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1 Introduction

AdS/CFT correspondence relates string theory in AdS space to a supersymmetric SU(N)

Yang-Mills theory living on the boundary of this AdS. The isometry group of the AdS

orders the boundary field theory to be conformal. The correspondence can be summarized

through the relation:
L4

AdS

l4s
= 4πg2

YMN ≡ 4πλ, (1.1)

where ls is the string length and LAdS, the curvature length scale of the AdS. gYM and

N denote the coupling constant and the rank of the gauge group of the boundary gauge

theory respectively. λ = g2
YMN is the t’Hooft coupling. In the limit, N →∞, gYM → 0 and

λ = finite the string theory is classical. When the t’Hooft coupling is large (λ � 1), the

classical string theory reduces to its low energy supergravity limit. Furthermore, a large λ

makes the field theory to be strongly coupled while the bulk gravity theory remains weakly

coupled and hence AdS/ CFT correspondence reduces to a weak-strong duality between a

classical gravity theory and a quantum field theory. However, due to strong gravitational

fluctuations, this simple limit of the correspondence ceases to exist when the boundary

hits, for example, cosmological singularities. Attempts were made to use AdS/CFT to

construct time-dependent bulk geometries dual to a boundary field theory well defined

even near the cosmological singularity. This is something expected from the fact that

AdS/ CFT correspondence can be thought of as an example of a more general open string-

closed string duality in string theory. This means, even if the classical supergravity limit

of string theory does not exist near singularity, it, in principle, does not prevent one from

having a well-defined dual field theory right there. However, the successes in constructing

such holographic models have been partial [1] - [5].
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In this regard, a recent work [7] has provided us with a holographic approach to

examining physics near a class of cosmological singularities1 The boundary here is given

by the Kasner geometry which can appropriately be extended to the bulk. This bulk

metric solves five dimensional Einstein equation in the presence of a negative cosmological

constant. The work then uses space-like correlators of CFT operators with high enough

scaling dimension living on the boundary as a probe. These are “good” probes because the

correlators can be well-approximated by exponentiated length of bulk geodesics provided

the geodesics go close enough to the cosmological singularity. It is then shown that in

certain circumstances the correlator develops a pole in their IR behaviour whenever the

geodesic approaches the t = 0 singularity of the Kasner geometry.

Inspired by this work, in this short note, we revisit the calculation of the correlators.

We, however, take a different route of computation. Instead of calculating it on a fixed -

time surface, we exploit the underlying scaling symmetry of the Kasner AdS space-time to

evaluate the equal-time correlator. The whole process can equivalently be thought of as

evaluating the same on an arbitrary space-like surface which finally we push all the way

to cosmological singularity and extract the nature of the correlator therein. We find that

in the cases where the two points in the boundary are separated in the spatial direction

associated with a positive Kasner exponent,2 no pole appears in the correlator even near the

cosmological singularity. Throughout our analysis, the said asymmetric scaling symmetry

of the background metric remains manifest. This in turn enables us to study some general

features of the correlator as well.

While the above bulk Kasner-AdS geometry has a Poincare horizon at the core, it is

possible to cap it off at finite radial distance by considering a Kasner-AdS soliton instead.

We numerically compute the same correlator for this new background and find that the

qualitative behaviour remains unchanged.

The plan of the paper is as follows. In the next section, we give a brief account of the

cosmological metrics with anisotropic scaling symmetry including the Kasner metric. In

section 3, we compute the correlator and study it’s properties in a specific cases. In the

appendix A, we discuss how the relevant time-dependent geometries can be obtained as

near horizon limits of brane-solutions in supergravity. Calculational details are presented

in the appendix B.

2 Scaling solutions

Several time-dependent solutions of five-dimensional Einstein equations in the presence

of negative cosmological constant are known which have anisotropic scaling symmetry of

the form

z → λz, t→ λt, xi → λ(1−pi)xi (i = 1, 2 . . . , n), (2.1)

where pi’s and λ are some constants. Here are some of the examples:

1Earlier, in [8], boundary correlators were calculated by embedding time dependent backgrounds in AdS.
2Given the Kasner conditions, namely,

∑
i pi = 1 and

∑
i p

2
i = 1,pi’s being the Kasner exponents, it is

guaranteed that we always have at least one positive Kasner exponent.
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• The most celebrated example of this comes in the form

ds2 =
1

z2

[
− dt2 + dz2 +

n∑
i=1

(ai)
2dx2

i

]
, (2.2)

where ai = tpi . pi are known as Kasner exponents and satisfies the Kasner conditions,

namely,
∑n

i=1 pi = 1 and
∑n

i=1 p
2
i = 1 in order that (2.2) is a AdSn+2 space-time.

For n = 3 and n = 5 these solutions can also be realized from the perspective of 10

and 11 dimensional supergravity theories as near horizon D3 and M5 brane solutions

with Kasner like world volume. Such solutions and their cosmological implications

have been studied in detail in [6].

• One of the Kasner conditions can however be relaxed at the expense of introducing

matter fields. For instance, there exist AdS solutions with the same metric (2.2) with∑
pi = 1. For that one needs to introduce a dilatonic scalar field, Φ = λLog t, where

λ is defined through the modified Kasner condition,
∑n

i=1 p
2
i = 1− λ2

2 . Such solutions

were studied in [9] in the context of probing cosmological singularity through gauge

theory duals. These solutions have the scaling symmetry as long as dilaton is shifted

by a appropriate constant.

• Finally we shall give example of another class of solutions which has slightly different

form than (2.2) but still obeys the scaling relations, (2.1). The metric of the solution

takes the form

ds2 =
1

z2

[
−dt2 +

1

f(z)
dz2 +

n−1∑
i=1

t2pidx2
i + f(z)dx2

n

]
(2.3)

Here pi’s satisfy Kasner conditions with pn = 0 and f(z) = 1− zn+1

zn+1
0

. The coordinate,

xn is an angular coordinate here. These solutions are known as Kasner AdSn+2

solitons [10, 11] and can be realized in supergravity (for n = 5, 7). We put the

supergravity origin of these solutions in the appendix A as this is beyond the main

point of discussion of this work.

3 Gauge theory on time-dependent boundary: consequences

We now turn to the dual gauge theory. As mentioned in the introduction, one of the

prime motivations of studying time-dependent AdS geometries have been to understand

the physics near cosmological singularity, t → 0, a sector, otherwise intractable from a

direct study.

In order to proceed, one generally computes the space-like two point correlator,

〈ψ|O(x, t)O(x′, t)|ψ〉 on a state |ψ〉 of the strongly coupled Yang-Mills theory residing on

the boundary of some of the bulk geometries we discussed in the previous section. When

the boundary CFT has a well defined large N limit, the correlator, in the leading order,

can be well approximated by

〈ψ|O(x)O(x′)|ψ〉 = e−mLreg(x,x′), (3.1)

– 3 –
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provided the operator, O has a high scale dimension, ∆ = d
2 +

√
d2

4 +m2, d being the

boundary dimension. Here Lreg is the regularized length of the geodesic whose end points

are fixed at boundary points, x and x′. With this definition in mind, in the rest of this

section we shall compute two examples. First we shall revisit the example of Kasner AdS

space-time and then we shall move on to solitonic Kasner-AdS. We will show how some

generic features of the result emerge as a consequence of the underlying scaling symmetry of

those solutions. For Kasner-Ads soliton, owing to the complication due to the background

geometry, we compute the correlator numerically and compare the result with that of

Kasner-AdS.

3.1 Example 1: AdS-Kasner

We would like to compute 〈O(x′1, t0)O(x1
′′, t0)〉 where the bulk geometry is given by (2.2)

with ai = tpi . This is a correlator along x1 direction with two boundary points at x′1, x1
′′

computed at a fixed time t = t0. Corresponding space-like geodesic must then have two

fixed end points x′1, x
′′

1 at the boundary z = 0 at time t = t0. For this particular calculation,

therefore, the other boundary directions xi, i 6= 1 are irrelevant. For the moment, we work

with a general scale factor a1(t) along x1. Later, we will use the explicit form a1 = t2p1

for p1 > 0.

Calling x1 as x and a1 as a for notational simplicity, the geodesic equations for (2.2)

are given by

x′′ + 2
a′

a
x′ − aa′x′3 = 0,

zz′′ + z′
2

+ x′
2
a2 − aa′zz′x′2 − 1 = 0. (3.2)

Here, we have taken time as a parameter and derivatives are with respect to time.

General solutions of these equations can be written as

x(t) = ±
∫

a(t∗)dt

a(t)
√
a2(t∗)− a2(t)

(3.3)

and

z = +

√
−2

∫
dt

[
a(t)√

a2(t∗)− a2(t)

(∫ t

dt′
a(t′)√

a2(t′∗)− a2(t′)

)]
. (3.4)

To write (3.3) in this form, we have used the fact that there is a turning point of the

geodesic in the bulk and at that point dx/dt diverges. For the solution above, we have

taken the point to be t = t∗.

Given a functional form for a(t), one would then try to integrate the left hand side of

the above equations. In this process, three integration constants would appear. However,

all of these can be fixed by boundary conditions. The constant appearing from (3.3) can

be set to zero by using x → x + constant symmetry of the metric. Other two constants

arise from the two integrations in (3.4). Both of them can be fixed - (1) by demanding

dz/dx = 0 at the turning point of the geodesic in z − x plane and (2) by requiring z = 0

for t = t0.

– 4 –
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We now argue that if the metric has the scaling symmetry (2.1), then the constant

a(t∗) can be scaled away. Taking a(t) = tp and defining new coordinates z̄, t̄ and x̄ as

z = t∗z̄, t = t∗t̄, x = t∗1−px̄ (3.5)

we can re-write (3.3) and (3.4) as

x̄(t̄) = ±
∫ [

dt̄

t̄p
√

1− t̄2p

]
, (3.6)

and

z̄(t̄) = +

√
−2

∫
dt̄

[
t̄p√

1− t̄2p

(∫ t̄

dt̄′
t̄′p√

1− t̄′2p

)]
. (3.7)

With this, (3.6) and (3.7) can be easily integrated. This gives, for generic p

x̄(t̄) =
t̄1−p

1− p 2F1

(
1

2
,
1− p

2p
,
1 + p

2p
, t̄2p

)
−

√
πΓ(1−p

2p )

(1− 2p)Γ(1−2p
2p )

, (3.8)

and

z̄(t̄) =

[
t̄2
[
1− 3F2

({
1,

1

2p
,

1

p

}
,

{
1

2
+

1

2p
, 1 +

1

p

}
, t̄2p

)]
+

4
√
πpΓ(1+p

2p )t̄1−p

(1− 2p)Γ(1−2p
2p )

[
2F1

(
1

2
,

1− p
2p

,
1 + p

2p
, t̄2p

)
−
√

1− t̄2p
]

+ c

] 1
2

. (3.9)

Here, c is a constant which can fixed using z̄ = 0 for t̄ = t̄0. 2F1 and 3F2 are the hy-

pergeometric function and the generalized hypergeometric function respectively. For some

specific values of p, the solutions however simplify. In appendix B, we provide a way to

solve (3.2) and get to these results.

Having reached this far, we proceed to find the geodesic length. For the correlator,

〈O(x, t0)O(−x, t0)〉, we first need to calculate the integral (3.1)

L =

∫
2dt

z

[√
−1 +

(
dz

dt

)2

+ t2p
(
dx

dt

)2
]
, (3.10)

with appropriate limits. Now, as for the lower limit, the turning point of the geodesic is

at t = t∗. In terms of scaled time, it is at t̄ = 1. For the upper limit, we note that the

correlator is being calculated at a constant t = t0 slice. This, in terms of scaled variable,

is t̄ = t̄0. We further need to UV-regulate the integral by introducing a cut-off, δ̄. The

geodesic length is therefore

L =

∫ t̄=t̄0−δ̄

t̄=1

2dt̄

z̄

[√
−1 +

(
dz̄

dt̄

)2

+ t̄2p
(
dx̄

dt̄

)2
]
. (3.11)

In general, L is infinite. In order to render it finite, we need to subtract, from L,

the equivalent AdS part. This removes the δ̄ → 0 singularity in the geodesic length.

Consequently, the regulated L will only depend on t̄0.

– 5 –
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Above observation, in turn, means that the gauge theory correlator has the form

〈O(x, t0)O(−x, t0)〉 = e−mLreg = f(t̄0), (3.12)

for some function f . For general p, we are unable to evaluate this function analytically.

Nevertheless, numerically it can be calculated. We provide our results later. However,

for some values of p, expressions simplify and analytic computations can be done. As an

illustrative example, we do it for p = 1/3. Results are given below.

z̄(t̄) =

√
3(t̄

4
3 − t̄

4
3

0 ) + (t̄2 − t̄20)

x̄(t̄) = ±3

√
1− t̄

2
3 . (3.13)

The geodesic length turn out to be

L =

∫ t̄0−δ̄

t̄=1
dt̄

2t̄
1
3

√
1− t̄

2
3

0 (2 + t̄
2
3

0 )√
1− t̄

2
3 (3t̄

4
3 + t̄ 2 − 3t̄

4
3

0 − t̄ 2
0 )

= 2 tanh−1


√

1− (t̄0 − δ̄)
2
3

(
2 + (t̄0 − δ̄)

2
3

)
√

1− t̄
2
3
0

(
2 + t̄

2
3

0

)
 . (3.14)

Finally, to obtain the regularized length, we need to subtract appropriate AdS contribution.

Therefore,

Lreg = L − 2 log

 t̄
1
3

0

z̄(t̄0 − δ̄)


= log

4(4− t̄20 − 3t̄
4
3

0 )

t̄
2
3

0

 . (3.15)

Therefore, we find that f(t̄0) goes to zero as we take t̄0 → 0.

As we mentioned previously, for arbitrary p, it is not possible to evaluate the correlator

analytically. However, it is straightforward to carry out a numerical computation. The

result is shown in figure 1. Indeed, we find the correlators do not pick up singularities as

we take t̄0 → 0.

Having computed the correlator for p > 0, we proceed to make some general remarks

about the correlator. First, let us notice that we can re-write (3.12) as

〈O(t∗(1−p)x̄, t∗t̄0)O(−t∗(1−p)x̄, t∗t̄0)〉 = f(t̄0). (3.16)

However, since t∗ is a free parameter, we are free to choose it. Let us take t∗ = t̄−1
0 . Then

the correlator takes the form

〈O(t̄
(p−1)
0 x̄, 1)O(−t̄(p−1)

0 x̄, 1)〉 = f(t̄0). (3.17)

– 6 –
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t0

0.1
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0.3

0.4

ⅇ-L reg

Figure 1. Plot of e−Lreg vs t0 for different values of p. Magenta, blue and green are for p = 9/10, 1/5

and 1/7 respectively. For p = 1/3, the numerical and analytical results coincide. The behaviour is

shown above in red.

Calling O(t̄
(p−1)
0 x̄, 1) = Õ(t̄

(p−1)
0 x̄) and so on we get,

〈Õ(t̄
(p−1)
0 x̄)Õ(−t̄(p−1)

0 x̄)〉 = f(t̄0). (3.18)

Dependence on the arguments of correlator in this fashion is indeed expected in a scale

invariant theory. Note that for p > 0, as we push the space-like surface close to t̄0 = 0,

the separation between the two points in the correlator increases. So we capture the large

separation behaviour of the correlator.

The second scaling solution of the previous section has similar metric but there is a

non-trivial dilaton. Though this scalar goes to zero at t = 0, it diverges at a later time

— leading to the divergence in Yang-Mills coupling. This however is not a concern for

the third scaling solution. This is the Kasner-AdS soliton and we now compute the gauge

theory correlator at the boundary of this background.

3.2 Example 2: Kasner soliton in AdS

The AdS7 Kasner soliton is given by

ds2 =
1

z2

[
− dt̄2 + t̄2α1dx̄2

1 + t̄2α2dx̄2
2 + t̄2α3dx̄2

3

+t̄2α4dx̄2
4 +

(
1− z6

z6
0

)
dθ̄2 +

(
1− z6

z6
0

)−1

dz2

]
(3.19)

This is precisely the n = 5 case of (2.3). The details of derivation of this form is given

in (A.20) of the appendix A.

As before, without any loss of generality, we can consider equal time correlators where

the boundary points are separated only in x1 direction. The geodesic equations are:

−2ż

z
+ αt−1+2αẋ2 = f(t), (3.20)

ẍ+
2α

t
ẋ− 2

z
ẋż = f(t)ẋ, (3.21)(

z6 − z6
0

) (
−ẋ2

(
z6 − z6

0

)
t2α + z6 + zz6

0 z̈ − z6
0

)
+ ż2

(
z6

0 − 4z6
)
z6

0

z6
0

(
z7 − zz6

0

) = f(t)ż, (3.22)
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where for notational simplicity we have denoted x1 as x, avoided the bars from the variables

and also called α1 as α. In the above equations, f(t) is a function of t.

Now substituting f(t) from (3.20) into (3.21) and (3.22) we obtain:

ẍt = αẋ
(
−2 + t2αẋ2

)
, (3.23)(

z6 − z6
0

) (
z6 + z6

0zz̈ − z6
0

)
− ż2z6

0

(
2z6 + z6

0

)
−ẋ2

(
z6 − z6

0

)
t2α−1

(
t
(
z6 − z6

0

)
+ αzżz6

0

)
= 0. (3.24)

We further concentrate on the case α = 1
3 to see a parallel with the case of the

Kasner example we considered in the previous subsection. For other positive α, qualitative

behaviour of the correlator remains same. Equation (3.23) can be solved analytically. We

substitute the solution in (3.24) and re-express the z-equation as a differential equation

in x.(
x2 − 9

)3
z12 + z12

0

[
81
{(
x2 − 9

)
zz′′ +

(
x2 − 9

)
z′2 − 2xzz′

}
+
(
x2 − 9

)3]
(3.25)

+z6
0z

6
[
−81

(
x2 − 9

)
zz′′ + 162z′

{(
x2 − 9

)
z′ + xz

}
− 2

(
x2 − 9

)3]
= 0 .

Unlike its counterpart in Kasner-AdS, this equation cannot be solved analytically.

However we do find numerical solutions implementing the boundary conditions, namely,

• dz
dx = 0 at the turning point, t = t∗ of the geodesic.

• z = 0 at t = t0.

Further, the geodesic length can be written as

L =
2

9

∫ x0−δ

0

dx

z(x)

(
x
√

9− x2

√
81z6

0z
′(x)2

x2 (9− x2)
(
z6

0 − z(x)6
) +

9

x2
− 1

)
. (3.26)

Here x0 is related to the fixed time-slice t0 at the boundary through the solution of (3.23).

x0 = ±3

√
1− t

2
3
0 . (3.27)

Coordinates in (3.26) and (3.27) are all scaled coordinates as per (3.5) so that the turning

point is now at t = 1. δ is a sharp cut-off in x and signifies the UV cut-off near AdS

boundary. The singularity δ = 0 can however be taken care of by subtracting from it the

corresponding length in AdS with the same UV cut-off, δ, namely

LAdS = 2 log

 t
1
3
0

z(x0 − δ)

 . (3.28)

In figure 1, we plot e−Lreg as a function of t0 where

Lreg = L− LAdS. (3.29)

The results are plotted in figure 2. The correlator qualitatively shows a behaviour

similar to the one we argued for the Kasner geometry. We see here that the function e−Lreg

– 8 –
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Figure 2. Plot of e−Lreg vs t0 for AdS7 Kasner soliton. Blue, red and green curves are for

z0 = .5, 1 and 10 respectively. For comparison, we also showed, in magenta, e−Lreg for pure AdS7

Kasner solution.

goes to zero smoothly as we tune t0 → 0. We further see from the figure that, as z0 increases,

the plots more and more resemble that of Kasner-AdS. This is expected. As the point z0

moves away from the boundary, the correlator sense less of the bulk solitonic geometry.

Finally, we note that in the context of AdS/CFT, it is also possible to construct

geometry which breaks the underlying scaling symmetry. For example, one can consider [12]

ds2 =
1

z2

[
− dt2 + dz2 +

n∑
i=1

a2
i (t)dx

2
i +

m∑
j=1

b2j (t)dΣ2

]
, (3.30)

where, Σ represents a m dimensional hyperbolic manifold. The metric has cosmological

singularities and, owing to the complicated time-dependence of a and b, it breaks the

scaling symmetry. It would be interesting to compute an appropriate boundary correlator

for this geometry. We shall report about such scaling-violating cosmological solutions and

their implications in a later issue [13].
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A Nod from supergravity

In this appendix we elaborate on how the time-dependent solutions discussed in previous

sections inherit a supergravity origin. The solutions we talk about here solves the equations

of motion of supergravity theories in 10 and 11 dimensions.
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Solutions in D = 10. We first review the time-dependent solutions from 10D type IIB

supergravity. We primarily concentrate on the Bosonic part of the theory, since for generic

time-dependent solutions supersymmetry is explicitly broken. The equations of motion

following from the relevant part of standard IIB supergravity action3

SIIB = − 1

16πG10

∫
d10x
√
−g
(
R− 1

2
∂µφ∂µφ−

1

2× 5!
F 2

5

)
. (A.1)

has the forms:

Rµν =
1

2
∂µφ∂νφ+

1

2× 5!
(5Fµξ2...ξ5Fνξ2...ξ5 −

1

2
δµνF

2
5 ),

∂µ(
√
gFµξ2...ξ5) = 0,

∇2φ = 0. (A.2)

• It was shown in [6] that these equations are solved by the following metric and gauge

field configuration:

ds2 =

(
1 +

l4

r4

)− 1
2

[
− dt2 +

3∑
i=1

t2pidx2
i

]
+

(
1 +

l4

r4

) 1
2
[
dr2 + r2dΩ2

5

]
,

Ftx1x2x3r =
2
√

2l4tp1+p2+p3r3

(l4 + r4)2
, Fijklm =

√
−g εtx1x2x3rijklm F tx1x2x3r

φ = 0, (A.3)

provided the exponents, pi, satisfy Kasner conditions, namely

3∑
i=1

pi = 1 and

3∑
i=1

p2
i = 1 (A.4)

Here, i, j, k, l,m are the indices on S5.

In the near horizon limit, r → 0, the metric reduces to

ds2 = −r
2

l2
dt2 +

l2

r2
dr2 + r2(t2αdx2 + t2βdy2 + t2γdz2) + l2dΩ2

5, (A.5)

with

Ftxyzr =
4tr3

l4
, giving potential Ctxyz =

tr4

l4
. (A.6)

We call it a Kasner-AdS5 solution as we discussed under the class of solutions, (2.2).4

• Kasner solutions sourced by scalar fields can also be realised, likewise, from the

same supergravity set-up. The scalar field profile, however, in this case gets an

interpretation of stiff matter on the brane configuration in question.

3We impose the self-duality condition of the 5-form field strength at the level of equation of motion.
4This form is related to the form given in (2.2) by a coordinate transformation, r = 1

z
.
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Solutions in D = 11. In [6] it was also discussed that extremal M5 brane solutions

with Kasner-like time dependent scaling of transverse spatial coordinates is a solution of

(Bosonic sector of) D = 11 supergravity with time-dependent gauge fields:

ds2 =

(
1 +

l3

r3

)− 1
3

[
−dt2 +

5∑
i=1

t2pidx2
i

]

+

(
1 +

l3

r3

) 2
3 [
dr2 + r2dΩ2

4

]
, (A.7)

along with

Ftx1x2x3x4x5r =
3 l3 t r2

(l3 + r3)2
, (A.8)

where the exponents, pi, satisfy Kasner conditions, namely

5∑
i=1

pi = 1 and
5∑
i=1

p2
i = 1. (A.9)

In the near horizon limit, i.e. r → 0, the metric and the non-zero component of the form

field reduce to the forms:

ds2 =
r

l

[
−dt2 + t2α1dx2

1 + t2α2dx2
2 + t2α3dx2

3 + t2α4dx2
4 + t2α5dx2

5

]
+
l2

r2

[
dr2 + r2dΩ2

4

]
,

Ftx1x2x3x4x5r =
3 t r2

l3
, (A.10)

Through a change of coordinate,

w2 =
r

l3
. (A.11)

the metric in (A.10) further takes the form:

ds2 =
w2

4l2
(
−dt̄2 + t̄2α1dx̄2

1 + t̄2α2dx̄2
2 + t̄2α3dx̄2

3 + t̄2α4dx̄2
4 + t̄2α5dx̄2

5

)
+ 4 l2

dw2

w2
+ l2dΩ2

4,

(A.12)

where x̄i and t̄ are suitably scaled versions of the coordinates, xi and t respectively. This

space we call KAdS7 × S4. This solution also belongs to the category discussed under the

general form, (2.2).

However, there also exists another negative energy solution of the same supergravity

sector. At the level of solutions, such negative energy solutions are obtained through a

double analytic continuation of the time and the “p”-th world-volume coordinate of a

non-extremal p-brane solution.5

t→ iθ, xp → it (A.13)

5Note, non-extremal M5 branes with Kasner-like world-volume are not solutions of 11D supergravity.
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These solutions are known as soliton solutions in literature [10]. In the near horizon limit,

one gets the so called AdS solitons which are energetically favoured and hence a more

suitable candidate to study the boundary gauge theory.

t being the time coordinate and θ, a periodic angular coordinate, this double analytic

continuation amounts to changing the asymptotic topology Rp of the parent p-brane con-

figuration to Rp−1 × S1. Next we look in detail the case in 11-D supergravity when the

AdS solitons have time-dependent world-volume.

The generic action for the Bosonic part of d = 11 supergravity is

S11d = − 1

2 κ2
11

∫
d11x
√
−g
(
R− 1

48
F 2

4

)
, (A.14)

The equations of motion arising from (A.14) admits the solitonic solution:

ds2 =

(
1 +

l3

r3

)− 1
3

[
−dt2 +

4∑
i=1

t2pidx2
i + γ (r) dθ2

]

+

(
1 +

l3

r3

) 2
3
[

1

γ (r)
dr2 + r2dΩ2

4

]
, (A.15)

where γ(r) = 1− r30
r3

,

and the gauge field is given by:

Fθx1x2x3x4tr =
3
√
l3 + r3

0 l
3
2 t r2

(l3 + r3)2
. (A.16)

iff the exponents, pi’s satisfy Kasner condition, namely

4∑
i=1

pi = 1 and
4∑
i=1

p2
i = 1 (A.17)

.

We call this solution a M5-soliton.

In near horizon limit, the M5-Kasner soliton solution takes the form

ds2 =
r

l

[
−dt2 +

4∑
i=1

t2pidx2
i + γ(r)dθ2

]
+
l2

r2

[
1

γ(r)
dr2 + r2dΩ2

4

]
,

Ftx1x2x3x4x5r =
3 t r2

l3
, (A.18)

We work in the same coordinates defined in (A.11). In these coordinates the metric takes

the form

ds2 =
w2

4l2

[
−dt̄2 +

4∑
i=1

t̄2pidx̄2
i +

(
1− w6

0

w6

)
dθ̄2

]
+ 4 l2

(
1− w6

0

w6

)−1
dw2

w2
+ l2dΩ2

4, (A.19)

where w0 = r0
l3

. x̄i and t̄ are suitably scaled versions of the coordinates, xi and t respec-

tively. Note here, additionally, θ is also rescaled to θ̄ and hence the period of θ̄ has to be

adjusted accordingly.

– 12 –



J
H
E
P
0
6
(
2
0
1
5
)
0
4
3

Employing the coordinate transformation ω = 4l2

z , the AdS7 part of the metric reduces

to the familiar form:

ds2 =
1

z2

[
− dt̄2 + t̄2α1dx̄2

1 + t̄2α2dx̄2
2 + t̄2α3dx̄2

3

+t̄2α4dx̄2
4 +

(
1− z6

z6
0

)
dθ̄2 +

(
1− z6

z6
0

)−1

dz2

]
(A.20)

This is the same metric as in (2.3).

B Solving the geodesic equations

Here we discuss a way to solve equations (3.2). It is best to define a new time coordinate

η such that

η =

∫
dt

a2(t)
. (B.1)

The first equation in (3.2) then reduces to

d2x

dη2
− 1

a3

da

dη

(
dx

dη

)3

= 0. (B.2)

Integrating twice, we have

x(η) = ±
∫

a(η)dη√
c1a(η)2 + 1

+ c2. (B.3)

Here c1 and c2 are the integration constants. Now c1 can be fixed using the boundary

condition: at the turning point η = η∗, dx/dt or equivalently dx/dη is infinity. This gives

c1 = − 1

a2(η∗)
. (B.4)

Substituting this in (B.3), we can easily integrate the expression. The result is

x(η) =
(1− 2p)

1−p
1−2p η

1−p
1−2p

1− p 2F1

(
1

2
,

1

2

(
− 1 +

1

p

)
,

1 + p

2p
, η

2p
1−2p η

∗− 2p
1−2p

)
+ c2, (B.5)

where we have used the fact that a(t) = tp. Further, c2 can be fixed using x(η) = 0 at

η = η∗. This gives

c2 = −
√
π(1− 2p)

p
1−2p η

∗ 1−p
(1−2p) Γ(−1

2 + 1
2p)

Γ(−1 + 1
2p)

. (B.6)

Going over to the t variable, we can write the above equation as

x(t) =
t1−p

1− p2F1

(
1

2
,

1

2

(
− 1 +

1

p

)
,
1 + p

2p
,

(
t

t∗

)2p)
−
√
πΓ(−1

2 + 1
2p)t∗(1−p)

(1− 2p)Γ(−1 + 1
2p)

. (B.7)

Now we turn to the second equation of (3.2). Defining K = zz′, we first rewrite it as

dK

dt
− aa′x′2K + a2x′

2 − 1 = 0. (B.8)
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After going to η variable, above equation can easily be integrated. This gives

K =
c1a√

c1a2 + 1

∫
a3

√
c1a2 + 1

dη + c3, (B.9)

where c3 is an integration constant and c1 has been defined earlier. More explicitly, we get

K = −(1− 2p)
2p

1−2p η
p

1−2p√
η
∗ 2p
1−2p − η

2p
1−2p

[ ∫
dη

η
3p

1−2p√
η
∗ 2p
1−2p − η

2p
1−2p

+ c3

]
. (B.10)

It is easy to show that, for dz/dx to vanish at η = η∗, the expression inside the brackets

has to vanish. This, in turn, fixes c3. This gives

K = −(1− 2p)
2p

1−2p η
p

1−2p√
η
∗ 2p
1−2p − η

2p
1−2p

[
(1− 2p)η

1−p
1−2p {η∗

p
1−2p 2F1

(
1

2
,

1

2

(
− 1 +

1

p

)
,

1 + p

2p
,

(
η

η∗

) 2p
1−2p

)

−
√
η
∗ 2p
1−2p − η

2p
1−2p } −

2p
√
πη
∗ 1
1−2p Γ(1+p

2p )

Γ(1−2p
2p )

]
. (B.11)

Now using the property

2F1(a, b, c, z) = (1− z)c−a−b2F1(c− a, c− b, c, z), (B.12)

the expression for K can be simplified to

K = (1− 2p)
1

1−2p η
1

1−2p

[
1− 2F1

(
1

2p
, 1,

1 + p

2p
,

(
η

η∗

) 2p
1−2p

)]

+
2p(1− 2p)

2p
1−2p η

p
1−2p
√
πη
∗ 1
1−2p Γ(1+p

2p )

Γ(1−2p
2p )

√
η
∗ 2p
1−2p − η

2p
1−2p

. (B.13)

This gives

z2 =

∫
2(1− 2p)

1+2p
1−2p η

1+2p
1−2p

[
1− 2F1

(
1

2p
, 1,

1 + p

2p
,

(
η

η∗

) 2p
1−2p

)]
dη

+
4
√
πp(1− 2p)

4p
1−2p η

∗ 1
1−2p Γ(1+p

2p )

Γ(1−2p
2p )

∫
η

3p
1−2p√

η
∗ 2p
1−2p − η

2p
1−2p

dη + c̃ (B.14)

where c̃ is a constant. Carrying out the integrations, we finally get

z =

[
(1− 2p)

2
1−2p η

2
1−2p

[
1− 3F2

({
1,

1

2p
,

1

p

}
,

{
1

2
+

1

2p
, 1 +

1

p

}
,

(
η

η∗

) 2p
1−2p

)]

+
4
√
πp(1− 2p)

1+2p
1−2p η

∗ 1
1−2p Γ(1+p

2p )η
1−p
1−2p

Γ(1−2p
2p )

[
−
√
η
∗ 2p
1−2p − η

2p
1−2p

+η
∗ p
1−2p 2F1

(
1

2
,

1− p
2p

,
1 + p

2p
,

(
η

η∗

) 2p
1−2p

)]
+ c̃

] 1
2

. (B.15)
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In terms of variable t, we therefore find

z(t) =

[
t2
[
1− 3F2

({
1,

1

2p
,

1

p

}
,

{
1

2
+

1

2p
, 1 +

1

p

}
,

(
t

t∗

)2p)]
(B.16)

+
4
√
πpΓ(1+p

2p )t∗1+pt1−p

(1− 2p)Γ(1−2p
2p )

[
2F1

(
1

2
,

1− p
2p

,
1 + p

2p
,

(
t

t∗

)2p)
−

√
1−

(
t

t∗

)2p
]

+ c̃

] 1
2

.

Equations (B.7) and (B.16) are used in the main text.
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