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Abstract: The classification of solutions of the static vacuum Einstein equations, on a

given closed manifold or an asymptotically flat one, is a long-standing and much-studied

problem. Solutions are characterized by a complete Riemannian n-manifold (M, g) and a

positive function N , called the lapse. We study this problem on Asymptotically Poincaré-

Einstein n-manifolds, n ≥ 3, when the conformal boundary-at-infinity is either a round

sphere, a flat torus or smooth quotient thereof, or a compact hyperbolic manifold. Such

manifolds have well-defined Wang mass, and are time-symmetric slices of static, vacuum,

asymptotically anti-de Sitter spacetimes. By integrating a mildly generalized form of an

identity used by Lindblom, Shen, Wang, and others, we give a mass formula for such

manifolds. There are no solutions with positive mass. In consequence, we observe that

either the lapse is trivial and (M, g) is Poincaré-Einstein or the Wang mass is negative,

as in the case of time symmetric slices of the AdS soliton. As an application, we use

the mass formula to compute the renormalized volume of the warped product (X, γ) ≃

(M3, g)×N2 (S1, dt2).

We also give a mass formula for the case of a metric that is static in the region

exterior to a horizon on which the lapse function is zero. Then the manifold (X, γ) is said

to have a “bolt” where the S1 factor shrinks to zero length. The renormalized volume

of (X, γ) is expected on physical grounds to have the form of the free energy per unit

temperature for a black hole in equilibrium with a radiation bath at fixed temperature.

WhenM is 3-dimensional and admits a horizon, we apply this mass formula to compute the

renormalized volume of (X, γ) and show that it indeed has the expected thermodynamically

motivated form.

We also discuss several open questions concerning static vacuum asymptotically Poin-

caré-Einstein manifolds.
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1 Introduction

Let (M, g) be a complete Riemannian n-manifold and consider positive solutions N : M →

R of the static Einstein system

N Ric = ∇2N +
2Λ

(n− 1)
Ng , (1.1)

∆N = −
2Λ

(n− 1)
N , (1.2)

where ∇ is the Levi-Civita connection of g, ∇2 is the Hessian, ∆ := trg ∇
2 is the scalar

Laplacian, Ric is the Ricci tensor of g, and Λ is a constant called the cosmological constant.

Note that a consequence of the above equations is that the scalar curvature is

R = 2Λ . (1.3)

When Λ < 0, we can rescale the metric to obtain Λ = −1
2n(n − 1). Then the sys-

tem (1.1), (1.2) is equivalent to the equation

∇2N − g∆N −N Ric = 0 . (1.4)

Solutions (M, g,N) of this system are sometimes called Killing initial data sets. If a

positive-N solution to this system can be found, then the (n + 1)-dimensional spacetime

(R×M,−N2dt2 ⊕ g) is negative Einstein and globally static; that is, it admits a nowhere
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vanishing, hypersurface orthogonal, timelike Killing vector field ∂
∂t . Solutions with nonneg-

ative N are also of interest. When the zero set of N is a closed hypersurface in M , then

(R×M,−N2dt2 ⊕ g) is a static exterior black hole metric. The zero set is totally geodesic

in (M, g) with “surface gravity” |dN | constant on the zero set [11, lemma 2.1(i)].1

A theorem quoted in Lichnérowicz [20] states that if (M, g) is a complete, asymptoti-

cally flat 3-manifold obeying (1.1), (1.2) with Λ = 0 and N → 1 at infinity, then (M, g) is

Euclidean 3-space. This has an obvious proof. It also follows from the positive mass theo-

rem [24–26, 30]. In the case of closed 3-manifolds, nontrivial solutions of (1.1), (1.2) have

been found [18, 19] and have been used as counter-examples to the Fischer-Marsden [10]

conjecture, which held that no nontrivial solutions would exist except those about which

the linearized scalar curvature operator is surjective. Shen [27] found that Kobayashi’s and

Lafontaine’s nontrivial solutions always contained a totally geodesic 2-sphere (that is, a

2-sphere horizon in the sequel).

In this paper, we consider positive and nonnegative solutions of (1.4) on manifolds

which admit a notion of conformal infinity and have sectional curvatures approaching −1

sufficiently rapidly there. In particular, we take (M, g) to be Asymptotically Poincaré-

Einstein (APE). Such manifolds admit a conformal infinity which is the zero set of a

local coordinate x called a special defining function, which obeys g̃−1(dx, dx) = 1 in a

neighbourhood of conformal infinity, where g̃ := x2g. Thus, on such a neighbourhood, x is

a Gaussian normal coordinate for the conformally rescaled metric g̃. Furthermore, in this

coordinate system, the Einstein equations are enforced order-by-order on the coefficients

ã[p] in the expansion g̃ =
∑

p ã[p]x
p up to (but not including) order xn. This condition fully

determines ã[0], . . . , ã[n−2] and trã[0] ã[n−1] in terms of the Dirichlet data g̃(x = 0) ≡ ã[0]
and, in fact, up to this order the odd coefficients ã[2p+1] vanish. This is known as an even

Fefferman-Graham expansion; see [3] for more detail.

When conformal infinity carries either the round sphere metric, a compact flat metric,

or a compact hyperbolic metric, APEs have well-defined Wang mass [28]. If an APE is

exactly Poincaré-Einstein, and if its conformal infinity is one of the above types which

admit a Wang mass, then that mass is zero [2]. In this note, we generalize that result as

follows:

Theorem 1.1. Let (M, g) be a complete APE with conformal infinity either a round (n−1)-

sphere, flat (n − 1)-torus or a smooth quotient thereof, or compact hyperbolic (n − 1)-

manifold. Let N > 0 solve equation (1.4) with |dN | → 1 on approach to infinity.

(a) If ∂M is empty, then the Wang mass of g is given by

m = −
1

8π(n− 2)

∫

M
N |Z|2dV (g) , (1.5)

where2

Z := Ric+(n− 1)g . (1.6)

1The paper [11] assumes that n=3, but the proof of the quoted result is easily seen to be valid for n≥3.
2Since by (1.3) the Ricci scalar is constant, then Z as given by (1.6) equals the tracefree Ricci tensor.
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(b) If M has a non-empty boundary ∂M =: H = ⊔iHi comprised of finitely many disjoint

compact connected components Hi such that N ≡ 0 on H then

m = −
1

8π(n−2)

∫

M
N |Z|2dV (g)+

∑

i

ϑi

16π

[

(n−1)|Hi|+
1

(n−2)

∫

Hi

SdVHi

]

, (1.7)

where |Hi| is the surface area of Hi, S is the intrinsic scalar curvature of Hi, and

ϑi = |dN |Hi is a constant on Hi, known as the surface gravity.

(i) In the special case of a cold horizon, defined by ϑ = 0, the mass is nonpositive

and we recover (1.5).

(ii) In the n = 3 case, we have

m = −
1

8π

∫

M
N |Z|2dV (g) +

∑

i

ϑi

8π

(

|Hi|+ 2πχ(Hi)
)

, (1.8)

where χ(Hi) = 2(1 − gi) is the Euler characteristic of Hi, and gi is the genus

of Hi.

This also generalizes a result of Chruściel and Simon [7], who observed that m < 0

for complete solutions of (1.1), (1.2) with APE asymptotics in the particular case of n = 3

dimensions and compact hyperbolic conformal infinity. We obtain our result essentially by

following a computation of Wang [29], who was concerned with the k = 1 case. He was

able to show that amongst k = 1 APEs with spinor structure, the argument that leads us

to theorem 1.1, when combined with the positive mass theorem, implies that anti-de Sitter

spacetime is the unique complete spin manifold solving of (1.1), (1.2) with N > 0 globally.

Examples of solutions of the system (1.1), (1.2) with cold horizons are provided by

the extreme “topological” black holes described in [6, 22]. We are concerned with vacuum

metrics only, and therefore while charged extreme black holes also admit cold horizons, only

uncharged cold horizons provide examples for our theorem.3 We also note that examples

of negative mass complete solutions of (1.1), (1.2) with empty ∂M are known. They are

time-symmetric slices of so-called AdS solitons, and are discussed briefly in section 5.

In the horizon-free case, we have N > 0, so we can consider the Riemannian warped

product Poincaré-Einstein metric γ := N2dt2 ⊕ g on X ≃ S1 ×M . In this case, our mass

formula (1.7) yields a novel application. By a simple calculation outlined in section 4, the-

orem 1.1 implies that the L2 norm of the Riemann tensor of γ, renormalized by subtraction

of a dimension-dependent constant, equals the mass of (M, g). In particular, if n = 3, then

this observation can be used to determine the renormalized volume [15, 16] RenV(X, γ),

via a formula of Anderson [1], in terms of the Wang mass m of (M, g).

This application of the mass formula becomes more interesting when a horizon is

present. If, in four spacetime dimensions, we assume the horizon is connected then, under

physically natural circumstances [4, 8],4 M must have topology [a,∞)×H for some a > 0

3In particular, an example is obtained by setting k = b = −1, q = 0, and m = −3−3/2ℓ in equation (7)

of [22].
4While [8] discusses only the asymptotically flat case, its analysis is valid in the present case as well.
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and some surface Σ, and hence X will have topology X ≃ R
2 × H. The horizon then

contributes a boundary term, leading to a strikingly simple formula for RenV(X, γ) with

an obvious interpretation in black hole thermodynamics.

Theorem 1.2. Let (X, γ) be a Poincaré-Einstein 4-manifold, with a hypersurface-orthog-

onal Killing vector K = ∂
∂t .

(a) If (X, γ) = (S1×M3, N2dt2⊕g) such that (M3, g) is complete, is APE with conformal

infinity having constant sectional curvature k ∈ {−1, 0, 1}, and has Wang mass m,

then the renormalized volume of (X, γ) is given by

RenV(X, γ) =
8π

3
mβ ≤ 0 , (1.9)

where β is the circumference of a Killing orbit at infinity as measured in the conformal

metric.

(b) If M3 ≃ [a,∞)×H for some a > 0 and connected manifold H, and if {a}×H is the

zero set of N , then X ≃ R
2 ×H and the renormalized volume of (X, γ) is given by

RenV(X, γ) =
8π

3

[

mβ −
1

4
|H|

]

. (1.10)

Equation (1.10) is in fact a familiar thermodynamic formula. Consider a static black

hole of mass m with horizon H in equilibrium with radiation at temperature T = 1/β (the

canonical ensemble). Then the expectation value of the energy of the system is 〈E〉 = m

and the entropy of the system is famously given by S = 1
4 |H|. One expects then to have

the formula

I =
1

T
〈E〉 − S = βm−

1

4
|H| , (1.11)

where I is the gravitational action − 1
32π

∫

X RγdV (γ) of the black hole metric, Wick rotated

to Riemannian signature. From equation (1.11), I plays the role of the free energy per unit

temperature. By comparing this quantity, evaluated on different static metrics with the

same value of β, one can construct a free energy diagram and quantify the energy liberated

in phase transitions between these metrics, as well as any energy barriers to be overcome

as a phase transition proceeds. However, since R = −12 for a Poincaré-Einstein 4-metric,

we have I = 3
8π vol(X), which is divergent. The renormalized volume was introduced as a

method of rendering the action finite and well-defined [16]. It is therefore to be expected

on physical grounds, though from a purely geometric perspective it appears startling, that

equation (1.10) yields
3

8π
RenV(X, γ) =

1

T
〈E〉 − S . (1.12)

In summary:

Remark 1.3 (Thermodynamic interpretation of renormalized volume). When (X, γ) is as

described in theorem 1.2(b), the renormalized volume RenV(X, γ) equals the free energy per

unit temperature of the static black hole got by Wick rotating (X, γ), in equilibrium with

radiation at temperature T = 1/β.
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It is not at all clear whether this interpretation can be extended to static black holes

in the presence of matter, such as the Reissner-Nordstrom-AdS family. This issue is under

investigation.

This paper is organized as follows. In section 2, we recall Asymptotically Poincaré-

Einstein boundary conditions and the Wang mass. In section 3, we derive a simple identity

of divergence form and integrate it over the manifold to prove theorem 1.1. Much of this

section follows the argument given first by Wang [29] in a less general context, which was

key to his uniqueness proof for anti-de Sitter spacetime. In section 3.3, we depart from

this and use a different method based on the maximum principle to prove that, in the

setting of theorem 1.1(a), the mass aspect is pointwise nonpositive. In section 4, we prove

theorem 1.2. We give a nontrivial example of part (a) of that theorem in section 4.3. In

section 5, we discuss several open problems for static APE manifolds, some of which are

highly nontrivial.
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2 APEs and Wang’s mass

The metrics we consider must meet three criteria. First, they must be conformally com-

pactifiable, meaning that they admit a notion of conformal infinity defined as the locus

x = 0, to which the conformal metric g̃ := x2g extends. Second, we require that |dx|g̃ = 1

at conformal infinity. The C2 smoothness of the conformal metric (which we will take to

be C∞) allows this, and it follows that the sectional curvatures of g must asymptote to

−1, so such metrics are called asymptotically hyperbolic. We can then extend the condition

|dx|g̃ = 1 to a neighbourhood of conformal infinity since |dx|g̃ = 1 is a non-characteristic

first-order differential equation, whose local solution x therefore exists. This yields a Gaus-

sian normal coordinate system for that neighbourhood. Then x is called a special defining

function for conformal infinity. And third, the metric must have a well-defined mass.

The mass of asymptotically hyperbolic manifolds was first defined by Wang [28] in

the special case where conformal infinity was a round sphere, but it easily generalizes to

the three cases listed in the Introduction. We will index these cases by k, the sectional

curvature of the conformal boundary-at-infinity ∂∞M , so that k = 1 represents the case

where ∂∞M is the round metric g(+1) := g(Sn−1, can), k = 0 represents the case where

∂∞M carries a flat torus metric g(0) := δ, and k = −1 denotes the case where ∂∞M is a

– 5 –
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compact hyperbolic manifold with metric g(−1). Specifically, we now require that

g =
1

f2
(k)(r)

(

dr2 + g(k) +
1

n
κrn +O(rn+1)

)

,

f(k) =















sin r , k = +1 ,

r , k = 0 ,

sinh r , k = −1 .

(2.1)

For such metrics, the Wang mass is defined to be

m :=
1

16π

∫

∂∞M
trg(k) κ dV (g(k)) , (2.2)

where κ is a symmetric (0, 2)-tensor on ∂∞M .

The pre-factor 1
16π does not appear in [28]. We include it so as to agree with the

mass used in (3 + 1)-dimensional asymptotically anti-de Sitter general relativity. If New-

ton’s constant G is not set to 1, the normalization would then be 1
16πG . An alternative

normalization would be to divide m by 4 volg(k) , which is of course 16π when n = 3 and

k = 1. This, however, would have a disadvantage in the k = 0 case where there are

non-isometric Horowitz-Myers geons (time-symmetric slices of AdS solitons [17]) whose

normalized masses would then be the same (cf. [5, section 1]), so we will not do this.

We note here that conformal infinity is the locus r = 0 but r is not a special defining

function since |dr|r2g 6= 1 on any open domain r < ǫ. To obtain a special defining function,

we solve
dx

x
=

dr

f(k)
, (2.3)

subject to the condition that x = 0 when r = 0. Then the metric (2.1) can be written as

g =
1

x2

[

dx2 + (1− kx2/4)2g(k) +
1

n
κxn +O(xn+1)

]

. (2.4)

This form is precisely what one obtains by following the Fefferman-Graham [9] method of

applying the Einstein equations (for g ≡ g̃/x2) order-by-order, up to order xn−1 inclusive,

to the formal expansion g̃ =
∑

a[n]x
n, subject to the Dirichlet condition g̃(0) ≡ a[0] =

g(k). Therefore, the metrics we consider are precisely the Asymptotically Poincaré-Einstein

metrics (APEs, see [3]) with one of the constant curvature conformal infinities.

For use in the sequel, we note that the shape operator of hypersurfaces of constant x is

easy to compute from (2.4). Computed with respect to the inward-pointing normal vector

field ν := x ∂
∂x , it has components

Aα
β = −

(

1 + kx2

4

1− kx2

4

)

δαβ +
1

2
καβx

n +O(xn) , (2.5)

where the Greek indices run over the tangent space to ∂∞M so that α, β ∈ {2, . . . , n}, δαβ
denotes the components of the (n − 1) × (n − 1) identity matrix, and καβ := g(k)αγκγβ .

– 6 –
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The mean curvature of these hypersurfaces is then

H = trA = −(n− 1)

(

1 + kx2

4

1− kx2

4

)

+
1

2
(trg(k) κ)x

n +O(xn+1) . (2.6)

3 Proof of theorem 1.1

3.1 Divergence identity

Lemma 3.1. If N is a solution of (1.1), (1.2) then

Div

[

1

N
∇
(

|dN |2 −N2 + k
)

]

= 2N |Z|2. (3.1)

A 3-dimensional form of this identity appeared in [21] and in several works since. A

related but much more complicated identity was found by Robinson as early as 1975 and

used to prove a uniqueness theorem for the Kerr metric [23]. The n-dimensional version

occurs in [27] and was used by [29] to prove his uniqueness result.

Proof. We proceed by direct calculation and application of equations (1.1), (1.2) and the

contracted second Bianchi identity, which in the present case yields ∇iRij = 1
2∇jR = 0

since R = −n(n− 1), and in particular ∇i
(

Rij + (n− 1)gij
)

= 0.

Div

[

1

N
∇
(

|dN |2 −N2 + k
)

]

= 2∇i

[(

∇i∇jN

N
− gij

)

∇jN

]

= 2∇i
[(

Rij + (n− 1)gij
)

∇jN
]

= 2
(

Rij + (n− 1)gij
)

∇i∇jN

= 2N
(

Rij + (n− 1)gij
)

(Rij + ngij)

= 2N
(

Rij + (n− 1)gij
)(

Rij + (n− 1)gij
)

+ 2N
(

Rij + (n− 1)gij
)

gij

= 2N |Ric+(n− 1)g|2N + 2N
(

R+ n(n− 1)
)

= 2N |Z|2,

(3.2)

where in the last equality we used that R = 2Λ = −n(n+ 1).

We remark that the quantity inside the operator on the left-hand side of (3.1) has

a simple interpretation. Let g̃ = g/N2. This is sometimes called the Fermat metric.

Applying (1.1), (1.2) to the standard formula for the behaviour of scalar curvature under

a conformal transformation, one can check that the scalar curvature of g̃ is given by

R̃ = −n(n− 1)
(

|dN |2 −N2
)

, (3.3)

so lemma 3.1 can be written as

Div

[

1

N
∇
(

R̃− n(n− 1)k
)

]

= −2n(n− 1)N |Z(g)|2. (3.4)

– 7 –
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3.2 The proof of theorem 1.1

Proof of part (a). Now consider the manifold Mǫ := M\{x ≤ ǫ}, the submanifold of M

consisting of all points except those “ǫ-close to conformal infinity”. The boundary ∂Mǫ =:

∂1/ǫM of this set is the hypersurface x = ǫ; the notation indicates that as ǫ → 0 then

∂1/ǫM is replaced by the boundary-at-infinity ∂∞M . If we integrate the identity (3.1) over

Mǫ and use the divergence theorem, we obtain

∫

∂1/ǫM

1

N
∇ν

(

|dN |2 −N2 + k
)

dV (h) = 2

∫

Mǫ

N |Z|2dV (g) , (3.5)

where ν is the outward pointing unit normal field (pointing toward infinity) and dV (h) is

the volume element of the metric

h :=
1

ǫ2
(1− kǫ2/4)2g(k) +

1

n
κǫn−2 +O(ǫn−1) (3.6)

induced on ∂1/ǫM by g.

On the other hand, we compute

1

N
∇ν

(

|dN |2 −N2 + k
)

=
2

N

[

(∇kN)(∇ν∇kN)−N∇νN
]

= 2(∇kN)(Rjk + ngjk)ν
j − 2∇νN

= 2(∇kN)
(

Rjk + (n− 1)gjk
)

νj

= 2Z(ν,∇N)

= 2Z(ν, ν)|∇N |
(

1 +O(ǫ)
)

.

(3.7)

Thus we obtain
∫

∂1/ǫM
Z(ν, ν)|∇N |

(

1 +O(ǫ)
)

dV (h) =

∫

Mǫ

N |Z|2dV (g) . (3.8)

Using the Gauss-Codazzi equation, on the level set ∂1/ǫM of x we have

Z(ν, ν) = Ric(ν, ν) + (n− 1) =
1

2

(

R− S +H2 − |A|2
)

+ n− 1 , (3.9)

where R and S are the intrinsic scalar curvatures of M and ∂1/ǫM respectively. Using (2.5)

and (2.6) on the x = ǫ hypersurface, then

Z(ν, ν) =
1

2
(n−1)(n−2)

[(

1 + kǫ2

4

1− kǫ2

4

)2

−1

]

−
1

2
S −

1

2
(n− 2)(trg(k) κ)ǫ

n +O(ǫn+1)

=
1

2
(n−1)(n−2)

kǫ2
(

1− kǫ2

4

)2 −
1

2
S −

1

2
(n− 2)(trg(k) κ)ǫ

n +O(ǫn+1) .

(3.10)

We must evaluate S, the scalar curvature of the metric h. To necessary order, it suffices

to write that

h =
1

ǫ2
(1− kǫ2/4)2

(

g(k) +O(ǫn)
)

(3.11)

– 8 –
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and

S[h] =
ǫ2

(1− kǫ2/4)2
(

S[g(k)] +O(ǫn)
)

=
k(n− 1)(n− 2)ǫ2

(1− kǫ2/4)2
+O(ǫn+2) . (3.12)

Then (3.10) yields

Z(ν, ν) = −
1

2
(n− 2)(trg(k) κ)ǫ

n +O(ǫn+1) . (3.13)

We insert this into the left-hand side of (3.8) to obtain

−
1

2
(n−2)

∫

∂1/ǫM

[

(trg(k) κ)ǫ
n+O(ǫn+1)

]

|∇N |
(

1+O(ǫ)
)

dV (h) =

∫

Mǫ

N |Z|2dV (g) . (3.14)

Finally, to prove the theorem, take ǫ → 0, noting that then ∇N → ν and so |∇N | → 1,

and dV (h) = ǫndV (g(k)) +O(ǫn−1). This yields (1.5).

A much quicker proof in the n = 3 case is inspired by the observation that our equa-

tion (3.3) is equation (III.15) of [7] when n = 3. Simply use equation (3.3) to replace the

left-hand side of (3.5) by an integral over ∂1/ǫM of ∇νR̃ and then use the Chruściel-Simon

mass formula [7, equation (V.23)]. Our more detailed derivation, however, clearly illus-

trates the role of the APE assumption and resulting expansion for g and, under the APE

assumption, holds manifestly in all dimensions.

Proof of part (b). This time we must account for “finitely distant” boundary components

Hi, defined as the locus N = 0. To avoid division by zero, we displace those components

slightly into M , say by moving each component Hi a distance ǫ along the geodesic con-

gruence orthogonal to it; we call the displaced hypersurface Hi,ǫ and define Hǫ := ∪iHi,ǫ.

We then redefine Mǫ to be the connected submanifold of M whose boundary is ∂Mǫ :=

Hǫ ∪ ∂1/ǫM where, as before, ∂1/ǫM = {p ∈ M ;x(p) = ǫ} and x is as usual our special

defining function for the boundary-at-infinity.

Then (3.5) is replaced by

∫

∂1/ǫM

1

N
∇ν

(

|dN |2 −N2 + k
)

dV (h)−
∑

i

∫

Hi,ǫ

1

N
∇ν

(

|dN |2 −N2 + k
)

dV (h)

= 2

∫

Mǫ

N |Z|2dV (g) .

(3.15)

On Hǫ the unit normal field is chosen to point into Mǫ, so it again points toward infinity.

Equation (3.7) remains valid at the inner boundary Hǫ. The Gauss-Codazzi rela-

tion (3.9) also holds. Furthermore, by [11, theorem 2.1.i], H is necessarily an embedded,

totally geodesic hypersurface and |∇N | =: ϑi is constant on each component Hi, so we

can write |∇N | = ϑi

(

1 + O(ǫ)
)

on Hi,ǫ and then ϑi can come outside the integral. Tak-

ing ǫ → 0, the Gauss-Codazzi relation becomes simply 2Z(ν, ν) = −(n − 1)(n − 2) − S.

Then the first term in (3.15) yields −16π(n − 1)m while the second term reduces to
∑

i

[

(n− 1)(n− 2)|Hi|+
∫

Hi
S dVHi

]

ϑi, and so we obtain (1.7).
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3.3 The mass aspect

We consider now the spacetime metric −N2dt2+ g constructed from N and g. We wish to

apply asymptotically anti-de Sitter boundary conditions to this metric in order to under-

stand the properties of the mass aspect function

µ := trg(k) κ , (3.16)

defined on the boundary-at-infinity. Since the metric is static, one way to proceed is to

impose the APE condition on the Riemannian metric ḡ = N2dt2+g on a neighbourhood of

infinity in Xn+1. Indeed, this metric will be not merely APE but exactly Poincaré-Einstein,

but in what follows we will not need to apply the Einstein equations beyond APE order.

Because the spacetime metric is static, if x is a special defining function for (Mn, g)

then it is also a special defining function for (Xn+1, ḡ). We may take Xn+1 ≃ I × Mn

where I is S1 or R. Since g is still subject to the APE condition on M , its leading terms

up to order xn−3 inclusive (order xn−1 inclusive in the standard counting which refers to

the conformal metric x2g) are determined as before. At this stage, the metric on X is

ḡ =
1

x2

[

V dt2 + dx2 +

(

1−
kx2

4

)2

g(k) +
1

n
xnκ+O(xn+1)

]

,

V := x2N2.

(3.17)

Now the APE condition for (X, ḡ) can be applied to determine V , and thus N , order-

by-order. First, since dimX = n + 1, this condition fixes all the coefficients a[j] in the

expansion ḡ = 1
x2

∑

∞

j=0 a[j]x
j up to j = n− 1 inclusive once a[0] is specified. This is in fact

simple, and yields

V =

(

1 +
kx2

4

)2

+ v[n]x
n +O(xn+1) , (3.18)

and we note that when n = 3 the above expression contains an explicit k2x4/16 term which

belongs to O(xn+1) and so can be ignored. The coefficient v[n] is as yet undetermined, but

we can find it using the Einstein equation at order j = n. Unlike at lower orders, at this

order the Einstein equation fixes only the trace of the j = n term, but that suffices. It reads

v[n] +
1

n
trg(k) κ = 0 . (3.19)

Then, since N2 = V/x2, we have

N2 =
1

x2

[(

1 +
kx2

4

)2

−
xn

n
trg(k) κ+O(xn+1)

]

,

⇒ dN = −
1

x2

[

1−
kx2

4
+

(n− 1)

2n
xn trg(k) κ+O(xn+1)

]

dx ,

⇒ |dN |2 −N2 + k = xn−2 trg(k) κ+O(xn−1) = µxn−2 +O(xn−1) .

(3.20)

Recalling (3.3), one can now obtain the Chruściel-Simon mass formula. Furthermore, we

can now prove the following result.
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Theorem 3.2. Let (M, g,N) be a solution of (1.1), (1.2) such that −N2dt2 ⊕ g is static

Einstein and asymptotically anti-de Sitter in the above sense, with (M, g) complete and

N > 0. Let ∂∞M be the boundary-at-infinity of (M, g). Then µ ≤ 0 pointwise on ∂∞M .

Proof. Let

f := |dN |2 −N2 + k = µxn−2 +O(xn−1) . (3.21)

Then f → 0 as x ց 0. If there were a point of ∂∞M where µ > 0, then by continuity

there would be a “nearby” point p ∈ M where f(p) > 0. Then f would achieve a positive

maximum in M . But from (3.2) we may write

(

∆−
1

N
∇∇N

)

f = 2N2|Z|2 ≥ 0 , (3.22)

and then by the Hopf strong maximum principle [14, theorem 3.5, pg. 35], f would neces-

sarily be identically zero in M , contradicting µ > 0. Hence µ ≤ 0.

Remark 3.3. The argument above also implies that f ≤ 0 on M and so, by (3.3), the

scalar curvature of the Fermat metric obeys R̃ ≥ n(n− 1)k.

Remark 3.4. The conclusion of theorem 3.2 remains valid in the horizon case (where

the horizon is given by the zero set of N), provided k = −1 and the surface gravity is

sufficiently small; specifically, |dN | ≤ 1 so that from (3.21) f ≤ 0 at the horizon. Then if

f had a positive maximum, it would necessarily occur at an interior point. As before, this

contradicts the strong maximum principle.

4 Renormalized volume and theorem 1.2

4.1 The Pfaffian of the curvature 2-form

Now consider the (n + 1)-dimensional Riemannian manifold X ≃ S1 × M with metric

γ := N2dt2 ⊕ g, where g and N obey (1.1), (1.2). This may be considered to be the “Wick

rotated” spacetime built from g and N . It is therefore Einstein, and

Ric(γ) + nγ = 0 . (4.1)

As well, ∂
∂t is a global Killing vector field tangent to copies of the S1 factor.

Denoting the coordinates by (t, xi), i ∈ 1, . . . n, it is easy to compute that

R0i0j(γ) = −N∇i∇jN ,

R0ijk(γ) = 0 ,

Rijkl(γ) = Rijkl(g) ,

(4.2)

where ∇ is the Levi-Civita connection of g. It follows that

|Riem(γ)|2γ =
4

N2
|HessN |2g + |Riem(g)|2g . (4.3)
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Using (1.1), we have that HessN ≡ ∇2N = N
(

Ric(g) + ng
)

=
(

Z(g) + g
)

N , and so

|Riem(γ)|2γ = |Riem(g)|2g + 4|Z(g)|2g + 4n . (4.4)

If we use the standard decomposition of Riem(g) into its Weyl, tracefree Ricci, and scalar

curvature parts, and use that the scalar curvature of g is −n(n− 1), we arrive at

|Riem(γ)|2γ = |Weyl(g)|2g + 8|Z(g)|2g + 2n(n+ 1) . (4.5)

Now choose n = 3, so that (X, γ) is a 4-manifold. Then the Pfaffian of the curvature

2-form of (X, γ) is

Pfaff(X, γ) = |Riem(γ)|2γ − 4|Z(γ)|2γ . (4.6)

We define the renormalized Pfaffian by

RenPf(X, γ) := Pfaff(X, γ)− 24 . (4.7)

Using that (X, γ) is Einstein, then Z(γ) = 0. Furthermore, using (4.5) and the fact that

Weyl(g) = 0 since (M, g) is a 3-manifold, then we get that

RenPf(X, γ) = 8|Z(g)|2g . (4.8)

4.2 The proof of theorem 1.2 part (a)

Proof. Now Anderson’s formula [1] for the renormalized volume of a Poincaré-Einstein

4-manifold is

RenV(X, γ) =
4π2

3
χ(X)−

1

24

∫

X
RenPf(X, γ)dV (γ) , (4.9)

where5 χ(X) is the Euler characteristic of X. Since X is a product with an S1 factor,

χ(X) is zero here. Furthermore, RenV(X, γ) is independent of the coordinate t for the S1

factor, so the integral over X becomes β times an integral over M with measure NdV (g).

Then from (4.8) and (4.9), we obtain

RenV(X, γ) = −
β

3

∫

M
|Z(g)|2gNdV (g) =

8π

3
βm ≤ 0 , (4.10)

where the last equality follows from theorem 1.1.

4.3 An example

A rather nice example of lemma 1.2 is afforded by the AdS soliton metric [17]

γ = r2dt2 +
dr2

r2
(

1− a3

r3

) + r2
(

1−
a3

r3

)

dξ2 + r2dθ2, (4.11)

with a > 0, r ∈ [a,∞), and ξ ∈ [0, 4π/3]. The domains of t and θ can be chosen arbitrarily,

so we take θ ∈ [0,Θ] and, to conform with theorem 1.2, t ∈ [0, β] (we need here that

5We use tensor norms throughout, whereas the norms used in [1] are those used for forms. As a result,

numerical coefficients in [1, equations (0.1) and (1.26)] differ from those in equations (4.5), (4.6), and (4.10).
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x ∼ 1/r, as verified immediately below). The Killing vector of interest is ∂
∂t . It is an easy

matter to compute the mass of the t = 0 slice using Wang’s formula. One finds

m = −4πΘβ/3 . (4.12)

Note that it is negative.

To verify theorem 1.2, one can compute the renormalized volume of this manifold using

Anderson’s formula, but a more independent method is to compute it using Hadamard’s

regularization of the volume integral. To begin, we integrate dx/x = dr/[r(1 − 1/r3)] to

find a special defining function

x =
(

r3/2 −
√

r3 − 1
)2/3

. (4.13)

Note that x ∈ [0, 1] and also that x ∼ 1/r as needed above. Using x as a coordinate, we

can write the metric as

γ =
dx2

x2
+

1

42/3
(x−3/2 − x3/2)2

(x−3/2 + x3/2)2/3
dξ2 +

1

42/3
(x−3/2 + x3/2)4/3(dt2 + dθ2) . (4.14)

More to the point, the volume element is

dV (γ) =
1

4x
(x−3 − x3)dxdtdξdθ , (4.15)

keeping in mind that x−3 ≥ x3 for x ∈ (0, 1]. We integrate this volume form using the

above coordinate domains but truncating the x domain to x ∈ [ǫ, 1] for some ǫ > 0. Then

Vǫ =
4π

3
Θβ

∫ 1

ǫ

1

4
(x−4 − x2)dx =

π

9
Θβ

(

1

ǫ3
− 2 + ǫ3

)

. (4.16)

We take the Hadamard finite part as ǫ → 0, which means here that we simply remove the

1/ǫ3 term before taking the limit. We get

RenV(X, γ) = PFǫ→0Vǫ = −
2π

9
Θβ , (4.17)

so by comparing (4.17) with (4.12) we see that RenV(X, γ) = mβ/6, as required.

4.4 The proof of theorem 1.2 part (b)

Proof. Assume now that N has a non-empty zero set which is a closed, connected hyper-

surface H with surface gravity ϑ = |dN |H. Equations (4.8), (4.9), and (1.8) immediately

yield

RenV(X, γ) =
4π2

3

[

χ(X)−
βϑ

2π
χ(H)

]

+
8π

3

[

mβ −
βϑ

2π

|H|

4

]

=
4π2

3

[

1−
βϑ

2π

]

χ(H) +
8π

3

[

mβ −
βϑ

2π

|H|

4

]

,

(4.18)

where β is the circumference of the Killing orbits at infinity (in the conformal metric). and

where we used that X ≃ R
2 ×H so that χ(X) = χ(H).
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In a neighbourhood ofH, we can use Gaussian normal coordinates (ρ, xa) for the metric

g. Then the metric γ = N2dt2 ⊕ g can be written as

γ = N2(ρ, xc)dt2 + dρ2 + hab(ρ, x
c)dxadxb, (4.19)

where N(0, xc) = 0 and hab(0, x
c) is the metric induced on H. Recall that we identify

t ∼ t + β and we have |dN |H =: ϑ 6= 0. Then ϑ = ∂N
∂ρ (0, x

c) 6= 0. Smoothness of γ

then requires that dρ2 + N2dt2 ∼ dρ2 + ρ2dξ2 at ρ = 0, with ξ ∈ [0, 2π]. Therefore,

ϑ = 2π
β . Inserting this in (4.18), the coefficient of χ(H) vanishes and the coefficient of

|H|/4 simplifies to 1, yielding equation (1.10).

5 Open problems

We close by discussing some open problems. One that was raised a long time ago and

which remains open to this day is prompted by the example of section 4.3 except with

dt2 replaced by −dt2 in equation (4.10). These are the AdS soliton metrics [17], which

are nontrivial, globally static, negative mass solutions of (1.1), (1.2) with toroidal (k = 0)

boundary at infinity. We will refer to the static slices as Horowitz-Myers geons [5]. These

slices have negative mass. They evade the positive mass theorem for spin manifolds, even

though they are spin, because the spinor structure does not admit asymptotically constant

solutions of the Witten equation. It is a conjecture of Horowitz and Myers that, amongst

all APEs with scalar curvature R ≥ −n(n−1) and the same flat torus as conformal infinity,

the minimizer of the Wang mass is a Horowitz-Myers geon.6 The original conjecture was

motivated by the AdS/CFT correspondence and gauge theory arguments, and because of

this it was posed in the fixed dimension n = 4, but it seems to us no less plausible in other

dimensions.

Problem 5.1. Choose a fixed flat n− 1 torus, n ≥ 3. Find a complete APE n-manifold

with scalar curvature R ≥= −n(n− 1), with inner boundary empty or a compact minimal

hypersurface, which has this flat torus as its boundary-at-infinity and which has Wang

mass less than that of any Horowitz-Myers geon with the same boundary-at-infinity, or

prove that no such n-manifold exists. This is basically a generalization in dimension of the

problem of proving or disproving conjecture 3 of [17].

In this regard, we recall that Gibbons once attempted to address this conjecture using

the monotonicity of a generalized Hawking mass under the inverse mean curvature flow [13].

He fixed n = 3 and studied the behaviour of a quantity that can be written using our

conventions as

mH(Σ) :=
|Σ|1/2

64π3/2

∫

Σ
(2S −H2 + 4)dV (h) , (5.1)

where Σ is a closed embedded hypersurface and |Σ| :=
∫

Σ dV (h). This quantity ex-

hibits Geroch monotonicity [12]: it is monotonic under mean curvature flow, so that

6Note that in dimension n ≥ 4 there is more than one such Horowitz-Myers geon filling in a given

toroidal boundary-at-infinity. The conjectural minimizer is constructed by attaching the bulk manifold to

the boundary torus in such a manner that the shortest cycle on the torus becomes contractible to a point

in the interior.
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mH(Σ2) ≥ mH(Σ1) whenever Σ2 is obtained by evolving Σ1 outward (toward infinity)

by mean curvature flow. Gibbons’s technique failed to resolve the conjecture because this

quantity diverges to −∞ on the central circle of the AdS soliton.

For sake of comparison, let Q(Σ) denote − 1
8π3/2 times the quantity on the left-hand

side of (3.7), integrated over Σ. Again, we set n = 3. Using (3.7) and (3.9), we obtain

Q(Σ) =
1

64π3/2

∫

Σ

(

2S −H2 + 4 + 2|ATF|
)

|dN |dV (h) , (5.2)

where ATF is the trace-free part of the second fundament form A, and by integrating (3.2)

we have the monotonicity Q(Σ2) ≥ Q(Σ1) whenever Σ2 lies between Σ1 and the boundary-

at-infinity, without regard to whether these surfaces are related by mean curvature flow.

Note that (5.1) and (5.2) are quite similar, but where (5.1) has |Σ|1/2, (5.2) has |dN |. This

seems to help, because it implies that Q(Σ) tends to zero as Σ shrinks down to the central

circle, in contrast to mH . Also, (5.2) contains an ATF term, which seems to be a necessary

modification to the Geroch monotonicity argument, because this term will not be zero for

Horowitz-Myers geons. However, as Σ approaches conformal infinity, Q approaches the

negative of the mass (times a positive constant), yielding only theorem 1.1 and not a proof

of the Horowitz-Myers conjecture.

In light of the conjecture of Horowitz and Myers, then it seems reasonable to wonder

whether there is a version when the boundary-at-infinity is a compact hyperbolic surface;

i.e., when k = −1. It is known that there are static metrics with a horizon in this case [6, 22],

and they form families with mass bounded below, but the mass does become negative along

these families. The lower bound is realized by a cold horizon. It is not known if there are

any complete metrics of this form without a horizon.

Problem 5.2. Choose a fixed closed, orientable, connected, hyperbolic (n− 1)-manifold

Σ, n ≥ 3. Find a complete, boundaryless n-manifold (M, g) and a positive function N

such that

1. (M, g) is APE, with boundary-at-infinity isometric to Σ, and

2. (M, g,N) obeys the system (1.1), (1.2) (equivalently, (1.4)), with |dN | → 0 at infinity,

or show that no such (M, g,N) exists.

If the boundary at infinity were a torus, the solution of this problem of course would

be a Horowitz-Myers geon (M, g), together with N such that −N2dt2⊕g is an AdS soliton.

We know that any metric solving problem 5.2 must have negative Wang mass, or zero

Wang mass if N ≡ 0 since the special case of N ≡ 0 would be a Poincaré-Einstein manifold.

We do not know if such a Poincaré-Einstein manifold exists when k = −1.

Problem 5.3. Choose a fixed closed, orientable, connected, hyperbolic (n− 1)-manifold

Σ, n ≥ 3. Find a complete, boundaryless Poincaré-Einstein n-manifold (M, g) with

boundary-at-infinity isometric to Σ, or show that no such (M, g) exists.

If k were 1, the solution of this problem would be standard hyperbolic n-space. The

Riemannian AdS solitons (4.11) provide nontrivial solutions when k = 0. Thus the k = −1

case is intriguing.
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An obvious direction in which to attempt to generalize the mass formula, the renor-

malized volume calculation, and some of the problems listed above is to attempt to pass

to the stationary but non-static case. In this case, the system (1.1), (1.2) is replaced by a

somewhat more complicated system which we will not write down, whose solution includes

a metric g and lapse function and an additional vector field, the so-called shift vector. The

Killing vector field ∂
∂t is no longer hypersurface orthogonal, but the quotient of spacetime

by the vector field is smooth and it is on this quotient that g is a metric. An obvious first

question is

Problem 5.4. What are the generalizations of theorems 1.1 and 1.2 that apply to solu-

tions stationary Einstein equations?

One would expect such generalizations to look like the formulas of theorems 1.1 and 1.2,

but with additional terms which depend on the curl of the shift vector.

In the spirit of problem 5.2, and motivated by a classic result of Lichnérowicz [20,

pg. 142] for asymptototically flat spacetimes, an intriguing question concerning the AdS

solitons is whether it is possible to endow them with rotation about the central axis (the

locus r = 1 in (4.11) with dt2 replaced by −dt2), without formation of either a horizon or

a naked singularity. The resulting spacetime would be a nontrivial stationary AdS soliton.

Problem 5.5. Are there families of (n + 1)-dimensional, stationary vacuum spacetimes

which include an AdS soliton and are asymptotically locally anti-de Sitter with the same

conformal infinity as this soliton?

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M.T. Anderson, L2 curvature and volume renormalization of AHE metrics on 4-manifolds,

Math. Res. Lett. 8 (2001) 171 [math.DG/0011051].

[2] L. Andersson and M. Dahl, Scalar curvature rigidity for asymptotically locally hyperbolic

manifolds, Ann. Global Anal. Geom. 16 (1998) 1 [dg-ga/9707017].

[3] E. Bahuaud, R. Mazzeo and E. Woolgar, Renormalized volume and the evolution of APEs,

arXiv:1307.4788 [INSPIRE].

[4] K.L. Baker and G.J. Galloway, On the topology of initial data sets with higher genus ends,

Commun. Math. Phys. 336 (2015) 431 [arXiv:1403.0988] [INSPIRE].

[5] T. Balehowsky and E. Woolgar, The Ricci flow of asymptotically hyperbolic mass and

applications, J. Math. Phys. 53 (2012) 072501 [arXiv:1110.0765] [INSPIRE].

[6] D.R. Brill, J. Louko and P. Peldán, Thermodynamics of (3+1)-dimensional black holes with

toroidal or higher genus horizons, Phys. Rev. D 56 (1997) 3600 [gr-qc/9705012] [INSPIRE].
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