

are defined as

Bi/ck⊥(τ⊥, ξ, µ) =
∑
j

∫ 1

ξ

dz

z
Ii←j(ξ/z, τ⊥, µ) fj(z, µ) , (3.17)

in analogy with the corresponding matching coefficients and are obtained by evaluating the

beam functions with partonic states. At one-loop order, they have the general form

Ĩi←j(x, κ, µ) = δ(1−x) δij

[
1 +

αs
4π

(
CiΓ0

L2
⊥
4
− γi0 L⊥

)]
+
αs
4π

[
−P(1)

i←j(x)
L⊥
2

+Ri←j(x)

]
,

(3.18)

and contain the Altarelli-Parisi kernels

P(1)
q←q(x) = 4CF

(
1 + x2

1− x

)
+

,

P(1)
q←g(x) = 4TF

(
x2 + (1− x)2

)
,

P(1)
g←g(x) = 8CA

[
x

(1− x)+

+
1− x
x

+ x(1− x)

]
+ 2β0 δ(1− x) ,

P(1)
g←q(x) = 4CF

1 + (1− x)2

x
,

(3.19)

which involve plus-distributions, and remainder functions

Rq←q(x) = −CF
(
π2

6
+

64G2

π2
+ 2F

)
δ(1− x) + 2CF (1− x) ,

Rq←g(x) = 4TFx(1− x) ,

Rg←g(x) = −CA
(
π2

6
+

64G2

π2
+ 2F

)
δ(1− x),

Rg←q(x) = 2CFx . (3.20)

The numerical value of the constant F in the equation above is F ≈ 8.20629, an analytic

expression in terms of Lerch’s Φ function is given in the appendix.

The anomalous dimensions of the anomaly exponent and the refactorized beam func-

tions are given by

d

d lnµ
F⊥ = 2γcusp ,

d

d lnµ
B̃i/ck⊥ =

[
−cBiγcusp ln

c2
0κ̄

2

µ2
− 2γBi⊥

]
B̃i/ck⊥ ,

(3.21)

with

cBi = Ci and γBi0⊥ = γi0, (3.22)

according to our one-loop results above.
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Figure 6. One-loop diagrams contributing to the matching coefficients Iq←q (top row), Ig←g
(middle row), and Iq←g (bottom row left) and Ig←q (bottom row right) of the beam functions. The

red vertical lines represent the final-state cut.

3.3 Soft functions

The soft function is, in general, a matrix in color space defined in the color basis adopted

for the hard function. To discuss the color structure independently of the basis choice, it

is most convenient to use the color-space formalism [28, 37], where the hard function is

written as

|C̃〉 =
∑
I

C̃I |I〉 , (3.23)

with |I〉 a basis of color states. For the qq̄ → q′q̄′ channel discussed above, the basis

contains the color-singlet and the color-octet operators defined in eq. (2.36). In the chosen

basis, the soft function acts as follows

〈C̃|S(τs⊥)|C̃〉 = C̃∗I 〈I|S(τs⊥)|J〉 C̃J = C̃∗I SIJ(τs⊥) C̃J = HJI SIJ(τs⊥) . (3.24)

We can write it as

SIJ(τs⊥) =
1

Nc

∑
Xs

〈0|W†I |Xs〉 〈Xs|WJ |0〉 δ(τs⊥ − τ⊥(Xs)), (3.25)

whereWI are combinations of Wilson lines, in the adequate representation for the partonic

channel we are studying. The explicit expression relevant for the qq̄ → q′q̄′ channel was

given in eq. (2.41).

The diagrams that contribute at the one-loop level are shown in figure 7. Once again

only real-emission diagrams can give non-vanishing contributions in dimensional regular-

ization. The soft function up to one-loop order is therefore given as

SIJ(τ) = δ(τ)Dtree
IJ +

∑
ij

IijDIJ(i, j), (3.26)
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where i, j = a, b, 1, 2, with a and b the partons in the initial state, and 1 and 2 the final-state

jets. The color structures at tree level and one-loop order are

Dtree
IJ =

1

Nc
〈I|J〉 , and DIJ =

1

Nc
〈I|(−Ti · Tj)|J〉 . (3.27)

The DIJ encode the color factors, are matrices in color space, and depend on the partonic

channel we are considering. For the qq-type channels they are 2×2 matrices, for the qg-type

channels 3×3 matrices, and for the gg channels 9×9 matrices. Explicit expressions for all of

them were given in ref. [38].3 For leptonic collisions the color factors are numbers because

the process only involves two color-charged legs which fulfill −T1 · T2 = T 2
1 = T 2

2 = CF .

The soft integrals Iij only depend on the directions to which the soft gluon in figure 7

attaches, and not on the representation of each Wilson line. They are given by

Iij = g2
s µ̃

2ε

∫
ddk

(2π)d−1
δ(k2)θ(k0)

ni · nj
(ni · k)(nj · k)

δ

(
τs⊥ −

1

Q| sin θ|
(
|~k⊥| − |~n⊥ · ~k⊥|

))
,

(3.28)

with

nµa = (1, 0, 0, 1) , nµb = (1, 0, 0,−1) , nµ1 = (1, ~n) , nµ2 = (1,−~n) , ~n = (sin θ, 0, cos θ).

For leptonic collisions, only I12 arises, since there are no colored particles in the initial

state. The Iij integrals are in general not well defined within dimensional regularization,

and an additional regulator is required. In order for the divergences to cancel, we need to

use the same analytic phase-space regulator as for the beam functions. The regularized

versions of the Iij integrals have an additional (ν/(k0 + kz))
α factor in the integrand.

To compute the integrals Iij , we find it useful to perform a change of variables

(k⊥, kz)→ (x, y) with

k⊥ =
τs⊥Q| sin θ|

x
, kz =

τs⊥Q| sin θ|
x

y. (3.29)

The variable x ∈ [0, 1], while y ∈ (−∞,+∞). To extract the divergences in α, it is

convenient to introduce the variable u = 1/(1− y +
√

1 + y2) ∈ [0, 1]. Parameterizing the

integrals in this way, it is more or less straightforward to extract the divergences and to

compute the remaining finite integrals numerically, but we have not managed to evaluate

the finite parts analytically. The nontrivial soft integrals can be written in the form

I12 =
n1 · n2

2
N I0,

2Ia1 =
na · n1

2
N
(
I+ + I− + I ′+ − I ′−

)
,

2Ib2 =
na · n1

2
N
(
I+ − I− + I ′+ + I ′−

)
. (3.30)

3Note that the matrices in ref. [38] are defined without the 1/Nc prefactor in eq. (3.27). Some of the

entries in the matrices for the gg channel in this reference are interchanged: the entries 4 and 19 (20 and

65) need to be swapped in the tree-level (one-loop) matrix. We thank Jan Piclum for pointing this out.
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Figure 7. Next-to-leading order real-emission diagrams for the soft function. The red vertical lines

represent the final-state cut. Mirror diagrams and those that vanish because the gluon attach to

two Wilson lines in the same direction are not shown. In the lepton-collider case the a and b Wilson

lines are absent, and only the last diagram is possible.

Below, we will discuss the evaluation of the integral I0 in detail. The normalization factor

N and explicit expressions for the integrals I±, I ′± are given in appendix B. The three

remaining soft integrals are given by

Iab = 0 , Ia2 = Ia1|θ→π−θ , Ib1 = Ib2|θ→π−θ . (3.31)

The integral Iab is zero because it is proportional to the scaleless integration

∫ ∞
−∞

dy

(
y +

√
1 + y2

)−α
√

1 + y2
=

∫ 1

0
duu−1−α(1− u)−1+α = 0 . (3.32)

The I12 integral is well defined without the additional analytic regulator, since it does

not involve the directions a and b of the initial-state partons, which involve collinear modes

of the same virtuality as the soft modes. The soft function for leptonic collisions is there-

fore well defined within dimensional regularization, and there is no collinear factorization

– 25 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
1

anomaly, as expected from the arguments in section 2.3. To illustrate how the soft integrals

are computed, we explain now how to obtain the result for I0, which is given by

I0 =

∫ 1

0
dx(2− x)−

1
2
−εx−

1
2

+ε

∫ ∞
−∞
dy

1√
1 + y2

1

1 + y2 − (y cos θ + (1− x) sin θ)2
. (3.33)

To arrive at the above form from eq. (3.28) one writes the integration measure as∫
ddk =

∫
dk0 dkz dk⊥ k

d−3
⊥ d(cosϕ) (sinϕ)d−5 Ωd−3 , (3.34)

and uses δ(k2) to perform the k0 integration and the transverse-thrust constraint to obtain

the integral over the angle ϕ. Finally, one performs the change of variables (k⊥, kz)→ (x, y)

specified above. The next step is the y integral, which does not depend on ε. To compute

it, we write ∫ ∞
−∞

dy
1√

1 + y2

1

1 + y2 − (y cos θ + (1− x) sin θ)2

=

∫ ∞
−∞

dy
1√

1 + y2

1

(y1 − y2) sin2 θ

(
1

y − y1
− 1

y − y2

)
=

∫ ∞
−∞

dy
1√

1 + y2

2i

(y1 − y2) sin2 θ
Im

{
1

y − y1

}
, (3.35)

where

y1 = (1− x) cot θ + i
(2− x)

1
2x

1
2

sin θ
; y2 = (1− x) cot θ − i(2− x)

1
2x

1
2

sin θ
, (3.36)

are the roots of 1 + y2 − (y cos θ + (1− x) sin θ)2; note that y1 − y2 is purely imaginary for

0 < x < 1. Using∫ ∞
−∞

dy
1√

1 + y2

1

y −A =
1√

1 +A2
log

(
A−
√

1 +A2

A+
√

1 +A2

)
, (3.37)

we find

I0 = (sin θ)−1

∫ 1

0
dx (2− x)−1−εx−1+ε Im

{
1√

1 + y2
1

ln

(
y1 −

√
1 + y2

1

y1 +
√

1 + y2
1

)}
. (3.38)

The divergences in the integral over x only come from the x−1+ε term, and the result for

I0 as a series in ε can be easily found by using the expansion

x−1+ε =
1

ε
δ(x) +

[
1

x

]
+

+ ε

[
lnx

x

]
+

+O(ε2), (3.39)

where the plus distributions are defined by∫ 1

0
[f(x)]+ g(x)dx =

∫ 1

0
f(x)(g(x)− g(0))dx. (3.40)
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The integrals I+ and I ′+ are finite as α→ 0 and can be evaluated in exactly the same way

as I0. A divergence in the analytic regulator α arises only in the integrals I− and I ′− in

eq. (3.30), which are simpler than the plus-type integrals so that the y-integration can be

performed analytically for arbitrary α. The divergent terms of the integrals in eq. (3.30)

are given by

I12 =
αs
π

1

τs⊥

(
4Qτs⊥ sin θ

µ

)−2ε(1

ε
− 2 ln sin θ +O(ε)

)
,

2Ia1 =
αs
π

1

τs⊥

(
4Qτs⊥ sin θ

µ

)−2ε

×
(

1

ε
− 2 ln cot

θ

2
+

(
2Qτs⊥ sin θ

ν

)−α
2

(
1

α
+H

)
+O(ε, α)

)
,

2Ib2 =
αs
π

1

τs⊥

(
4Qτs⊥ sin θ

µ

)−2ε

×
(

1

ε
− 2 ln cot

θ

2
−
(
Qτs⊥ sin θ

2ν

)−α
2

(
1

α
+H

)
+O(ε, α)

)
, (3.41)

where the numerical value of the constant H is H ≈ −1.85939. We refer to appendix B for

the full expressions, including the finite parts.

Due to the structure of the DIJ color matrices, see e.g. ref. [38], the Iij integrals always

appear in the combinations I12 + Iab, Ia1 + Ib2, and Ia2 + Ib1 for the qq- and gg-channels.

As we can see from eq. (3.30), and explicitly in eq. (3.41), in these combinations the 1/α

divergent terms cancel, as expected from the discussions in section 2.3, and the explicit

calculation of the beam functions in the previous section. For the qg-type channels, on the

other hand, the structure of the DIJ matrices is such that some individual Iij integrals

appear, and not only the above combinations. Therefore, in the qg-type channels, the

divergences in α do not cancel within the soft function itself, but one needs to combine

it with the beam functions to obtain a regulator independent result, again as discussed in

section 2.3.

The RG equation of the soft function is given by

d

d lnµ
S̃ab→12
IJ⊥ = −S̃ab→12

IL⊥

(
Γab→12
S

)
LJ
−
(

Γab→12†
S

)
IM

S̃ab→12
MJ⊥ , (3.42)

with (
Γab→12
S

)
IJ

=

(
γcuspcS ln

4κQ sin2 θ

µ
+ γs⊥

)
δIJ + γcuspMIJ(θ). (3.43)

The coefficients cS , γs⊥, and the remainder function MIJ(θ) depend on the partonic chan-

nel. Up to two-loop order the remainder function is fixed by general constraints on the

structure of soft anomalous dimensions, see section 4. From our results above we get

cS = −(C1 + C2) ; γ0s⊥ = 0. (3.44)
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3.4 Hard functions

Like the soft function, the hard function HIJ in eq. (2.50) is a matrix in color space. Up to

the conventional normalization factor, it is given by the Fourier transform of the matching

coefficients C̃I of the QCD currents to the SCET operators, according to

HIJ ∝ C̃IC̃
∗
J . (3.45)

The hard function is extracted from the results for the amplitudes for 2 → 2 processes in

QCD. This was done at the one-loop level in ref. [18], where the RG evolution of the hard

function was also considered. Recently, the two-loop result for the hard function has been

presented in ref. [19], based on the results for the QCD amplitudes of refs. [39–43]. The

results of ref. [19] are conveniently given in an electronic form, and can be readily used.

We refer to refs. [18, 19] for the explicit results for the hard functions, and do not copy

them here.

4 Resummation

4.1 Renormalization group equations and scale independence

The cross section, or equivalently its Laplace transform, must be RG invariant, i.e. it must

be independent of µ. That this is indeed the case at order αs can be explicitly verified

with the one-loop results presented above. The Laplace transform of the cross section was

given in eq. (2.55). For concreteness, we now consider the cross section in the qq̄ channel

whose Laplace transform is given by

t̃ = HIJ

(
Q2

c2
0κ̄

2

)−F qq⊥
S̃JI⊥ B̃q/ca⊥ B̃q̄/cb⊥j̃c1⊥j̃c2⊥ , (4.1)

where HIJ := Hqq̄→qq̄
IJ and SIJ := Sqq̄→qq̄IJ . The cross section must satisfy

dt̃

d lnµ
= 0 , (4.2)

which implies relations among the anomalous dimensions of the different ingredients. Their

RG equations can be written as

d

d lnµ
HIJ = (ΓH)IK HKJ +HIK′

(
Γ†H

)
K′J

,

d

d lnµ
S̃IJ⊥ = −S̃IL⊥ (ΓS)LJ −

(
Γ†S

)
IM

S̃MJ⊥,

d

d lnµ
F qq⊥ = 2CFγcusp,

d

d lnµ
B̃q/ck⊥ =

[
−cBqγcusp ln

c2
0κ̄

2

µ2
− 2γ

Bq
⊥

]
B̃q/ck⊥,

d

d lnµ
j̃q⊥ =

[
−cjqγcusp ln

4κQ2 sin2 θ

µ2
− 2γ

Jq
⊥

]
j̃q⊥. (4.3)
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The general structure of the hard-function anomalous dimension was derived in [20, 29–

31]. Following [18], we rewrite the anomalous dimensions as a diagonal contribution and a

remainder MIJ(cos θ)

(ΓH)IJ =

(
γcusp

cH
2

ln
Q2

µ2
+ γH

)
δIJ + γcuspMIJ(cos θ). (4.4)

The remainder depends on ratios of Mandelstam variables, which can be rewritten in terms

of the scattering angle θ. In order for the related angular dependence to cancel, the soft

anomalous dimension must involve the same remainder MIJ(cos θ)

(ΓS)IJ =

(
γcuspcS ln

4κQ sin2 θ

µ
+ γs⊥

)
δIJ + γcuspMIJ(cos θ). (4.5)

For the case of the soft function, the angle dependence arises via scalar products of the

light-like reference vectors defining the Wilson lines. In addition, eq. (4.2) also imposes

some constraints on the coefficients and anomalous dimensions appearing in the diagonal

parts of the equations above, which are

cH − cS − 2cBq − 2cjq = 0 ; γH − γs⊥ − 2γ
Bq
⊥ − 2γ

Jq
⊥ = 0. (4.6)

These conditions for the diagonal and non-diagonal parts are verified by our one-loop results

in the previous section, which provides a check of the computations. To verify the scale

independence, one uses relations such as

u

t
=
na · n2

na · n1
= cot2 θ

2
,

s(−t)
u2

=
n1 · n2 na · n1

(na · n2)2
= 2

1− cos θ

(1 + cos θ)2
, (4.7)

where s = (pa + pb)
2, t = (pa − p1)2, and u = (pb − p1)2 are the Mandelstam variables.

4.2 Resummation of large logarithms

With the RG equations at hand, we can now derive general resummed expressions for the

cross section. To do so, we solve the equations in Laplace space and then invert the results

back to momentum space, using the technique of [44]. All RG-equations in eq. (4.3) are of

the form
d

d lnµ
f̃

(
ln

Λf
µ
, µ

)
=

[
−Cf γcusp ln

Λf
µ

+ γf

]
f̃

(
ln

Λf
µ
, µ

)
, (4.8)

where Λf is the characteristic scale of the given function, Cf the relevant combination

of Casimir operators, and γf its anomalous dimension. For the hard function one has

Λh = Q, for the jet function Λ2
j = 4κQ2 sin2 θ, the soft scale is Λs = 4κQ sin2 θ, and the

beam functions depend on Λb = c0κ̄ = 2c0κQ sin θ. The RG equations for the hadron-

collider soft and hard functions are matrix valued; to bring them to the form shown in

eq. (4.8), one first has to diagonalize the anomalous dimension.

The solution of the template RG equation (4.8) reads

f̃

(
ln

Λf
µ
, µ

)
= exp

[
−Cf S(µf , µ)−Aγf (µf , µ)

](Λf
µf

)ηf
f̃

(
Λf
µf
, µf

)
. (4.9)
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The evolution factors S(µf , µ) and Af (µf , µ) are given in appendix A and the exponent

ηf = CfAγcusp(µf , µ). To obtain the solution of the RG equation in momentum space,

one makes use of the fact that at any order in perturbation theory f̃(ln
Λf
µ , µ) is just a

polynomial in the logarithm so that one can rewrite

f̃

(
ln

Λf
µi
, µi

) (
Λf
µi

)ηf
= f̃

(
∂ηf , µi

) (Λf
µi

)ηf
. (4.10)

After this, the Λf dependence, and therefore also the κ dependence, is a pure power for each

ingredient of the factorization formula. Since the cross section factorizes into a product

in Laplace space, the entire cross section is proportional to a power of κ and using the

fact that

κa =

∫ ∞
0

dτ⊥ e
−τ⊥/(κeγE ) τ

a−1
⊥ e−aγE

Γ(a)
, (4.11)

we can then invert the Laplace transform and obtain the resummed result in momentum

space. Using the above template, we can solve the RG equation for all the ingredients

in the factorization theorem. By evaluating each one at its characteristic scale and then

combining them at a common scale µ, one resums the large logarithms. Below, we choose

µ = µs for simplicity in order to avoid evolving the soft function.

The factorization formula in eq. (2.22) for leptonic collisions resembles the cross section

for ordinary thrust. Its Laplace transform reads

t̃(κ) =

∫ ∞
0

dτ⊥e
−τ⊥/(κeγE )

(
dσ

dτ⊥d(cos θ)

)
=
πNcQ

2
fα

2

2Q2
(1 + cos2 θ)H(Q2, µ)

× j̃c⊥
(

ln
4κQ2 sin2 θ

µ2
, µ

)
j̃c⊥

(
ln

4κQ2 sin2 θ

µ2
, µ

)
s̃⊥

(
ln

4κQ sin2 θ

µ
, µ

)
, (4.12)

where we denote both jet functions by j̃c⊥. We wrote the Laplace-transformed jet and

soft functions as functions of the logarithm of the arguments so that we can directly use

the template eq. (4.8) to solve the corresponding RG equations and to invert the Laplace

transform. After a few simplifications, one then obtains the resummed result

1

σ0

dσ

dτ⊥d(cos θ)
=

3

8

(
1 + cos θ2

)
exp [4CFS(µh, µj)− 2AγH (µh, µs)]H(Q2, µ2

h)

× exp
[
4CFS(µs, µj) + 4AγJq (µj , µs)

](Q2

µ2
h

)−2CFAγcusp (µh,µj)

(4.13)

×
[
j̃c⊥

(
ln
µsQ

µ2
j

+ ∂η, µj

)]2

s̃⊥ (∂η, µs) (4 sin2 θ)η
1

τ⊥

(
τ⊥Q

µs

)η e−γEη
Γ(η)

,

where µh, µj and µs are the hard, jet, and soft matching scales, at which the respective

functions are evaluated. Up to the additional angle-dependence, the result has the same

form as the one for ordinary thrust derived in [32]. The Born-level cross section is σ0 =
4πNcQ2

fα
2

3Q2 and η = 4CFAγcusp(µj , µs). The factor 3/8 on the r.h.s. accounts for the integral

over cos θ ∫ 1

−1
d cos θ

(
1 + cos θ2

)
=

8

3
. (4.14)
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At NLL accuracy, one can perform the full angular integral in eq. (4.13) analytically using

the identity ∫ 1

−1
d cos θ (sin2 θ)η =

√
π Γ(1 + η)

Γ
(

3
2 + η

) . (4.15)

To obtain the resummed result also for the hadron-collider case, we start from eq. (2.55)

and evolve the hard and jet functions from the scales µh and µj down to the scale µ at

which the soft and beam functions are evaluated. The resummed expression for the hard

functions in the different channels were given in ref. [18] and we will not reproduce them

here. The solution for the jet functions is the same as in the lepton collider case. What

remains is the anomaly times the remainder function W ab→12
JI , given by the product of

beam and soft functions, see eq. (2.54). To be able to use eq. (4.11) to invert the Laplace

transform, we follow ref. [34] and write

W ab→12
JI (L⊥, xa, xb, µ)

(
Q2

c2
0κ̄

2

)−Fab⊥ (L⊥,µ)

= W ab→12
JI (L⊥, xa, xb, µ)Eab⊥ (L⊥, µ)

(
c0κ̄

µ

)η̄
= W ab→12

JI (−2∂η̄, xa, xb, µ)Eab⊥ (−2∂η̄, µ)

(
c0κ̄

µ

)η̄
.

(4.16)

We have rewritten the anomaly and the remainder W ab→12
JI as functions of the logarithm

L⊥ = 2 ln µ
c0κ̄

and have introduced the exponent

η̄ =
αs
4π

(Ca + Cb)Γ0 ln
Q2

µ2
, (4.17)

as well as the quantity E⊥(L⊥, µ) which contains the higher-log contributions to the

anomaly

E⊥(L⊥, µ) = exp
(
−L⊥F ab⊥ (L⊥)− η̄f⊥(L⊥)

)
, (4.18)

and involves the function f⊥(L⊥) defined through

F ab⊥ (L⊥) =
αs
8π

(Ca + Cb) Γ0 [L⊥ + 2f⊥(L⊥)] . (4.19)

The function E⊥(L⊥, µ) depends on η̄, but the derivatives only act on the exponent in

eq. (4.16). After combining eq. (4.16) with the solution for the two jet functions, which

involve the evolution factor

Uj(µj , µ) = exp
[
−4(C1 + C2)S(µj , µ) + 2AγJ2

(µj , µ) + 2AγJ2
(µj , µ)

]
, (4.20)

and the quantity ηji = 2CiAγcusp(µj , µ), we obtain the resummed cross section for the

hadron collider case

dσ

dτ⊥d(cos θ)dxadxb
=

HIJ(Q, θ, µ)Uj(µj , µ) (λj)
−ηj1−ηj2 W ab→12

JI (−2∂η, θ, µ)Eab(−2∂η, µ)

× j̃c1⊥ (∂η + lnλj , µj) j̃c2⊥ (∂η + lnλj , µj)
1

τ⊥

(
2c0Q sin θ τ⊥

µ

)η e−γEη
Γ(η)

, (4.21)
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where

λj :=
2µQ sin θ

c0µ2
j

, η := η̄ + ηj1 + ηj2 . (4.22)

To resum all logarithms, one combines eq. (4.21) with the RG evolved hard function

from [18].

5 Two-loop anomalous dimensions for N2LL resummation

5.1 Leptonic collisions

In this section we compare our results for the lepton-collider case with the fixed-order

expression for the transverse-thrust spectrum, obtained numerically with the fixed-order

Monte-Carlo program EVENT2 [37]. If we expand the resummed expression in SCET in

fixed-order perturbation theory, it has to reproduce the τ⊥ → 0 singularities of the full

fixed-order result. The EVENT2 code allows us to verify this agreement numerically. More

importantly, the comparison allows us to numerically determine the two-loop anomalous

dimensions of the jet and soft functions, the only ingredients that are missing in order to

achieve N2LL accuracy.

The EVENT2 code provides the O(αs) and O(α2
s) corrections to differential event-shape

spectra, i.e. the coefficients A(τ⊥) and B(τ⊥) in the expression

1

σ0

dσ

dτ⊥
= δ(τ⊥) +

(αs
2π

)
A(τ⊥) +

(αs
2π

)2
B(τ⊥) + · · · , (5.1)

where σ0 is the Born-level cross section. To obtain the transverse-thrust spectrum with

EVENT2 we modified the usual thrust computation in EVENT2. This can be easily done by

evaluating the thrust after dropping the longitudinal components of the momenta.

To obtain the fixed-order expansion of the SCET result, one can set the jet scale µj ,

soft scale µs, and hard scale µh all equal to Q in eq. (4.13). All RG evolution factors

become trivial in this limit and one obtains

1

σ0

dσ

dτ⊥d(cos θ)
= lim

η→0

3

8

(
1 + cos θ2

)
H(Q2, Q2)

×
[
j̃c⊥ (∂η, Q)

]2
s̃⊥ (∂η, Q) τ−1+η

⊥
e−γEη

Γ(η)

(
4 sin2 θ

)η
. (5.2)

The limit η → 0 can be taken after taking the derivatives with respect to it and expanding

τ−1+η
⊥ in terms of distributions. Using the general expressions for the hard function and

the Laplace-transformed soft and jet functions, as given, for instance, in ref. [32], with the

one-loop coefficients and anomalous dimensions from the previous sections, we obtain the

singular terms in the transverse-thrust distribution. We collect these singular terms in the

D coefficients, according to

1

σ0

dσ

dτ⊥
= δ(τ⊥) +

(αs
2π

)
DA(τ⊥) +

(αs
2π

)2
DB(τ⊥) + · · · , (5.3)
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Figure 8. Left panel: comparison of the singular terms DA in eq. (5.3) (solid line) with the one-

loop coefficient A from EVENT2 (points). Right panel: one-loop term from EVENT2 after subtracting

the singular terms given by DA. For comparison we show the results both for transverse thrust

(black) and ordinary thrust (red).

where we integrated over θ, to directly compare with the result from EVENT2. The D

coefficients should reproduce the singularities in τ⊥ of the fixed order result in eq. (5.1).

These coefficients contain plus distributions and δ-functions, but away from τ⊥ = 0 they

reduce to regular functions. For τ⊥ 6= 0, we find

DA(τ⊥) = −CF
3

1

τ⊥
(−17 + 48 ln 2 + 12 ln τ⊥) , (5.4)

and when we compare with the coefficient A from EVENT2 we find good agreement as τ⊥ →
0, as shown in the left panel of figure 8. To see more clearly that the singular contributions

are indeed reproduced by the effective theory, we subtract the singular contribution in

eq. (5.4) from the EVENT2 result, and plot the remainder using logarithmic binning on the

x-axis. The result of this subtraction is shown in the right panel of figure 8 as black points.

We can clearly see that the remainder goes to 0 when τ⊥ → 0, as it should. For comparison

the corresponding result for ordinary thrust is also shown in the figure (red points).

The DB coefficient can be written as

DB =
1

τ⊥

(
D

(0)
B +D

(1)
B ln τ⊥ +D

(2)
B ln2 τ⊥ +D

(3)
B ln3 τ⊥

)
, (5.5)

and the one-loop computations in section 3, together with the RG equations for the ingredi-

ents of the factorization formula, determine all coefficients, except for D
(0)
B , which depends

on the two-loop anomalous dimensions of the soft and jet functions. Because of the relation

γH = γs⊥ + 2γJc⊥ , which stems from RG invariance of the cross section, and because the

two-loop hard anomalous dimension is known, there is only one unknown coefficient, which

we take as γ1s⊥. Therefore, we can subtract the singular terms that contain lni τ⊥, with

i = 1, 2, 3 from the two-loop results from EVENT2, and the remainder, when multiplied by

τ⊥, should be constant when τ⊥ → 0. By fitting this constant remainder to the expression

for D
(0)
B in terms of γ1s⊥, we can determine the two-loop soft anomalous dimension. To do

so, it is useful to separate the three color structures, C2
F , CFTFnf , and CFCA, which arise

at two-loop order. This separation provides an additional check because the part of γ1s⊥
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Figure 9. C2
F term in B from EVENT2 after subtracting the D

(i)
B , i = 1, 2, 3, singular terms defined

in eq. (5.5). The horizontal lines corresponds to the C2
F part of D

(0)
B . The results for transverse

thrust are shown in black, the ones for ordinary thrust in red color.

proportional to C2
F must vanish by the non-abelian exponentiation theorem, since the soft

function is a matrix element of soft Wilson lines. We show the remainder for the two-loop

C2
F term in figure 9. From the figure, we can see that it is indeed constant, and nicely

agrees with the C2
F part of D

(0)
B . For the other color structures, we fit the corresponding

D
(0)
B terms to obtain γ1s⊥. The results from these fits can be seen in figures 10 and 11,

where the solid line is the result of a fit to the EVENT2 result, and the band is chosen to

cover the range spanned by the error bars. The range of ln τ⊥ where the band and the

line are plotted corresponds to the fit range. We can see that the remainder in the CF
and CA cases nicely goes to a constant for τ⊥ → 0. There seems to be some numerical

instability below ln τ⊥ ∼ −11 in the TF case, and the remainder grows. It is unclear why

this happens,4 but the problem also arises for the TF structure in ordinary thrust, see the

red points in figure 11. In view of this numerical problem, we perform the fit only for

ln τ⊥ > −11 in this case. We obtain

γ1s⊥|CA = 148+30
−20 ; γ1s⊥|TF = −18+3

−2, (5.6)

where

γ1s⊥ =: CFCA γ1s⊥|CA + CFTFnf γ1s⊥|TF , (5.7)

and we recall that, as discussed in previous sections, the above numbers correspond to the

4To obtain our results, we have run EVENT2 in quadruple precision with a value of the CUTOFF parameter

equal to 10−18 and the NPOW parameters set to 6. We have also performed runs (up to ln τ⊥ = −12) with

CUTOFF= 10−12, 10−15, 10−16, and decreasing NPOW to 4, and found similar behaviour.
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Figure 10. CFCA term in B from EVENT2 after subtracting the D
(i)
B , i = 1, 2, 3, singular terms

given in eq. (5.5). The solid line and the band are the result of the fit for the two-loop anomalous

dimension for transverse thrust (see text). The results for ordinary thrust are shown as the red

points and dashed line, which corresponds to the known CFCA part of D
(0)
B .

following definition of the anomalous dimension

d

d lnµ
s̃⊥

(
ln

4κQ sin2 θ

µ
, µ

)
= −2

(
γcuspcS ln

4κQ sin2 θ

µ
+ γs⊥

)
s̃⊥

(
ln

4κQ sin2 θ

µ
, µ

)
.

(5.8)

With the value of the two-loop soft anomalous dimension obtained in the equations

above, and the two-loop jet anomalous dimension determined through the relation γJc1⊥ =

(γ1H − γ1s⊥)/2, we have now determined all ingredients for N2LL resummation accuracy

for the transverse-thrust differential cross section in leptonic collisions.

5.2 Hadronic collisions

To perform N2LL resummation in the hadron-collider case, we need the two-loop anoma-

lous dimensions of all the ingredients, together with the two-loop anomaly exponent. The

general result for the two-loop anomalous dimension of the hard function is known due

to factorization constraints, and the two-loop jet function anomalous dimension is known

numerically, from our determination in the previous subsection. This leaves the two-loop

anomalous dimensions of the beam and soft functions and the anomaly exponent as un-

knowns. However, the soft and beam functions are evaluated at the same scale, so we

only need the anomalous dimension of their product, i.e. the anomalous dimension of the

remainder function W̃JI in eq. (2.54), which is

γ
Wqq̄

⊥ = γs⊥ + 2γ
Bq
⊥ = γH − 2γ

Jq
⊥ , (5.9)

see eq. (4.6). The anomaly exponent F⊥ is thus the single unknown ingredient for N2LL

accuracy in the quark-jet case. For gluon jets, also the two-loop gluon-jet anomalous
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Figure 11. CFTF term in B from EVENT2 after subtracting the D
(i)
B , i = 1, 2, 3, singular terms

given in eq. (5.5) (black points). The solid line and the band are the result of the fit for the two-loop

anomalous dimension (see text). For comparison results for ordinary thrust are shown as red points,

together with a dashed line, which corresponds to the known TF part of D
(0)
B for ordinary thrust.

dimension γ
Jg
⊥ will be needed. We can obtain the two-loop result for γ

Jg
⊥ by considering

transverse thrust for the process H → gg + X, which involves gluon jet functions instead

of the quark jet functions relevant for γ∗ → qq̄+X. The two-loop soft functions of the two

processes are related by Casimir scaling, i.e. the one for the gluon case can be obtained

by replacing CF → CA in the result for the qq̄ final state. Since the hard anomalous

dimensions are also known, γ
Jg
⊥ follows from RG invariance. Due to Casimir scaling, it is

also sufficient to determine F⊥ in an arbitrary channel and because the divergences in the

analytic regulator cancel, a computation of the two-loop 1/α divergence of either the beam

or the soft function will be sufficient. We will now discuss the simplest way to extract the

anomaly F⊥.

Since soft matrix elements are simpler than collinear ones, it seems preferable to extract

the anomaly from the soft function. However, it involves Wilson lines along four directions,

which leads to nontrivial color structure and nontrivial dependence on the scattering angle

θ. Both complications can be avoided by considering transverse thrust for pp→ Z+jet and

pp→ Z+Z. The first one, involving a single Z-boson, is of interest phenomenologically and

has been measured by CMS [46]. The factorization theorem for this case has the same struc-

ture as the one for the two-jet case, but obviously the hard functions are the ones relevant for

pp→ Z+jet, which were determined to two-loop accuracy in [47]. The jet function relevant

for the Z-boson is trivial. While there can be hadronic radiation collinear to the Z-boson,

this effect is power suppressed in τ⊥ and does not arise in our leading-order factorization

theorem. In addition, the soft function involves only three-legs because the Z-boson does

not carry color charge. The color structure of the soft function is then trivial, see e.g. [48].
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The soft function becomes even simpler in the pp → Z + Z case, which does not

involve hard radiation in the final state, except along the beam directions. We can simplify

things even a bit more by considering energetic electrons instead of Z-bosons, i.e. by

computing transverse thrust in pp → γ∗ → e+ e−, which involves the same hard function

we encountered in the lepton-collider case. Neglecting electromagnetic interactions, both

jet functions are trivial and the only hadronic contributions arise from the beam and soft

functions. In this case, the soft function will be scaleless and vanishes with the standard

analytic regulator [22], but we can use the form eq. (2.57) to work with a non-vanishing soft

function. A simple form of the two-loop soft matrix element can be found in appendix C

of [34]. Instead of performing the two-loop computation analytically, one can try to extract

the anomaly coefficient numerically using a N2LO fixed order code for pp → γ∗ → e+ e−,

such as FEWZ [49] or DYNNLO [50]. To increase the accuracy, one can run this code

using simple model PDFs, since the anomaly does not depend on their form.

It is interesting to ask whether this two-loop computation could be avoided by defining

an e+e− → 2 jets event shape involving the same soft function as transverse thrust in

pp → e+ e−. For such an observable, one could run EVENT2 and extract the anomaly

coefficient using the same technique as we used for the jet-function anomalous dimension

γ
Jq
⊥ in the previous subsection. Naively, it appears that one can achieve this by computing

transverse thrust along the electron direction in e+e− → 2 jets, where transverse is defined

with respect to the thrust axis. The outgoing jets would play the role of the beams in the

hadronic collisions and the incoming electron would define the thrust vector. However, an

interesting complication arises: in contrast to the beam axis, the thrust axis is recoiling

against soft radiation. This changes the factorization theorem, which then has the same

form as the one for jet broadening [23, 24]. In the presence of recoil, the soft function is

not exactly the same as the one shown in eq. (2.21), but will have to be computed at a

fixed value of the transverse momentum in each hemisphere (where the hemispheres are

defined by the thrust vector). The soft transverse momentum is opposite and equal to

the transverse momentum of the collinear radiation in the given hemisphere and the event

shape will then involve an integral over the transverse momentum. To avoid this problem

and make the e+e− → 2 jets case more similar to the pp → e+ e− case, one could try

to use a recoil-free definition of the jet axis, such as the broadening axis or the winner-

take-all axis [51]. This solves the recoil problem, but the two axes will in general not be

back to back, and in order to define them, one will first need to split the event into two

hemispheres, for example using the thrust axis. The resulting soft function is thus again

more complicated than the original one, and the two-loop anomaly coefficient will likely

be a function of the angle between the thrust axis and the broadening axis and extracting

this function numerically seems difficult. We conclude that a numerical extraction using

pp → γ∗ → e+ e− looks more promising. We will not pursue the extraction further in the

present paper, but plan to come back to this issue in the future when we implement the

resummed expression for transverse thrust numerically.
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6 Conclusions and outlook

In this paper we have analyzed transverse thrust in the dijet limit. Our findings are

synthesized in eq. (2.55), the factorized expression of the transverse-thrust cross section for

hadronic colliders in Laplace space. This result, which we derived within the framework of

SCET, provides the basis for all-order resummations of enhanced perturbative corrections

to this observable, beyond the NLL accuracy which has been achieved in the literature.

The factorization formula for transverse thrust is quite interesting from the point of

view of the effective theory and displays several remarkable features, which are worth em-

phasizing. In particular, it involves collinear modes at more than one invariant mass scale,

together with soft modes, and therefore contains the two regimes of SCET, called SCETI

and SCETII, together in the same problem; this is the first collider-physics example that

we are aware of, where this occurs. It also involves a collinear factorization anomaly, beam

and jet functions, as well as matrix-valued soft and hard functions, bringing together in one

problem several different effective-theory objects that were developed and studied in re-

cent years. Anomaly cancellation involves an intricate interplay between the soft and beam

functions, which leads to all-order constraints on the form of the collinear anomaly, similar

to the constraints factorization imposes on the structure of soft anomalous dimensions.

As an instructive starting point of our studies, we analyzed transverse thrust in leptonic

collisions, which provide a simplified environment to study transverse event shapes. The

resulting factorization formula is much simpler than the hadron-collider result and has

the same structure as the one for ordinary thrust. Using our result, we were able to

numerically extract a two-loop anomalous dimension that is needed in the hadron-collider

case from an analysis of the leptonic result; this provides a nice example of the universality

which becomes manifest after separating physics associated with the different relevant

energy scales.

In order to obtain N2LL resummation accuracy for hadronic colliders from our general

factorization formula, one needs the two-loop anomalous dimensions as well as the two-

loop anomaly exponent. Using RG invariance and the general results for the anomalous

dimensions of the hard function, together with our result for the lepton-collider case, we

obtain all two-loop anomalous dimensions. The single missing ingredient for N2LL accuracy

is thus the two-loop anomaly coefficient, which can be extracted numerically by computing

transverse thrust in Drell-Yan production using one of the existing N2LO fixed-order codes.

In order to perform a phenomenological analysis and compare with data, one needs

to match the resummed results to a fixed-order computation [45], and to carefully study

power corrections. Our results for leptonic collisions seem to indicate that the matching

to fixed-order may be a larger correction than for regular thrust. In the future, we will

extract the missing ingredient for hadronic collisions numerically and implement the N2LL

resummed expression for transverse thrust into a numerical code.

It would be interesting to extend the present analysis to other hadronic event shapes.

Instead of analytically computing the ingredients of the associated factorization theorems

for each given observable, it would be much more efficient to perform a fully numeri-

cal evaluation of the corresponding soft, jet, and beam functions; this would provide an
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effective-theory-based, automated framework for computing such observables, which could

be integrated with efforts to construct a SCET-based Monte Carlo event generator [53].

There exists already an automated resummation framework, CAESAR [8], for hadronic

event shapes at NLL accuracy, and for a class of lepton-collider event shapes an exten-

sion to N2LL was recently achieved in ref. [54]. Also within SCET, automated N2LL

resummation has been performed, so far not for event shapes, but for cross sections with

electroweak bosons in the presence of a jet veto [55], using the automated fixed-order NLO

code MadGraph5_aMC@NLO [56].

An interesting application of the event-shape computations is that they could provide

an alternative subtraction scheme for dijet and H/Z + jet production, along the line of the

qT subtraction scheme by Catani and Grazzini [57]. The resummed cross section includes

the virtual corrections as well as the singularities arising for τ⊥ → 0. It can thus be used as

a subtraction in this limit. Configurations with τ⊥ > 0, on the other hand can be computed

using the NLO prediction for Z + 2 jets (or 3 jets for dijet observables).

Before closing, let us mention that we did not consider Glauber gluons in the derivation

of our factorization formula. Our result assumes the standard factorization of the cross

section into a perturbative kernel convolved with PDFs and will resum the logarithms en-

countered in the perturbative computation of the hard-scattering kernel. Recently ref. [58]

showed that the standard diagrammatic arguments (see e.g. refs. [59–62]) to show the ab-

sence of Glauber contributions fail for observables such as transverse thrust. It would be

interesting to analyze the contribution from Glauber gluons within SCET but to date a

complete implementation of this mode into the effective theory is not yet available. If

Glauber modes are indeed present in transverse thrust, they could mediate spectator-

interaction contributions to the cross section, in addition to the terms captured by our

result. These would likely involve non-perturbative physics not encoded in the PDFs. A

comparison of our factorized results with data may help shed some light on these effects

and how they relate to the underlying-event contribution supplied by parton-shower Monte

Carlo programs. Once their form is understood, our result can also be used to study these

effects quantitatively. To do so, one could use a combination of event shapes that maxi-

mizes the sensitivity to underlying-event effects. On the other hand, to, for instance, obtain

a determination of the strong coupling from a hadronic event shape analysis, one would

choose a combination that is as less sensitive as possible to underlying-event effects. We

look forward to investigate these issues in the future.
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A Anomalous dimensions

The coefficients of the cusp anomalous dimension that are needed for N2LL accuracy are

given by

Γ0 = 4 , (A.1)

Γ1 =

(
268

9
− 4π2

3

)
CA −

80

9
TFnf , (A.2)

Γ2 = C2
A

(
490

3
− 536π2

27
+

44π4

45
+

88

3
ζ3

)
+ CATFnf

(
−1672

27
+

160π2

27
− 224

3
ζ3

)
+ CFTFnf

(
−220

3
+ 64ζ3

)
− 64

27
T 2
Fn

2
f . (A.3)

The RG evolution functions

S(ν, µ) = −
∫ αs(µ)

αs(ν)
dα
γcusp

β(α)

∫ α

αs(ν)

dα′

β(α′)
, (A.4)

and

Aγcusp(ν, µ) = −
∫ αs(µ)

αs(ν)
dα
γcusp

β(α)
, (A.5)

resum double and single logarithms and

dαs(µ)

d lnµ
= β(α(µ)) , (A.6)

is the QCD beta function. The quantity AγJi (ν, µ) is defined like Aγcusp(ν, µ) but with γcusp

replaced by γJi .

The coefficients of the quark and gluon anomalous dimensions γq and γg, respectively,

read

γq0 = −3CF , (A.7)

γq1 = C2
F

(
−3

2
+ 2π2 − 24ζ3

)
+ CFCA

(
−961

54
− 11π2

6
+ 26ζ3

)
+ CFTFnf

(
130

27
+

2π2

3

)
, (A.8)

γg0 = −β0 = −11

3
CA +

4

3
TFnf , (A.9)

γg1 = C2
A

(
−692

27
+

11π2

18
+ 2ζ3

)
+ CATFnf

(
256

27
− 2π2

9

)
+ 4CFTFnf . (A.10)

The color factors are given by

CF =
N2
c − 1

2Nc
, CA = Nc , TF =

1

2
, (A.11)

where Nc is the number of colors, and nf the number of light fermions.
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B One-loop soft, jet, and beam functions

B.1 Jet functions

In the main text, we gave the result for the quark jet function in light-cone gauge. For

convenience we now also give the result of the diagrams in Feynman gauge, where the first

three diagrams in figure 5 contribute. The contribution from the first diagram is

D1j(τc⊥) = αsCF
(2− 2ε)Ω1−2επ

5
2 2−2+2ε

(2π)3−2ε

1

τc⊥

(
τc⊥Q

2 sin2 θ

µ̃2

)−ε
Γ(1− ε)
Γ
(

3
2 − ε

) , (B.1)

the second and third one are identical and give

D2j(τc⊥) = αsCF
Ω1−2επ

5
2 22ε

(2π)3−2ε

1

τc⊥

(
τc⊥Q

2 sin2 θ

µ̃2

)−ε
(1− ε) Γ(−ε)

Γ
(

3
2 − ε

) , (B.2)

where Ωd = 2πd/2/Γ(d/2) is the d-dimensional solid angle. The reader can easily check

that the sum of the diagrams gives the same result which is obtained in light-cone gauge

in eq. (3.3).

In light-cone gauge, the bare gluon jet function is obtained by computing the fifth and

sixth diagrams in figure 5

Jbare
g⊥ (τc⊥) = δ(τc⊥) +D5j +D6j , (B.3)

for which we obtain

D5j(τc⊥) = αsnfTF
Ω1−2επ

5
2 22ε

(2π)3−2ε

1

τc⊥

(
τc⊥Q

2 sin2 θ

µ̃2

)−ε
Γ(2− ε)
Γ
(

5
2 − ε

) , (B.4)

D6j(τc⊥) = αsCA
Ω1−2ε3π

2

(2π)3−2ε

1

τc⊥

(
τc⊥Q

2 sin2 θ

µ̃2

)−ε
(−4 + 3ε)Γ(−ε)Γ(2− ε)

(−3 + 2ε)Γ (2− 2ε)
. (B.5)

B.2 Beam functions

The diagrams that contribute to the beam functions at one loop are shown in figure 6. We

denote the contribution of the ith diagram in the figure by DiB when it corresponds to the

ca sector, and by D̄iB when it corresponds to the cb sector.

The diagrams in the first row of figure 6 contribute to the quark beam function. In

Feynman gauge, the first diagram does not need the analytic regulator to be well defined

and, therefore, gives the same result in the ca and cb sectors. We obtain

D1B(z, τ⊥) = D̄1B(z, τ⊥) =
CFαs
π

C(ε)(1− ε)(1− z)
1

τ⊥

(
µ

2Qτ⊥ sin θ

)2ε

, (B.6)

where

C(ε) =
4εeγEε

(
ψ
(
ε
2 + 3

4

)
− ψ

(
ε
2 + 1

4

))
√
π Γ
(

1
2 − ε

) =

(
1− 8G

π
ε+

π2

4
ε2

)
+O(ε3) , (B.7)
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with ψ(x) the digamma function, and it is understood that z corresponds to xa (xb) in

the ca (cb) sector. For the sum of the second and third diagrams, which give identical

contributions, we obtain

D(2+3)B(xa, τ⊥) =
CFαs
π

2C(ε)xa (1− xa)−1−α 1

τ⊥

(
µ

2Qτ⊥ sin θ

)2ε( ν

n̄a · Pa

)α
, (B.8)

D̄(2+3)B(xb, τ⊥) =
CFαs
π

2C(ε)xb (1− xb)−1+α 1

τ⊥

(
µ

2Qτ⊥ sin θ

)2ε( ν n̄b · Pb
4Q2τ2

⊥ sin2 θ

)α
×
[
1 + α

(
−8G

π
+ εF

)]
+O(α), (B.9)

with

F = −64G2

π2
− 16G ln 2

π
− Φ

(
−1

4 , 3,
1
4

)
4π

− Φ
(
−1

4 , 3,
1
2

)
4π

− Φ
(
−1

4 , 3,
3
4

)
8π

+
9π2

4
+ ln2 2

≈ 8.20629 , (B.10)

where Φ(z, s, a) is the Lerch transcendent. The fourth diagram in the first row vanishes.

The diagrams in the second row of figure 6 contribute to the gluon beam function, and

its computation is analogous to the quark case above. We obtain

D5B(z, τ⊥) = D̄5B(z, τ⊥) =
CAαs
π

C(ε)

(
−2 +

2

z
+ 3z − 2z2

)
1

τ⊥

(
µ

2Qτ⊥ sin θ

)2ε

,

(B.11)

D(6+7)B(xa, τ⊥) =
CAαs
π

C(ε)xa (1 + xa) (1− xa)−1−α 1

τ⊥

(
µ

2Qτ⊥ sin θ

)2ε( ν

n̄ · Pa

)α
,

(B.12)

D̄(6+7)B(xb, τ⊥) =
CAαs
π

C(ε)xb (1 + xb) (1− xb)−1+α 1

τ⊥

(
µ

2Qτ⊥ sin θ

)2ε( ν n̄b · Pb
4Q2τ2

⊥ sin θ2

)α
×
[
1 + α

(
−8G

π
+ εF

)]
+O(α), (B.13)

and the eighth diagram vanishes.

The diagrams in the third row of figure 6 contribute to the off-diagonal coefficients

Iq←g, first diagram in the row, and Ig←q, second diagram in the row. We obtain

D9B(z, τ⊥) = D̄9B(z, τ⊥) =
TFαs
π

C(ε)

(
1− 2z(1− z)

1− ε

)
1

τ

(
µ

2Qτ sin θ

)2ε

, (B.14)

D10B(z, τ⊥) = D̄10B(z, τ⊥) =
CFαs
π

C(ε)
1

z

(
2− 2z + (1− ε)z2

) 1

τ

(
µ

2Qτ sin θ

)2ε

. (B.15)

The divergences in the analytic regulator for all the expressions above can be made

manifest by expanding

(1− x)−1−α = − 1

α
δ(1− x) +

(
1

1− x

)
+

+O(α). (B.16)
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B.3 Soft functions

The I integrals in eq. (3.30) are given by

I0 =

∫ 1

0
dx(2− x)−

1
2
−εx−

1
2

+ε

∫ ∞
−∞
dy

1√
1 + y2

1

1 + y2 − (y cos θ + (1− x) sin θ)2
, (B.17)

I± =

∫ 1

0
dx(2− x)−

1
2
−εx−

1
2

+ε+α

∫ ∞
−∞
dy

1

2

(
y +

√
1 + y2

)−α( 1

A
± 1

B

)
, (B.18)

I ′± =

∫ 1

0
dx(2− x)−

1
2
−εx−

1
2

+ε+α

∫ ∞
−∞
dy

1

2

(
−y +

√
1 + y2

)−α( 1

A
± 1

B

)
, (B.19)

where

A :=
√

1 + y2
(
−y +

√
1 + y2

)(√
1 + y2 − y cos θ − (1− x) sin θ

)
, (B.20)

B :=
√

1 + y2
(
y +

√
1 + y2

)(√
1 + y2 + y cos θ + (1− x) sin θ

)
, (B.21)

and therefore

1

A
+

1

B
= 2

1√
1 + y2

1 + y(1− x) sin θ + y2(1 + cos θ)

1 + y2 − (y cos θ + (1− x) sin θ)2
, (B.22)

1

A
− 1

B
= 2

y(1 + cos θ) + (1− x) sin θ

1 + y2 − (y cos θ + (1− x) sin θ)2
. (B.23)

The normalization term N reads

N := 4−1+επ−3+2εΩ1−2ε (Qτs⊥| sin θ|)−2ε−α τ−1
s⊥ g

2
s µ̃

2ενα, (B.24)

where it is understood that we take it at α = 0 for the I12 integral, which does not require

the analytic regulator. For convenience, we also define

M := π−2+2εΩ1−2ε

(
Qτs⊥ sin2 θ

)−2ε
τ−1
s⊥ g

2
s µ̃

2ε. (B.25)

The result for the integrals reads

n1 · n2

2
NI0 = M

(
1

8ε
+ ε a(1)(θ) +O(ε2)

)
, (B.26)

na · n1

2
N I+ =

M

2

(
2 cot θ2
sin θ

)−2ε(
1

8ε
+ ε b(1)(θ) +O(α, ε2)

)
, (B.27)

na · n1

2
I− =

∫ 1

0
dx(2−x)−1−εx−1+ε+α

{√
2− x√x
α

+sign(θ)
π

2
(1−x)+O(α)

}
(B.28)

=
π

2

{
1

α

(
1− 8Gε

π

)
+H + εK + sign(θ)

(
1

2ε
− ln 2 +

π2

12
ε

)}
+O(α, ε2) .

For arbitrary values of α, one has I ′+(θ) = I+(−θ) and I ′−(θ) = −I−(−θ). The numerical

values of the constants are H ≈ −1.85939 and K ≈ 8.44015. The results for the func-

tions a(1)(θ) and b(1)(θ) are plotted in figure 12, as blue solid and magenta dashed lines,
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Figure 12. Numerical evaluation of the a(1)(θ) (blue solid line) and b(1)(θ) (magenta dashed line)

terms in eqs. (B.26) and (B.27).

respectively. The functions are symmetric in θ. For positive θ, they are obtained from a

numerical evaluation of the expressions

a(1)(θ) =

∫ 1

0
dx

(sin θ)−1

8π(2− x)

(
δ(x) (ln 2 + 2 ln sin θ)2

+

[
1

x

]
+

(4 ln 2− 2 ln(2− x) + 4 ln sin θ) +

[
lnx

x

]
+

2

)

× Im

{
1√

1 + y2
1

ln

(
y1 −

√
1 + y2

1

y1 +
√

1 + y2
1

)}
, (B.29)

b(1)(θ) =

∫ 1

0
dx

(sin θ)−1

8π(2− x)

(
δ(x)

(
3 ln 2 + 2 ln cot

θ

2

)2

+

[
1

x

]
+

(
8 ln 2− 2 ln(2− x) + 4 ln cot

θ

2

)
+

[
lnx

x

]
+

2

)

× Im

{
(1−cos θ)

(
1+y1(1−x) sin θ+y2

1(1+cos θ)
)√

1+y2
1

ln

(
y1−

√
1+y2

1

y1+
√

1+y2
1

)}
, (B.30)

where y1 was given in eq. (3.36).

C Lepton tensor

The lepton tensor, including contributions from photon and Z exchanges, is given by

LVµν = − e4

2Q2

(
gµν − 2

p1µp2ν + p2µp1ν

Q2

)[
Q2
f −

2Q2vevfQf
Q2 −M2

Z

+
Q4(v2

e + a2
e)v

2
f

(Q2 −M2
Z)2

]

=: −LV
(
gµν − 2

p1µp2ν + p2µp1ν

Q2

)
, (C.1)
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LAµν = − e4

2Q2

(
gµν − 2

p1µp2ν + p2µp1ν

Q2

)
Q4(v2

e + a2
e)a

2
f

(Q2 −M2
Z)2

=: −LA
(
gµν − 2

p1µp2ν + p2µp1ν

Q2

)
, (C.2)

with p1 and p2 the electron and positron momenta, respectively. The vector and axial

charges, vf and af , are defined as

vf :=
T 3
f − 2Qfs

2
W

2sW cW
; af :=

T 3
f

2sW cW
, (C.3)

with T 3
f the third component of the weak isospin, Qf the electric charge of fermion f (with

Qe = 2T 3
e = −1), cW := cos θW , sW := sin θW , θW the weak mixing angle, and MZ the

Z-boson mass.
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