
J
H
E
P
0
6
(
2
0
1
5
)
0
4
9

Published for SISSA by Springer

Received: January 10, 2015

Accepted: May 15, 2015

Published: June 8, 2015

Toda 3-point functions from topological strings

Vladimir Miteva and Elli Pomonib,c

aInstitut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin,

IRIS Haus, Zum Großen Windkanal 6, 12489 Berlin, Germany
bDESY Hamburg, Theory Group,

Notkestrasse 85, D–22607 Hamburg, Germany
cPhysics Division, National Technical University of Athens,

15780 Zografou Campus, Athens, Greece

E-mail: mitev@math.hu-berlin.de, elli.pomoni@desy.de

Abstract: We consider the long-standing problem of obtaining the 3-point functions of

Toda CFT. Our main tools are topological strings and the AGT-W relation between gauge

theories and 2D CFTs. In [1] we computed the partition function of 5D TN theories on

S4×S1 and suggested that they should be interpreted as the three-point structure constants

of q-deformed Toda. In this paper, we provide the exact AGT-W dictionary for this relation

and rewrite the 5D TN partition function in a form that makes taking the 4D limit possible.

Thus, we obtain a prescription for the computation of the partition function of the 4D TN

theories on S4, or equivalently the undeformed 3-point Toda structure constants. Our

formula, has the correct symmetry properties, the zeros that it should and, for N = 2,

gives the known answer for Liouville CFT.

Keywords: Supersymmetry and Duality, Conformal andW Symmetry, Topological Strings

ArXiv ePrint: 1409.6313

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP06(2015)049

mailto:mitev@math.hu-berlin.de
mailto:elli.pomoni@desy.de
http://arxiv.org/abs/1409.6313
http://dx.doi.org/10.1007/JHEP06(2015)049


J
H
E
P
0
6
(
2
0
1
5
)
0
4
9

Contents

1 Introduction 1

2 The AGT dictionary 4

3 Toda 3-point functions 6

3.1 Review 6

3.2 Enhanced symmetry of the Weyl invariant part 9

3.3 Pole structure of the Weyl invariant part 11

3.4 The q-deformed Toda field theory 13

4 The TN partition function from topological strings 15

4.1 The 5-brane webs 15

4.2 The topological vertex computation 17

4.3 The 4D limit 22

5 Liouville from topological strings 23

6 W3 from topological strings 25

7 Conclusions and outlook 30

A Parametrization of the TN junction 32

B Conventions and notations for SU(N) 34

C Special functions 35

C.1 The Υ function 35

C.2 The q-deformed Υ function 38

C.3 The finite product functions 40

D Computation of the TN partition function 41

1 Introduction

The AGT(-W) correspondence [2–4] is a relationship between, on one side, the 2D Liouville

(Toda) CFT on a Riemann surface of genus g with n punctures and, on the other side, the

4D N = 2 SU(2) (SU(N)) quiver gauge theories obtained by compactifying the 6D (2,0)

SCFT on that same surface. The correlation functions of the 2D Toda WN conformal field
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theories are obtained from by the partition functions of the corresponding 4D N = 2 gauge

theories as

ZS4
=

∫

[da]
∣

∣

∣Z4D
Nek(a,m, ǫ1,2)

∣

∣

∣

2
∝ 〈Vα1(z1) · · ·Vαn(zn)〉Toda . (1.1)

The conformal blocks of the 2D CFTs are given by the appropriate instanton partition

functions, while the three point structure constants should be obtained by the S4 par-

tition functions of the TN superconformal theories. These partition functions were until

recently [1, 5] unknown, with the sole exception of the W2 case, i.e. the Liouville case,

whose three point structure constants are given by the famous DOZZ formula [6, 7]. The

AGT(-W) relation (1.1) holds after the mass parameters m of the gauge theory, the UV

coupling constants and the vacuum expectation values a of the scalars in the vector mul-

tiplet (the Coulomb moduli) are appropriately identified with, respectively, the external

momenta α of the primary fields, the moduli zi of the 2D surface (i.e. the sewing parame-

ters) and the internal momenta over which we integrate. Finally, the IR regulators of the

gauge theory, which are given by the Omega deformation parameters ǫ1,2, are identified

with the Toda dimensionless coupling constant via b = ǫ1 = ǫ−1
2 . The AGT conjecture, i.e.

the N = 2 case, was recently proven in [8–13], while a lot of evidence and even proofs for

specific cases exist) [14–16] in support of the AGT-W correspondence for N > 2.

Similarly, there exists a 5D version of the AGT(-W) relation1 [18, 19] (see also [1, 20–

30]) which relates the 5D Nekrasov partition functions on S4 × S1 to correlation functions

of q-deformed Liouville (Toda) field theory:

ZS4×S1
=

∫

[da]
∣

∣

∣Z5D
Nek(a,m, β, ǫ1,2)

∣

∣

∣

2
∝ 〈Vα1(z1) · · ·Vαn(zn)〉q-Toda , (1.2)

where β = − log q is the circumference of the S1. Importantly, the integral of the norm

squared of 5D Nekrasov partition function is the 5D superconformal index ZS4×S1
, which

as discussed recently in [31] can be computed using the topological string partition function

ZS4×S1
=

∫

[da] |Z5D
Nek(a)|2 ∝

∫

[da] |Ztop(a)|2 . (1.3)

From both the 4D and the 5D AGT-W relations a very important element is missing:

the three point functions of the WN Toda CFT. Computing the three point functions of

the WN Toda CFT has been a long standing unsolved problem. From the the CFT side,

the state of the art is due to Fateev and Litvinov, who in [32–34], were able to compute

the 3-point functions of Toda primaries for the special case in which one of the fields is

semi-degenerate, using [35]. On the gauge theory side, the 3-point functions correspond

to the partition functions of the TN theories, but since these theories lack2 any known

1Originally suggested in [17].
2After our paper, [36] discovered that the topological string partition functions of 5D mass-deformed

TN theories, before the removal of the decoupled content (4.12), can be rewritten as the partition function

of the linear quiver [SU(N)] − U(N − 1) − U(N − 2) − · · ·U(2) − U(1), where the bracket denotes flavor

symmetry. This led the authors of [36] to propose that the partition function of the linear quiver [SU(N)]−
SU(N − 1) − SU(N − 2) − · · · SU(2) − SU(1) reproduces the partition function of the TN quiver after the

removal of the decoupled content. One may interpret this proposal as providing a Lagrangian description

of the 5D TN theories through these quivers.

– 2 –
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Lagrangian description, the usual methods of computing the partition functions are not

applicable.

In [1] we computed the partition functions of the 5D TN theories on S4×S1 by using the

web diagram provided by [37] and by employing the refined topological vertex formalism

of [38, 39]. We further argued that these partition functions should give the three point

functions of q-deformed Toda, which was also proposed earlier in [40]. Our results were

checked by computing the 5D superconformal index, i.e. the partition function on S4×S1,

using the prescription in [31] and comparing it to the result obtained via localization in [41].

The same partition functions were also obtained in [5] and the two computations agree.

More comparisons with the superconformal index were given in the recent work [42].

In this paper we show how to, in principle,3 take the 4D limit, thus obtaining the 4D

TN partition functions. Through the AGT(-W) relation, they are identified with the usual,

undeformed Toda three point functions. Our formula has the correct symmetry properties,

zeros and reproduces the known answer for the Liouville CFT. Furthermore, we carefully

study the 5D AGT-W dictionary. For that, it was very important to examine the known

q-Liouville case [23, 40] for which for the first time we were able to write the formula with

the complete factors, thanks to the exact definition of the functions Υq, see appendix C.2.

Our method of attacking the problem of solving Toda, even though indirect, is very

powerful for the following reasons. For 2D CFTs with only Virasoro symmetry the mul-

tipoint correlation functions of Virasoro descendants can be obtained from the ones con-

taining only Virasoro primary fields [44]. On the other hand, for the WN Toda CFTs with

N > 2 complete knowledge of the correlation functions of WN primary fields is not enough

to obtain the correlation functions of descendents. Fully solving Toda means being able to

construct the complete set of correlation functions both of primaries and descendants. Ob-

taining the three point functions with descendants is very naturally done using topological

strings and is work in progress [45].

Since this article relates two somewhat disjointed fields, each used to its own notations,

we wish to include a reader’s guide to the other sections. We begin in section 2 with a pre-

sentation of the parametrizations and the precise relations between the partition functions

of section 4 and the correlators of section 3. In the following section 3, we review shortly

the Toda CFT, introduce the associated notation and make some observations regarding

the symmetries of the correlation functions that to our knowledge are not available in the

literature. We finish section 3 by a discussion of the pole structures and the q-deformations

of the correlation functions. In section 4, we give a short review of the derivation of the

partition functions of the TN theories, rewrite them using the functions Υq that in our

opinion are the appropriate tools to use in this context. We then discuss their 4D limit. In

sections 5 and 6 we illustrate our claims for the two simplest cases with N = 2 and N = 3.

The reader can find a collection of useful formulas, notations and parametrizations in the

in appendices. Finally, the exact definition of the functions Υq is given in appendix C.2

together with a discussion of their properties.

3The specification “in principle” refers to the fact that there is still a missing ingredient which is to

perform the sums in (4.10). This work can be found in a separate [43] publication, where we compute some

of the sums.

– 3 –
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Figure 1. This figure depicts the identification of the α weights appearing on the Toda CFT side

with the position of the flavor branes on the TN side, here drawn for the case N = 4.

2 The AGT dictionary

The main goal of this section is to provide the dictionary needed to relate the topological

string amplitudes of section 4 to the Toda CFT correlation functions of section 3. First,

we review the parameters of the Omega deformation. The circumference of the 5D circle

is β > 0 and the Ω background parameters are ǫ1 and ǫ2 from which we derive

q := e−βǫ1 , t := eβǫ2 . (2.1)

Furthermore, we need to also define4

q := e−β , x :=

√

q

t
= q

ǫ+
2 , y :=

√
qt = q

ǫ−
2 , (2.2)

with ǫ± := ǫ1 ± ǫ2, and q the q-deformation parameter. The combinations x and y are

the natural variables, fugacities of the 5D superconformal index. When we need to relate

the topological string partition functions to the Toda CFT correlators, the Ω background

parameters need to be specialized as

ǫ1 = b, ǫ2 = b−1, (2.3)

which implies in particular that |q| < 1, |q| < 1, |t| > 1 and |x| < 1 since we take b to be

positive.

On the Toda CFT side, see section 3, one uses the weights αi parametrized by (3.4) to

label the primary fields, while on the TN theory side, one uses the positions of the exterior

branes, see section 4 and appendix A, as parameters. The rough relationship is illustrated

in figure 1 and the precise identifications are

4The combinations β ǫi are dimensionless, but not β or ǫi separately. In this paper we rescale them by

the dimensionful constant
√
ǫ1ǫ2 while keeping their product β ǫi fixed so that each one of them β and ǫi

are separately dimensionless.
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mi = (α1 −Q, hi) = N
N−1
∑

j=i

αj
1 −

N−1
∑

j=1

jαj
1 −

N + 1− 2i

2
Q,

ni = − (α2 −Q, hi) = −N
N−1
∑

j=i

αj
2 +

N−1
∑

j=1

jαj
2 +

N + 1− 2i

2
Q, (2.4)

li = − (α3 −Q, hN+1−i) = −N
N−1
∑

j=N+1−i

αj
3 +

N−1
∑

j=1

jαj
3 −

N + 1− 2i

2
Q,

where hi are the weights of the fundamental representation of SU(N). In appendix B the

reader can find all the group theory conventions. In particular, for N = 2, we have

m1 = −m2 = α1
1 −

Q

2
, n1 = −n2 = −α1

2 +
Q

2
, l1 = −l2 = α1

3 +
Q

2
, (2.5)

while for N = 3 we have

m1 = 2α1
1 + α2

1 −Q, m2 = −α1
1 + α2

1, m3 = −α1
1 − 2α2

1 +Q, (2.6)

with similar expressions for the ni and li.

Having set up the parametrization, we are ready to present our full claim. For that it

is important to stress that from the Toda CFT 3-point structure constants C, see (3.10),

we can extract the Weyl-invariant structure constants C as

C(α1,α2,α3) =

(

[

πµγ(b2)b2−2b2
]

(2Q,ρ)
b

3
∏

i=1

Y (αi)

)

× C(α1,α2,α3), (2.7)

with the functions Y (α) defined in (3.11) encoding all the information about the Weyl

transformation. All the details needed are introduced in section 3. We claim that the

exact AGT-W dictionary relates the Weyl-invariant structure constants C to the 4D TN

partition function on S4 (ZS4

N ) as

C(α1,α2,α3) = const×ZS4

N (2.8)

where the constant part can be a function of N and of the Omega deformation parameters

but cannot be a function of the masses. The partition function on S4 itself is obtained

from the partition function on S4×S1, also called the 5D superconformal index, by taking

the appropriate limit when the circumference β of the S1 goes to zero:

ZS4

N = const× lim
β→0

β
−

χN
ǫ1ǫ2 ZS4×S1

N . (2.9)

The partition function ZS4×S1

N is contained in (4.22) and the power χN of the divergence

in (4.24). Moreover, as far as the 5D AGT-W dictionary is concerned, we need (2.3) to set

b = ǫ1 = ǫ−1
2 and obtain

Cq(α1,α2,α3) =
Cq(α1,α2,α3)

Jq(α1,α2,α3)
= const× Cq(α1,α2,α3)

∏3
j=1 Yq(αj)

= const× (1− q)−χNZS4×S1

N ,

3
∏

j=1

Yq(αj) = const×
[

(

1− qb
)2b−1(

1− qb
−1)2b

]−
∑3

k=1(αk,ρ) (
1− q

)χN |Zdec
N |2 , (2.10)

– 5 –
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where again the constant parts can only depend on N and of the Omega deformation pa-

rameters but cannot be functions of the parameters that define the theory, i.e. the masses.

The Cq are the q-deformed Weyl-invariant structure constants (3.42), Jq the q-deformation

of the Weyl-covariant part of the structure constants (3.41) and Zdec
N the partition func-

tion of some extra degrees of freedom (4.12) that are included in the topological string

calculation but then decouple from the 5D theory. In [1] we refer to them as non-full spin

content. Note that the second line of (2.10) is the same as equation (4.13), where the

constant factor is explicitly written.

Finally, putting (2.9) and (2.10) together, we obtain the final identification

C(α1,α2,α3) = const×
(

πµγ(b2)b2−2b2
)

(2Q−
∑3

i=1 αi,ρ)
b

lim
β→0

∣

∣Zdec
N

∣

∣

2ZS4×S1

N

β2Q
∑3

i=1(αi,ρ)
(2.11)

where the limit is well defined up to an overall divergent term that only depends on β and

b. The above equation gives the complete relationship between the Toda 3-point structure

constants and the partition functions of the TN theories.

3 Toda 3-point functions

We begin this section with a review of known facts about Toda 3-point functions of three

primaries that we will need in later sections. We follow [32–34] whenever possible. We then

discuss the symmetry enhancement of the Weyl invariant part of the 3-point functions as

well as it’s pole structure. We conclude the section with a generalization of these facts for

the q-deformed Toda.

3.1 Review

The Lagrangian of the Toda CFT theory is given by

L =
1

8π
(∂νϕ, ∂

νϕ) + µ
N−1
∑

k=1

eb(ek,ϕ), (3.1)

where ϕ :=
∑N−1

i=1 ϕiωi and ek, respectively ωk are the simple roots, respectively funda-

mental weights of SU(N). We have collected all useful definitions and notations in in

appendix B for the convenience of the reader. The parameter µ is called the cosmological

constant. The theory defined by (3.1) is invariant under the exchange b ↔ b−1, which sends

the cosmological constant to its dual µ̃, defined in such a way that

(

πµ̃γ(b−2)
)b !

=
(

πµγ(b2)
)

1
b =⇒ µ̃ =

(

πµγ(b2)
)1/b2

πγ(1/b2)
. (3.2)

The Toda CFT has a WN higher spin chiral symmetry generated by the spin k fields

W2 ≡ T , W3, . . . ,WN . The fields that are primary underWN are denoted by Vα, are labeled

by a weight of SU(N), i.e. an (N − 1)-component vector α and are given explicitly by

Vα := e(α,ϕ). (3.3)

– 6 –
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For the sake of avoiding some fractions, we shall parametrize the weights α of the fields

Vαi entering the correlation functions as follows

αi = N

N−1
∑

j=1

αj
iωj . (3.4)

The central charge of the Toda CFT and the conformal dimension of the primary fields are

c = N − 1 + 12 (Q,Q) = (N − 1)
(

1 +N(N + 1)Q2
)

, ∆(α) =
(2Q−α,α)

2
, (3.5)

where Q := Qρ = (b + b−1)ρ with the Weyl vector ρ defined in (B.3). The conformal

dimension, as well as the eigenvalues of all the other higher spin currents Wk are invariant

under the affine5 Weyl transformations (B.9) of the weights αi. Furthermore, the primary

fields of Toda CFT transform under an affine Weyl transformations α → w ◦α as follows

Vw◦α = R
w(α)Vα (3.6)

with the reflection amplitude R given by the expression

R
w(α) :=

A(α)

A(w ◦α)
. (3.7)

Here, as in [34], we define the function

A(α) :=
(

πµγ(b2)
)

(α−Q,ρ)
b

∏

e>0

Γ (1− b (α−Q, e)) Γ
(

−b−1 (α−Q, e)
)

. (3.8)

The 2-point correlation functions of primary fields are fixed by conformal invariance

and by the normalization (3.3). They read

〈Vα1(z1, z̄1)Vα2(z2, z̄2)〉 =
(2π)N−1δ(α1 +α2 − 2Q) +Weyl-reflections

|z1 − z2|4∆(α1)
, (3.9)

where “Weyl-reflections” stands for additional δ-contributions that come from the field

identifications (3.6).

In this article, we shall be mostly interested in the three point functions of primary

fields. Their coordinate dependence is fixed by conformal symmetry up to an overall

coefficient called the 3-point structure constants C(α1,α2,α3) as follows:

〈Vα1(z1, z̄1)Vα2(z2, z̄2)Vα3(z3, z̄3)〉 =
C(α1,α2,α3)

|z12|2(∆1+∆2−∆3)|z13|2(∆1+∆3−∆2)|z23|2(∆2+∆3−∆1)
,

(3.10)

where we have used zij := zi − zj .

Due to the property (3.6), the 3-point structure constants are not invariant under

affine Weyl reflections of the weights αi, but are instead covariant and transform like

5One should not confuse the affine Weyl tranformation, i.e. Weyl reflections accompanied by two trans-

lations, with Weyl reflections belonging to the Weyl group of the affine Lie algebra.

– 7 –
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the primaries themselves. As [34], we will find it advantageous to talk about the Weyl

invariant part of the 3-point structure constants. For that purpose, it is useful to define

the functions6 Y as

Y (α) :=
[

πµγ(b2)b2−2b2
]− (α,ρ)

b
∏

e>0

Υ((Q−α, e))

=
[

πµγ(b2)b2−2b2
]−N

2b

∑N−1
j=1 αjj(N−j)

N−1
∏

k=1

N−k
∏

i=1

Υ
(

kQ−N(αi + · · ·+ αi+k−1)
)

,

(3.11)

where the product in the first line goes over all N(N−1)
2 positive roots of SU(N). These

functions obeys the same reflection property as the primary fields, i.e.

Y (w ◦α) = R
w(α)Y (α) . (3.12)

The transformation property (3.12) under affine Weyl transformation can be easily derived

for reflections on the simple roots ei by noting that for any function f

∏

e>0

f((Q−α, e)) 7→
∏

e>0

f((Q−α, e− ej (ej , e))) =
∏

e>0
e 6=ej

f((Q−α, e))× f(− (Q−α, ej)),

(3.13)

where the transformation acts as wi ◦α = α− (α−Q, ei) ei. After that one uses Υ(−x) =

Υ(x+Q) as well as equation (C.4) to show (3.12). As a final remark on Y (α), we observe

that this function is zero if α is a multiple of a fundamental weight and in particular it has

a zero of order (N−1)(N−2)
2 if we set α = κω1 or α = κωN−1.

Now, we can introduce the Weyl invariant part of the structure constants

C(α1,α2,α3) :=
C(α1,α2,α3)

[

πµγ(b2)b2−2b2
]
(2Q,ρ)

b
∏3

i=1 Y (αi)
. (3.14)

by dividing out the piece that transforms non-trivially under Weyl transformations. The

function C of the weights α is independent of the cosmological constant µ and is invariant

under affine Weyl reflections in the α. Anticipating a bit, we will show in the later sections

that the Weyl invariant part of the 3-point structure constants has a higher symmetry than

the naive affine Weyl symmetry of SU(N)3. In particular, for N = 2 it is invariant under

the SU(4) Weyl group, while for N = 3 it is invariant under the E6 Weyl group.

While the general formula for the 3-point structure constants of Toda CFT is not

known, they have been computed in special cases. The formula for the structure constants

of WN for the degenerate case in which one of the three weights becomes proportional to

the first or the last fundamental weight, i.e. α3 = κω1 or α3 = κωN−1 is known from [32]

6For the Liouville case, these functions are also introduced by AGT [2] and labeled by f(α).

– 8 –
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and reads7

C(α1,α2,κωN−1) =
(

πµγ(b2)b2−2b2
)

(2Q−
∑3

i=1 αi,ρ)
b ×

× Υ′(0)N−1Υ(κ)
∏

e>0Υ((Q−α1, e))Υ((Q−α2, e))
∏N

i,j=1Υ( κ

N + (α1 −Q, hi) + (α2 −Q, hj))
.

(3.15)

We remark that in the limit in which the degenerate field becomes the identity, i.e. κ → 0

one can show that the 3-point structure constants (3.15) converge to (3.9).

In the N = 2 case, the degeneration doesn’t matter since there is only one fundamental

weight anyway and (3.15) reduces to (we set κ = 2α3) the famous DOZZ formula8

C(α1,α2,α3) =
(

πµγ(b2)b2−2b2
)

Q−
∑3

i=1 αi
b Υ′(0)

∏3
i=1Υ(2αi)

Υ(
∑3

i=1 αi −Q)
∏3

j=1Υ(
∑3

i=1 αi − 2αj)
,

(3.16)

which was conjecture by [6, 7] and derived by [46, 47].

3.2 Enhanced symmetry of the Weyl invariant part

In this subsection, we shall make a couple of observations on the symmetries of the Weyl

invariant part of the structure constants that to our knowledge are not found in the liter-

ature.

In the Liouville case (N = 2) the Weyl invariant piece of the structure constants (3.14)

take the form

C(α1,α2,α3) =
Υ′(0)

Υ(α1 + α2 + α3 −Q)Υ(α1 + α2 − α3)Υ(α1 − α2 + α3)Υ(−α1 + α2 + α3)
.

(3.17)

At this point, we use (2.5) and replace the αi by the m1, n1 and l1 as

α1 = m1 +
Q

2
, α2 = −n1 +

Q

2
, α3 = l1 +

Q

2
. (3.18)

Setting then

m1 =
u1 + u3

2
, n1 =

u2 + u3
2

, l1 =
u1 + u2

2
(3.19)

and using the symmetries of the Υ functions leads to the following compact expression for

the Weyl invariant structure constants of the Liouville CFT

C(α1,α2,α3) =
Υ′(0)

∏4
i=1Υ(ui +

Q
2 )

, where
4

∑

i=1

ui = 0. (3.20)

We observe that the above is invariant under the SU(4) Weyl group that acts as the

permutation group S4 on the variables ui. We have thus uncovered the presence of a

7In [34] a more general formula was derived for N = 3 for the case of semi-degenerate fields α3 =

κω2 −mbω1 with m integer. We will not need it here.
8For N = 2 we set αi = 2αiω1, i.e. we omit the unnecessary second index and set α1

i ≡ αi.
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“hidden” symmetry group. In fact, in the next section, we shall find that the enhanced

symmetry becomes an SO(8), see (3.29).

The N = 3 case is considerably more involved. For reasons that will become apparent

shortly, we will label by an index j = 1, 2, 3 the weights h
(j)
i of the three different SU(3)s

that appear, i.e. each αj lives in its own copy of the SU(3) weight space labeled by j.

Using [34], we know that C is invariant not only under SU(3) affine Weyl reflections of the

αj ’s, but also under the 27 new transformations

α1 → α1 − ςijkh
(1)
i , α2 → α2 − ςijkh

(2)
j , α3 → α3 − ςijkh

(3)
k , (3.21)

where i, j and k are fixed and we have defined

ςijk :=
(

α1 −Q, h
(1)
i

)

+
(

α2 −Q, h
(2)
j

)

+
(

α3 −Q, h
(3)
k

)

. (3.22)

We can now make the following set of observations. First, the affine SU(3) Weyl transfor-

mations in the αi become the usual SU(3) Weyl reflections when expressed in the variables

mi, ni and li defined via (2.4), i.e. they act as the S3 permutations. Using the parametriza-

tion (2.4), we then observe that

ςijk = mi − nj − l4−k, where
3

∑

i=1

mi =
3

∑

i=1

ni =
3

∑

i=1

li = 0. (3.23)

Therefore, the transformation (3.21) for a given choice of i, j and k acts of the variables

ma, nb and lc as

ma → ma − (mi − nj − l4−k)

(

δai −
1

3

)

,

nb → nb + (mi − nj − l4−k)

(

δbj −
1

3

)

,

lc → lc + (mi − nj − l4−k)

(

δc,4−k −
1

3

)

,

(3.24)

where no sum over i, j, k is to be taken. We now want to interpret the new transforma-

tions (3.21) as being the result of the (non-affine) action of the Weyl group of E6. Since the

Weyl group is generated by the Weyl reflections associated to the simple roots, we only need

to consider those. We have 9 weights h
(j)
i subject to the three constraints

∑3
i=1 h

(j)
i = 0

and we can build the E6 root system from them as

eE6
1 = h

(1)
1 − h

(1)
2 , eE6

2 = h
(1)
2 − h

(1)
3 , eE6

3 = h
(1)
3 + h

(2)
3 + h

(3)
1 ,

eE6
4 = −h

(3)
1 + h

(3)
2 , eE6

5 = −h
(3)
2 + h

(3)
3 , eE6

6 = h
(2)
2 − h

(2)
3 , (3.25)

where we refer to figure 2 for the numbering of the E6 simple roots. We observe that
(

eE6
i , eE6

j

)

is the Cartan matrix of E6, if we require
(

h
(k)
a , h

(l)
b

)

= 0 if k 6= l. There-

fore, we have constructed the E6 root system within the space spanned by the h
(j)
i . Fur-

thermore, we can obtain all the variables mi, ni and li by taking the scalar products

– 10 –
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Figure 2. The figure shows the E6 Dynkin diagram together with our labeling of the simple roots.

(

∑3
i=1(αi −Q), eE6

j

)

, where each αk − Q is expressed only through the h
(k)
i . We find

that Weyl reflections for the simple roots eE6
i with i 6= 3 correspond to permutations of

the m’s, n’s and l’s among themselves. However, the Weyl reflection corresponding to eE6
3

transforms the weights as

h
(j)
i 7→ eE6

3 · h(j)i = h
(j)
i −

(

eE6
3 , h

(j)
i

)

eE6
3 (3.26)

which implies that the variables change as

mi 7→





3
∑

j=1

(αj −Q), eE6
3 · h(1)i



 , ni 7→ −





3
∑

j=1

(αj −Q), eE6
3 · h(2)i



 ,

li 7→ −





3
∑

j=1

(αj −Q), eE6
3 · h(3)4−i



 .

(3.27)

Going through the computations, we find explicitly

m1 → m1 + λ, m2 → m2 + λ, m3 → m3 − 2λ,

n1 → n1 − λ, n2 → n2 − λ, n3 → n3 + 2λ, (3.28)

l1 → l1 − 2λ, l2 → l2 + λ, l3 → l3 + λ,

where 3λ = m3 − n3 − l3. We easily see that this transformation corresponds to (3.21) for

i = 3, j = 3 and k = 1. The transformations corresponding to the other choices of i, j and

k can be obtained by acting with some other eE6
l first. Hence, the Weyl transformations of

the three SU(3) can be combined with (3.21) to generate the Weyl group of the entire E6.

For the cases N ≥ 4 the full enhanced symmetry of the Weyl invariant structure

constants is not completely known. We shall argue in the conclusions that the enhanced

symmetry should contain E7 in the case N = 4 and E8 for N = 6.

3.3 Pole structure of the Weyl invariant part

We see from (3.20), that the poles for the N = 2 Liouville case are all captured by the

expression

[

4
∏

i=1

Υ(ui +
Q

2
)

]−1

=





∏

h∈8v

G

(

Q

2
+

(

3
∑

i=1

(αi −Q), h

))





−1

, (3.29)

where we used the function G(x) = 1
Γb(x)

with Υ(x) = G(x)G(Q − x) introduced in [34],

see (C.11). Using the functions G allows us to see that the enhanced symmetry group is
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bigger than SU(4); specifically it is SO(8). The representation 8v appearing on the right

hand side of (3.29) is the vector representation of SO(8) which decomposes as the 4⊕ 4 of

SU(4). The weights h are defined as SU(4) weights and in the fundamental representation

4 they are9

h
SU(4)
1 = h

(1)
1 − h

(2)
1 + h

(3)
1 , h

SU(4)
2 = −h

(1)
1 + h

(2)
1 + h

(3)
1 ,

h
SU(4)
3 = h

(1)
1 + h

(2)
1 − h

(3)
1 , h

SU(4)
4 = −h

(1)
1 − h

(2)
1 − h

(3)
1 , (3.30)

with the weights of 4 being the negatives of the above.

Moving on to the case with N = 3, it was argued in [34] that the pole structure of the

full correlation function C(α1,α2,α3) is given by

C(α1,α2,α3) = F





3
∏

i1,i2,i3=1

Z

(

3
∑

k=1

(αk −Q, h
(k)
ik

)

)





−1

= F





3
∏

i,j,k=1

Z(mi − nj − lk)





−1

,

(3.31)

where F is some unknown entire function and the function Z is defined in (C.12), Z(x) :=

G(Q+ x)G(Q− x). Using the E6 Weyl symmetry of C, it follows that the poles of C are

contained in

C(α1,α2,α3) ∼



Z(0)3
3
∏

i,j,k=1

Z(mi − nj − lk)
3
∏

i<j=1

Z(mi −mj)Z(ni − nj)Z(li − lj)





−1

,

(3.32)

where Z(0)3 is just convenient normalization. We recognize in this expression the weights of

the 78-dimensional adjoint representation of E6 expressed using the weights of SU(3)3 ⊂ E6,

C(α1,α2,α3) ∼
1

∏

h∈78G
(

Q+
(

∑3
i=1(αi −Q), h

)) . (3.33)

The additional poles introduced in (3.32) are completely canceled by the Weyl covariant

part in the formula (3.14) relating them to the 3-point structure constants, because

3
∏

k=1

Y (αk) ∝
∏3

i<j=1Z(mi −mj)Z(ni − nj)Z(li − lj)
∏3

k=1

∏

e>0 (Q−αk, e) Γ
(

b (Q−αk, e)
)

Γ
(

b−1 (Q−αk, e)
) (3.34)

where we have used (3.11) and (C.12). The proportionality factor in (3.34) depends only

on µ and b and has no zeroes or poles while the additional factors of Γ in the denominator

of (3.34) lead only to more zeroes of
∏3

k=1 Y (αk). Thus, multiplying (3.32) with the Weyl

covariant part, see (3.14), in order to get the full 3-point structure constants will cancel

the extra poles that we introduced.

9Note that in order to get the suitably normalized scalar product for SU(4), we need to define

(α1,α2)
SU(4) := (α1,α2)

SU(2)3

/2, i.e. we compute the scalar products as before and divide the answer by

two.
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Finally, it is compelling to conjecture that for any N the poles of the Weyl invariant

structure constants should behave as

C(α1,α2,α3) ∼
1

∏

h∈RG
(

N−1
2 Q+

(

∑3
i=1(αi −Q), h

)) (3.35)

for an appropriate representation R of SU(N)3.

3.4 The q-deformed Toda field theory

One of our goals in this paper is to show how to use the topological string formalism

to solve the Toda field theory. This will require a careful study of the q-deformed Toda

correlation functions which topological strings naturally provide and to then learn how to

take the q → 1 limit. For this purpose here we generalize some of the formulas that we

discussed in the previous sections. An incomplete list of references includes [1, 18–27]. This

section goes hand in hand with appendix C.2, where we define the q-deformed version of

the Υ functions and discuss in detail its symmetry properties as well as its zeros. To our

knowledge these formulas do not exist in the literature.

We begin by stressing some defining properties that all the q-deformed formulas

must have:

• They must reproduce the exact undeformed formula in the q → 1 limit. With no

further prefactor, unless stated otherwise. That will be the case of the Cq (3.36).

• For the N=2 case, they must give the known answers, insofar they are available [23].

• They must have exactly the same symmetries and transformation properties as the

undeformed ones under the (affine) Weyl, as well as the enhanced symmetry group.

• They must have their poles and zeros in the same place with the undeformed ones.

To be more precise, the q-deformed functions have more zeroes/poles, specifically a

whole tower of zeroes/poles for each zero/pole of the undeformed function as discussed

in (C.31). The tower is generated by beginning with the undeformed zero/pole and

translating it by m 2πi
log q = −m2πi

β , where m is a positive integer.

We moreover want to stress that the q-deformed version of Toda field theory does not

have a known Lagrangian description. Everything is defined algebraically in analogy to

the usual case via a deformation of the WN algebra, see [48] and references therein. Since

no Lagrangian description is known for the q-deformed Toda field theory, we can compute

everything up to overall factors that in the q → 1 limit give the cosmological constant.

Thus, we define the 5D correlation functions up to the πµγ(b2) term, since they together

form the b → b−1 invariant combination. Explicitly, we have for the q-deformed 3-point

structure constants

Cq(α1,α2,α3)
q→1−→

(

πµγ(b2)
)−

(2Q−
∑3

i=1 αi,ρ)
b C(α1,α2,α3) . (3.36)
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Obviously, after the q → 1 limit is taken and the undeformed answer is obtained, it is clear

how one can put back the appropriate πµγ(b2) factors for a given correlation function, thus

obtaining the full result with all the factors.

As we already said in section 3.1 the Weyl invariant part C is independent of the

cosmological constant and thus it’s q-deformed version should be straightforward. However,

the Weyl covariant part with which we need to multiply in order to obtain the full Cq will

converge to its undeformed version, up to an πµγ(b2) factor. In particular, the q-deformed

version of the functions Y defined in (3.11) is

Yq(α) :=

[

(

1− qb
)2b−1(

1− qb
−1)2b

(1− q)2Q

]−(α,ρ)
∏

e>0

Υq ((Q−α, e)) , (3.37)

where the functions Υq are introduced in (C.26). Using (C.30), we find that this function

behaves under affine Weyl transformations as

Yq(w ◦α) = R
w

q (α)Yq(α) (3.38)

with the q-deformed version of the reflection amplitude

R
w

q (α) :=
Aq(α)

Aq(w ◦α)
(3.39)

being composed out of

Aq(α) :=
∏

e>0

Γ
qb

−1 (1− b (α−Q, e)) Γqb
(

−b−1 (α−Q, e)
)

. (3.40)

Note that also the q-deformed version of the reflection amplitude in the q → 1 limit gives

R
w up to an overall πµγ(b2) factor. The q-deformed factor that we need to divide by in

order to get the Weyl invariant structure constants is

Jq(α1,α2,α3) =

[

(

1− qb
)2(

1− qb
−1)2b2

(1− q)2(1+b2)

]

(2Q,ρ)
b 3

∏

i=1

Yq(αi) = const×
3
∏

i=1

Yq(αi), (3.41)

so that like in (3.14)

Cq(α1,α2,α3) :=
Cq(α1,α2,α3)

Jq(α1,α2,α3)
. (3.42)

The q-deformation version of the Fateev and Litvinov formula (3.15) for the 3-point

correlation functions with one degenerate insertion reads

Cq(α1,α2,κωN−1) =

(

(

1− qb
)2(

1− qb
−1)2b2

(1− q)2(1+b2)

)

(2Q−
∑3

i=1 αi,ρ)
b

×

×
Υ′

q(0)
N−1Υq(κ)

∏

e>0Υq((Q−α1, e))Υq((Q−α2, e))
∏N

i,j=1Υq(
κ

N + (α1 −Q, hi) + (α2 −Q, hj))
.

(3.43)
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This formula to our knowledge does not appear anywhere else in the literature. We write

it down as the unique formula that has the properties mentioned at the beginning of the

section. First, it has its poles and zeros in the correct positions, see (C.5). Second, it has

the correct covariance properties under the affine Weyl symmetries of the non-degenerate

fields (3.39). Finally, for the N = 2 case, (3.43) reduces to the q-deformation of the DOZZ

formula (up to the µ dependence)

Cq(α1,α2,α3) =

(

(

1− qb
)2(

1− qb
−1)2b2

(1− q)2(1+b2)

)

Q−
∑3

i=1 αi
b

×
Υ′

q(0)
∏3

i=1Υq(2αi)

Υq(
∑3

i=1 αi −Q)
∏3

j=1Υq(
∑3

i=1 αi − 2αj)
, (3.44)

derived in [40]. From it we can extract the q-deformed version of the Weyl invariant part

using equation (3.42),

Cq(α1,α2,α3) =
Υ′

q(0)

Υq(
∑3

i=1 αi −Q)
∏3

j=1Υq(
∑3

i=1 αi − 2αj)
=

Υ′
q(0)

∏4
i=1Υq(ui +

Q
2 )

, (3.45)

which immediately gives the he correct undeformed C

Cq(α1,α2,α3)
q→1−→ C(α1,α2,α3) (3.46)

as it is in equations (3.17) and (3.20) with no further factors.

4 The TN partition function from topological strings

In this section we introduce the formula for the 5D TN partition functions that we computed

in [1] and we discuss how they can be brought to a form that allows us to take the 4D limit

(β → 0) in order to obtain the TN partition functions on S4. Since the parametrization is

crucial, we begin by carefully discussing it and the way it is read off from the web diagrams.

Some details of the computations are presented in appendix D.

The TN theories are isolated strongly coupled fixed points that one can discover by

taking the strong coupling limit of the SU(N)N−2 or of the U(N−1)×U(N−2)×· · ·×U(1)

linear quivers. The calculation of the TN partition function is not possible using any

purely field theoretic method currently known, because the TN theories have no known

Lagrangian description. The only applicable method is string theory and in particular

5-brane webs [49, 50] from which the answer is derived using topological strings.

4.1 The 5-brane webs

A very short review of 5-brane webs is in order. First, 5D N = 1 gauge theories can be em-

bedded in string theory by using type IIB (p, q) 5-brane webs [49, 50]. All the information

needed to describe the low energy effective theory on the Coulomb branch is encoded in the

web diagrams, through which the 5D SW curves can be easily derived [22, 49–51]. Further-

more, 5D N = 1 gauge theories can also be realized using geometric engineering [52, 53],
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in particular M-theory compactified on Calabi-Yau threefolds. This alternative descrip-

tion provides an efficient way of computing the Nekrasov partition functions of the gauge

theories by computing the partition functions of topological strings living on these back-

grounds. Recent reviews on the subject can be found in [54, 55]. In particular, the dual

to the Calabi-Yau toric diagram is exactly equal to the web diagram of the type IIB (p, q)

5-brane systems [56].

The SW curves and the Nekrasov partition functions are parametrized by the Coulomb

moduli a as well as the UV masses m and coupling constants τ of the gauge theory. These

parameters are encoded in the web diagrams as follows. On the one hand, deformations

of the webs that do not change the asymptotic form of the 5-branes correspond to the

Coulomb moduli a and their number is the number of faces of the web diagram. On the

other hand, deformations of the webs that do change the asymptotic form of the 5-branes

correspond to parameters that define the theory, namely masses and coupling constants

and they are equal to the number of external branes minus three. Note that at each vertex

there is a no-force condition (D5/NS5 (p, q) charge conservation) that serves to preserve 8

supersymmetries.

Having said all the above, we can now return to the TN theories. The first step towards

being able to calculate the TN partition functions was taken by Benini, Benvenuti and

Tachikawa, who gave in [37] the web diagrams of the 5D TN theories. Subsequently, in [1]

we tested their proposal by deriving the corresponding SW curves and Nekrasov partition

functions. Most importantly, we were able to cross-check our results for the partition

functions against the 5D superconformal index that was recently calculated in [41]. For

similar work see also [5, 42].

We now turn to the parametrization of the TN web diagrams. The general parametriza-

tion in contained in the appendix, see figure 6 and here we just give a short introduction.

We have one parameter a
(j)
i for each face, or hexagon, of the diagram, that will also appear

as Ã
(j)
i = e−βa

(j)
i . They can be thought of as Coulomb moduli that will be integrated over

and are called breathing modes. The number of faces in the web diagram of the TN theory

is (N−1)(N−2)
2 . In addition, we have 3N parameters mi, ni, li labeling the positions of the

exterior flavor branes for the branes on the, respectively, left, lower and upper right side

of the diagram. From them, we define the fugacities

M̃i := e−βmi , Ñi := e−βni , L̃i := e−βli , (4.1)

that are subject to the relation

N
∏

k=1

M̃k =
N
∏

k=1

Ñk =
N
∏

k=1

L̃k = 1 ⇐⇒
N
∑

k=1

mk =
N
∑

k=1

nk =
N
∑

k=1

lk = 0. (4.2)

From the mass parameters, we also define the “boundary” Coulomb parameters. They are

the Ã
(j)
i with i+j = N , with i = 0 or with j = 0 and are given as functions of the positions

of the flavor branes in (A.1).

In the dual, geometric engineering description, the parameters above correspond to

the Kähler parameters of the Calabi-Yau threefold. On the web diagram, the Kähler
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Figure 3. The parametrization and Kähler parameters of the T2 and T3 junctions. The external

“mass” parameters are shown in red, the “face” moduli in blue and the “edge” ones in black.

parameters correspond to the horizontal, the diagonal and the vertical lines and are labeled

byQ
(j)
n;i, Q

(j)
m;i andQ

(j)
l;i respectively. They are derived quantities through the equations (A.4)

and are useful because they are the ones that enter in the computation of the partition

function via the topological vertex.

In order to familiarize the reader with the parametrization, we shall illustrate the

simplest cases N = 2 and N = 3 with some examples. The parametrization in those cases

is contained in figure 3. For N = 2, we see that we have no Coulomb moduli and the

Kähler parameters obey the relation

Q
(1)
m;1Q

(1)
l;1 =

M̃1

M̃2

, Q
(1)
m;1Q

(1)
n;1 =

Ñ1

Ñ2

, Q
(1)
n;1Q

(1)
l;1 =

L̃1

L̃2

. (4.3)

Using (4.2), we find Q
(1)
m;1 = M̃1Ñ1

L̃1
, Q

(1)
n;1 = M̃1L̃1

Ñ1
and Q

(1)
l;1 = Ñ1L̃1

M̃1
. For N = 3 we have

seven independent parameters: one Coulomb modulus A ≡ Ã
(1)
1 and 3×(3−1) independent

brane positions. A straightforward computation gives the nine Kähler parameters of the

web diagram as

Q
(1)
m;1 = A

−1M̃1Ñ1, Q
(1)
m;2 = AM̃2L̃3, Q

(2)
m;1 = AÑ2L̃

−1
1 ,

Q
(1)
n;1 = AM̃−1

1 Ñ−1
2 , Q

(1)
n;2 = AM̃3L̃2, Q

(2)
n;1 = A

−1Ñ−1
3 L̃1, (4.4)

Q
(1)
l;1 = AM̃−1

2 Ñ−1
1 , Q

(1)
l;2 = A

−1M̃−1
3 L̃−1

3 , Q
(2)
l;1 = AÑ3L̃

−1
2 .

It is easy to check that the above solutions obey the set of equations (A.6) relating them

to the brane position parameters and that they furthermore satisfy the two constraints

coming from matching the height and widths of the hexagon of figure 3

Q
(2)
m;1Q

(1)
n;1 = Q

(1)
m;2Q

(1)
n;2, Q

(1)
m;2Q

(1)
l;1 = Q

(2)
m;1Q

(2)
l;1 . (4.5)

4.2 The topological vertex computation

Now that we have gained some understanding of the parametrization of the TN web di-

agram, we would like to compute its refined topological string amplitude. For this, we
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Figure 4. The left part of the figure shows the strip diagram, while the right one depicts the

dissection of the TN diagram into N strips. The partitions associated with the horizontal, diagonal

and vertical lines are ν
(j)
i , µ

(j)
i and λ

(j)
i with j = 1, . . . , N − 1, i = 1, . . . , N − j respectively. The

Kähler parameters of the horizontal, diagonal and vertical lines are Q
(j)
n;i, Q

(j)
m;i, Q

(j)
l;i respectively

with the same range of indices.

use the refined topological vertex, choose the preferred direction to be the horizontal

one and cut the toric diagram diagonally into sub-diagrams called strips. The calcula-

tion was carried out in [1], here we just reproduce the results for the reader’s conve-

nience. We consider the strip diagram of arbitrary length L ≥ 0, drawn on the left in

figure 4. The corresponding partition function depends on the external horizontal parti-

tions ν = (ν1, . . . , νL+1), τ = (τ1, . . . , τL) as well as the parametersQm = (Qm;1, . . . , Qm;L)

and Ql = (Ql;1, . . . , Ql;L). It takes the form

Zstrip
ντ (Qm,Ql; t, q) =

∑

λ,µ

L
∏

i=1

(−Qm;i)
|µi|(−Ql;i)

|λi|
L+1
∏

j=1

Cµt
jλ

t
j−1ν

t
j
(q, t)

L
∏

k=1

Cµkλkτk(t, q),

(4.6)

where µL+1 = λ0 = ∅. We refer to [39] for a definition of the topological vertex Cλµν . The

full topological string partition function is then given by

Ztop
N =

∑

ν

N
∏

r=1

(

−Q(r)
n

)|ν(r)|
Zstrip

ν(r−1)ν(r)(Q
(r)
m ,Q

(r)
l ; t, q). (4.7)

The strip partition function (4.6) was computed in [1]. In appendix D, we show that it

is useful to redefine the strip slightly, i.e. to “cut” the TN junction in a different way by

moving some factors from one strip to its neighbors. These redefinitions do not change the

full topological string partition function of the TN junction. The technical details are left

to appendix D. Combining everything, we obtain

Ztop
N = Zpert

N Z inst
N , (4.8)
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where we have defined the “perturbative” partition function

Zpert
N :=

N−1
∏

r=1

N−r
∏

i≤j=1

M
(

Ã
(r−1)
i Ã

(r−1)
j

Ã
(r−1)
i−1 Ã

(r−1)
j+1

)

M
(√

t
q

Ã
(r−1)
i Ã

(r)
j−1

Ã
(r−1)
i−1 Ã

(r)
j

)

M
(√

t
q

Ã
(r)
i Ã

(r−1)
j

Ã
(r)
i−1Ã

(r−1)
j+1

)

N−r−1
∏

i≤j=1

M
( t

q

Ã
(r)
i Ã

(r)
j

Ã
(r)
i−1Ã

(r)
j+1

)

, (4.9)

and the “instanton” one

Z inst
N :=

∑

ν

N
∏

r=1

N−r
∏

i=1

(

ÑrL̃N−r

Ñr+1L̃N−r+1

)

|ν
(r)
i

|

2

×
N
∏

r=1

N−r
∏

i≤j=1







N
β

ν
(r−1)
i ν

(r)
j

(

a
(r−1)
i + a

(r)
j−1 − a

(r−1)
i−1 − a

(r)
j − ǫ+/2

)

N
β

ν
(r−1)
i ν

(r−1)
j+1

(

a
(r−1)
i + a

(r−1)
j − a

(r−1)
i−1 − a

(r−1)
j+1

) (4.10)

×
N
β

ν
(r)
i ν

(r−1)
j+1

(

a
(r)
i + a

(r−1)
j − a

(r)
i−1 − a

(r−1)
j+1 − ǫ+/2

)

N
β

ν
(r)
i ν

(r)
j

(

a
(r)
i + a

(r)
j−1 − a

(r)
i−1 − a

(r)
j − ǫ+

)






,

where the a
(j)
i are defined via Ã

(j)
i = e−βa

(j)
i . We put the words “perturbative” and

“instanton” inside quotation marks because for the TN there is not really a notion of

instanton expansion. There is no coupling constant, since there is no gauge group. We

recall that the boundary a
(j)
i are related to the masses via (A.1). In writing (4.9) and (4.10)

we have introduced the notation10

M(u; t, q) ≡M(u) =
∞
∏

i,j=1

(1− ut−iqj),

N
β
λµ(m; t, q) ≡N

β
λµ(m) =

∏

(i,j)∈λ

2 sinh
β

2

[

m+ ǫ1(λi − j + 1) + ǫ2(i− µt
j)
]

×
∏

(i,j)∈µ

2 sinh
β

2

[

m+ ǫ1(j − µi) + ǫ2(λ
t
j − i+ 1)

]

.

(4.11)

We refer to appendix C.2, respectively C.3 for more details concerning M, respectively

N
β
λµ.

As in [1], we define the non-full spin content (also called U(1) factor in [5])

Zdec
N :=

N
∏

i<j=1

M(M̃iM̃
−1
j )M(t/qÑiÑ

−1
j )M(L̃iL̃

−1
j ). (4.12)

We remark that for b = ǫ1 = ǫ−1
2 , we can write

∣

∣

∣
Zdec
N

∣

∣

∣

2
=Λ

3N(N−1)
2 (1− q)

N(N−1)(2N2−2N−1)
8

Q2×

×
3
∏

k=1

(1− q)N(αk,αk−2Q)
(

(

1− qb
)2b−1(

1− qb
−1)2b

)(αk,ρ)
Yq(αk)

(4.13)

10We often drop the explicit dependence of these functions on the parameters t and q.
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where we have used (2.4), the identity (B.7) and the q-deformed function (3.37). Thus, up

to some ambiguities, there is a clear identification of the decoupled part
∣

∣Zdec
N

∣

∣

2
with the

Weyl covariant part (3.41) of the correlation functions, see (2.10).

The contributions (4.12) decouple from the gauge theory and need to be removed in

order to obtain the S4 × S1 partition function. In particular, using (A.3), we find for the

quotient

Zpert
N

Zdec
N

=
N−1
∏

r=1

∏N−r−1
i≤j=1 M

(

Ã
(r)
i Ã

(r)
j

Ã
(r)
i−1Ã

(r)
j+1

)

M
(

t
q

Ã
(r)
i Ã

(r)
j

Ã
(r)
i−1Ã

(r)
j+1

)

∏N−r
i≤j=1M

(√

t
q

Ã
(r−1)
i Ã

(r)
j−1

Ã
(r−1)
i−1 Ã

(r)
j

)

M
(√

t
q

Ã
(r)
i Ã

(r−1)
j

Ã
(r)
i−1Ã

(r−1)
j+1

)

×





N
∏

i<j=1

M
(

t

q

Ã
(i)
0 Ã

(j−1)
0

Ã
(i−1)
0 Ã

(j)
0

)

M
(

Ã
(N−i)
i Ã

(N−j+1)
j−1

Ã
(N−i+1)
i−1 Ã

(N−j)
j

)





−1

.

(4.14)

We now want to compute the norm squared of the above expression and write it in a way

that would make the 4D limit more accessible. First, from the definition (C.26) of the

q-deformed Υ function, we see that

|M(e−βx; t, q)|2 = |M(q−
ǫ+
2 ; t, q)|2(1− q)

1
ǫ1ǫ2

(x+
ǫ+
2 )

2

Υq(−x|ǫ1, ǫ2). (4.15)

Here and elsewhere, we shall use the notation

|f(u1, . . . , ur; t, q)|2 := f(u1, . . . , ur; t, q)f(u
−1
1 , . . . , u−1

r ; t−1, q−1). (4.16)

For the remainder of the section we shall write Υq(x) instead of Υq(x|ǫ1, ǫ2). Since it will

appear often, it is convenient to define

Λ := |M(q−
ǫ+
2 ; t, q)|2. (4.17)

Furthermore, we need to carefully define the norm squared of the refined McMahon function

in order to avoid a trivial zero. We follow [31] and define

|M(t, q)|2 := lim
u→1

|M(u; t, q)|2
1− u−1

= |M(q−1; t, q)|2 = (1− q)
(ǫ1−ǫ2)

2

4ǫ1ǫ2 ΛΥq(ǫ1). (4.18)

The advantage of using the functions Υq is the fact that they have a well defined 4D limit

β → 0 or q → 1, while the M do not. We can apply this to the norm squared of (4.14)

with the result

∣

∣

∣

∣

∣

Zpert
N

Zdec
N

∣

∣

∣

∣

∣

2

= Λ−2N(N−1)(1− q)
χ′
N

ǫ1ǫ2

N−1
∏

r=1





∏N−r−1
i≤j=1 Υq

(

a
(r)
i−1 + a

(r)
j+1 − a

(r)
i − a

(r)
j

)

∏N−r
i≤j=1Υq

(

ǫ+
2 + a

(r−1)
i−1 + a

(r)
j − a

(r−1)
i − a

(r)
j−1

)

×
∏N−r−1

i≤j=1 Υq

(

a
(r)
i + a

(r)
j − a

(r)
i−1 − a

(r)
j+1

)

∏N−r
i≤j=1Υq

(

ǫ+
2 + a

(r)
i + a

(r−1)
j − a

(r)
i−1 − a

(r−1)
j+1

)









N
∏

i<j=1

Υq (ni − nj)Υq (lj − li)





−1

,

(4.19)
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with the exponent

χ′
N =

N−1
∑

r=1

[

N−r
∑

i≤j=1

(

a
(r−1)
i + a

(r−1)
j − a

(r−1)
i−1 − a

(r−1)
j+1 +

ǫ+
2

)2

−
(

a
(r−1)
i + a

(r)
j−1 − a

(r−1)
i−1 − a

(r)
j

)2
−
(

a
(r)
i + a

(r−1)
j − a

(r)
i−1 − a

(r−1)
j+1

)2

+

N−r−1
∑

i≤j=1

(

a
(r)
i + a

(r)
j − a

(r)
i−1 − a

(r)
j+1 −

ǫ+
2

)2 ]

−
N
∑

i<j=1

[

(

mi −mj +
ǫ+
2

)2
+
(

nj − ni +
ǫ+
2

)2
+
(

li − lj +
ǫ+
2

)2
]

,

(4.20)

that miraculously depends only on the boundary parameters

χ′
N =− (N − 1)

N
∑

i=1

m2
i −

N
∑

i<j=1

[

(

nj − ni +
ǫ+
2

)2
+

(

li − lj +
ǫ+
2

)2
]

− 1

N

N
∑

i<j=1

[

(nj − ni)
2 + (li − lj)

2
]

− 2
N
∑

i=1

nilN+1−i +
N(N − 1)(N − 2)

12
ǫ2+.

(4.21)

Now we have all the ingredients in order to compute the partition function on S4×S1. First,

we should remember that we need [1, 5, 31] to add a copy |M(t, q)|2 of the norm squared

of the refined McMahon function for each one of the (N−1)(N−2)
2 faces of the diagram and

integrate over all the Coulomb moduli. Then, the partition function on S4×S1 for the TN

superconformal theory reads

ZS4×S1

N :=

∫ iπ
β

− iπ
β

N−2
∏

k=1

N−1−k
∏

l=1

βda
(l)
k

2πi
|M(t, q)|(N−1)(N−2)

∣

∣

∣

∣

∣

Zpert
N

Zdec
N

∣

∣

∣

∣

∣

2
∣

∣Z inst
N

∣

∣

2
, (4.22)

where we need to plug in (4.19) for the perturbative part
∣

∣Zpert
N /Zdec

N

∣

∣

2
, while we use (4.10)

for the instanton part. The integrals over the a
(l)
k originate as contour integrals

∮ dÃ
(l)
k

2πiÃ
(l)
k

after the substitution Ã
(l)
k = e−βa

(l)
k . Observe that there are (N−1)(N−2)

2 integrals to be

done which is equal to the number of faces of the web diagram and that in the simplest T2

case no integrals have to be done. Furthermore, in order to compute the final expression

for the partition function, we still need to perform N(N−1)
2 sums over the partitions ν

(j)
i .

This can unfortunately for now only be done exactly in the N = 2 case. Finally, the

derivation of (4.8) depended strongly on a choice of a preferred direction for the refined

topological vertex. It is conjectured [39, 57], under a principle called slicing invariance,

that the final answer will not depend on the choice of the preferred direction. We can

make three different choices of preferred direction for the TN web diagram and in section 6,

we shall do it for T3. In the Toda field theory interpretation, each choice puts one of the

primary fields on a special footing.
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4.3 The 4D limit

Naively, taking the 4D limit requires simply taking β → 0. However, as we show in the

previous subsection for the perturbative part for N > 2 and for the full partition function

for N = 2 (see also section 5), in the limit most quantities diverge, but thankfully only

with an overall factor of (1− q) raised to the appropriate power. We conjecture that this

will also be the case for the full partition function for every N , even after the instantons are

accounted for. Our conjecture is supported by symmetry arguments, a careful study of the

N = 2 case and from the lessons we extracted form section 3.4, in particular equation (3.43).

What is more, it is supported by [39], where it was conjectured that the refined topological

string partition function read off using the refined topological vertex from any web diagram

should always at the end be possible to be written as a product of M’s.11 Thus, we define

the partition function of the TN theory on S4 to be

ZS4

N = const× lim
β→0

(

β
−

χN
ǫ1ǫ2 ZS4×S1

N

)

, (4.23)

where by definition the power χN is taken so that the limit is convergent. The constant

factor cannot depend on the parameters of the theory, i.e. the masses, though it can, and

in the cases checked does, depend on the Omega background parameters.

In what follows we want to use symmetries and the known limits for the partition

function to argue that the exponent χN of β is given in terms of the quadratic Casimir of

SU(N)3

χN = −
N
∑

i<j=1

[

(mi −mj)
2 + (nj − ni)

2 + (li − lj)
2
]

= −N

3
∑

i=1

(αi −Q,αi −Q) . (4.24)

First, for the N = 2 case, we can explicitly calculate the exponent and we find

χ2 = −
2

∑

i<j=1

[

(mi −mj)
2 + (nj − ni)

2 + (li − lj)
2
]

= −2

3
∑

i=1

(αi −Q,αi −Q) (4.25)

where we have made use of formulas (2.4) and (B.7). Moreover, for the perturbative

part (4.21) we can also explicitly calculate χ′
N and we find that it is quadratic in the masses.

What is more, we know the answer for the case with one degenerate insertion (3.43), it is

expressed in terms of Υq-functions, which when combined with (4.15) tells us that the power

χN is a quadratic function in the masses. Furthermore, both ZS4

N and ZS4×S1

N are invariant

under (affine) Weyl reflections of SU(N)3 and since the constant term is independent of the

parameters, the power χN has to be Weyl invariant as well. Therefore, we have to have12

χN = c1

3
∑

i=1

(αi,αi − 2Q) + c2, (4.26)

11One might worry that the product would be infinite, but our symmetry argument that χN should

be given by the quadratic Casimir suggests that cancellations will always happen so that the degree of

divergence χN is finite!
12Usually the eigenvalue of the quadratic Casimir is written (α,α+ 2ρ), where ρ is the Weyl vector.

After a rescaling of the weight α, this is the same as (4.26).
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where the ci are constants that symmetry cannot fix. The second constant c2 = −3N (Q,Q)

in (4.25) can in any case be reabsorbed in the constant prefactor of (4.23) as it does

not depend on the masses. For c1 we compare with (3.43). When the l-parameters are

degenerate13

Cq(α1,α2,κωN−1) = const×

∣

∣

∣

∣

∣

∣

∣

∣

∣

M( L̃N

L̃N−1
)
∏N

i<j=1M
(

M̃i

M̃j

)

M
(

t
q
Ñi

Ñj

)

∏N
i,j=1M

(

M̃−1
i ÑjL̃

−1
1

(

t
q

)
N−1

2

)

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

. (4.27)

Since the l-part is degenerate and some zeroes from the non-full spin content have canceled

some poles from the index in order to obtain (4.27), we don’t expect to get the correct l-

dependence in χN . Thus, if we ignore l, subtract the remaining non-full spin content in the

numerator for the m and n parts and compute the power of the β divergence using (4.15),

we obtain

−
N
∑

i,j=1

(

mi − nj +
ǫ+
2

)2
= −

N
∑

i<j=1

[

(mi −mj)
2 + (ni − nj)

2
]

+ const (4.28)

which sets c1 = −N and supports our claim (4.24).

We would like to conclude this section by stressing that even though in the present

paper we do not show how to do the sums, we know that their outcome will be a product

of functions M, exactly as in (4.27), but of course for the general non-degenerate case

with a potentially infinite14 number of Ms. That was already conjectured in [39] for any

topological partition function coming from a toric diagram, see [58] for a more recent

discussion. This statement is just the refinement of the Gopakumar-Vafa formula [59, 60].

This is fully in agreement with our claim that the power χN has to be at most quadratic

in the masses.

5 Liouville from topological strings

In this section we show in detail how one can start from the partition function of T2 that

we computed in section 4 and derive the known Liouville 3-point function. This exercise

allows us to draw experience and learn some tricks that we shall be able to use for N > 2,

fix our conversions and test the dictionary we presented in section 2.

For N = 2 there are no Coulomb moduli. The perturbative part (4.9) is

Zpert
2 =

M
(

(

Ã
(0)
1

)2
)

M
(

√

t
q

Ã
(1)
0 Ã

(0)
1

Ã
(1)
1

)

M
(

√

t
q

Ã
(0)
1 Ã

(1)
1

Ã
(1)
0

)

(5.1)

13In that case li =
N−i
N

κ − N+1−2i
2

Q for i < N an lN = −N−1
N

κ + N−1
2

Q, implying κ = lN−1 − lN +Q.
14Any geometry with at least one breathing mode has to have an infinite number of Gopakumar-Vafa

invariants. We thank the JHEP referee for stressing this point.
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while the instanton one (4.10) reads

Z inst
2 =

∑

ν

(

L̃1Ñ1

L̃2Ñ2

)
|ν|
2
N
β
ν∅(a

(0)
1 + a

(1)
1 − a

(1)
0 − ǫ+

2 )Nβ
∅ν(a

(1)
0 + a

(0)
1 − a

(1)
1 − ǫ+

2 )

N
β
νν(0)

(5.2)

so that (4.8) becomes after replacing the Ã’s with the mass parameters via (A.1)

Ztop
2 =

M(M̃2
1 )

M
(

√

t
q
L̃1M̃1

Ñ1

)

M
(

√

t
q
Ñ1M̃1

L̃1

)

×
∑

ν

(

L̃1Ñ1

)|ν| N
β
ν∅(l1 +m1 − n1 − ǫ+

2 )Nβ
∅ν(n1 +m1 − l1 − ǫ+

2 )

N
β
νν(0)

.

(5.3)

We can use the identity of equation (C.40) to perform the sum over partitions and get

Ztop
2 =

M(M̃2
1 )M(Ñ2

1
t
q
)M(L̃2

1)

M(M̃1L̃1

Ñ1

√

t
q
)M( Ñ1L̃1

M̃1

√

t
q
)M(M̃1Ñ1

L̃1

√

t
q
)M(M̃1Ñ1L̃1

√

t
q
)
. (5.4)

Setting b = ǫ1 = ǫ−1
2 and using the definition (C.26) of the Υq functions as well as the

parametrization (2.4), we get from (5.4) the following expression for |Ztop
2 |2

|Ztop
2 |2 = Λ−1(1− q)2Q(

∑3
i=1 αi−Q)−Q2

4

∏3
i=1Υq(2αi)

Υq(
∑

k αk −Q)
∏3

i=1Υq(
∑

k αk − 2αi)
(5.5)

where we have used the symmetry Υq(x) = Υq(Q−x). Up to an infinite constant prefactor,

the same formula was obtained in equation (3.73) of [23] as well as equation (5.10) of [40].

We can use the expression for the derivative (C.32) found in the appendix as well as the

McMahon function (4.18) to combine some factors into Υ′
q(0) leading to

∣

∣

∣
Ztop
2

∣

∣

∣

2
=

(1− q)2Q(
∑3

i=1 αi−Q)

β|M(t, q)|2
Υ′

q(0)
∏3

i=1Υq(2αi)

Υq(
∑

k αk −Q)
∏3

i=1Υq(
∑

k αk − 2αi)
. (5.6)

This result is almost the q-deformed structure constants. In fact, we see by looking at (3.44)

that

Cq(α1,α2,α3) =

[

β|M(t, q)|2
(

(

1− qb
)2b−1(

1− qb
−1)2b

)Q−
∑

i αi
]

∣

∣

∣
Ztop
2

∣

∣

∣

2
, (5.7)

which is the q-deformed version of (2.11) for T2.

Already in [1] we computed the superconformal index for the T2 theory. It is obtained

from |Ztop
2 |2 by dividing with the non-full spin content |Zdec

2 |2 that corresponds to degrees
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of freedom that decouple from the 5D theory.

ZS4×S1

2 =

∣

∣

∣

∣

∣

∣

[

M
(M̃1Ñ1

L̃1

√

t

q

)

M
(M̃1L̃1

Ñ1

√

t

q

)

M
(Ñ1L̃1

M̃1

√

t

q

)

M
(

M̃1Ñ1L̃1

√

t

q

)

]−1
∣

∣

∣

∣

∣

∣

2

=

[

Λ4(1− q)4(m
2
1+n2

1+l21)Υq

(

Q

2
+m1 + n1 + l1

)

Υq

(

Q

2
+m1 + n1 − l1

)

×Υq

(

Q

2
+m1 − n1 + l1

)

Υq

(

Q

2
−m1 + n1 + l1

)

]−1

=

[

Λ4(1− q)
∑4

i=1 u
2
i

4
∏

i=1

Υq

(

Q

2
+ ui

)

]−1

. (5.8)

In particular, we find by comparing with (3.45)

Cq(α1,α2,α3) = Λ4Υ′
q(0)(1− q)−χ2ZS4×S1

2 , (5.9)

as promised in (2.8). The index (5.8) of the T2 theory can be expanded in powers

of x =
√

q
t
with coefficients that can be interpreted either as sums of characters of

SU(2)×SU(2)×SU(2) or of SU(4). Specifically, we find:

ZS4×S1

2 =1 + χ(2,2,2)x+
[

χ(3,1,1) + χ(1,3,1) + χ(1,1,3) + χ(3,3,3) + χ2(y)χ(2,2,2)

]

x2 +O(x3)

=1 + χ8v
x2 + [1 + χ35v

+ χ8v
χ2(y)]x

3

+ [χ112v
+ χ8v

+ (χ56c
+ χ8c

)χ2(y) + χ8v
χ3(y)]x

4 + · · · (5.10)

where we have the SU(2)3 characters χ(m1,m2,m3) ≡ χm1
(M̃1)χm2

(Ñ1)χm3
(L̃1) and the

SU(4) characters depend on the four variables Ui with
∏4

i=1 Ui = 1 that are given by

M̃1 =
√

U1U3, Ñ1 =
√

U2U3, L̃1 =
√

U1U2. (5.11)

We thus also see by comparing with (3.20) that the index ZS4×S1

2 has the same symmetry

as the Weyl-invariant structure constants of the Liouville CFT (3.20), as was expected.

6 W3 from topological strings

In this section, we want to review our result for the 3-point structure constants of primaries

for the case N = 3 in its full glory and to investigate its symmetries and structure.

We begin with slicing invariance. In figure 5, we depict the three possible ways of

choosing the preferred direction. Each one is labeled by the mass parameters that become

prominent for that choice. The one we have used in section 4 for the determination of the

strip partition functions is M̃ . For the choice M̃ of the preferred direction, we can compute

the sum over the partitions λ
(j)
i and µ

(j)
i , but not over ν

(j)
i . Similarly, for the choice Ñ ,

we cannot perform the sum over the λ
(j)
i and for the choice L̃ we cannot do it for the µ

(j)
i .
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Figure 5. This figure shows the three different possible preferred directions for the T3 junction.

Each one is labeled by the Kähler moduli of the non-full spin content that is factorized. We also

indicate the names of the partitions entering the instanton sums and to avoid clutter, we only do

it for the middle one.

From equations (4.9) and (4.10), we can read off the partition function for the M̃ choice.

After some rearrangements, we find the cumbersome expression for Ztop
3 ≡ Ztop

3,M̃
:

Ztop
3 =

M
(

A2Ñ−1
1 L̃3

)

M
(√

t
q
A−1M̃1Ñ1

)

M
(√

t
q
AM̃−1

2 Ñ−1
1

)

M
(√

t
q
AM̃−1

3 Ñ−1
1

)

M
(√

t
q
AÑ3L̃

−1
2

)

×
M

(

t
q
A2Ñ−1

1 L̃3

)

M
(√

t
q
AM̃1L̃3

)

M
(√

t
q
AM̃2L̃3

)

M
(√

t
q
A−1M̃−1

3 L̃−1
3

)

M
(√

t
q
AÑ2L̃

−1
1

)

×M
(

M̃1M̃
−1
2

)

M
(

M̃1M̃
−1
3

)

M
(

M̃2M̃
−1
3

)

∑

ν

(

Ñ2L̃1

Ñ3L̃2

)

|ν
(2)
1 |

2
(

Ñ1L̃2

Ñ2L̃3

)

|ν
(1)
1 |+|ν

(1)
2 |

2

(6.1)

×
N
β

ν
(2)
1 ν

(1)
2

(a+ n3 − l2 − ǫ+/2)Nβ

ν
(1)
1 ν

(2)
1

(a+ n2 − l1 − ǫ+/2)

N
β

ν
(2)
1 ν

(2)
1

(0)

×

∏3
k=1N

β

ν
(1)
1 ∅

(a− n1 −mk − ǫ+/2)Nβ

∅ν
(1)
2

(a+ l3 +mk − ǫ+/2)

N
β

ν
(1)
1 ν

(1)
1

(0)Nβ

ν
(1)
2 ν

(1)
2

(0)Nβ

ν
(1)
1 ν

(1)
2

(2a− n1 + l3)N
β

ν
(1)
2 ν

(1)
1

(−2a+ n1 − l3)
,

where A = e−βa = Ã
(1)
1 is the relabeled Coulomb modulus.

We can also compute the topological string partition function for the choice Ñ or L̃

of the preferred direction. A straightforward computation as in [1], which we skip here,

shows that the topological amplitude Ztop

3,Ñ
for the choice Ñ of preferred direction can be

obtained from equation (6.1) by simply making the substitutions

mk → n4−k, nk → mk, lk → −l4−k, (6.2)

and exchanging t ↔ q. Furthermore, the amplitude Ztop

3,L̃
for the last remaining possible
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choice of preferred direction is obtained by setting in (6.1)

mk → −l4−k, nk → −m4−k, lk → nk, (6.3)

without exchanging t ↔ q. We can express this succinctly as

Ztop

3,Ñ
(mk, nk, lk) = Ztop

3 (n4−k,mk,−l4−k) ,

Ztop

3,L̃
(mk, nk, lk) = Ztop

3 (−l4−k,−m4−k, nk) .
(6.4)

It is thought and in some cases shown [39, 57] that the choice of preferred direction is

irrelevant. Thus, we may assume that the transformations (6.2) and (6.3) are symmetries

of the topological amplitude and conjecture that (6.1) is invariant under them:

Ztop
3 (mk, nk, lk) = Ztop

3 (n4−k,mk,−l4−k) = Ztop
3 (−l4−k,−m4−k, nk) . (6.5)

Checking this conjecture turns out to be quite involved since it requires computing the sums

in (6.1) for a large number of boxes in the partitions ν
(j)
i . Thankfully, for our claim (2.11)

relating the topological string amplitude to the Toda structure constants, we only need a

much weaker statement that is easier to check, namely that

∮

dA

2πiA

∣

∣

∣Ztop
3 (mk, nk, lk)

∣

∣

∣

2
=

∮

dA

2πiA

∣

∣

∣Ztop
3 (n4−k,mk,−l4−k)

∣

∣

∣

2
=

=

∮

dA

2πiA

∣

∣

∣
Ztop
3 (−l4−k,−m4−k, nk)

∣

∣

∣

2
. (6.6)

We now shall perform a direct check of the above relations. We first observe (4.22) that

∮

dA

2πiA
|Ztop

3 |2 = |M(t, q)|−2 |Zdec
3 |2ZS4×S1

3 . (6.7)

The decoupled part Zdec
3 was defined in (4.12) and we easily find that |Zdec

3 |2 is invariant

under the transformations (6.2) and (6.3) if we use the symmetries of the functions M,

see (C.24), as well as the definition (4.16) of the norm squared.

Since M(t, q) is independent of the fugacities, we only need to check that the super-

conformal index ZS4×S1

3 is invariant under (6.2) and (6.3). For this, we expand in powers

of x = e−
βǫ+
2 before performing the integration. As shown in [1, 5] this leads to the index

computed in [41], that reads

ZS4×S1

3 = 1 + χE6
78x

2 + χ2(y)(1 + χE6
78)x

3 +
[

1 + χE6
2430 + χ3(y)(1 + χE6

78)
]

x4

+
[

χ2(y)
(

1 + χE6
78 + χE6

2430 + χE6
2928) + χ4(y)(1 + χE6

78

)]

x5 +
[

2χE6
78 + χE6

2925 + χE6
43758

+χ3(y)
(

2 + 2χE6
78 + χE6

650 + 2χE6
2430 + χE6

2925

)

+ χ5(y)
(

1 + χE6
78

)]

x6 +O(x7). (6.8)

The fugacities M̃ , Ñ and L̃ enter the E6 characters as follows. We embed SU(3)3 into E6

so that the character of the 78-dimensional adjoint representation of E6 decomposes as

χE6
78 = χ(8,1,1) + χ(1,8,1) + χ(1,1,8) + χ(3̄,3,3) + χ(3,3̄,3̄), (6.9)
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where χ(j1,j2,j3) :=
∏3

k=1 χ
SU(3)
jk

. The fundamental representation 3 of the first SU(3) has

the character χ
SU(3)
3 = M̃1+ M̃2+ M̃3 with similar expressions for the other SU(3) factors.

The other characters can be decomposed in a similar fashion, see appendix C of [1] for

more details. One easily checks that (6.2) acts on the SU(3) characters as

χ
SU(3)
3 (M̃) 7→ χ

SU(3)
3 (Ñ) , χ

SU(3)
3 (Ñ) 7→ χ

SU(3)
3 (M̃) χ

SU(3)
3 (L̃) 7→ χ

SU(3)

3̄
(L̃) .

(6.10)

Thus (6.2) exchanges χ(3̄,3,3) and χ(3,3̄,3̄) and leaves the sum over the adjoint characters

invariant, so that χE6
78 of (6.9) remains unchanged. Similar relations ensure that the other

E6 characters appearing in (6.8) are invariant as well and the same holds for the transfor-

mation (6.3). Hence, we are confident that for the Toda structure constants (6.2) and (6.3)

hold, making our proposal (2.11) independent of the choice of slicing.

The weaker form (6.6) of the slicing invariance conjecture for the partition function

can help us prove the Weyl covariance of the structure constants. Using (6.1) and the

properties of the Υq functions, the index

ZS4×S1

3 =

∮

dA

2πiA
|M(t, q)|2

∣

∣

∣

∣

∣

Ztop
3

Zdec
3

∣

∣

∣

∣

∣

2

(6.11)

reads

ZS4×S1

3 =

∮

dA

2πiA

(1− q)
χ′
3+

ǫ2−/4

ǫ1ǫ2

Λ8

Υq(ǫ1)
[

∏3
i<j=1Υq(ni − nj)Υq(lj − li)

]−1

∏3
k=1Υq(a−mk − n1 + ǫ+/2)Υq(a+mk + l3 + ǫ+/2)

× Υq(2a− n1 + l3)Υq(−2a+ n1 − l3)

Υq(a+n3−l2+ǫ+/2)Υq(a+n2−l1+ǫ+/2)

∣

∣

∣

∣

∣

∑

ν

(

Ñ2L̃1

Ñ3L̃2

)

|ν
(2)
1 |

2
(

Ñ1L̃2

Ñ2L̃3

)

|ν
(1)
1 |+|ν

(1)
2 |

2

(6.12)

×
N
β

ν
(2)
1 ν

(1)
2

(a+ n3 − l2 − ǫ+/2)Nβ

ν
(1)
1 ν

(2)
1

(a+ n2 − l1 − ǫ+/2)

N
β

ν
(2)
1 ν

(2)
1

(0)

×

∏3
k=1N

β

ν
(1)
1 ∅

(a− n1 −mk − ǫ+/2)Nβ

∅ν
(1)
2

(a+ l3 +mk − ǫ+/2)

N
β

ν
(1)
1 ν

(1)
1

(0)Nβ

ν
(1)
2 ν

(1)
2

(0)Nβ

ν
(1)
1 ν

(1)
2

(2a− n1 + l3)N
β

ν
(1)
2 ν

(1)
1

(−2a+ n1 − l3)

∣

∣

∣

∣

∣

2

,

where we the exponent of (1− q) is

χ′
3 =− 2

3
∑

i=1

m2
i −

3
∑

i<j=1

[

(

nj − ni +
ǫ+
2

)2
+
(

li − lj +
ǫ+
2

)2
]

− 1

N

3
∑

i<j=1

[

(nj − ni)
2 + (li − lj)

2
]

− 2
3

∑

i=1

nil4−i +
ǫ2+
2
.

(6.13)

agreeing with (4.21). The additional factor of ǫ2−/4 in (6.12) comes from the factor of

|M(t, q)|2. In deriving expression (6.12), we have used (4.15) and (4.18).
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Now the invariance of ZS4×S1

3 under the Weyl reflections of SU(3)3 is almost trivial

to check. Affine Weyl transformations on the αi act as usual Weyl transformations on

the mi, ni and li, i.e. they simply permute them. For the choice M̃ of preferred direction

shown in (6.12), we can easily see that the expression is invariant. However, while the

invariance of (6.12) under the Weyl group of the first SU(3) is easy, the Weyl reflections

of the remaining Weyl groups act non-trivially. At this point we need to use the fact

that slicing invariance is a symmetry of the problem and by applying first (6.2) or (6.3)

on (6.12) before acting with the Weyl reflection we can prove the complete invariance under

Weyl reflections.

Since we wish to identify the index as the q-deformed Weyl invariant structure con-

stants and since we showed in section 3.2 that the Weyl invariant structure constants have

an E6 symmetry, we have an additional piece of evidence in our favor. Furthermore, we can

use the fact that (3.32) captures all the poles of the Weyl invariant structure constants and

that the position of the poles does not change under q-deformation to write another formula

for the index.15 Specifically, we make a guess for the q-deformation of (3.32) and write

ZS4×S1

3 =
F3

Zq(1)3
∏3

i,j,k=1Zq(M̃iÑ
−1
j L̃−1

k )
∏3

i<j=1Zq(M̃iM̃
−1
j )Zq(ÑiÑ

−1
j )Zq(L̃iL̃

−1
j )

,

(6.14)

where

Zq(u; t, q) :=
∞
∏

i,j=0

(1− ut−i−1qj+1)(1− u−1t−i−1qj+1) (6.15)

is up to a constant the q-deformation of Z and the compensating factor F3 is an unknown

entire16 function with the expansion in x given by

F3 =1 + χ2(y)x
3 +

[

χ3(y)− χE6
650

]

x4 +
[

χ4(y)−
(

χE6
78 + χE6

650

)

χ2(y)
]

x5

+
[

χ5(y)−
(

χE6
78 + χE6

650

)

χ3(y) +
(

χE6
5284 + χE6

5284
+ χE6

650

)]

x6 +O(x7).
(6.16)

So far, we have no closed expression for the function F3.

We end this section with one last remark. Our claim (2.8) states that

C(α1,α2,α3) = const× lim
β→0

β−χ3ZS4×S1

3 . (6.17)

We see in (6.8) that ZS4×S1

3 is invariant under an E6 symmetry and we saw in section 3.2

that C is invariant under that symmetry as well. A direct computation shows that χ3 given

by (4.24)

χ3 = −
3

∑

i<j=1

[

(mi −mj)
2 + (nj − ni)

2 + (li − lj)
2
]

(6.18)

is invariant under the E6 Weyl tranformations (3.24) as well.

15To be more precise, as we discussed in section 3.4 and can be seen in equation (C.5) of the appendix C.2,

after the q-deformed versions of the functions have more poles. For for each single pole of the undeformed

function, they have a whole tower of poles.
16That the function F3 is entire follows from the facts that 1) the function F in (5.5) of [34] is entire and

2) the Weyl covariant part has no poles.
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7 Conclusions and outlook

In [1] we calculated the 5D partition function of the non-Lagrangian TN theories on S4×S1

using topological strings. In this paper we take the next very important step and argue

that it is possible to take the 4D limit (β → 0 i.e. q = e−β → 1), thus obtaining the

partition function of the 4D non-Lagrangian TN theories on S4. Taking the 4D limit is not

as simple as one might naively think and it is definitely not as easy as for theories with a

Lagrangian description.

The first step in overcoming this difficulty was realizing that one can bring formula (4.7)

into the form (4.8) in which the individual building blocks are only the Υq functions

and the “Nekrasov functions” N
β
µν for which the 4D limit is well defined as individual

functions (C.29) (C.42). Our formula for the partition function (4.22) is then written

as a product of the factors17
∣

∣Zpert
N /Zdec

N

∣

∣

2
and

∣

∣Z inst
N

∣

∣

2
. The first factor

∣

∣Zpert
N /Zdec

N

∣

∣

2
could

be explicitly brought into a form that only includes products of the Υq functions times a

divergent factor of (1−q)χ
′
N/ǫ1ǫ2 . Thus, taking the limit is straightforward after we divide by

(1− q)χ
′
N/ǫ1ǫ2 . However, for the

∣

∣Z inst
N

∣

∣

2
piece we have a further obstacle to overcome. The

sums that contain the “Nekrasov functions” N
β
µν diverge if one naively takes the 4D limit,

in contrast with the usual sums in theories with Lagrangian description. Schematically,

instead of having a coupling constant qUV = e2πiτUV as for theories with a Lagrangian

description, where one can commute the limit with the sum, as for example in

∑

µ

(

q5DUV

)|µ| N
β
µν1(a1) · · ·Nβ

µνL
(aL)

N
β
µλ1

(b1) · · ·Nβ
µλL

(bL)

β→0−→
∑

µ

(

q4DUV

)|µ| Nµν1(a1) · · ·NµνL(aL)

Nµλ1(b1) · · ·NµλL
(bL)

, (7.1)

for the case of the TN theories (that are isolated non trivial fixed points) there is no of qUV

but rather a combination e−βx of the mass parameters (M = e−βm) and instead of (7.1)

we have
∑

µ

(

e−βx
)|µ| N

β
µν1(a1) · · ·Nβ

µνL
(aL)

N
β
µλ1

(b1) · · ·Nβ
µλL

(bL)

β→0−→ βpower × finite (7.2)

that makes the sum diverge as βpower. Explicitly obtaining this power would require per-

forming the sums in (4.10). In this paper we do not do that, except for the N = 2 case

where the sum is given by (C.40). However, by carefully studying the symmetry properties

of the 3-point functions for general N , the properties of the Υq functions and the known

N = 2 case we manage to obtain this power of the divergence (5.8). Our result is tested

against the q-deformed version of the Fateev-Litvinov formula with one semi-degenerate

insertion (3.43). Combining everything, we propose that the 4D limit of the superconfor-

mal index (4.23), multiplied with β raised to the appropriate power −χN , will be finite and

equal to the partition function of the TN theory on S4. Moreover, we explicitly computed

in (4.13) the decoupled part
∣

∣Zdec
N

∣

∣

2
and it is finite after extracting a divergent factor of

β raised to the power 2ǫ+
∑

k (αk, ρ) − χN . Finally, the full topological string partition

function itself is finite after the divergent factor of β to the power 2ǫ+
∑

k (αk, ρ) has been

removed.
17As we already stress in the main text, using the worlds “perturbative” and “instanton” is an abuse of

terminology.
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Via the AGT-W correspondence, we translate our formula for the TN partition function

to the 3-point structure constants of three generic primaries of the Toda field theories, both

for the undeformed (4D AGT-W) as well as for the deformed (5D AGT-W) WN algebra.

We give explicitly the parameter identification from the topological string parameters to the

gauge theory ones in appendix A and then to the 2D Toda parameters in equations (2.4).

We identify the 3-point structure constants of the Toda CFT with the topological string

partition function in (2.11). A very nice byproduct of our work is our ability to give the

exact definition of the q-deformed Υq functions together the all their factors, which to our

knowledge do not appear in the literature. This discussion appears in appendix C.2.

Moreover, we identified in (2.10) Cq, the Weyl invariant part of the q-deformed 3-point

structure constants, with the 5D superconformal index ZS4×S1
, a powerful gauge theory

object.18 This identification allows us to predict that the Weyl invariant part of the q-

deformed 3-point structure constants should have not just SU(N)3 symmetry but also an

extended symmetry as predicted by [67–69] due to the existence of non-trivial UV fixed

points for the 5D gauge theories. We have explicitly checked in the Liouville case that the

Weyl invariant part of the DOZZ formula (3.20) enjoys SU(4) enhanced symmetry, and

that for the N=3 case the Weyl invariant structure constants have E6 enhanced symmetry.

Checking that the Weyl invariant 3-point structure constants for higher N enjoy some,

other than just the Weyl group of SU(N)3, enhanced symmetry is an important future

direction.19

The formula we give for the 3-point functions at this point is very implicit, since there

are still integrals and sums that need to be performed. In a separate publication [43],

we show how at least some of the sums and integrals can be performed. In so doing,

we are able to explicitly reproduce the formula (3.15) of Fateev and Litvinov [32–34] for

degenerate fields. Furthermore, our formulas predict highly nontrivial relations for the sums

of “Nekrasov functions” N
β
λµ by for example requiring that our formulas reproduces (4.24)

in the semi-degenerate case.

In this paper we give the Toda 3-point functions with three primaries, which however

is not enough to solve Toda. To achieve that, we need to also compute the correlation

functions of descendants, which as we discussed in the introduction is not as immediate as

in the Liouville case. However, it is straightforward to see from the point of view of the

topological strings what needs to be done in order to compute them. Specifically, we need

18The superconformal index in any dimension is the partition function of protected operators and is

independent of the coupling constants of the theory, implying that it remains invariant under S-duality. In

4D the superconformal index S3×S1 was proven to be equivalent to a 2D TQFT [61–65]. It is very possible

that something very similar will also be proven for the 5D superconformal index S4 × S1 (see [66] for some

progress in this direction) and thus the Weyl invariant part of the q-deformed 3-point function could be

discovered to obey special properties not visible from the CFT point of view, but realized only once one is

using the superconformal index interpretation.
19The authors of [5] were able to discover that some specialization (called “Higgsing” in the gauge theory

jargon) of the parameters in the T4 theory leads to an E7 symmetry, while in [42] a similar specialization of

the parameters in T6 leads to an E8 symmetry. These specializations change the TN geometry significantly

and in particular reduce the number of Coulomb moduli to one. It would be very interesting to see the

meaning of this on the CFT side.
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to take the TN web diagrams from figure 4 and evaluate them with the refined topological

vertex without putting empty Young diagram to the external legs. This will provide the

general Ding-Iohara algebra interwiners. The Ding-Iohara algebra [70] in the free boson

representation (with N free bosons) is known to become

A = WN ⊗H (7.3)

where H is the Heisenberg algebra which is exactly the algebra that is needed to describe

what is obtained from AGT-W [11, 14]. In particular, it is quite easy to obtain the 3-

point function of two primaries and one descendant and in fact the answer is just (4.8)

without putting empty Young diagrams for ν(0). Such 3-point functions are already going

to give us, via bootstrapping many higher point functions. Solving this problem is work in

progress [45].

We would like to finish by remarking that for many reasons it seems to be much more

advantageous to study the q-deformed version of the Toda field theories instead of the unde-

formed ones. For example, the functions Υq behave in a sense a bit better than the Υ ones,

since for example the product formula (C.26) is much simpler that (C.17) and (C.10). Fur-

thermore, in the q-deformed case, we can use the topological string formalism to compute

the partition functions, tools that are not directly available in the undeformed theory.
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A Parametrization of the TN junction

We gather in this appendix all necessary formulas for the parametrizations of the Kähler

moduli. First, the “interior” Coulomb moduli Ã
(i)
j = e−βa

(j)
i are independent, while the

“border” ones are given by

Ã
(0)
i =

i
∏

k=1

M̃k, Ã
(j)
0 =

j
∏

k=1

Ñk, Ã
(N−i)
i =

i
∏

k=1

L̃k. (A.1)
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Figure 6. Parametrization for TN . We denote the Kähler moduli parameters corresponding to the

horizontal lines as Q
(j)
n;i, to the vertical lines as Q

(j)
l;i , and to tilted lines as Q

(j)
m;i. We denote the

breathing modes as Ã
(j)
i . The index j labels the strips in which the diagram can be decomposed.

The parameters labeling the positions of the flavors branes obey the relations

N
∏

k=1

M̃k =

N
∏

k=1

Ñk =

N
∏

k=1

L̃k = 1 ⇐⇒
N
∑

k=1

mk =

N
∑

k=1

nk =

N
∑

k=1

lk = 0. (A.2)

Therefore, Ã
(0)
0 = Ã

(0)
N = Ã

(N)
0 = 1 and we can invert relation (A.1) as

M̃i =
Ã

(0)
i

Ã
(0)
i−1

, Ñi =
Ã

(i)
0

Ã
(i−1)
0

, L̃i =
Ã

(N−i)
i

Ã
(N−i+1)
i−1

. (A.3)

All placements are illustrated in figure 6.

The Kähler parameters associated to the edges of the TN junction are related to the

Ã
(j)
i as follows

Q
(j)
n;i =

Ã
(j)
i Ã

(j)
i−1

Ã
(j−1)
i Ã

(j+1)
i−1

, Q
(j)
l;i =

Ã
(j)
i Ã

(j−1)
i

Ã
(j)
i−1Ã

(j−1)
i+1

, Q
(j)
m;i =

Ã
(j−1)
i Ã

(j)
i−1

Ã
(j)
i Ã

(j−1)
i−1

. (A.4)
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For each inner hexagon of (6), the following two constraints are satisfied

Q
(j)
l;i Q

(j)
m;i+1 = Q

(j+1)
m;i Q

(j+1)
l;i , Q

(j)
n;iQ

(j+1)
m;i = Q

(j)
m;i+1Q

(j)
n;i+1. (A.5)

Furthermore, we find the following identities relating them to the masses:

Q
(1)
m;iQ

(1)
l;i =

M̃i

M̃i+1

, Q
(i)
m;1Q

(i)
n;1 =

Ñi

Ñi+1

, Q
(N−i)
n;i Q

(N−i)
l;i =

L̃i

L̃i+1

. (A.6)

Using the above, we find the following expressions for the products appearing in the TN

partition function:

j
∏

k=i

Q
(r)
l;kQ

(r)
m;k+1 =

j
∏

k=i

(

Ã
(r)
k

)2

Ã
(r)
k−1Ã

(r)
k+1

=
Ã

(r)
i Ã

(r)
j

Ã
(r)
i−1Ã

(r)
j+1

,

j
∏

k=i

Q
(r)
l;kQ

(r)
m;k =

j
∏

k=i

(

Ã
(r−1)
k

)2

Ã
(r−1)
k−1 Ã

(r−1)
k+1

=
Ã

(r−1)
i Ã

(r−1)
j

Ã
(r−1)
i−1 Ã

(r−1)
j+1

,

Qr
m;j

j−1
∏

k=i

Q
(r)
l;kQ

(r)
m;k =

Ã
(r−1)
j Ã

(r)
j−1

Ã
(r)
j Ã

(r−1)
j−1

Ã
(r−1)
i Ã

(r−1)
j−1

Ã
(r−1)
i−1 Ã

(r−1)
j

=
Ã

(r−1)
i Ã

(r)
j−1

Ã
(r−1)
i−1 Ã

(r)
j

,

Qr
l;i

j
∏

k=i+1

Q
(r)
l;kQ

(r)
m;k =

Ã
(r)
i Ã

(r−1)
i

Ã
(r)
i−1Ã

(r−1)
i+1

Ã
(r−1)
i+1 Ã

(r−1)
j

Ã
(r−1)
i Ã

(r−1)
j+1

=
Ã

(r)
i Ã

(r−1)
j

Ã
(r)
i−1Ã

(r−1)
j+1

.

(A.7)

Furthermore, the following two follow directly from (A.6) and are used in the derivation of

the “perturbative” part of the topological string partition function (4.9)

i
∏

j=1

Q
(r)
m;j =

Ã
(r)
0 Ã

(r−1)
i

Ã
(r−1)
0 Ã

(r)
i

,
N−r
∏

k=i

Q
(r)
l;k =

Ã
(r−1)
i Ã

(r)
N−r

Ã
(r)
i−1Ã

(r−1)
N−r+1

. (A.8)

B Conventions and notations for SU(N)

The purpose of this appendix is to summarize our SU(N) conventions. The weights of the

fundamental representation of SU(N) are hi with
∑N

i=1 hi = 0. We remind that the scalar

product is defined via (hi, hj) = δij − 1
N . The simple roots are

ek := hk − hk+1, k = 1, . . . , N − 1, (B.1)

and the positive roots e > 0 are contained in the set

∆+ := {hi − hj}Ni<j=1 = {ei}N−1
i=1 ∪ {ei + ei+1}N−2

i=1 ∪ · · · ∪ {e1 + · · ·+ eN−1}. (B.2)

The Weyl vector ρ for SU(N) is given by

ρ :=
1

2

∑

e>0

e =
1

2

N
∑

i<j=1

(hi − hj) =
N
∑

i=1

N + 1− 2i

2
hi = ω1 + · · ·+ ωN−1, (B.3)
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and it obeys (ρ, ei) = 1 for all i. The N − 1 fundamental weights ωi of SU(N) are given by

ωi =

i
∑

k=1

hk, i = 1, . . . , N − 1 (B.4)

and the corresponding finite dimensional representations are the i-fold antisymmetric tensor

product of the fundamental representation. They obey the scalar products (ei, ωj) = δij ,

i.e. they are a dual basis. Furthermore, we find the following scalar products useful

(ρ, hj) =
N + 1

2
− j, (ρ, ωi) =

i(N − i)

2
, (hj , ωi) =

{

1− i
N j ≤ i

− i
N j > i

, (B.5)

as well as

(ωi, ωj) =
min(i, j) (N −max(i, j))

N
, (ρ, ρ) =

N(N2 − 1)

12
. (B.6)

After some work, one can prove using the scalar products (B.5) and (B.6) that

1

N

∑

e>0

(α1, e) (α2, e) = (α1,α2) , (B.7)

for any two weights αi.

The Weyl group of SU(N) is isomorphic to SN and is generated by the N − 1 Weyl

reflections associated to the simple roots. If α is a weight, we define the Weyl reflections

with respect to the simple root ei

wi ·α := α− 2
(ei,α)

(ei, ei)
ei = α− (ei,α) ei. (B.8)

Furthermore, we define the affine Weyl reflections with respect to ei as follows

wi ◦α := Q+ wi · (α−Q) = wi ·α+Qei = α− (α−Q, ei) ei, (B.9)

where Q := Qρ = (b+ b−1)ρ.

C Special functions

For the reader’s convenience, we gather here the definitions and properties of all special

functions used in the main text.

C.1 The Υ function

The purpose of this part of the appendix is to summarize the known identities for the

functions used in the undeformed Liouville and Toda CFT. We begin with the function

Υ(x) which is defined for 0 < ℜ(x) < Q = b+ b−1 as the integral

logΥ(x) :=

∫ ∞

0

dt

t





(

Q

2
− x

)2

e−t −
sinh2

[(

Q
2 − x

)

t
2

]

sinh bt
2 sinh t

2b



 . (C.1)
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It is clear from the definition that

Υ(x) = Υ(Q− x), Υ

(

Q

2

)

= 1. (C.2)

One can show from the alternative definition below that the following shift identities are

obeyed

Υ(x+ b) = γ(xb)b1−2bxΥ(x), Υ(x+ b−1) = γ(xb−1)b2xb
−1−1Υ(x). (C.3)

where γ(x) := Γ(x)
Γ(1−x) . An useful implication is

Υ(x+Q) = b2(b
−1−b)x Γ

(

1 + bx
)

Γ
(

b−1x
)

Γ
(

1− bx
)

Γ
(

− b−1x
)Υ(x), (C.4)

which is used in the derivation of the reflection amplitude (3.7). It follows from (C.3) that

Υ is an entire function with zeroes at

x = −n1b− n2b
−1, or x = (n1 + 1)b+ (n2 + 1)b−1, (C.5)

where ni ∈ N0.

The function Υ can be connected to the Barnes Double Gamma function Γ2(x|ω, ω2).

First, we define Γ2(x|ω1, ω2) via the analytic continuation (the sum is only well-defined if

ℜ(t) > 2) of

log Γ2(s|ω1, ω2) =





∂

∂t

∞
∑

n1,n2=0

(s+ n1ω1 + n2ω2)
−t





t=0

. (C.6)

From this definition, one can prove (see A.54 of [71]) the difference property

Γ2(s+ ω1|ω1, ω2)

Γ2(s|ω1, ω2)
=

√
2π

ω
s
ω2

− 1
2

2 Γ
(

s
ω2

)

,
Γ2(s+ ω2|ω1, ω2)

Γ2(s|ω1, ω2)
=

√
2π

ω
s
ω1

− 1
2

1 Γ
(

s
ω1

)

. (C.7)

In order to express the Υ function using the Barnes double Gamma function, we have to

first define the normalized function

Γb(x) :=
Γ2(x|b, b−1)

Γ2(
Q
2 |b, b−1)

. (C.8)

The log of the function Γb(x) has an integral representation as

log Γb(x) =

∫ ∞

0

dt

t







e−xt − e−
Qt
2

(1− e−tb)(1− e−tb−1)
−

(

Q
2 − x

)2

2
e−t −

Q
2 − x

t






. (C.9)

Then, using (C.8) we can express the Υ(x) as

Υ(x) =
1

Γb(x)Γb(Q− x)
. (C.10)
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This, together with the difference properties of Γ2 proves the shift identities (C.3). Also of

interest is the function G(x) introduced in [34] with the properties

G(x+ b) =
b1/2−bx

√
2π

Γ(bx)G(x), G(x+ b−1) =
bb

−1x−1/2

√
2π

Γ(b−1x)G(x). (C.11)

The zeroes of this function are x = −mb−nb−1 for m, n ∈ N0. If we normalize it by setting

G(Q2 ) = 1, then we have G(x) = 1
Γb(x)

. Furthermore, [34] also introduce the function Z as

Z(x) = G(Q+ x)G(Q− x) =
bb

−1x−bx

2π
xΓ(bx)Γ(b−1x)Υ(x). (C.12)

One very often encounters a product formula for the function Γ2 =
∏

n1,n2
(x+ω1n1 +

ω2n2)
−1 that is unfortunately not quite correct. To get the product formula for Γ2(x)

working, one has to use (A.62) of [71]. Specifically, we set for ℜ(s) > 2

χ(s|ω1, ω2) :=
′

∑

n1,n2≥0

1

(ω1n1 + ω2n2)s
, (C.13)

where the prime removes the value (n1, n2) = (0, 0) from the sum. The function χ(s|ω1, ω2)

can be analytically continued for all s ∈ C except for s = 1 and s = 2 where there are

poles. We have the residues

Res(χ(s|ω1, ω2), s = 1) =
1

2

(

1

ω1
+

1

ω2

)

, Res(χ(s|ω1, ω2), s = 2) =
1

ω1ω2
(C.14)

and the finite parts

Res
(χ(s|ω1, ω2)

s− 1
, s = 1

)

= − logω1

ω1
+

1

2

(

1

ω1
− 1

ω2

)

logω2 +
γ

ω1
+

γ

2ω2
− 1

2ω1
log 2π

− i

b

∫ ∞

0

ψ(iω1
ω2
y + 1)− ψ(−iω1

ω2
y + 1)

e2πy − 1
dy

Res
(χ(s|ω1, ω2)

s− 2
, s = 2

)

=
ζ(2)

ω2
1

+
ζ(2)

2ω2
2

+
1

ω1ω2
(γ − 1− logω2)

− i

ω2

∫ ∞

0

ζH(2, iω1
ω2
y + 1)− ζH(2,−iω1

ω2
y + 1)

e2πy − 1
dy, (C.15)

where ψ is the digamma function, γ is the Euler - Mascheroni constant and ζH(s, q) is the

Hurwitz-ζ function with (ℜ(s) > 1 and ℜ(q) > 0)

ζH(s, q) :=
∞
∑

n=0

1

(q + n)s
. (C.16)

Finally, using the shorthands α := Res(χ(s|ω1,ω2)
s−1 , s = 1) and β := Res(χ(s|ω1,ω2)

s−2 , s =

2) + Res(χ(s|ω1, ω2), s = 2) we obtain

Γ2(x|ω1, ω2) =
e−αx+βx2

2

x

′
∏

n1,n2≥0

e
x

ω1n1+ω2n2
− x2

2(ω1n1+ω2n2)
2

1 + x
ω1n1+ω2n2

. (C.17)

– 37 –



J
H
E
P
0
6
(
2
0
1
5
)
0
4
9

C.2 The q-deformed Υ function

In this subsection, we wish to summarize some results involving the q-deformed Υ functions.

First we begin by defining the shifted factorials20 (we require for convergence that |qi| < 1

for all i)

(x; q1, . . . , qr)∞ :=
∞
∏

i1=0,...,ir=0

(1− xqi11 · · · qirr ). (C.18)

We can extend the definition of the shifted factorial for all values of qi by imposing the

relations

(x; q1, . . . , q
−1
i , . . . , qr)∞ =

1

(xqi; q1, . . . , qr)∞
. (C.19)

Furthermore, they obey the following shifting properties

(qjx; q1, . . . , qr)∞ =
(x; q1, . . . , qr)∞

(x; q1, . . . , qj−1, qj+1, . . . , qr)∞
. (C.20)

We then define the function M(u; t, q) as

M(u; t, q) := (uq; t, q)−1
∞ =



















∏∞
i,j=1(1− uti−1qj)−1 for |t| < 1, |q| < 1

∏∞
i,j=1(1− uti−1q1−j) for |t| < 1, |q| > 1

∏∞
i,j=1(1− ut−iqj) for |t| > 1, |q| < 1

∏∞
i,j=1(1− ut−iq1−j)−1 for |t| > 1, |q| > 1

, (C.21)

converging for all u. This function can be written as a plethystic exponential

M(u; t, q) = exp

[

∞
∑

m=1

um

m

qm

(1− tm)(1− qm)

]

, (C.22)

which converges for all t and all q provided that |u| < q−1+θ(|q|−1)tθ(|t|−1). Here and

elsewhere θ(x) = 1 if x > 0 and is zero otherwise. The following identity is obvious from

the definition

M(u; q, t) = M(ut/q; t, q). (C.23)

From the analytic properties of the shifted factorials (C.19), we read the identities

M(u; t−1, q) =
1

M(ut; t, q)
, M(u; t, q−1) =

1

M(uq−1; t, q)
, (C.24)

while from (C.20) we take the following shifting identities

M(ut; t, q) = (uq; q)∞M(u; t, q), M(uq; t, q) = (uq; t)∞M(u; t, q). (C.25)

We define the q-deformed Υ function as

Υq(x|ǫ1, ǫ2) =(1− q)
− 1

ǫ1ǫ2
(x−

ǫ+
2 )

2 ∞
∏

n1,n2=0

(1− qx+n1ǫ1+n2ǫ2)(1− qǫ+−x+n1ǫ1+n2ǫ2)

(1− qǫ+/2+n1ǫ1+n2ǫ2)2

=(1− q)
− 1

ǫ1ǫ2
(x−

ǫ+
2 )

2

∣

∣

∣

∣

∣

∣

M(q−x; t, q)

M(
√

t
q
; t, q)

∣

∣

∣

∣

∣

∣

2

,

(C.26)

20A good source for the properties of the shifted factorials is [72].
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where we have used the definition (4.16) for the norm squared. If follows from the definition

that Υq(ǫ+/2|ǫ1, ǫ2) = 1, that Υq(x|ǫ1, ǫ2) = Υq(ǫ+ − x|ǫ1, ǫ2) and that Υq(x|ǫ1, ǫ2) =

Υq(x|ǫ2, ǫ1). Furthermore, from the shifting identities for M, we can easily prove that

Υq(x|ǫ1, ǫ2) =
(

1− q

1− qǫ2

)1−2ǫ−1
2 x

γqǫ2 (xǫ
−1
2 )Υq(x|ǫ1, ǫ2), (C.27)

together with a similar equation for the shift with ǫ2. Here, we have used the definition of

the q-deformed Γ and γ functions

Γq(x) := (1− q)1−x (q; q)∞
(qx; q)∞

, γq(x) :=
Γq(x)

Γq(1− x)
= (1− q)1−2x (q

1−x; q)∞
(qx; q)∞

, (C.28)

valid for |q| < 1. They obey Γq(x+1) = 1−qx

1−q Γq(x), implying γq(x+1) = (1−qx)(1−q−x)
(1−q)2

γq(x).

Because of the normalization of Υq(x|ǫ1, ǫ2) and since the factors of the right hand side

of (C.27) have a well defined limit for q → 1, we find by comparing functional identities

that21

Υq(x|ǫ1, ǫ2) q→1−→ Υ(x|ǫ1, ǫ2) :=
Γ2

( ǫ+
2 |ǫ1, ǫ2

)2

Γ2

(

x|ǫ1, ǫ2
)

Γ2

(

ǫ+ − x|ǫ1, ǫ2
) . (C.29)

In particular, the function Υ(x) defined in subsection C.1 is equal to Υ(x|b, b−1). We

shall often just write Υq(x) instead of Υq(x|ǫ1, ǫ2) and indicate in the text whether the ǫi
parameters are arbitrary or whether b = ǫ1 = ǫ−1

2 .

For the rest of the section, we set b = ǫ1 = ǫ−1
2 . One very useful implication of (C.27)

for the derivation of the reflection amplitude (3.39)

Υq(x+Q) =

[

(

1− qb
−1)b(

1− qb
)b−1

(1− q)Q

]2x
Γ
qb

−1 (1 + bx)Γqb(b
−1x)

Γ
qb

−1 (1− bx)Γqb(−b−1x)
Υq(x), (C.30)

which reduces to (C.4) in the limit q → 1. We finish this part of the appendix with two

small remarks. First, the zeroes of Υq are given by

x = −n1ǫ1 − n2ǫ2 +
2πi

log q
m, x = (n1 + 1)ǫ1 + (n2 + 1)ǫ2 +

2πi

log q
m′, (C.31)

where ni ∈ N0 and m and m′ are integer. We thus see by comparing with (C.5) that

for each zero of Υ we have a whole tower, Kaluza-Klein like, of zeroes of Υq. The new

zeroes are q-dependent, but the ones that are also zeroes of Υ, i.e. those with m = 0

are q-independent. The tower of zeros is obtained by beginning with the q-independent

m = 0 zero and shifting by multiples of 2πi
log q = −2πi

β . Second, we will need to evaluate the

derivative of Υq(x) at x = 0. Since the zero of Υq(x) at x = 0 is due to the factor (1− qx)

in the numerator of (C.26), we find that the only piece of the derivative that survives is

Υ′
q(0) =

β

1− q
Υq(b). (C.32)

21The q → 1 limit has also been checked numerically for the case b = ǫ1 = ǫ−1
2 .
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C.3 The finite product functions

In this subsection ǫ1 and ǫ2 are general. In the definition of the topological string ampli-

tudes, we often need to use the following two functions given by finite products

Z̃ν(t, q) :=

ℓ(ν)
∏

i=1

νi
∏

j=1

(

1− tν
t
j−i+1qνi−j

)−1
,

Nλµ(Q; t, q) :=
∞
∏

i,j=1

1−Qti−1−λt
jqj−µi

1−Qti−1qj

=
∏

(i,j)∈λ

(1−Qtµ
t
j−iqλi−j+1)

∏

(i,j)∈µ

(1−Qt−λt
j+i−1q−µi+j).

(C.33)

We shall use in the following |λ| := ∑ℓ(λ)
i=1 λi and ||λ||2 := ∑ℓ(λ)

i=1 λ2
i , where ℓ(λ) is the number

of rows of the partition λ. We observe that in some cases the function Nλµ behaves like

a delta function, for instance Nλ∅(
t
q
) = N∅λ(1) = δλ∅. Furthermore, we find a relation

allowing us to express the product of two Z̃µ through

Nµµ(1; t, q) =

(

−
√

q

t

)|µ|

t−
||µt||2

2 q−
||µ||2

2

(

Z̃µ(t, q)Z̃µt(q, t)
)−1

. (C.34)

Using the identities

∑

(i,j)∈λ

i =
1

2

(

||λt||2 + |λ|
)

,
∑

(i,j)∈λ

µi =

min{ℓ(λ),ℓ(µ)}
∑

i=1

λiµi, (C.35)

we find the exchange identities

Nλµ(Q; q, t) = Nµtλt(Q
t

q
; t, q),

Nλµ(Q
−1; t, q) =

(

−Q−1

√

q

t

)|λ|+|µ|

t
−||λt||2+||µt||2

2 q
||λ||2−||µ||2

2 Nµλ(Q
t

q
; t, q).

(C.36)

From [1, 40] we take the following summation formula

∑

µ

(
√

q

t
Q3

)|µ| Nµ∅

(√

t
q
Q1

)

N∅µ

(√

t
q
Q2

)

Nµµ(1)
=

M
(

Q1Q3

)

M
(

t
q
Q2Q3

)

M
(√

t
q
Q3

)

M
(√

t
q
Q1Q2Q3

) . (C.37)

In the 4D limit, it is often useful to use the rescaled N functions that we refer to as

“Nekrasov” functions (Q = e−βm)

Nλµ(Q; t, q) =

(

Q

√

q

t

)

|λ|+|µ|
2

t
||µt||2−||λt||2

4 q
||λ||2−||µ||2

4 N
β
λµ(m; ǫ1, ǫ2), (C.38)

where, using the parametrization (2.1), the new functions are given by

N
β
λµ(m; ǫ1, ǫ2) =

∏

(i,j)∈λ

2 sinh
β

2

[

m+ ǫ1(λi − j + 1) + ǫ2(i− µt
j)
]

×
∏

(i,j)∈µ

2 sinh
β

2

[

m+ ǫ1(j − µi) + ǫ2(λ
t
j − i+ 1)

]

.
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The new function obeys the simpler exchange identities

N
β
λµ(m;−ǫ2,−ǫ1) = N

β
µtλt(m− ǫ1 − ǫ2; ǫ1, ǫ2),

N
β
λµ(−m; ǫ1, ǫ2) = (−1)|λ|+|µ|

N
β
µλ(m− ǫ1 − ǫ2; ǫ1, ǫ2), (C.39)

N
β
λµ(m; ǫ2, ǫ1) = N

β
λtµt(m; ǫ1, ǫ2),

as well as the summation formula

∑

µ

e−β(
m1
2

+
m2
2

+m3)|µ|
N
β
µ∅

(

m1 − ǫ+
2

)

N
β
∅µ

(

m2 − ǫ+
2

)

N
β
µµ(0)

=

=
M

(

e−β(m1+m3)
)

M
(

e−β(m2+m3−ǫ+)
)

M
(

e−β(m3−
ǫ+
2
)
)

M
(

e−β(m1+m2+m3−
ǫ+
2
)
) . (C.40)

We finish this section by remarking that in the limit β → 0, the functions Nβ
λµ behave as

N
β
λµ

β→0−→ β|λ|+|µ|
Nλµ, (C.41)

where we have defined

Nλµ(m; ǫ1, ǫ2) =
∏

(i,j)∈λ

[

m+ ǫ1(λi − j + 1) + ǫ2(i− µt
j)
]

×
∏

(i,j)∈µ

[

m+ ǫ1(j − µi) + ǫ2(λ
t
j − i+ 1)

]

.
(C.42)

Thus for instance ratios of Nβ
λµ that are balanced in the sense that the same partitions

appear in the numerator and in the denominator have proper limits for β → 0.

D Computation of the TN partition function

In this part of the appendix, we wish to put together the computations that bring us from

equations (4.6) and (4.7) to (4.8), (4.9) and (4.10). We define the function

Rλµ(Q; t, q) :=

∞
∏

i,j=1

(

1−Qti−
1
2
−λjqj−

1
2
−µi

)

= M(Q

√

t

q
; t, q)−1Nλtµ(Q

√

t

q
; t, q), (D.1)

and, after using some Cauchy identities, we rewrite (4.6) as equation (4.67) of [1]:

Zstrip
ντ (Qm,Ql; t, q) =

L+1
∏

j=1

t
||νtj ||

2

2 Z̃νtj
(q, t)

L
∏

j=1

q
||τj ||

2

2 Z̃τj (t, q)

×
L
∏

i≤j=1

Rνti τj

(

Qm;j
∏j−1

k=i Qm;kQl;k

)

Rτ ti νj+1

(

Ql;i
∏j

k=i+1Qm;kQl;k

)

Rνtiνj+1

(

∏j
k=iQl;kQm;k

√

q
t

)

×
L−1
∏

i≤j=1

Rτ ti τj+1

(

j
∏

k=i

Ql;kQm;k+1

√

t

q

)−1
. (D.2)
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The complete TN diagram is made out of N such strips, as depicted in figure 4 and written

down in equation (4.7). We remind that ν
(0)
j = ∅ for all j, see the right part of figure 4. We

can redefine the strip partition function without affecting the topological string partition

function (4.7), by moving half of the Z̃ from one strip to the another. Specifically, we move

the Z̃νti
(q, t)t

||νti ||
2

2 of the left lines to the right ones, so that they become Z̃τ ti
(q, t)t

||τti ||
2

2

for the strip on the left. This redefinition doesn’t change ZN , since the partitions to the

extreme left of the TN diagram are all empty. Putting it all together, we get a new strip

partition function,

Zstrip ′
ντ (Qm,Ql; t, q) =

L
∏

j=1

t
||τtj ||

2

2 q
||τj ||

2

2 Z̃τj (t, q)Z̃τ tj
(q, t)

×
L
∏

i≤j=1

Rνti τj

(

Qm;j
∏j−1

k=i Qm;kQl;k

)

Rτ ti νj+1

(

Ql;i
∏j

k=i+1Qm;kQl;k

)

Rνtiνj+1

(

∏j
k=iQl;kQm;k

√

q
t

)

×
L−1
∏

i≤j=1

Rτ ti τj+1

(

j
∏

k=i

Ql;kQm;k+1

√

t

q

)−1
. (D.3)

We can get rid of the Z̃ functions using (C.34). Putting things together in the products

and replacing the R functions by using (D.1), we get

Zstrip ′
ντ (Qm,Ql; t, q) =

L−1
∏

i≤j=1

M
( t

q

j
∏

k=i

Ql;kQm;k+1

)

×
L
∏

i≤j=1

M
(

∏j
k=iQl;kQm;k

)

M
(√

t
q
Qm;j

∏j−1
k=i Qm;kQl;k

)

M
(√

t
q
Ql;i

∏j
k=i+1Qm;kQl;k

)

L
∏

k=1

(

−
√

t

q

)|τk|

×
L
∏

i≤j=1

Nνiτj

(√

t
q
Qm;j

∏j−1
k=i Qm;kQl;k

)

Nτiνj+1

(√

t
q
Ql;i

∏j
k=i+1Qm;kQl;k

)

Nνiνj+1

(

∏j
k=iQl;kQm;k

)

Nτiτj

(

t
q

∏j−1
k=i Ql;kQm;k+1

) . (D.4)

We can straightforwardly obtain (4.9) by taking only the M dependent terms of the strip

partition functions, plugging them in (4.7) and replacing the Kähler parameters Qm, and

Ql by the Ã’s using the formulas (A.8) of appendix A. Thus, we get the “perturbative

part” of the topological string TN partition (4.9), i.e. the part that is independent of the

partitions entering the sum.

Using the functions N
β defined in (C.39), the relations (C.38) and performing a shift

of the factors from one strip to the one standing on its left, which implies the following

change:

L
∏

i≤j=1

(

t

q

)

|νi|+|νj+1|

4

−→
L−1
∏

i≤j=1

(

t

q

)

|τi|+|τj+1|

4

, (D.5)
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we can write the “instanton” part of the redefined strip as

Zstrip, inst ′′
ντ (Qm,Ql; t, q) =

L
∏

k=1

(−1)|τk|
L
∏

i≤j=1

Q
|τj |−|νj+1|

2
m;i Q

|τi|−|νi|

2
l;j

×
N
β
νiτj (

∑j−1
k=i ql;k +

∑j
k=i qm;k − ǫ+

2 )Nβ
τiνj+1

(
∑j

k=i ql;k +
∑j

k=i+1 qm;k − ǫ+
2 )

N
β
νiνj+1

(
∑j

k=i(ql;k + qm;k))N
β
τiτj (

∑j−1
k=i ql;k +

∑j
k=i+1 qm;k − ǫ+)

, (D.6)

where we have used Q
(i)
m;j = e−βq

(i)
m;j , Q

(i)
l;j = e−βq

(i)
l;j and Q

(i)
n;j = e−βq

(i)
n;j . Before we move on,

let us remark that

L
∏

i≤j=1

Q
|τj |−|νj+1|

2
m;i Q

|τi|−|νi|

2
l;j =

L
∏

i=1





i
∏

j=1

Qm;j

L
∏

k=i

Ql;k





|τi|

2 L+1
∏

i=1





i−1
∏

j=1

Qm;j

L
∏

k=i

Ql;k





−
|νi|

2

.

(D.7)

Armed with (D.6), we can compute (4.10). We have

Z inst
N =

N
∏

r=1

(

−Q(r)
n

)|ν(r)|
Zstrip, inst ′′
ν(r−1)ν(r) (Q

(r)
m ,Q

(r)
l ; t, q). (D.8)

First, we consider the part of the sum of Z inst
N that doesn’t involve the N

β functions. It

consists solely of the
∏N

r=1

(

− Q
(r)
n

)|ν(r)|
term (The minus sign will be canceled by the

∏L
k=1(−1)|τk| part of (D.6)) of (D.8) and of the product of (D.7) over all the strips, where

ν is to be replaced by ν(r−1) and τ by ν(r). Explicitly, this part of the summand has the

form (the length L of the strip is given by N − r, where r numbers the strips from left to

right)

N
∏

r=1

N−r
∏

i=1

(

Q
(r)
n;i

)|ν
(r)
i |

N−r
∏

i=1





i
∏

j=1

Q
(r)
m;j

N−r
∏

k=i

Q
(r)
l;k





|ν
(r)
i

|

2 N−r+1
∏

i=1





i−1
∏

j=1

Q
(r)
m;j

N−r
∏

k=i

Q
(r)
l;k





−
|ν

(r−1)
i

|

2

=
N
∏

r=1

N−r
∏

i=1

(

Q
(r)
n;i

)|ν
(r)
i |





i
∏

j=1

Q
(r)
m;j

N−r
∏

k=i

Q
(r)
l;k





|ν
(r)
i

|

2




i−1
∏

j=1

Q
(r+1)
m;j

N−r−1
∏

k=i

Q
(r+1)
l;k





−
|ν

(r)
i

|

2

=
N
∏

r=1

N−r
∏

i=1





(

Q
(r)
n;i

)2
∏i

j=1Q
(r)
m;j

∏N−r
k=i Q

(r)
l;k

∏i−1
j=1Q

(r+1)
m;j

∏N−r−1
k=i Q

(r+1)
l;k





|ν
(r)
i

|

2

=

N
∏

r=1

N−r
∏

i=1







(

Ã
(r)
0 Ã

(r)
N−r

)2

Ã
(r−1)
0 Ã

(r+1)
0 Ã

(r−1)
N−r+1Ã

(r+1)
N−r−1







|ν
(r)
i

|

2

=

N
∏

r=1

N−r
∏

i=1

[

ÑrL̃N−r

Ñr+1L̃N−r+1

]

|ν
(r)
i

|

2

(D.9)

where in the second line we have used the fact that ν(0) consists entirely of empty partitions,

in the fourth we have used the very useful formulas (A.8) and in the last equation have

used (A.1).
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Taking now the last line of (D.9) and adding the remaining N
β parts, we get the full

instanton part of the TN partition function that we wrote in (4.10).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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