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1 Introduction

Now that the 126 GeV Higgs boson has been discovered [1, 2], the exploration of its prop-

erties is the focus of LHC phenomenology. The current measurements of Higgs production

and decay rates are consistent with the Standard Model (SM) predictions at the ∼ 10–

20% level, leaving open the possibility that there is additional physics in the Higgs sector.

One attractive alternative to the SM is the two Higgs doublet model (2HDM), which has

5 Higgs bosons, allowing for new phenomena in the Higgs sector [3]. The couplings of

the Higgs bosons to fermions and gauge bosons in the CP conserving 2HDM depend on 2

parameters: α, which describes the mixing in the neutral Higgs boson sector, and tan β,
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the ratio of Higgs vacuum expectation values. Measurements of Higgs coupling proper-

ties in the CP conserving limit require that the 2HDM be close to the alignment limit,

β − α ∼ π
2 [4–7].

The SM explains CP violation through the CKM mixing matrix, which is sufficient to

account for observed CP violation in the B and K systems. However, it is insufficient to

explain the excess of matter over anti-matter in the universe, suggesting that there may be

further sources of CP violation [8, 9]. The 2HDM offers the possibility for a new source of

CP violation beyond the CKM matrix and QCD θ term. In such a scenario, the 126 GeV

Higgs boson can be a mixture of CP even and CP odd states [10–14]. The LHC data has

already excluded the case that the 126 Higgs is a pure CP odd scalar [15, 16], but the

constraints on its CP odd mixture are still rather weak. There have been proposals of new

techniques to directly measure the Higgs CP mixture in future colliders [17–24]. The pa-

rameters of the CP violating version of the 2HDM receive complementary limits from LHC

Higgs coupling measurements and from low energy measurements such as electric dipole

moments (EDMs). The measurements of Higgs couplings do not put a strong constraint

on the CP violating phase, especially in the alignment limit [10], and the strongest limits

come from EDMs [8, 10, 11, 25–27].

CP violation in the Higgs sector has been studied extensively in the MSSM limit of

the 2HDM [28, 29]. The MSSM contains many sources of CP violation from the soft SUSY

breaking terms in the effective Lagrangian [30]. The primary restriction on this type of

CP violation arises from the requirement that the lightest Higgs boson have a mass near

126 GeV [31]. Analogous limits to those obtained in this work from Higgs couplings, heavy

Higgs searches, and EDMs can be found in the MSSM [32, 33].

We consider a CP violating 2HDM scenario which has a softly broken Z2 symmetry

which avoids large flavor changing neutral currents from Higgs exchange, but allows for new

CP violation from the scalar potential. We further allow the Higgs couplings to have small

deviations from the alignment limit. In this work, we consider the additional constraints

on the parameters of the theory arising from the search for heavy Higgs bosons. In the

CP conserving 2HDM, the search for heavy Higgs bosons significantly restricts the allowed

parameter space for small tan β [34, 35] and this remains true in the CP violating case.

In the context of the 2HDMs, if there is significant CP violation, the heavy Higgs boson

masses cannot be too heavy and in some regions of parameter space the LHC heavy Higgs

searches can place the leading constraint on CP violation.

In section 2, we review the CP violating 2HDM and predictions for Higgs boson produc-

tion and decay within this class of models. Limits from heavy Higgs searches are discussed

in section 3 and compared with low energy limits from the electron EDM. We have also

updated the results of refs. [10, 36–38] for the limits on the CP violating parameters from

Higgs coupling fits. Finally, section 5 contains a concluding discussion of the complemen-

tary limits on CP violating 2HDMs from Higgs coupling fits, heavy Higgs searches, EDMs,

the oblique parameters, and g − 2.
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2 Two Higgs doublet models and CP violation

In this section we review the 2HDMs considered in this study.

2.1 Scalar potential with two Higgs doublets

The most general two Higgs doublet potential which breaks SU(2)L ×U(1) to U(1)EM is,

V (φ1, φ2) = −1

2

[
m2

11(φ†1φ1) +
(
m2

12(φ†1φ2) + h.c.
)

+m2
22(φ†2φ2)

]
+
λ1

2
(φ†1φ1)2 +

λ2

2
(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2) + λ4(φ†1φ2)(φ†2φ1)

+
1

2

[
λ5(φ†1φ2)2 + λ6(φ†1φ2)(φ†1φ1) + λ7(φ†1φ2)(φ†2φ2) + h.c.

]
. (2.1)

The potential of eq. (2.1) leads to tree level flavor changing neutral currents, which can be

avoided by imposing a Z2 symmetry under which,

φ1 → −φ1 φ2 → φ2 . (2.2)

Eq. (2.2) implies λ6 = λ7 = 0, while a non-zero m12 softly breaks the Z2 symmetry of

eq. (2.2).

After electroweak symmetry breaking, the Higgs doublets in unitary gauge can be

written as,

φ1 =

(
− sinβH+

1√
2
(v cosβ +H0

1 − i sinβA0)

)
, φ2 = eiξ

(
cosβH+

1√
2
(v sinβ +H0

2 + i cosβA0)

)
,

(2.3)

where tan β = v2/v1, v =
√
|v1|2 + |v2|2 = 246 GeV and H+ is the physical charged Higgs

with mass mH+ . We are free to redefine fields and go to a basis where ξ = 0. In general

there are 2 independent phases and the imaginary parts of m12 and λ5 lead to mixing in

the neutral Higgs sector between H0
1 , H0

2 and A0, and that is the source of CP violation.

The mixing among the three neutral scalars can be parametrized by an orthogonal

matrix R,

R =

 −sαcαb cαcαb sαb
sαsαbsαc − cαcαc −sαcαc − cαsαbsαc cαbsαc
sαsαbcαc + cαsαc sαsαc − cαsαbcαc cαbcαc

 , (2.4)

where sα = sinα, etc and

− π

2
< αb ≤

π

2
− π

2
≤ αc ≤

π

2
. (2.5)

The physical mass eigenstates are then defined as (h1, h2, h3)T = R(H0
1 , H

0
2 , A

0)T . In the

CP conserving version of the 2HDM, αb = αc = 0, R is block diagonal, and h1 and h2 have

no pseudoscalar component.
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ct,i cb,i = cτ,i c̃t,i c̃b,i = c̃τ,i ai

Type I Ri2/ sinβ Ri2/ sinβ −Ri3 cotβ Ri3 cotβ Ri2 sinβ +Ri1 cosβ

Type II Ri2/ sinβ Ri1/ cosβ −Ri3 cotβ −Ri3 tanβ Ri2 sinβ +Ri1 cosβ

Table 1. Fermion and gauge boson couplings to Higgs mass eigenstates.

2.2 Neutral scalar interactions

For simplicity, we focus on the 2HDMs where the Yukawa sector has a Z2 symmetry and

φ1 and φ2 each only gives mass to up or down type fermions. This is sufficient to suppress

tree-level flavor changing processes mediated by the neutral Higgs scalars. For the 3rd

generation (and suppressing CKM mixing),

L =


−
(

cosα

sinβ

mt

v

)
QL(iτ2)φ∗2tR −

(
cosα

sinβ

mb

v

)
QLφ2bR + h.c. Type I

−
(

cosα

sinβ

mt

v

)
QL(iτ2)φ∗2tR +

(
sinα

cosβ

mb

v

)
QLφ1bR + h.c. Type II ,

(2.6)

where QTL = (tL, bL). In both cases, we assume that the charged lepton Yukawa coupling

has the same form as that of the charge −1/3 quarks. Under the Z2 symmetry, QL, tR, φ2

are always even, φ1 is always odd, and bR is even (odd) in Type I (II) models.

From this we can derive the couplings between neutral Higgs bosons and the fermions

and gauge bosons. As a general parametrization we take,

L =

3∑
i=1

[
−mf (cf,if̄f + c̃f,if̄ iγ5f)

hi
v

+ (2aiM
2
WWµW

µ + aiM
2
ZZµZ

µ)
hi
v

]
. (2.7)

When cf,ic̃f,i 6= 0 or aic̃f,i 6= 0, the mass eigenstate hi couples to both CP even and CP

odd operators, so the theory violates CP. The coefficients cf,i, c̃f,i and ai can be derived

from tan β and the elements of the matrix R defined above. An appealing feature is that

all couplings in table 1 depend on only four parameters, α, αb, αc and tan β. It is worth

noting that the couplings of the light Higgs boson h1 to the gauge bosons and fermions are

independent of αc. Fits to the CP conserving 2HDM suggest that the couplings are close

to the alignment limit, β − α ∼ π
2 , implying that h1 has couplings very close to the SM

predictions. In our numerical studies, we will allow small deviations from the alignment

limit.

2.3 CP violation implies a non-decoupled heavy Higgs sector

In general, the imposed Z2 symmetry in the Yukawa sector is not preserved by renormaliza-

tion. The hard breaking λ6, λ7 terms from the Higgs potential will induce couplings of φ1,

φ2 to both up and down type quarks. This does not reintroduce any tree level flavor chang-

ing effects because the induced Yukawa matrices are still aligned with the corresponding

fermion mass matrices. Motivated by this, a convenient choice is to forbid the λ6, λ7 terms.

In this case, the model has an approximate Z2 symmetry, which is only softly broken by

the m2
12 term.

– 4 –
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For the approximate Z2 symmetric model, all of the potential parameters can be solved

for in terms of the following parameters:

• The scalar masses, mh1 , mh2 , mh3 and mH±

• The neutral scalar mixing angles, α, αb, αc

• The ratio of vev’s, tan β

• One potential parameter, Re(m2
12), or ν ≡ Re(m12)2/(v2 sin 2β),

giving 9 physical parameters. The ν parameter controls the decoupling limit, i.e., when

Re(m12)2 approaches infinity, the masses of h2, h3 and H± also go to infinity.

The explicit solution for the parameters of the scalar potential was found in ref. [10],

and is listed below in appendix A. The imaginary part of λ5, which is a source of CP

violation, is given by,

Imλ5 =
2 cosαb
v2 sinβ

[
(m2

h2 −m
2
h3) cosα sinαc cosαc

+ (m2
h1 −m

2
h2 sin2 αc −m2

h3 cos2 αc) sinα sinαb
]
. (2.8)

An important point here is that, in order for the 126 GeV Higgs boson to have CP violating

couplings, the heavy Higgs states must not decouple. Otherwise, the two Higgs doublet

model will return to the SM limit. This is actually our main motivation for studying the

bounds on the non-decoupled heavy Higgs.

Clearly, when the scalars h2,3 are much heavier than the electroweak scale, and mh2 '
mh3 ≡ mH+ � mh1 ,

| sin 2αb| '
| Imλ5|v2

m2
H+

∣∣∣∣ sinβsinα

∣∣∣∣ . (2.9)

The unitarity bound on Im λ5, Imλ5 < 4π, sets the largest allowed CP violating mixing

angle αb. This implies that for an O(1) sinαb to be theoretically accessible, the heavy

scalars h2, h3 and H± must be not far above the electroweak scale. In general, for nonzero

αb, the masses of the heavy scalars should satisfy

mH+ . 870 GeV ×
√
| Imλ5|/(4π)

√
| sinβ/(sinα sin 2αb)| . (2.10)

A similar conclusion holds when one goes beyond the approximate Z2 symmetry by includ-

ing the λ6, λ7 terms.

2.4 Beyond approximate Z2 symmetry

For the approximate Z2 symmetric model, there is a further theoretical constraint on the

physical parameters resulting from the minimization of the potential. This constraint is

given in eq. (A.10) and can be transformed into a quadratic equation for tanαc. The

condition for αc to have a real solution is

sin2 αb ≤
(m2

h3
−m2

h2
)2 cot2(α+ β)

4(m2
h2
−m2

h1
)(m2

h3
−m2

h1
)
≡ sin2 αmax

b . (2.11)
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When eq. (2.11) is satisfied, the solutions for αc are,

αc =

{
α−c , α+ β ≤ 0

α+
c , α+ β > 0

, tanα±c =
∓| sinαmax

b | ±
√

sin2 αmax
b − sin2 αb

sinαb

√
m2
h3
−m2

h1

m2
h2
−m2

h1

.

(2.12)

Eq. (2.11) implies an additional theoretical upper bound on the CP violating angle αb,

when the other parameters are fixed. In practice, we sometimes find this bound can be

stronger than all the experimental limits. However, this is only a bound because of theo-

retical prejudice. In fact, it can be removed with a minimal step beyond the approximate

Z2 symmetric case by introducing a λ7 term, with λ7 being purely imaginary. In this case,

the bound eq. (2.11) no longer exists, αc becomes a free parameter, and Im λ7 can in turn

be solved for as,

Imλ7 =
2 cosαb
v2 tan2 β

[
(m2

h3 −m
2
h2) sinαc cosαc

cos(α+ β)

cos2 β

+ (m2
h2 sin2 αc +m2

h3 cos2 αc −m2
h1) sinαb

sin(α+ β)

cos2 β

]
. (2.13)

Although introducing hard Z2 breaking (λ6,7 6= 0) makes the Yukawa structure in eq. (2.6)

unnatural, one might argue it is accidentally the case at the electroweak scale.1 In the phe-

nomenological study in the next section, we will give the results for both the approximate

Z2 case, and the minimal extension as discussed in this subsection.

2.5 Production and decay of the heavy Higgs at LHC

2.5.1 Production

The dominant heavy Higgs boson production channels relevant to this study are gluon

fusion, gg → h2,3, vector boson fusion, qq → qqh2,3, and production in association with

bottom quarks, gg/qq̄ → h2,3bb̄. In the 2HDM we explore, the interactions between the

heavy neutral Higgs bosons and the SM fermions and the W , Z gauge bosons are simply

rescaled from those of a SM-like Higgs boson, HSM, by a factor given in table 1. Therefore,

it is convenient to take the SM-like Higgs cross sections, and rescale them with these factors

and the appropriate form factors. The LHC production cross sections for a heavy SM-like

Higgs boson have been calculated by the LHC Higgs Cross section Working Group and

given in [42, 43].

For the gluon fusion process, we calculate the ratio of the heavy Higgs boson production

cross section in a CP violating 2HDM to that of a SM-like Higgs with the same mass. At

one-loop,

Rigg =
σ(gg → hi)

σ(gg → HSM)
=
|ct,iAH1/2(τ it ) + cb,iA

H
1/2(τ ib)|2 + |c̃t,iAA1/2(τ it ) + c̃b,iA

A
1/2(τ ib)|2

|AH1/2(τ it ) +AH1/2(τ ib)|2
,

(2.14)

1We are aware that allowing Z2 breaking terms in the Yukawa sector can introduce additional sources

of CP violation. The price for this is introducing tree level flavor changing effects at the same time, and

some flavor alignment mechanism must be resorted to [39–41]. We do not consider such a possibility, but

focus on CP violation only from the Higgs sector in this work.

– 6 –
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where τ if = m2
hi
/(4m2

f ) and i = 1, 2, 3, f = t, b. The form factors AH1/2, AA1/2 are given by

AH1/2(τ) = 2
(
τ + (τ − 1)f(τ)

)
τ−2, (2.15)

AA1/2(τ) = 2f(τ)τ−1, (2.16)

f(τ) =


arcsin2

(√
τ
)
, τ ≤ 1

1

4

[
log

(
1 +
√

1− τ−1

1−
√

1− τ−1

)
− iπ

]2

, τ > 1
. (2.17)

For vector boson fusion, the ratio of the heavy Higgs production cross section in a

2HDM to that of a SM-like Higgs with the same mass is simply

RiVBF =
σ(qq → qqhi)

σ(qq → qqHSM)
= (ai)

2. (2.18)

For h2,3bb̄ associated production, we take the NLO cross section for SM-like Higgs

boson production in the 4 flavor number scheme from refs. [44, 45]. There the cross section

contains two pieces, one is proportional to y2
b , and the other proportional to ybyt from

interference. We rescale these results with the heavy Higgs-fermion couplings in a 2HDM,

σ(bb̄→ hi) = (cb,i)
2σHb (mhi) + ct,icb,iσ

H
t (mhi) + (c̃b,i)

2σAb (mhi) + c̃t,ic̃b,iσ
A
t (mhi) , (2.19)

where σHb is the cross section for gg → bbhi where the Higgs couples to the b quarks, σHt is

the interference between diagrams contributing to gg → bbhi where the Higgs couples to the

b and the t quark. σAb and σAt are the corresponding contributions from the pseudoscalar

couplings to the b and t quarks given in eq. (2.7). Results in the 5 flavor number scheme [46]

are quite similar and do not affect our conclusions.

2.5.2 Decays

The heavy neutral scalar to electroweak gauge boson decay rates are

Γ(hi → V V ) = (ai)
2
GFm

3
hi

16
√

2π
δV

(
1−

4M2
V

m2
hi

)1/2[
1−

4M2
V

m2
hi

+
3

4

(
4M2

V

m2
hi

)2]
, (2.20)

where V = W,Z and δW = 2, δZ = 1, and i = 2, 3. We note that in the alignment limit,

Γ(h2,3 → V V ) = 0 when sinαb = sinαc = 0. These channels open up with non-zero CP

violation. The decay rates to SM fermions are

Γ(hi → f̄f) =
[
(cf,i)

2 + (c̃f,i)
2
]NcGFm

2
fmhi

4
√

2π

(
1−

4m2
f

m2
hi

)3/2

, (2.21)

where Nc = 3 for quarks and 1 for charged leptons.

The heavy scalars can also decay to a pair of gluons via a loop of top or bottom quarks,

and the rates are

Γ(hi → gg) =
α2
sGFm

3
hi

64
√

2π3

[∣∣ct,iAH1/2(τ it )+cb,iA
H
1/2(τ ib)

∣∣2+
∣∣c̃t,iAA1/2(τ it )+c̃ibA

A
1/2(τ ib)

∣∣2] . (2.22)

– 7 –



J
H
E
P
0
6
(
2
0
1
5
)
0
5
6

Clearly a decay rate is a CP even quantity. Thus, in all the above decay rates, the CP

even coefficient cif and the CP odd one c̃if always contribute incoherently.

In our study, we are also interested in the heavy neutral scalars, h2, h3, decaying into

the Z boson and the 126 GeV Higgs boson,

Γ(hi → Zh1) =
|giz1|2

16πm3
hi

√(
m2
hi
− (mh1 +MZ)2

)(
m2
hi
− (mh1 −MZ)2

)
×
[
− (2m2

hi
+ 2m2

h1 −M
2
Z) +

1

M2
Z

(m2
hi
−m2

h1)2

]
, (2.23)

where giz1 = (e/ sin 2θW )[(− sinβR11 + cosβR12)Ri3 − (− sinβRi1 + cosβRi2)R13].

We have also calculated the decay rate of hi → 2h1 from the Higgs self-interactions.

The decay rate is

Γ(hi → h1h1) =
g2
i11v

2

2πmhi

√
1−

4m2
h1

m2
hi

, (2.24)

where gi11, (i = 2, 3) are defined in appendix B.

To get the branching ratios, we calculate the total width of the heavy Higgs,2

Γtot(hi) = Γ(hi →W+W−) + Γ(hi → ZZ) + Γ(hi → tt̄) + Γ(hi → bb̄)

+ Γ(hi → τ+τ−) + Γ(hi → gg) + Γ(hi → Zh1) + Γ(hi → h1h1) . (2.25)

Finally, for each channel, the ratio of signal strengths in the 2HDM to the counterpart in

the SM is given by,

µXXi =
(σi7L7 + σi8L8)× Br(hi → XX)

(σSM
7 L7 + σSM

8 L8)× BrSM(hi → XX)
, (2.26)

where, for example, the production cross sections are given by

σi7 = σgg,7R
i
gg + σVBF,7R

i
VBF + σVH,7R

i
VH , (2.27)

σgg,7 is the gluon fusion cross section from refs. [42, 43] for a SM Higgs boson with a mass

of mhi , and L7,8 are the luminosities used in the experimental analysis. With this quantity,

we are able to reinterpret the constraints on a heavy SM-like Higgs boson for the heavy

neutral scalars in the 2HDM.

2.6 CP violation and heavy Higgs signal rates

At this point, it is useful to gain some intuition about the impact of CP violation on the

heavy Higgs to gauge boson decay channels, hi → V V and hi → Zh1 with (i = 2, 3). It is

convenient to redefine the Higgs doublets and go to a basis where only one doublet, called

φ′1, gets the 246 GeV vev, while the other φ′2 has no vev [13, 67].

We start from a special point in the parameter space where the lightest Higgs, h1,

has exactly the same couplings does the SM Higgs boson. This corresponds to having the

mixing angles in eq. (2.4) satisfy αb = αc = 0, and β−α = π/2. The Higgs sector preserves

2The rate hi → γγ for i = 2, 3 is always small and can be neglected here.

– 8 –
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Figure 1. An example showing the impact of a non-zero CP violating angle, αb = 0.5, and the

deviation from alignment (parameterized by cos(β−α)) on the heavy Higgs production from gluon

fusion at
√
s = 8 TeV (left panels) and their decays (right panel) in hi → V V (red, solid) and

hi → Zh1 (blue, dashed) channels. We have fixed the other parameters to be tan β = 20, αc = 0,

mh2
= 400 GeV, mh3

= 450 GeV and ν = 1.

CP invariance at this point. In this case, h1 is the excitation arising from φ′1 defined above,

while h2,3 are excitations from φ′2. As a result, the decay rates hi → V V and hi → Zh1

both vanish for i = 2, 3. It is worth noticing that this special point can be approached

without going to the real decoupling limit by sending the second doublet mass to infinity.

Next, we turn on CP violation by making αb = 0.5, but still keep αc = 0. Here we

discuss an example by fixing tan β = 20 (in the basis of {φ1, φ2} given in eq. (2.3)) and vary

the angle α, or the quantity cos(β−α). We also choose the heavy neutral scalar masses to

be mh2 = 400 GeV and mh3 = 450 GeV. In figure 1, we plot the gluon fusion production

cross section and the gauge boson branching ratios of h2,3 as a function of cos(β − α).

There are several suppressed regions which can be understood from table 1. In the case

αc = 0, we have in the Type-I model,

ct,2 = cb,2 = −sinα

sinβ
, c̃t,2 = −c̃b,2 = 0 ,

ct,3 = cb,3 = −cosα

sinβ
sinαb , c̃t,3 = −c̃b,3 = − cosαb cotβ . (2.28)

First, the gluon fusion production cross section for h2 via a top or bottom loop vanishes at

α = 0 (near cos(β − α) ' 0). In the example we describe here, β = arctan(20) is close to

π/2, and ct,2 = cb,2 vanishes at α = 0. Second, at α = ±π/2, (near cos(β − α) ' ±1), the
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couplings ct,3 and cb,3 vanish. As a result, the production cross section for h3 is suppressed

because c̃t,3 and c̃b,3 are both suppressed by cot β = 1/20 in this case. On the other

hand, the gauge boson decays of h2,3 are directly controlled by β − α. We list the relevant

couplings here, again for αc = 0,

a2 = − cos(β − α) , g2z1 = − e

sin 2θW
sin(β − α) sinαb

a3 = − sin(β − α) sinαb , g3z1 =
e

sin 2θW
cos(β − α) , (2.29)

where giz1 (i = 2, 3) is the coupling between hi-Z-h1 defined below eq. (2.23). These make

it manifest why the heavy Higgs to gauge boson decay channels are sensitive both to a

deviation from the alignment limit and to CP violation. Clearly, when cos(β − α) = ±1,

the decay rates h3 → V V and h2 → Zh1 vanish, while when cos(β − α) = 0, the decay

rates h2 → V V and h3 → Zh1 vanish. For the case of h2 decay, the branching ratios

are more suppressed because the decay h2 → h1h1 dominates in most of the parameter

space. Therefore, the most important constraints come from the h3 → V V and h3 → Zh1

channels.

Combining eqs. (2.28) and (2.29), we find the h3 → V V signal rate (production cross

section × decay branching ratio) is peaked at cos(β − α) = 0, while h3 → Zh1 vanishes at

both cos(β − α) = 0,±1, and is peaked in between. With these facts, one can understand

the yellow and orange regions in the upper right panel of figure 11. One can also follow a

similar analysis in order to understand the generic features in the other plots.

3 Results

In this section, we describe our method to obtain constraints from heavy Higgs searches at

the LHC, and show the numerical results in a series of figures.

In the presence of CP violation, all of the three neutral scalars mix together, and

we fix the lightest scalar, h1, to be the 126 GeV scalar already discovered at the LHC. As

discussed in the previous sections, the heavy Higgs to gauge boson decay channels, including

h2,3 → WW/ZZ and h2,3 → Zh1 → l+l−bb, are not only sensitive to deviations from the

alignment limit (β−α = π/2), but also to the presence of CP violation (αb, αc 6= 0). We use

the production and decay rates calculated in section 2.5 to obtain the 2HDM predictions

for the heavy Higgs signal strength in these two channels. Then we compare these theory

predictions to the results from the 7 and 8 TeV running of the LHC. For the heavy Higgs

search data, we use limits for masses up to a TeV from the h2,3 →WW/ZZ channel [48, 49]

and from the h2,3 → Zh1 → l+l−bb(τ+τ−) channel [50, 51].

We also take into account the h2,3 → τ+τ− channel [52], which gives constraints for

heavy Higgs masses up to a TeV and is relevant in the Type-II model in the large tan β

case [53]. The experimental results are given as correlated fits to σ(bb→ h)BR(h→ τ+τ−)

versus σ(gg → h)BR(h → τ+τ−), which are shown in figure 8 of ref. [52]. We interpret

these bounds as bounds on the production of heavy Higgs states in the CP violating 2HDM.

For the case mh2 = mh3 = 300 GeV, the limits are shown in figure 2.3 In addition to a limit

3We assume that there is no interference between the h2 and h3 resonances.
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Figure 2. Heavy Higgs search constraints on the Type-II 2HDM with approximate Z2 symmetry

and mh2 = mh3 = 300 GeV. The colored regions are excluded by the search for h2,3 → τ+τ−.

Channel µCMS Ref. µATLAS Ref.

µWW 0.83± 0.21 [54] 1.09+0.23
−0.21 [55]

µZZ 1.0± 0.29 [54] 1.44+0.40
−0.33 [56]

µγγ 1.13± 0.24 [54] 1.17± 0.27 [57]

µbb 0.93± 0.49 [54] 0.5± 0.4 [58]

µττ 0.91± 0.27 [54] 1.4± 0.4 [59]

Table 2. ATLAS and CMS Higgs Coupling Measurements.

for tan β & 30, there is another limit around tan β ∼ 1. This lower limit arises because the

masses of h2,3 are below the tt̄ threshold and hence the dominant decay channel is through

h2,3 → bb̄ and h2,3 → τ+τ−. For mh2 = mh3 = 500 GeV the bound from h2,3 → τ+τ−

gives no constraint for tan β < 50. In general, we find that the bounds from h2,3 → τ+τ−

are always weaker than those from the coupling measurement of the light Higgs or EDMs.

As a result, we will not include them in the following plots.

The most up-to-date 126 GeV Higgs coupling data are given in table 2, normalized to

the appropriate luminosities. They are used to constrain the theoretical predictions for the

signal rates of h1, from section 2.5. We take the SM cross sections from the LHC Higgs

Cross section Working Group [43]. We have performed a χ2 analysis using the results listed

in table 2.

In figures 3 to 12, we show the limits derived from heavy Higgs searches and the light

(126 GeV) Higgs data, together with those from the low energy electron and neutron EDMs.

For the EDM constraints, we use the results of ref. [10].

In these numerical results, we fix the heavy Higgs masses and the parameter ν = 1.

The CP violating angle αc is fixed in the approximate Z2 symmetric model by eq. (2.12).

On the other hand, for the extended model without an approximate Z2 symmetry, αc is a

free parameter. We also note that varying the parameter ν between 0 and 1 only leads to

slight changes to our results. The constraints are shown in the sin αb versus tan β plane,

while varying α and αc. We consider both the alignment limit with α = β− π/2 and cases
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when there are small deviations from alignment, cos(β − α) = ±∆. The 126 GeV Higgs

data put upper bounds on ∆ for fixed values of tan β. For the Type-I model, we consider

∆ = 0.1, while for the Type-II model, the light Higgs coupling data constraint is stronger

at large tan β, so we take ∆ = 0.02 [4]. ATLAS has also limited the parameters of the

2HDM by directly searching for the heavier neutral Higgs boson, but these limits are not

competitive with the Higgs coupling data for the heavy h2,3 masses that we consider [47].

3.1 Limits from heavy Higgs searches in approximate Z2 symmetric models

We first discuss the models with an approximate Z2 symmetry. Figure 3 shows the limits on

the CP violating parameter, αb, as a function of tan β in the Type-I model. In each panel,

the gray area marked “theory inaccessible” has no real solution for αc from eq. (2.12).

The left panel assumes the alignment limit, β − α ∼ π/2, while the right panel allows for

a small deviation from the alignment limit.4 The orange area is excluded by the heavy

Higgs search channel h2,3 → Zh1 → l+l−bb, while the yellow area is excluded by the

channel h2,3 →WW/ZZ. It is clear that the limits become quite stringent away from the

alignment limit. For comparison, we include the results of ref. [10] for the limits from the

electron EDM (eEDM, the blue shaded regions are excluded). In all cases, the EDM limit

and the heavy Higgs searches exclude complementary regions. The masses of the heavy

Higgs are increased to around 600 GeV in figure 4. In this case, the limits from heavy

Higgs searches become much weaker, with the dominant excluded region coming from the

eEDM searches. The mass splitting between the heavy masses is restricted by limits on

the oblique parameters, which is discussed in section 4.1.

Figure 5 shows the limits on αb versus tan β in the Type-II model. Away from the

alignment limit (the right panel), there is a significant exclusion region for tan β & 10

from the 126 GeV Higgs parameter measurements. Around tan β ∼ 1, the electron EDM

constraint vanishes due to a cancellation among the Barr-Zee diagrams as pointed out in

ref. [8]. We find the heavy Higgs searches from the gauge boson decay channels h2,3 →
Zh1 and h2,3 → WW/ZZ are extremely useful and close the window of large values of

sinαb ∼ O(1) in all cases. As the mass of the heavy particles is increased in figure 6, the

region excluded by the heavy Higgs searches shrinks, with again the dominant exclusion

coming from the eEDM and neutron EDM (nEDM, the green regions are excluded). It is

worth pointing out that the neutron EDM excluded regions are shown using the central

values given in [60], which however involves large uncertainties in the evaluation of hadronic

matrix elements. In contrast, the heavy Higgs searches provide a robust upper limit on the

CP violating angle αb.

3.2 Limits from heavy Higgs searches in the models with no Z2 symmetry

As discussed in section 2.4, if the assumption of an approximate Z2 symmetry is relaxed,

the theoretical relationship between αb and αc can be removed. In this case αc becomes

a free parameter. This helps to remove the theoretically inaccessible region in figures 3–6,

and one can get a complete view of various constraints in the whole parameter space.

4The results are similar for negative ∆.
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Figure 3. Heavy Higgs search constraints on the Type-I 2HDM with approximate Z2 symmetry,

using the h2,3 →WW/ZZ (yellow) and h2,3 → Zh1 → l+l−bb̄ (orange) channels. These constraints

are presented in the sinαb versus tan β parameter space and colored regions are excluded. The

left panel is for the alignment limit with α = β − π/2, while the right panel shows the case with a

deviation from that limit. Also shown in blue are the electron EDM excluded regions. In these plots,

we have chosen the heavy scalar masses to be mh2 = 400 GeV, mh3 = 450 GeV, mH+ = 420 GeV,

and the model parameter ν = 1. The other mixing angle αc is a dependent quantity fixed by

eq. (2.12). In the gray region, there is no real solution for αc.

Figure 4. Similar to figure 3, but with heavy scalar masses mh2
= 550 GeV, mh3

= 600 GeV,

mH+ = 620 GeV. In the right panel, the red region is excluded by the 126 GeV Higgs data applied

to h1.

Figures 7 and 8 show the constraints in the Type-I model with αc chosen equal to 0 or

αb, and with two sets of heavy Higgs masses. It is apparent that the dependence on αc is

rather weak. The results in the Type-II model are shown in figures 9 and 10. In figures 11

and 12, the heavy Higgs search constraints are also displayed in the αb and cos(β − α)

plane.

It is also worth re-emphasizing that at low tan β ∼ O(1) the 126 GeV Higgs data

puts a very weak constraint on the CP violating angle αb. This can also be understood
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Figure 5. Heavy Higgs search constraints on the Type-II 2HDM with approximate Z2 symmetry.

The Higgs sector parameters are chosen to be the same as those in figure 3. The colored regions

are excluded by searches for h2,3 → WW/ZZ (yellow), h2,3 → Zh1 → l+l−bb̄ (orange) channels,

126 GeV Higgs coupling data (red), electron EDM measurements (blue), and neutron EDM limits

(green). The gray region is again theoretically excluded because it contains no real solution for αc.

Figure 6. Similar to figure 5, but with heavy scalar masses mh2
= 550 GeV, mh3

= 600 GeV,

mH± = 620 GeV.

from table 1, where the lightest (126 GeV) Higgs couplings to other SM particles near the

alignment limit are

a1 ' cosαb , ct,1 ' (1 + ∆ cot β) cosαb , c̃t,1 ' − cotβ sinαb ,

cb,1 '

{
(1 + ∆ cot β) cosαb , Type-I

(1−∆ tanβ) cosαb , Type-II
c̃b,1 '

{
cotβ sinαb , Type-I

− tanβ sinαb , Type-II
(3.1)

where ∆ = cos(β − α) and we have kept terms up to first power in ∆. Clearly for small ∆

and tanβ ≈ 1, all CP even couplings are approximately cosαb and all CP odd couplings

≈ ± sinαb. They approach the values in the SM limit when αb → 0. In the presence of CP
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Figure 7. Heavy Higgs search constraints on the Type-I 2HDM without approximate Z2 symmetry,

i.e., in this case αc is a free parameter which is allowed to vary. The color scheme for the exclusion

regions is the same as in figures 3–6. The first two rows use the same parameters as figure 3, and

the last two rows use the same as figure 4.

Figure 8. Similar to figure 7, but with heavy Higgs masses mh2 = 550 GeV, mh3 = 600 GeV,

mH+ = 620 GeV.
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Figure 9. Similar to figure 7, but for the Type-II 2HDM without approximate Z2 symmetry.

Figure 10. Similar to figure 8, but for the Type-II 2HDM without approximate Z2 symmetry.
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Figure 11. Heavy Higgs search constraints on the Type-I (first row) and Type-II (second row)

2HDM without approximate Z2 symmetry, using the h2,3 →WW/ZZ (yellow) and h2,3 → Zh1 →
l+l−bb̄ (orange) channels. The heavy scalar masses are fixed to be mh2 = 400 GeV, mh3 = 450 GeV,

mH+ = 420 GeV, and the model parameter ν = 1. The other mixing angle αc = 0.

Figure 12. Similar to figure 11, but with heavy scalar masses mh2
= 550 GeV, mh3

= 600 GeV,

mH+ = 620 GeV.
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violation, the gluon fusion production cross section of the light Higgs gets rescaled from the

SM value by a factor [8, 10], σ(gg → h1)/σSM(gg → HSM) ' 1 + 1.42 sin2 αb. The vector

boson fusion and associated production rates get suppressed by σ(V V → h1)/σSM(V V →
HSM) = cos2 αb. The light Higgs to fermion (h1 → bb̄, τ+τ−) decay rates are not affected

because the CP even and CP odd couplings contribute incoherently, Γ(h1 → ff̄)/ΓSM(h→
ff̄) = cos2 αb + sin2 αb = 1. The Higgs to gauge boson (h1 → WW ∗, ZZ∗) decay rates

get suppressed, Γ(h1 → V V ∗)/ΓSM(h1 → V V ∗) = cos2 αb. The light Higgs to diphoton

decay rate in the presence of CP violation has been given in refs. [8, 10], which in this

case can be simplified to Γ(h1 → γγ)/ΓSM(h → γγ) ' 1 − 0.81 sin2 αb. As a result, the

final χ2 of the fit for the 126 GeV Higgs data depends on cos2 αb, and for the SM case

χ2
SM = χ2(cos2 αb → 1). Because the cos2 αb function is very flat near αb = 0, one can

maintain a fit as good as in the SM for sizable αb.

In contrast, the heavy Higgs decay to gauge boson channels (h2,3 → V V and Zh1) are

more sensitive to a non-zero CP violating angle αb and can place a stronger constraint on

it. This feature has been discussed in section 2.6. Furthermore, from the figures we notice

that at low tan β, the heavy Higgs search constraint is stronger than at large tan β. This

is because hi → tt̄, (i = 2, 3) is the dominant decay mode and the branching ratio for the

gauge boson decay modes of hi can be written as

Brhi→V V or Zh(low tan β) ∼ Γhi→V V or Zh

Γhi→tt̄
. (3.2)

Eqs. (2.28) and (2.29) tell us that these two rates around the alignment limit are both

insensitiveto variations of tan β. However, as tan β grows to larger than O(2), the other

decay channels such as hi → h1h2 and hi → bb̄ larger than hi → tt̄, and they are not yet

constrained by the LHC data. As a result, the gauge boson decay rates of heavy Higgs

bosons are suppressed in this region.

Figure 13 depicts 95% CL constraints in the tan β versus cos(β − α) plane from heavy

Higgs searches (black) and from 126 GeV Higgs data (yellow) on the Type-I (first row)

and Type-II (second row) 2HDMs without approximate Z2 symmetry. Different curves

correspond to αb = 0 (dotted), 0.1 (solid) and 0.5 (dashed), and the other mixing angle

αc = 0. For the CP conserving case (αb = 0), we found that the bounds are very similar

to those studied in refs. [5, 34, 35, 61]. In both Type-I and Type-II models, both heavy

and light Higgs searches favor regions around the alignment limit cos(β − α) = 0. In the

Type-II model when CP violation is small (bottom left panel), there is another allowed

branch corresponding to cos(β+α) ∼ 0 [62], but we find the heavy and light Higgs favored

regions are inconsistent with each other for very large deviations from the alignment limit.

In the Type-I model (first row), the light Higgs bound only depends on cos(β − α) , but

is independent of tan β in the large tan β limit. The reason is that in this case the h1

couplings can be approximated as ct,1 = cb,1 → sin(β − α) cosαb + O(1/ tanβ), c̃t,1 =

−c̃b,1 = O(1/ tanβ) and a1 = sin(β−α) cosαb, so their dependence on tan β is suppressed.

On the other hand, for the Type-II model, the couplings cb,1, cτ,1 and c̃b,1, c̃τ,1 are enhanced

at large tan β. This explains why in the Type-II model (second row), light Higgs data are

more restrictive on the parameter space with large tan β. As a result, for αb = 0.5, the light
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Figure 13. Heavy Higgs search (black) and 126 GeV Higgs data (yellow) constraints at 95% CL

on the Type-I (first row) and Type-II (second row) 2HDM without approximate Z2 symmetry.

Different curves correspond to αb = 0 (dotted), 0.1 (solid) and 0.5 (dashed). The heavy Higgs

curves include the combination of constraints from h2,3 → WW/ZZ, h2,3 → Zh1 → l+l−bb̄ and

h2,3 → τ+τ− channels. The heavy scalar masses are fixed to be mh2 = 400 GeV, mh3 = 450 GeV,

mH± = 420 GeV, and the model parameter ν = 1. The other mixing angle αc = 0.

Higgs data only favors a region with tan β . 2 (see the bottom right panel of figure 13).

In contrast, we have learned that the heavy Higgs search data are more sensitive at small

tanβ and for αb = 0.5 they only allow the region where tan β & 3, thus there is no region in

the parameter space that can be made consistent with both light and heavy Higgs results

from LHC. Figure 14 gives results similar to those in figure 13 but with a different set

of mass parameters, mh2 = 550 GeV, mh3 = 600 GeV, mH+ = 620 GeV. The parameter

space becomes less constrained by the heavy Higgs searches because the production cross

sections are smaller compared to those in figure 13.

From the above results, we can conclude that if the heavy Higgs masses lie below

around 600 GeV, the CP violating phase αb is constrained to be less than around 30%

throughout the most general parameter space. The regions which allow αb close to this

upper bound are tan β ∼ 1 in the Type-II model, and tan β & 20 in the Type-I model

without an approximate Z2 symmetry. We have also estimated the future sensitivity of

the heavy Higgs search at the 14 TeV LHC by rescaling the current limits by the square

root of expected number of events (σ × L). With 300 (3000) fb−1 data, if the heavy Higgs
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Figure 14. Similar to figure 13, but for heavy Higgs masses mh2
= 550 GeV, mh3

= 600 GeV,

mH± = 620 GeV.

masses are below 600 GeV and we still do not find them, the CP violating angle αb will be

constrained to be less than around 10%.

Recall that the angle αb parametrizes the size of CP odd mixture in the 126 GeV Higgs

boson. The main point of this work is to show that the heavy Higgs search is relevant and

plays a complimentary role to the other indirect searches, and sometimes it stands at the

frontier of probing the Higgs boson CP mixture.

4 Limits from B decays, oblique parameters, and (g − 2)µ

The CP violating 2HDM is also limited by measurements in B decays, the oblique parame-

ters, and (g− 2)µ. In Type-II models the charged Higgs mass is restricted by B data to be

greater than mH+ ∼ 340 GeV for all values of tan β. In both Type-1 and Type-2 models,

measurements in the B system prefer tan β > 1 [5, 63, 64].

4.1 Limits from electroweak oblique parameters

The allowed parameters are restricted by measurements of the oblique parameters. The

general results for S, T and U in a 2HDM are given in refs. [3, 65–67]. In the alignment
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limit, cosα = sinβ and sinα = − cosβ, the results simplify considerably,

α∆T =
1

16π2v2

{
sin2 αbF (m2

H+ ,m
2
h1) + (1− sin2 αb sin2 αc)F (m2

H+ ,m
2
h2)

+ (1− sin2 αb cos2 αc)F (m2
H+ ,m

2
h3)− cos2 αc sin2 αbF (m2

h1 ,m
2
h2)

− sin2 αc sin2 αbF (m2
h1 ,m

2
h3)− cos2 αbF (m2

h2 ,m
2
h3)

+ 3 cos2 αb
[
F (M2

Z ,m
2
h1)− F (M2

W ,m
2
h1)
]

+ 3 sin2 αc sin2 αb
[
F (M2

Z ,m
2
h2)− F (M2

W ,m
2
h2)
]

+ 3 cos2 αc sin2 αb
[
F (M2

Z ,m
2
h3)− F (M2

W ,m
2
h3)
]

− 3
[
F (M2

Z ,M
2
H,ref)− F (M2

W ,M
2
H,ref)

]}
, (4.1)

where the last line is the subtraction of the SM Higgs contribution evaluated at the reference

scale, MH,ref , at which the fit to the data is performed. The function F (x, y) is,

F (x, y) =
x+ y

2
− xy

(x− y)
log

(
x

y

)
.

F (x, x) = 0 ,

F (x, y)
y�x−−−→ y

2
. (4.2)

With αc = 0, we obtain the simple form,

α∆T =
1

12π2v2

{
∆2∆3 cos2 αb +

[
∆1∆2 − 2(∆3 −∆1)(MW −MZ)

]
sin2 αb

}
(4.3)

and ∆i ≡ mH+ −mhi . Eq. (4.3) is in agreement with ref. [68] in the limit αb = 0.

The result for ∆S also takes a simple form in the alignment limit [65],

∆S =
1

24π

{
cos2 2θWG(m2

H+ ,m
2
H+ ,M

2
Z) + sin2 αb

[
cos2 αcG(m2

h1 ,m
2
h2 ,M

2
Z)

+ sin2 αcG(m2
h1 ,m

2
h3 ,M

2
Z) + sin2 αcĜ(m2

h2 ,M
2
Z) + cos2 αcĜ(m2

h3 ,M
2
Z)
]

+ cos2 αb
[
Ĝ(m2

h1 ,M
2
Z) +G(m2

h2 ,m
2
h3 ,M

2
Z)
]

+ ln

(
m2
h1
m2
h2
m2
h3

m6
H+

)
−
[
Ĝ(M2

H,ref ,M
2
Z) + ln

(
M2
H,ref

m2
H+

)]}
. (4.4)

Analytic results for G(x, y, z) and Ĝ(x, y) are given in the appendix of ref. [65].

We use the Gfitter fit to the electroweak data [69],

S = 0.05± 0.11

T = 0.09± 0.13

U = 0.01± 0.11 , (4.5)

with a reference value for the SM Higgs mass, MH,ref = 125 GeV. The STU correlation

matrix is,

ρij =

 1 0.90 −0.59

0.09 1 −0.83

−0.59 −0.83 1

 , (4.6)
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Figure 15. 95% Confidence Level allowed regions (white) from fits to the oblique parameters in

the CP violating 2HDM.

and the χ2 is defined as

∆χ2 = Σij(∆Xi −∆X̂i)(σ
2)−1
ij (∆Xj −∆X̂j) , (4.7)

where X̂i = ∆S,∆T , and ∆U are the central values of the fit in eq. (4.5), X̂i = ∆S,∆T ,

and ∆U are the parameters in the 2HDM (eqs. (4.1) and (4.4)), σi are the errors given in

eq. (4.5) and σ2
ij = σiρijσj .

In figure 15 we show the 95% confidence level allowed regions for αb = αc and αc = 0.

For αb close to 1, there is some interesting structure due to the interplay of the ∆S and

∆T limits. For | sinαb| < 0.5, the results are well approximated by the limit from ∆T only,

− 80 GeV < ∆2 < 120 GeV . (4.8)

4.2 Limits from muon g − 2

The experimentally measured value of
(g−2)µ

2 = aµ places a weak constraint on the param-

eters of the CP violating 2HDM. The deviation between the experimental number and the

SM theory prediction is [70],

∆aµ = aexp
µ − aSM

µ = 265 (85)× 10−11. (4.9)
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Figure 16. Contributions to (g−2)µ in the CP violating Type-I 2HDM from the Barr-Zee diagrams.

The heavy scalar masses are fixed to be mh2
= 400 GeV, mh3

= 450 GeV, mH+ = 420 GeV, and

the model parameter ν = 1.
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Figure 17. Similar to figure 16 but for Type-II 2HDM.

The one-loop contributions from the Higgs sector in the 2HDM to ∆aµ are numerically

small. The larger Higgs sector contributions come from the 2-loop Barr-Zee type diagrams

with a closed fermion/gauge-boson/heavy-Higgs loop. This class of diagrams can be en-

hanced by factors of M2/m2
µ relative to the 1-loop diagrams, where M is a heavy Higgs or

heavy fermion mass. For completeness, these results are given in appendix C.

In figures 16 and 17, we show the contributions to ∆aµ in the 2HDM for relatively

heavy m2,3 and mH+ in units of 10−11. For | sinαb| . 0.5, there is almost no sensitivity to
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the CP violating phase. The largest contribution is found in the Type-II model for large

tanβ and is of opposite sign to that needed to explain the discrepancy of eq. (4.9).

5 Conclusion

The CP mixture of the 126 GeV Higgs boson is an important property of the Higgs sector

that deserves further scrutiny. A non-zero CP component is theoretically well motivated

and may be the origin of the cosmic baryon asymmetry. An important consequence of the

126 GeV Higgs boson having a sizable CP odd mixture is that the new physics responsible

for this cannot be decoupled and must lie near the electroweak scale.

In the context of CP violating, flavor conserving two-Higgs-doublet models, we studied

the impact of the heavy Higgs searches at the LHC on the CP violating parameters. In

this class of models, CP violation appears in the neutral Higgs sector, where there are

two more real scalars (h2,3) in addition to the lightest 126 GeV one. The couplings of the

heavy Higgs scalars with electroweak gauge bosons are very sensitive to the CP violation

in the Higgs sector. Turning on a CP odd mixture in the 126 GeV Higgs boson will also

turn on the heavy Higgs decay channels into gauge bosons, h2,3 → WW/ZZ and Zh1.

There is data from the LHC from the search for a SM like Higgs boson in these decay

channels, and the non-discovery of a heavy Higgs can be re-interpreted as constraints on

the allowed deviation from the alignment limit in the two-Higgs-doublet models without

CP violation.

In this work, we point out that heavy Higgs searches are also extremely useful for

constraining Higgs sector CP violation and in particular the CP mixture of the 126 GeV

Higgs boson. We demonstrate that the constraints from heavy Higgs searches are largely

complimentary to the low energy EDM constraints. We compare our results with the

limits from the global fit to the 126 GeV Higgs data, and find they can place much stronger

limits than the light Higgs coupling fit, especially in the interesting regions when there

are destructive contributions to the EDM. We find in these regions that the heavy Higgs

searches are at the frontier of probing Higgs sector CP violation. The current limit on the

CP violating mixing angle, parametrized by αb, is constrained to be less than 30%, and

the LHC heavy Higgs search can further narrow down the angle to less than a 10% level

with the high luminosity runs. We also expect our work to be a roadmap for the future

searches for Higgs sector CP violation and the exciting interplay across various experimental

frontiers.

For completeness, we have also explored other relevant constraints from electroweak

oblique parameters, the muon g − 2 and from B physics, and discussed their implications

on the heavy Higgs parameter limits in CP violating 2HDMs.
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A Solving the potential parameters in the approximate Z2 case

In this section, we list the relations between the potential parameters and the phenomeno-

logical parameters listed in eq. (2.3) in the approximate Z2 symmetric 2HDMs.

m2
11 = λ1v

2 cos2 β + (λ3 + λ4)v2 sin2 β − Re(m2
12e

iξ) tanβ + Re(λ5e
2iξ)v2 sin2 β ,

(A.1)

m2
22 = λ2v

2 sin2 β + (λ3 + λ4)v2 cos2 β − Re(m2
12e

iξ) cotβ + Re(λ5e
2iξ)v2 cos2 β ,

(A.2)

Im(m2
12) = v2 sinβ cosβ Im(λ5) , (A.3)

λ1 =
m2
h1

sin2 α cos2 αb +m2
h2
R2

21 +m2
h3
R2

31

v2 cosβ2
− ν tan2 β , (A.4)

λ2 =
m2
h1

cos2 α cos2 αb +m2
h2
R2

22 +m2
h3
R2

32

v2 sinβ2
− ν cot2 β , (A.5)

λ4 = 2ν − Reλ5 −
2m2

H+

v2
, (A.6)

λ3 = ν −
m2
h1

sinα cosα cos2 αb −m2
h2
R21R22 −m2

h3
R31R32

v2 sinβ cosβ
− λ4 − Reλ5 , (A.7)

Reλ5 = ν −
m2
h1

sin2 αb + cos2 αb(m
2
h2

sin2 αc +m2
h3

cos2 αc)

v2
, (A.8)

Imλ5 =
2 cosαb
v2 sinβ

[
(m2

h2 −m
2
h3) cosα sinαc cosαc

+ (m2
h1 −m

2
h2 sin2 αc −m2

h3 cos2 αc) sinα sinαb
]
. (A.9)

There is an additional constraint,

tanβ =
(m2

h2
−m2

h3
) cosαc sinαc + (m2

h1
−m2

h2
sin2 αc −m2

h3
cos2 αc) tanα sinαb

(m2
h2
−m2

h3
) tanα cosαc sinαc − (m2

h1
−m2

h2
sin2 αc −m2

h3
cos2 αc) sinαb

.

(A.10)

B Tri-linear Higgs couplings

From the quartic terms in the scalar potential eq. (2.1), we can obtain the interactions

between three neutral scalars, in the basis of (H0
1 , H

0
2 , A

0),

L3s=
1

4
(A0)3 cosβ

{
2 sinβ Imλ5 − cosβ Imλ7

}
+

1

8
(A0)2

{[
− 5H0

1 cosβ +H0
1 cos(3β)−H0

2

(
5 sinβ + sin(3β)

)]
Reλ5

+ 4
[
H0

1 cosβ sin2 βλ1 +H0
2 cos2 β sinβλ2 + (H0

1 cos3 β +H0
2 sin3 β)(λ3 + λ4)

]}
+

1

4
A0
{[

4H0
1H

0
2 +
(
(H0

1 )2+(H0
2 )2
)

sin(2β)
]

Imλ5+H0
2

(
2H0

2−H0
2 cos(2β)+H0

1 sin(2β)
)

Imλ7

}
+

1

2

{
H0

2 sinβ
[
(H0

2 )2λ2+(H0
1 )2(λ3+λ4+Reλ5)

]
+H0

1 cosβ
[
(H0

1 )2λ1+(H0
2 )2(λ3+λ4+Reλ5)

]}
.

(B.1)
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From these terms one can readily obtain the hihjhk interactions in the mass eigenstate basis

(h1, h2, h3) using the orthogonal matrix R from eq. (2.4). In particular, the gi11 (i = 2, 3)

coefficients used in eq. (2.24) are

gi11 =
1

2

∑
a≤b≤c

∂3L3s

∂Ha∂Hb∂Hc

∂Ha

∂h1

∂Hb

∂h1

∂Hc

∂hi
=

1

2

∑
a≤b≤c

∂3L3s

∂Ha∂Hb∂Hc
R1aR1bRic , (B.2)

where {Ha} = (H0
1 , H

0
2 , A

0).

C Formula for g − 2

The magnetic and electric dipole moments of a fermion f correspond to the real and

imaginary parts of the Wilson coefficient c of the effective operator

Leff = cf̄LσµνfRF
µν + h.c. , (C.1)

where in the Type-I and Type-II 2HDMs we consider the main contributions to the co-

efficient c that arise from the two-loop Barr-Zee type diagrams. It is straightforward to

translate the electron EDM results to the corresponding muon anomalous dipole moment.

The prescription for the translation is,

aµ=
2m2

µ

eQµme
×


dγe

(
ce → c̃µ

c̃e → −cµ

)
, hγγ , hZγ diagrams

dγe
(

Im(aW+H−hi)→−Re(aW+H−hi)
)
, W±H∓γ diagrams (S)

dγe
(

Im(c∗t̄RbLH+cν̄eRH+)→−Re(c∗t̄RbLH+cν̄eRH+)
)
, W±H∓γ diagrams (F)

(C.2)

where ABγ corresponds to those Barr-Zee diagrams with h1 lines connected to the upper

loop, and the S/F in the bracket corresponds to heavy Higgs scalars/SM fermions running

in the upper loop. The hγγ, hZγ and W±H∓γ diagram (S) contributions to the EDM

have been summarized in refs. [10, 71]. The W±H∓γ diagram (F) contributions to the

EDM vanish in 2HDMs with approximate Z2 symmetry, but have been calculated in a

more general framework in ref. [72]. We perform the above translation based on results in

ref. [72]. See also ref. [73] for a recent work on g − 2 in a 2HDM.

We list below the analytic results for the contributions to the muon g− 2 in a 2HDM:

(∆aµ)hγγf =
GFm

2
µNcQ

2
fα

2
√

2π3

3∑
i=1

[
− cf,icµ,if(zif ) + c̃f,ic̃µ,ig(zif )

]
,

(∆aµ)hZγf =
GFm

2
µNcQtg

V
Zēeg

V
Zf̄f

8
√

2π4Qµ

3∑
i=1

[
− cf,icµ,if̃

(
zif ,

m2
f

M2
Z

)
+ c̃f,ic̃µ,ig̃

(
zif ,

m2
f

M2
Z

)]
,

(∆aµ)hγγW =
GFm

2
µα

8
√

2π3

3∑
i=1

[(
6 +

1

ziw

)
f(ziw) +

(
10− 1

ziw

)
g(ziw)

]
(−cµ,i)ai ,

(∆aµ)hZγW =
gV
Zf̄f

gZWW

Qµ

GFm
2
µ

32
√

2π4

3∑
i=1

[(
6−sec2 θW +

2−sec2 θW
2ziw

)
f̃(ziw, cos2 θW )

+

(
10−3 sec2 θW−

2−sec2 θW
2ziw

)
g̃(ziw, cos2 θW )

]
(−cµ,i)ai ,
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(∆aµ)hγγH+ =
GFm

2
µα

8
√

2π3

(
v

mH+

)2 3∑
i=1

[
f(ziH)− g(ziH)

]
(−cµ,i)λ̄i

(∆aµ)hZγH+ =
gV
Zf̄f

gZH+H−

Qµ

GFm
2
µ

32
√

2π4

(
v

mH+

)2 3∑
i=1

[
f̃(ziH ,m

2
H+/M2

Z)−g̃(ziH ,m
2
H+/M2

Z)
]
(−cµ,i)λ̄i ,

(∆aµ)HWγ
H = −

GFm
2
µcH+ν̄e−

64
√

2π4Qµ

∑
i

[
e2

2 sin2 θW
I4(m2

hi
,m2

H+)ai−I5(m2
hi
,m2

H+)λ̄i

](
−Re(aW+H−hi

)
)
,

(∆aµ)HWγ
t,b =

(
3g2

16π2

)(
g2m2

µ

32π2M2
W

)(
−Re(c∗t̄RbLH+cH̄+νe−)

)(2

3
Ft −

1

3
Fb

)
, (C.3)

where zif = m2
f/m

2
hi

(f = t, b), ziw = M2
W /m

2
hi

, ziH = m2
H+/m

2
hi

, and ce,i = cµ,i = cτ,i,

c̃e,i = c̃µ,i = c̃τ,i can be obtained from table 1.

The relevant coefficients are,

gVZff̄ =
g

2 cos θW
(T f3 − 2Qf sin2 θW ) ,

gWWZ = e cot θW ,

gZH+H− =
1

2
e cot θW (1− tan2 θW ) ,

λ̄i = Ri1 ·
(
λ3 cos2 β + (λ1 − λ4 − Reλ5) sin2 β

)
cosβ

+Ri2 ·
(
λ3 sin2 β + (λ2 − λ4 − Reλ5) cos2 β

)
sinβ

+Ri3 · Imλ5 sinβ cosβ ,

aW+H−hi = − sinβRi1 + cosβRi2 + iRi3 ,

ct̄RbLH+ = cotβ ,

cH+ν̄e− =

{
cotβ Type I

− tanβ Type II
(C.4)

The relevant loop functions are,

h0(z) =
z4

2

∫ 1

0
dx

∫ 1

0
dy

x3y3(1− x)(
z2x(1− xy) + (1− y)(1− x)

)2 ,
f(z) =

z

2

∫ 1

0
dx

1− 2x(1− x)

x(1− x)− z
log

x(1− x)

z
,

g(z) =
z

2

∫ 1

0
dx

1

x(1− x)− z
log

x(1− x)

z
,

h(z) =
z

2

∫ 1

0
dx

1

z − x(1− x)

(
1 +

z

z − x(1− x)
log

x(1− x)

z

)
,

f̃(x, y) =
yf(x)

y − x
+
xf(y)

x− y
,

g̃(x, y) =
yg(x)

y − x
+
xg(y)

x− y
,

I4,5(m2
1,m

2
2) =

M2
W

m2
H+ −M2

W

(
I4,5(M2

W ,m
2
1)− I4,5(m2

2,m
2
1)
)
,
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I4(m2
1,m

2
2) =

∫ 1

0
dz(1− z)2

(
z − 4 + z

m2
H+ −m2

2

M2
W

)
× m2

1

M2
W (1− z) +m2

2z −m2
1z(1− z)

log
M2
W (1− z) +m2

2z

m2
1z(1− z)

,

I5(m2
1,m

2
2) =

∫ 1

0
dz

m2
1z(1− z)2

M2
H+(1− z) +m2

2z −m2
1z(1− z)

log
M2
H+(1− z) +m2

2z

m2
1z(1− z)

,

Sp(z) = −
∫ z

0
t−1 ln(1− t)dt ,

T (z) =
1− 3z

z2

π2

6
−
(

1

z
− 5

2

)
ln z − 1

z
−
(

2− 1

z

)(
1− 1

z

)
Sp(1− z) ,

B(z) =
1

z
+

2z − 1

z2

π2

6
+

(
3

2
− 1

z

)
ln z −

(
2− 1

z

)
1

z
Sp(1− z) ,

Ft =
T (m2

H+/m
2
t )− T (M2

W /m
2
t )

m2
H+/m

2
t −M2

W /m
2
t

,

Fb =
B(m2

H+/m
2
t )−B(M2

W /m
2
t )

m2
H+/m

2
t −M2

W /m
2
t

. (C.5)
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