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1 Introduction

The simulation of scattering events according to field theoretical models is at the core of
particle physics, as it allows for both discoveries of particles and the validation of theories.
The source of practical difficulties lies primarily in the presence of strong interactions.
Indeed, if the initial and/or final states involve hadrons, then non-perturbative effects will
have to be included at some point. It is only due to factorization that it is possible to
obtain an accurate description using perturbative methods. For some observables, the
evolution of the state of the system between the high scale, where fixed order perturbation
theory is adequate, and the non-perturbative scale, where it is not, requires resummation
of logarithmic enhancements due to soft and collinear singularities. This can be achieved
either by analytic resummation methods, or by means of parton showers. The latter are
the versatile tool of choice in the communication between theory and experiment.

Parton showers have a long history [1–6]. They are based on a semi-classical picture
of partons splitting into pairs of other partons. This picture corresponds to the collinear
limit of QCD amplitudes in next-to-leading order (NLO) configurations. Thus, the lead-
ing singularity of collinear-soft origin may be correctly reproduced. In consequence, the
approach has leading logarithmic accuracy in the most general case of many partons in
the high scale process. Including pure soft effects is necessary to correctly reproduce the
first subleading logarithms. Recent years have seen quite some activity in this direction [7–
13]. In particular, it has been possible to include leading colour soft effects using parton
showers constructed around known subtraction schemes, such as the one of Catani and
Seymour [14, 15]. In a series of papers [16–25], Nagy and Soper have proposed a different
concept for a parton shower. Their construction should be able to include soft effects at
subleading colour. Recently, they have also provided a public code [24], Deductor, that
implements a large part of their idea, albeit with the exlusion of exact colour treatment,
where an extension of the leading colour approximation is used, and spin correlations.

The purpose of the present publication is to specify a matching procedure between the
Nagy-Soper parton shower and a fixed order calculation at NLO. This can be achieved using
at least two different ideas: Mc@Nlo [26, 27] and Powheg [28–30]. The first method,
which is the one we have chosen, consists in removing double counting contributions by
expanding the parton shower to first order in the strong coupling and compensating for the
terms, which are already present at fixed order. This is closely related to the possibility of
obtaining a subtraction scheme from the parton shower, which was exploited in refs. [31–34]
for the case of the Nagy-Soper construction. In particular, the implementation within the
Helac-Dipoles package [35] has proven invaluable as the basis for the present work.

Having a working tool to produce parton shower matched event samples with inclusive
next-to-leading order accuracy is necessary in order to assess the differences of the new
shower concept and more established alternatives. This is a second goal of our publication.
Clearly, there will be differences just as there are even in analytic resummation, where
a much higher logarithmic accuracy can be achieved. Nevertheless, studying particular
examples allows to quantify the deviations and convince oneself that they do not point
to real errors either within the concept or the implementation. For this first study we
have chosen a process, which involves non-trivial colour exchange and massive partons, and
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requires cuts in order to even define the Born approximation cross section: top-quark pair
production in association with at least one jet in hadron collisions at the Large Hadron
Collider (LHC). There is one drawback of having top-quarks in the final state. A realistic
description would require the inclusion of decays. We did not want to consider off-shell
effects and the narrow width approximation was also out of the question for technical
reasons. In such cases, one relies on the shower program to decay the quarks. This is a crude
approximation, which neglects spin correlations. Unfortunately, Deductor does not even
provide that. Thus, we are simulating a process with stable top-quarks in the final state.
On the other hand, in our comparisons we have only taken the perturbative evolution into
account. In other words, we have switched off the hadronization and multiple-interaction
models available in common Monte Carlo generators (though not in Deductor). This
allows us to quantify differences at the same level of approximation.

We should point out that our matching implementation is restricted to leading colour.
Deductor in the version we have used contains a more advanced colour approximation.
Nevertheless, as long as full colour functionality is not available, we have decided to simplify
our work. On the other hand, working at leading colour is appropriate for comparisons with
other systems, which are also only certified to have this accuracy.

Ours is the first phenomenological study performed using the Nagy-Soper shower, which
does not involve the authors of the concept. We believe that this independence is important
and actually proves that Deductor is ready to use by outsiders. It also gave us the
motivation to prepare a summary of the main components of the Nagy-Soper parton shower
including a list of ambiguities, which correspond to the places, where modifications might
be expected once more experience in practical applications is gathered. We hope that this
part of our paper will be useful to those, who do not necessarily want to read the hundreds
of pages of the original publications to gain a basic understanding of the concept.

The present text is organised as follows. We start by a summary of the Nagy-Soper
parton shower concept. We are explicit as far as those parts are concerned, which have
an impact on the construction of the matching procedure. We also point out some special
features like the modified parton distribution function (PDF) evolution for example. The
next section deals with the matching itself. We consider both the case of processes, which
have well-defined Born approximation total cross sections, and the case of processes, which
require the specification of cuts already at this level. Subsequently, we describe the details
of our implementation within Helac-Dipoles and the interface to Deductor. Finally,
we show some results for tt̄j production at the LHC and compare them to results obtained
with other systems. We close the main text with some short conclusions. An appendix
contains a more thorough discussion of the matching in the leading colour approximation.

2 A parton shower with quantum interference

In this section we review the Nagy-Soper parton shower concept, which allows for parton
state evolution to include both spin and colour correlations. Neverthless, the main focus of
our discussion will lie on the colour evolution. In fact, the exponentiation of non-diagonal
colour matrices is a long-standing problem. Notice that an independent attempt to include
full colour evolution in a parton shower was already made in ref. [11].
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2.1 Quantum configuration space

A generic 2 → m process is defined by two initial state partons a and b,1 and 1, . . . ,m

final state particles. Each particle is described by a set of quantum numbers to define the
flavour fi, spin si and colour ci of the particle and its momentum pi. Initial state partons
are described by momentum fractions ηa and ηb. Thus, a complete m-parton ensemble,
i.e. the probability distribution over possible quantum states, can be parametrized by the
following set of quantum numbers2

{p, f, s, c}m ≡ {[ηa,−fa, sa, ca], [ηb,−fb, sb, cb], [p1, f1, s1, c1], . . . , [pm, fm, sm, cm]} . (2.1)

Special emphasis should be given to initial state partons. In the Nagy-Soper shower, charm
and bottom quarks are allowed to be massive. In the presence of parton masses, the initial
state momenta are parametrized by the hadron momenta pA and pB, and the momentum
fractions ηa and ηb

pa = ηapA +
m2
fa

ηas
pB , (2.2)

pb = ηbpB +
m2
fb

ηbs
pA , (2.3)

where p2
A = p2

B = 0,3 and s = 2(pA · pB). In the following, we will describe the treatment
of spin and colour in the parton shower. A matrix element M can be viewed as a vector
|M({p, f}m)〉 in colour ⊗ spin space and can be resolved into basis vectors |{s}m〉 and
|{c}m〉 with complex expansion coefficientsM({p, f, s, c}m)

|M({p, f}m)〉 =
∑
{s}m

∑
{c}m

M({p, f, s, c}m) |{s}m〉 ⊗ |{c}m〉

=
∑
{s,c}m

M({p, f, s, c}m) |{s, c}m〉 .
(2.4)

The basis in the spin space is orthonormal. Here, {s}m = {sa, sb, s1, . . . , sm} represents the
physical helicities of all particles.

The colour basis is defined in terms of colour string configurations [36–40], which allows
for a straightforward connection with a hadronization model based on colour strings like the
one described in ref. [41]. In practice, a colour state |{c}m〉 is represented by several strings
{S1, . . . ,Sn}, where Si can be an open or a closed string. An open string is denoted by
S = [l1, l2, . . . , ln−1, ln], where l1 is the label of a quark, ln of an anti-quark and l2, . . . , ln−1

are gluon labels. Furthermore, a closed string is given by S = (l1, . . . , ln), where li labels
only gluons this time. For brevity we will write li = i in the following. The label l of a

1We treat the case of incoming hadrons. Colour neutral particles imply the usual simplifications, i.e.
lack of parton distribution functions and no initial state evolution.

2The minus sign for the initial state flavour is only a convention, since all partons are considered as
outgoing from the hard interaction.

3Even though parton masses are kept non-vanishing, one assumes that the proton mass is negligible with
respect to the hadronic center-of-mass energy.
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parton refers to its colour index al. In case l labels a gluon, the colour index al has values
1, . . . , 8. In case of quarks or anti-quarks al only takes the values 1, 2, 3. The set of colour
indices {a1, a2, · · · , an} is abbreviated in the following with {a} and allows to define the
colour basis structures.

The colour structure of an open string can be defined by

Ψ{a}(S = [1, 2, . . . , n− 1, n]) =
1√

NcC
n−2
F

[T a2T a3 · · ·T an−1 ]a1an , (2.5)

where T a is an SU(Nc) generator. Open strings are normalized to

〈S|S〉 ≡
∑
{a}

|Ψ{a}(S)|2 = 1 . (2.6)

For closed strings we define

Ψ{a}(S = (1, . . . , n)) =
1√
CnF

Tr[T a1T a2 · · ·T an ] , (2.7)

with normalization

〈S|S〉 ≡
∑
{a}

|Ψ{a}(S)|2 = 1−
( −1

2NcCF

)n−1

. (2.8)

A colour state |{c}m〉 is represented by a product of these colour structures. Thus a state
is normalized to

〈{c}m|{c}m〉 =
∏
k

〈Sk|Sk〉 . (2.9)

With these definitions the basis is not orthonormal in general. For instance

〈{c′}m|{c}m〉 = δ
(
{c′}m; {c}m

)
+O

(
1/N2

c

)
. (2.10)

Therefore, the basis is only orthonormal in the leading colour approximation, Nc →∞.

2.2 Quantum density matrix

The basic object describing the parton shower evolution is the quantum density matrix ρ,
which gives the “probability”4 to find a certain parton ensemble {p, f}m. In this section we
give the relation of the quantum density to matrix elements. Using the notation of the pre-
vious section, one can write the expectation value for a completely inclusive observable F , as

σ[F ] =
∑
m

1

m!

∫
[d{p, f}m] 〈M({p, f}m)|F ({p, f}m) |M({p, f}m)〉 fa(ηa, µ

2
F )fb(ηb, µ

2
F )

4nc(a)nc(b)× flux

≡
∑
m

1

m!

∫
[d{p, f}m] Tr[ρ({p, f}m)F ({p, f}m)] , (2.11)

4Since ρ contains the full colour information, it can become negative for subleading colour configurations.
Thus, strictly speaking, one cannot interpret ρ as a probability distribution. Nevertheless, the standard
concepts from statistical mechanics apply here.
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where the sum runs over all final state multiplicities. Here, [d{p, f}m] is the sum of all
m-particle phase space measures for different flavour sequences {f}m. The factor 1/m! is
necessary to account for identical contributions. The parton density functions evaluated
at the momentum fraction η and factorization scale µ2

F are denoted by fa/b(η, µ
2
F ). We

average over initial state spins (factor 4 in the denominator) and colour (factor nc(i), with
nc(q) = 3 for quarks and nc(g) = 8 for gluons). The trace in the second line corresponds to
a sum over indices in the colour ⊗ spin space. The quantum density ρ is, therefore, given by

ρ({p, f}m) = |M({p, f}m)〉 〈M({p, f}m)| fa(ηa, µ
2
F )fb(ηb, µ

2
F )

4nc(a)nc(b)× flux

≡
∑
s,c

∑
s′,c′

|{s, c}m〉 ρ({p, f, s′, c′, s, c}m) 〈{s′, c′}m| ,
(2.12)

where we used the expansion of |M({p, f}m)〉 according to eq. (2.4). The quantum density
matrix is a projector onto the different helicity and gauge invariant subamplitudes of the
full quantum amplitude

ρ({p, f, s′, c′, s, c}m) =M∗({p, f, s′, c′}m)M({p, f, s, c}m)
fa(ηa, µ

2
F )fb(ηb, µ

2
F )

4nc(a)nc(b)× flux
. (2.13)

Using the quantum density matrix, the expectation value of the observable F is given by5

σ[F ] =
∑
m

1

m!

∫
[d{p, f, s′, c′, s, c}m]F ({p, f}m) 〈{s′, c′}m|{s, c}m〉 ρ({p, f, s′, c′, s, c}m) ,

(2.14)
where the integration measure has been extended by the inclusion of the summation over
spin and colour. It is useful to define basis vectors or statistical states |{p, f, s′, c′, s, c}m)

(see ref. [16]), such that

ρ({p, f, s′, c′, s, c}m) = ({p, f, s′, c′, s, c}m|ρ) . (2.15)

Defining additionally an abstract state (F | according to

(F |{p, f, s′, c′, s, c}m) = F ({p, f}m) 〈{s′, c′}m|{s, c}m〉 (2.16)

and using the decomposition of the identity

1 =
∑
m

1

m!

∫
[d({p, f, s′, c′, s, c}m)]|{p, f, s′, c′, s, c}m)({p, f, s′, c′, s, c}m| , (2.17)

one can reduce eq. (2.14) to a scalar product

σ[F ] = (F |ρ) . (2.18)

Finally, we define the total cross section measurement function (1| as

(1|{p, f, s′, c′, s, c}m) = 〈{s′}m|{s}m〉 〈{c′}m|{c}m〉 . (2.19)
5We assume that F is a unit operator in colour ⊗ spin space.
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2.3 Evolution equation

The evolution equation describes the propagation of the quantum density matrix ρ from
some initial shower time t0 to some final time tF . The initial time corresponds to the hard
interaction, while the final to the formation of hadrons. Therefore, tF characterizes the
physical scale at which parton emissions cannot be described perturbatively. There is no
unique definition of shower time t as explained in more detail in the upcoming section 2.7.

The perturbative evolution is described by an operator U(tF , t0). The expectation
value of the observable F , including shower effects, is

σ[F ] = (F |ρ(tF )) = (F |U(tF , t0)|ρ(t0)) . (2.20)

U(tF , t0) is assumed to be unitary6 in the sense that the total cross section σT is not affected
by evolution

σT = (1|ρ(tF )) = (1|U(tF , t0)|ρ(t0)) = (1|ρ(t0)) . (2.21)

The evolution operator is the solution of the equation

dU(t, t0)

dt
= [HI(t)− V(t)]U(t, t0) . (2.22)

Here, HI(t) describes the transformation of a state {p, f, s′, c′, s, c}m to another state
{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1 by the emission of a resolved particle. This transition between the
states is of course constrained by overall momentum conservation. On the other hand,
V(t) describes the unresolved/virtual emission and, therefore, does not alter momentum or
flavour configurations of the particles. Nevertheless, it can change colour configurations,
which can have an effect on further emissions. It can be further decomposed into a colour
diagonal, VE(t), and a colour off-diagonal part, VS(t)

V(t) = VE(t) + VS(t) . (2.23)

Traditional parton showers correspond to the large Nc limit. The colour structure is,
therefore, always diagonal (VS(t)→ 0). In that case, eq. (2.22) can be solved as

U(t, t0) = N(t, t0) +

∫ t

t0

dτ U(t, τ)HI(τ)N(τ, t0) , (2.24)

where N(t, t0) is the Sudakov form factor (a number) defined as

N(t, t0) = exp

(
−
∫ t

t0

dτ V(τ)

)
. (2.25)

In case of a non-trivial colour evolution, the exponentiation of a non-diagonal matrix
is cumbersome. Instead, only the colour diagonal part, VE(t), is exponentiated while the
off-diagonal part, VS(t) is treated perturbatively on the same footing as HI(t)

U(t, t0) = N(t, t0) +

∫ t

t0

dτ U(t, τ) [HI(τ)− VS(τ)]N(τ, t0) , (2.26)

6A non-unitary evolution can be used to resum soft gluon effects.
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with

N(t, t0) = exp

(
−
∫ t

t0

dτ VE(τ)

)
. (2.27)

This is the final evolution equation of the Nagy-Soper parton shower. Notice, however,
that the current implementation in Deductor involves some approximations which are
documented in section 2.6.

In the following we provide the definitions of the real splitting operator HI(t) and
the virtual operator V(t). As we will see, the unitarity condition on U(t, tF ) will allow to
determine V(t) in terms of HI(t).

2.4 HI(t) — real splitting operator

The real splitting operator describes the transition of an m-particle ensemble to an (m+1)-
particle one, by splitting a particle into two,

{p, f, s′, c′, s, c}m → {p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m+1 . (2.28)

This splitting is constrained by flavour and momentum conservation. The parameters of
the transition require further specifications, because they depend on a particular choice of
momentum mappings, shower time and splitting functions. The behaviour of the splitting
operator is fixed in the infrared regime in order to reproduce the correct singular limits of
QCD amplitudes.

After emitting a particle, one has to modify the momenta in the event to preserve
momentum conservation and the on-shellness of all particles. This is achieved by momentum
mappings Rl, which require three additional variables parametrizing the momentum of the
emitted particle, Γl, and a variable, χl, specifying its flavour f̂m+1. Thus, the new momenta
and flavours are given by

{p̂, f̂}m+1 = Rl({p, f}m,Γl, χl) , (2.29)

where l ∈ {a, b, 1, . . . ,m}. The inverse of this transformation is denoted by Ql

Ql({p̂, f̂}m+1) = {p, f}m . (2.30)

The Nagy-Soper parton shower makes use of a global momentum mapping [16], i.e. all
final state particles’ momenta are modified to account for the momentum of the emitted
particle. The freedom inherent in the definition of Rl may be exploited to improve the
resummation for certain observables. For instance, the study presented in ref. [19] has
shown, that the pT spectrum for Drell-Yan Z-boson production depends strongly on the
momentum mapping for initial state parton splittings. The original Rl from ref. [16] has
been found inadequate and subsequently modified in ref. [22]. The modified version has
been adopted in Deductor.

One can define a momentum mapping operator Pl satisfying two conditions, the first
one being

1

m!

∫
[d{p′, f ′}m] ({p̂, f̂}m+1|Pl|{p′, f ′}m) g({p′, f ′}m) = g({p, f}m) , (2.31)
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where g({p, f}λ) is an arbitrary test function and {p, f}m is determined by eq. (2.30). The
second condition is

1

(m+ 1)!

∫
[d{p̂, f̂}m+1] g({p̂, f̂}m+1) ({p̂, f̂}m+1|Pl|{p, f}m)

=
1

(m+ 1)

∑
f̂m+1∈χl

∫
dΓl g({p̂′, f̂ ′}m+1) ,

(2.32)

where {p̂′, f̂ ′}m+1 is determined by eq. (2.29). Pl contains a δ-function, which links the
(m+1)-particle kinematics to the m-particle kinematics with Rl. The two conditions imply
that the Jacobians resulting from the integration over the δ-function in eqs. (2.31) and (2.32)
have been absorbed in Pl.

The evolution of the density matrix can be determined by studying the factorization
of QCD amplitudes in the soft and collinear limits. We remind that in the limit when two
partons become collinear, p̂l ‖ p̂m+1, the amplitude factorizes as

|M({p̂, f̂}m+1)〉 ≈ T †l (fl → f̂l + f̂m+1)V †l ({p̂, f̂}m+1) |M({p, f}m)〉 , (2.33)

where T †l (fl → f̂l + f̂m+1) is an operator in colour space (see ref. [16]). V †l ({p̂, f̂}m+1)

is the splitting operator in spin space. Contrary to traditional parton showers, the Nagy-
Soper formulation does not use the Altarelli-Parisi splitting kernels [42]. Instead, the re-
quired functions are derived directly from matrix elements without taking the collinear
limit first [16]. This allows, for example, for a direct access to polarization information.
Furthermore, the functions are not singular in the soft limit [17]. In the soft limit, on the
other hand, when the momentum of a gluon p̂m+1 vanishes, a similar approximation is valid

|M({p̂, f̂}m+1)〉 ≈
∑
l

T †l (fl → f̂l + f̂m+1)V soft †
l ({p̂, f̂}m+1) |M({p, f}m)〉 , (2.34)

where l runs over all partons and V soft
l is an eikonal factor.

Combining these approximations, we may write the following evolution equation for
the quantum density matrix

|ρm+1) =
∑
l

Sl |ρm) . (2.35)

ConsequentlyHI(t) is defined by the splitting operators Sl at a fixed shower time Tl({p, f}m)

(see section 2.7)

HI(t) =
∑
l

Sl δ
(
t− Tl({p, f}m)

)
. (2.36)

We shall not reproduce the exact form of Sl in the most general case, as it can be
found in ref. [16]. Nevertheless, we would like to point out that there is an ambiguity in
distributing the soft limit among the contributions with different momentum mappings. In
order to illustrate this issue, we give the form of HI(t) in the slightly less involved spin
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averaged case(
{p̂, f̂ , ĉ′, ĉ}m+1|HI(t)|{p, f, c′, c}m

)
= (m+ 1)

∑
l,k

δ
(
t− Tl({p, f}m)

)
({p̂, f̂}m+1|Pl|{p, f}m)

× nc(a)nc(b)ηaηb

nc(â)nc(b̂)η̂aη̂b

fâ/A(η̂a, µ
2
F )fb̂/B(η̂b, µ

2
F )

fa/A(ηa, µ2
F )fb/B(ηb, µ

2
F )

× 1

2

[
δkl
(
1− δf̂m+1,g

)
wll({p̂, f̂}m+1)

+ δklδf̂m+1,g

[
wll({p̂, f̂}m+1)− weikonal

ll ({p̂, f̂}m+1)
]

−(1− δkl)δf̂m+1,g
Alk({p̂}m+1)wdipole

lk ({p̂, f̂}m+1)
]

×
[
({ĉ′, ĉ}m+1|T †l (fl → f̂l + f̂m+1)⊗ Tk(fk → f̂k + f̂m+1)|{c′, c}m)

+({ĉ′, ĉ}m+1|T †k (fk → f̂k + f̂m+1)⊗ Tl(fl → f̂l + f̂m+1)|{c′, c}m)
]
,

(2.37)

where the sum runs over two partons l and k, not necessarily different, and l is the emitter.
The function wll is the spin averaged squared splitting function, while weikonal

ll is its soft
approximation (see refs. [17, 21]). Furthermore,

wdipole
lk ({p̂, f̂}m+1) = −4παs

((p̂m+1 · p̂l)p̂k − (p̂m+1 · p̂k)p̂l)2

(p̂m+1 · p̂l)2(p̂m+1 · p̂k)2
, (2.38)

which, for massless l and k, reduces to the well known squared eikonal factor [43]. The func-
tion Alk({p̂}m+1) removes the singularity when the partons m+ 1 and k become collinear.

Alk({p̂}m+1) =
(p̂m+1 · p̂k)(p̂l · Q̂)

(p̂m+1 · p̂k)(p̂l · Q̂) + (p̂m+1 · p̂l)(p̂k · Q̂)
, (2.39)

where Q̂ is the total final state momentum. The ambiguity we have mentioned is due to
the fact that the product Alk w

dipole
lk must only satisfy two conditions: 1) it may not have a

singularity in the collinear limit p̂m+1 ‖ p̂k; 2) it should correctly reproduce the singularity
at p̂m+1 → 0. Formulae (2.38) and (2.39) only correspond to one specific choice.

2.5 V(t) — virtual splitting operator

As advertised, the virtual splitting operator, V(t), can be determined to a large extent from
the real splitting operator HI(t) by the requirement of unitarity(

1
∣∣HI(t)− V(t)

∣∣ρ(t)
)

= 0 , (2.40)

which should be valid for any |ρ(t)). This can be interpreted with the help of the optical
theorem. For example, we can schematically write

∑
Triple cuts︸ ︷︷ ︸

(1|HI(t)|ρ)

−
[

Im −
∑

Double cuts

]
︸ ︷︷ ︸

(1|V(t)|ρ)

= 0 . (2.41)
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Figure 1. Modification on the colour structure by the inclusion of the virtual operator V(t).

Notice that V(t) does not contain the exact virtual corrections. Furthermore, it turns out
that (1|HI(t)|{p, f, s′, c′, s, c}m) does not contain spin correlations due to the integration
over the azimuthal angle of the emitted partons [16]. This allows us to write

(1|HI(t)|{p, f, s′, c′, s, c}m) ≡ 2 〈{s′}m|{s}m〉 〈{c′}m|h(t, {p, f}m)|{c}m〉 . (2.42)

In consequence, the freedom in defining V(t) is restricted to the colour structure. In princi-
ple, a virtual correction may be applied either on the c′ or c indices of the |{c′, c}m) state,
see figure 1. This leads to the following

V(t) = (h+ iφ)⊗ 1 + 1⊗ (h† − iφ) , (2.43)

where φ is a colour dependent phase, which can not be determined from real radiation
corrections. Its presence is a consequence of a Coulomb gluon exchange [21]

φ(t, {p, f}m) = −2π
∑
l 6=k

αs
4π

1

vkl
Tk ·Tl , vkl =

√
1−

m2
fk
m2
fl

(pk · pl)2
, (2.44)

where the sum runs over l and k, both either in the initial or final state. Examples of the
relationship between HI(t) and V(t) are depicted in figure 2. The exact specification of
V(t) can be found in refs. [16, 21].

2.6 Colour and spin evolution

An essential part of the action of HI(t) is the change of the colour state. Starting from the
two types of colour strings eqs. (2.5) and (2.7), the application of T †l (fl → f̂l + f̂m+1) on
the c′ index and of Tk(fk → f̂k + f̂m+1) on the c index of the |{c′, c}m) state results in a
linear combination of the same basis vectors. This follows from the relations

ifabcT c = [T a, T b] = T aT b − T bT a , (2.45)

T aijT
a
kl =

1

2

[
δilδjk −

1

Nc
δijδkl

]
, (2.46)

which can be translated into similar relations for T (†)(fl → f̂l + f̂m+1), see ref. [16].
In principle we have to consider diagonal, {c′}m = {c}m, and off-diagonal, {c′}m 6=

{c}m, colour configurations, see figure 3 for illustration. Notice that the colour diagonal

– 11 –
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Figure 2. Correspondence between a real radiation contribution as given by HI(t) and its counter-
part in V(t), for a direct splitting (upper line) and an interference contribution (lower line). In both
cases the left part of the first graph corresponds to l = 1. For the right part k = 1 (upper graph)
or k = 2 (lower graph). In the case of the interference contribution, by convention, we attach the
virtual correction to the amplitude of the parton k.

a a

1
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b

1

2

b

{c′}m = {c}m {c′}m 6= {c}m
b

a

1

2

a

1

2

b

Figure 3. Example colour configurations for the q̄(a)q(b)g(1)g(2) state.

contributions contain the leading colour contribution, while colour off-diagonal contribu-
tions are subleading. The latter can be identified by crossing of gluon lines. Traditional
parton showers are restricted to the leading colour approximation (or at best to colour
diagonal contributions). On the other hand, the Nagy-Soper parton shower allows for the
evolution of subleading colour configurations. In figures 4, 5, 6, 7, and 8, we give sev-
eral examples of colour evolution induced by direct splitting (application of T †l ⊗ Tl) and
interference contributions (application of T †l ⊗ Tk, where l 6= k).

The solution of the evolution equation, eq. (2.26), requires a decomposition of the
virtual operator into a diagonal and an off-diagonal colour part. This can be achieved
with the help of the LC+ approximation introduced in ref. [21]. The main features of this
approximation are

1. Exact colour treatment of the collinear and soft-collinear limits;

2. Leading colour approximation for the pure soft limit (a part of the subleading contri-
butions is kept nevertheless).

According to the previous section, the virtual splitting operator is defined in terms
of the real splitting operator. For the latter, the LC+ approximation amounts to the
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Figure 4. Example of a direct splitting g → gg starting from a diagonal colour configuration. The
left part of the first graph corresponds to l = 1, while the right part to k = 1. Moreover, m+ 1 = 3.
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Figure 5. Example of a direct splitting g → qq̄ starting from a diagonal colour configuration. The
left part of the first graph corresponds to l = 1, while the right part to k = 1. Moreover, m+ 1 = 3.

introduction of a projector C(l,m+ 1) acting on the colour states |{c}m+1〉 in eq. (2.37) as

T †k (fk → f̂k + f̂m+1) |{c}m〉 → C(l,m+ 1)T †k (fk → f̂k + f̂m+1) |{c}m〉 , (2.47)

〈{c′}m|Tk(fk → f̂k + f̂m+1)→ 〈{c′}m|Tk(fk → f̂k + f̂m+1)C†(l,m+ 1) , (2.48)

where

C(l,m+ 1) |{c}m+1〉 =


|{c}m+1〉 partons l and m+ 1 form a qq̄ pair ,

|{c}m+1〉 partons l and m+ 1 are colour connected ,

0 otherwise .

(2.49)

Colour connected partons are partons, which are direct neighbours on a colour string as
defined in section 2.1. The definition eq. (2.49) guarantees that direct splittings are treated
exactly. This is also true for the evolution of off-diagonal colour configurations, as depicted
in figure 6. In other cases, a part of the contributions is removed, as can be seen in
figures 7 and 8.
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Figure 6. Example of a direct splitting g → gg starting from an off-diagonal colour configuration.
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m+ 1 = 3.
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Figure 7. Example of an interference contribution of two g → gg splittings starting from a
diagonal colour configuration. The last line represents the LC+ approximation of the original
colour structure. The left part of the first graph corresponds to l = 2, while the right part to k = 1.
Moreover, m+ 1 = 3.

The colour projector C(l,m+ 1) defines a decomposition

HI(t) ≡ HLC+
I (t) + ∆HI(t) . (2.50)

All corrections to the LC+ approximation are of order O(1/N2
c ) and are treated perturba-

tively. It turns out that the virtual splitting operator VLC+(t) defined in terms of HLC+
I (t)

is colour diagonal [21]. Therefore, we define

VE(t) ≡ VLC+(t) , VS(t) ≡ ∆V(t) = V(t)− VLC+(t) . (2.51)
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Figure 8. Example of interference contributions of g → gg and q → qg splittings starting from a
diagonal colour configuration. Upper graph: the left part of the first graph corresponds to l = 2,
while the right part to k = b. Lower graph: the left part of the first graph corresponds to l = a,
while the right part to k = 1. Moreover, m+ 1 = 3 in both cases. The last line represents the LC+
approximation of the original colour structure of the lower graph.

We can also define an approximate evolution operator

ULC+(t, t0) = NLC+(t, t0) +

∫ t

t0

dτ ULC+(t, τ)HLC+
I (τ)NLC+(τ, t0) , (2.52)

where

NLC+(t, t0) = exp

(
−
∫ t

t0

dτ VLC+(τ)

)
. (2.53)

On the other hand, the exact evolution operator is

U(t, t0) = ULC+(t, t0) +

∫ t

t0

dτ U(t, τ) [∆HI(τ)−∆V(τ)]ULC+(τ, t0) . (2.54)

The practical solution of these equations is described in ref. [21]. The current implementa-
tion of Deductor relies on eq. (2.52).

Let us comment on the logarithmic accuracy of the Nagy-Soper parton shower. Con-
sider an observable O, given by the expansion

〈O〉 =
∑
n

c(n, 2n)αnsL
2n +

∑
n

c(n, 2n− 1)αnsL
2n−1 + · · · , (2.55)

where L denotes a potentially large logarithm, e.g. L = log(s/p2
T ), where s is the scale

of the hard process, and pT is the transverse momentum of some final state, for example
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that two insertions of ∆HI(t)−∆V(t) only contributes to the coefficient of αn

sL
2n−2.

a pair of oppositely charged leptons from the Drell-Yan process. The evolution operator
U(t, t0) reproduces the coefficients c(n, 2n) and c(n, 2n− 1) without any approximations in
colour. On the other hand, ULC+(t, t0) misses part of the c(n, 2n − 1) coefficient due to
subleading colour contributions from wide angle soft radiation. For this reason, the LC+
approximation is only exact at leading logarithm (LL), see figure 9. Inserting a factor of
[∆HI(τ)−∆V(τ)] generates the remaining contribution to the coefficient c(n, 2n − 1). In
consequence, the evolution operator

U(t, t0) = ULC+(t, t0) +

∫ t

t0

dτ ULC+(t, τ) [∆HI(τ)−∆V(τ)]ULC+(τ, t0) , (2.56)

is accurate at next-to-leading logarithm (NLL).
As pointed out before (see discussion around eq. (2.42)), the virtual splitting operator

is diagonal in spin. Therefore, spin dependent effects are only induced by the action of
HI(t). It has been proposed in ref. [18] to include them on top of the spin averaged shower.
To this end, we note that the necessary modification in HI(t), eq. (2.37), amounts to the
replacement

Φlk({p̂, f̂}m+1) −→ ({ŝ′, ŝ}m+1|Ylk({p̂, f̂}m+1)|{s′, s}m) Φlk({p̂, f̂}m+1) , (2.57)

where

Φlk({p̂, f̂}m+1) = δkl
(
1− δf̂m+1,g

)
wll({p̂, f̂}m+1

+ δkl δf̂m+1,g

[
wll({p̂, f̂}m+1 − weikonal

ll

]
− (1− δkl) δf̂m+1,g

Alk({p̂m+1}) wdipole
lk ({p̂, f̂}m+1) ,

(2.58)

and Ylk({p̂, f̂}m+1) is just the ratio between spin dependent and spin averaged splitting
functions, see ref. [18].
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The parton shower evolution starts with a quantum density matrix

({p, f, s′, c′, s, c}m|ρ(t0)) = ({p, f, c′, c}m|ρ(t0))⊗ ({s′, s}m|ρs({p, f, c′, c}m)) , (2.59)

with a factorized spin dependence, |ρs), with respect to the spin averaged quantum density
|ρ(t0)). The latter subsequently undergoes spin averaged evolution. On the other hand,
after (n−m) real emission steps

|ρsn) = Yln,kn({p̂, f̂}n) · · ·Ylm+2,km+2({p̂, f̂}m+2)Ylm+1,km+1({p̂, f̂}m+1)|ρs({p, f, c′, c}m)) .

(2.60)
Assuming that the final observable does not depend on the spin configuration, we obtain

σ[F ] =
∑
λ

1

λ!

∫
[d{p, f, c′, c}λ](F |{p, f, c′, c}λ)({p, f, c′, c}λ|ρ(tF ))(1spin|ρsλ) , (2.61)

where
(1spin|ρsλ) =

∑
{s′,s}λ

(1spin|{s′, s}λ)({s′, s}λ|ρsλ) =
∑
{s}λ

({s, s}λ|ρsλ) . (2.62)

2.7 Shower time

The forward evolution in the shower time is used to enforce an ordering in some chosen
kinematic variable. This is necessary in order to correctly resum leading logarithms of
infrared sensitive quantities. In traditional parton shower programs the following ordering
variables are used:

virtuality: the invariant mass of two daughter partons produced through the splitting (e.g.
Pythia6Q [44]),

transverse momentum: the transverse momentum of the daughter partons with respect
to the mother parton (e.g. Pythia8 [45]),

angle: the angle between the momenta of the daughter partons (e.g. Herwig [46, 47]).

The construction of a new parton shower allows to re-evaluate the advantages of these
variables, and replace them if necessary. In ref. [22], the following variable has been proposed

Λ2
l =
|(p̂l ± p̂m+1)2 −m2

l |
2pl ·Q0

Q2
0 , (2.63)

where p̂l is the emitter momentum after emission (daughter parton), p̂m+1 the emitted
parton momentum (daughter parton), pl the emitter momentum before emission (mother
parton with mass ml) and Q0 is the total final state momentum. The minus sign between
p̂l and p̂m+1 in eq. (2.63) applies to an initial state splitting. The shower time with Λ2

l

ordering is then given by

Tl({p, f}m) ≡ − log

(
Λ2
l

Q2
0

)
. (2.64)

The particular form of Λ2
l may be justified as follows [22]. Consider a splitting of a

final state parton with momentum p0 into two partons with momenta p1 and p2. After
splitting the mother parton has non-vanishing additional virtuality v2

0 (= p2
0 −m2

0), while
both daughter partons are on-shell. In subsequent steps, both daughter partons will split
as well, and acquire additional virtualities v2

1 and v2
2 (= p2

i − m2
i ). Clearly, v2

0 will be
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modified by this procedure. The validity of the on-shell approximation used in the first
step necessitates the effect on v2

0 to be negligible. This can be translated into the following
conditions [22]

v2
1

2p1 ·Q0
� v2

0

2p0 ·Q0
and

v2
2

2p2 ·Q0
� v2

0

2p0 ·Q0
. (2.65)

Up to normalization, the terms v2l
2pl·Q0

are equal to Λ2
l . A similar discussion holds for the

initial state shower. We note that one of the consequences of Λ2
l ordering is an enlarged

phase space for initial state splittings compared to pT ordering.

2.8 Consequences of backward evolution

Initial state splittings are generated by the backward evolution formalism first introduced
by Sjöstrand in refs. [2, 3]. In this approach, the Sudakov form factor contains a ratio
of parton distribution functions to guide the evolution of the momentum fraction during
splitting. Nevertheless, as long as mass effects are neglected and the splitting functions used
in the shower and PDF evolution are the same, one can factor out the non-perturbative part
completely. This matches the treatment of final state radiation, where hadronization only
happens after showering. Unfortunately, the splitting functions used in the Nagy-Soper
parton shower are very different from those of Altarelli-Parisi away from the collinear limit.
Thus, non-perturbative information will inevitably affect the evolution.

In the presence of mass effects, however, the non-perturbative input can not be factor-
ized, independently of the approach to the parton shower (traditional or otherwise), unless
the evolution of PDFs is modified. We describe the required modification after ref. [23],
which has been implemented in Deductor.

In principle we would like to decompose the density matrix as

|ρ) = L(t)|ρpert) , (2.66)

where |ρpert) would contain no non-perturbative information if splittings were restricted to
the quasi-collinear limit. Here, the luminosity operator L(t) is

L(t)|Φm) ≡
fa/A(ηa, µ

2
Ae
−t)fb/B(ηb, µ

2
Be
−t)

4nc(a)nc(b)4ηaηbpA · pB
|Φm) , (2.67)

where we used a shorthand notation for the statistical states, Φλ = {p, f, s′, c′, s, c}λ. The
scale µ2

i is given by µ2
i = 2pi ·Q0, where pi are the hadron momenta and Q0 the total final

state momentum. Therefore, the PDFs are evaluated at the scale µ2
i e
−t = |(p̂i−p̂m+1)2−m2

i |
which is the virtuality of the splitting. Let us define a perturbative real splitting operator,
Hpert
I (t), through

HI(t) = L(t)Hpert
I (t)L−1(t) . (2.68)

Unfortunately, V(t) contains a convolution of splitting functions with PDFs, because it is
an integral of eq. (2.68). It is thus impossible to trivially factor out the non-perturbative
contribution. Nevertheless, we can define a quasi-perturbative virtual splitting operator,
Vpert(t), via the evolution equation. Indeed, substituting eq. (2.66) in eq. (2.22) we obtain(

d

dt
L(t)

)
|ρpert) + L(t)

(
d

dt
|ρpert)

)
= [HI(t)− V(t)]L(t)|ρpert) . (2.69)

– 18 –



J
H
E
P
0
6
(
2
0
1
5
)
0
3
3

This allows us to write
d

dt
|ρpert) =

[
Hpert
I (t)− Vpert(t)

]
|ρpert) , (2.70)

with
Vpert(t) = V(t) + L−1(t)

(
d

dt
L(t)

)
, (2.71)

where we used the fact that L(t) commutes with V(t) since it does not change the momenta.
To ensure that Vpert(t) is independent of PDFs in the quasi-collinear limit, the splitting

functions obtained by deriving L(t) must match the quasi-collinear limit of V(t). The
respective functions are given in ref. [23]. As expected, they only differ from the Altarelli-
Parisi kernels at non-zero mass. They also imply a modified evolution of the PDFs. The
effect is mostly visible on the b-quark PDF. Clearly, only processes predominantly generated
from initial state b-quarks will be influenced.

Modifying the evolution of parton distribution functions may be used for other purposes
as well. For instance, adding a higher order term P

(2)
aâ as follows

dfa/A(ηa, µ
2)

d log(µ2)
=
∑
â

∫
dz

z

αs(µ
2/z)

2π
Paâ(z, µ

2/z)fâ/A(ηa/z, µ
2)

+
∑
â

∫
dz

z

(
αs(µ

2/z)

2π

)2

P
(2)
aâ (z, µ2/z)fâ/A(ηa/z, µ

2) ,

(2.72)

with
P

(2)
aâ (z, µ2/z) = −2πβ0 log(λR)Paâ(z, µ

2/z) , (2.73)

where β0 = (33− 2nf )/(12π) and

λR = exp

(
−CA(67− 3π2)− 10nf

3(33− 2nf )

)
, (2.74)

where nf is the number of light active flavours, allows to incorporate the cusp anomalous
dimension at NLL for processes with less then three coloured particles [48].

2.9 A summary of ambiguities

Let us conclude this section with a list of ambiguous components of the Nagy-Soper parton
shower:

1. Momentum Mappings

2. Splitting functions

3. Soft partition function

4. Colour treatment

5. Spin treatment

6. Shower time

7. PDF evolution
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We stress that this shower is a rather recent construction still under development. It is to
be expected that there will be changes to any of the particular solutions discussed in the
previous subsections.

3 Matching NLO matrix elements to the parton shower

Matching NLO calculations with parton showers is a widely explored subject and there exist
several matching schemes, the most popular being Powheg [28, 29] and Mc@Nlo [26, 27]
(for other proposals see e.g. [13, 49–56]). A general comparison between these two can be
found in e.g. [57]. In order to benefit from the recently implemented subtraction scheme
based on the Nagy-Soper parton shower splitting kernels [33], we chose the Mc@Nlo
formalism. Notice, that the implementation of Mc@Nlo in Sherpa [57] also benefits from
the consistency between the parton shower (Catani-Seymour) and subtraction terms in the
matching. However, once the implementation of the Nagy-Soper parton shower will be
made accurate at subleading terms in the colour expansion, our matching procedure will
allow for a similar accuracy in the matched sample. This may also be possible in the future
within Sherpa, see ref. [11]. Before we discuss the challenges of parton shower matching,
we give a brief overview of the general objectives.

Preserving the NLO cross section normalization: when considering an inclusive ob-
servable F , the fixed order normalization of the cross section should be preserved. We
thus require

(F |U(tF , t0)|ρ(t0)) = σNLO[F ] . (3.1)

Defining event samples at NLO level: matching to parton shower is the only way to
define events at NLO. As we will see, matching à la Mc@Nlo imposes a shower
specific subtraction scheme. Without matching, the weights of the real matrix element
and the subtraction terms are not coupled kinematically unless in a strict limit, and
diverge separately. Due to the matching scheme those weights are combined and one
obtains real emission phase space configurations with a finite, but not necessarily
positive, weight. The matching renders the virtual corrections finite as well.

Next-to-Leading Logarithmic accuracy for infrared sensitive observables:
infrared sensitive observables, which are affected by large logarithms, L, of some
kinematic variable at fixed-order, are replaced by resummed predictions. Traditional
parton showers only resum the leading logarithms (LL) αnsL2n, whereas the Nagy-
Soper shower also allows to resum the next-to-leading logarithms (NLL) αnsL2n−1.
Therefore, we require differential distributions to be accurate at the NLO+NLL level.

High pT emissions according to matrix elements: the parton shower is valid in the
soft and collinear regimes, the description of high pT emissions is, therefore, not
reliable. On the other hand, NLO calculations are valid in this region. It is desirable to
recover the NLO prediction for high pT emissions despite applying the parton shower.

Connection to low energy physics: the parton evolution down to a low scale allows to
include non-perturbative phenomena due to hadronization and multiple interactions.

– 20 –



J
H
E
P
0
6
(
2
0
1
5
)
0
3
3

3.1 The quantum density matrix at next-to-leading order

For a generic 2 → m process at NLO, one can write the quantum density matrix in a
perturbative expansion in αs, according to

|ρ) = |ρ(0)
m )︸ ︷︷ ︸

Born, O(1)

+ |ρ(1)
m )︸ ︷︷ ︸

Virtual, O(αs)

+ |ρ(0)
m+1)︸ ︷︷ ︸

Real, O(αs)

+O(α2
s) . (3.2)

Note that we count the leading order contribution as order 1 in the strong coupling αs.
|ρ(0)
m ) and |ρ(0)

m+1) are tree level matrix elements, whereas |ρ(1)
m ) is the one-loop amplitude.

The definitions of these densities are analogous to the definition given in eq. (2.12). So far
eq. (3.2) suffers from infrared divergences, however, the expansion of |ρ) in αs is defined
within dimensional regularization. Based on this quantum density matrix, the expectation
value of the observable F including shower effects reads

σ[F ]PS = (F |U(tF , t0)|ρ) =
∞∑
λ=m

1

λ!

∫
[dΦλ](F |Φλ)(Φλ|U(tF , t0)|ρ) , (3.3)

where Φλ = {p, f, s′, c′, s, c}λ. The quantum density |ρ) accounts for the hard matrix
elements for λ = m and λ = m + 1. This naive description of the cross section suffers
from double counting, as we will show using the iterative solution to the evolution equation
expanded to O(αs). Indeed, there is

|ρ(tF )) = U(tF , t0)|ρ) ≈ |ρ) +

∫ tF

t0

dτ [HI(τ)− V(τ)] |ρ(0)
m ) +O(α2

s) . (3.4)

As we can see from the unitarity condition (1| [HI(τ)− V(τ)] = 0, the total cross section
(1|ρ(tF )) is conserved. On the other hand, one does not recover the NLO prediction for
inclusive observables F because in general (F | [HI(τ)− V(τ)] 6= 0. Even without this
requirement the result is not correct, since it contains the first emission contributions twice,
once from the real emission quantum density |ρ(0)

m+1), and once from the parton shower
approximation HI(τ)|ρ(0)

m ). We will now show how to overcome this problem.

3.2 Matching fully inclusive processes to parton shower

Let us begin with a class of processes, which have a well defined total cross section at leading
order, e.g. pp → tt̄ or pp → W+W−. Working along the line of the Mc@Nlo scheme, we
notice that the additional parton shower contribution in eq. (3.4) can be cancelled by
including appropriate counterterms. Let us, therefore, introduce the following modified
quantum density matrix

|ρ̄) ≡ |ρ)−
∫ tF

t0

dτ [HI(τ)− V(τ)] |ρ(0)
m ) +O(α2

s) . (3.5)

The total cross section (1|ρ̄) = (1|ρ) = σNLO is unchanged, due to the unitarity condition.
On the other hand, considering U(tF , t0)|ρ̄) and expanding the evolution equation shows
that the undesired parton shower contributions are cancelled up to O(αs). This cancellation
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is non-trivial, because the modified quantum density matrix |ρ̄), now depends explicitly on
the parton shower splitting kernels, the momentum mappings, the ordering of the emissions
and the choice of the starting shower time t0.

For an infrared safe observable F , we have

σ̄[F ] =
1

m!

∫
[dΦm](F |U(tF , t0)|Φm)

[
(Φm|ρ(0)

m )+(Φm|ρ(1)
m )+

∫ tF

t0

dτ(Φm|V(τ)|ρ(0)
m )

]
(3.6)

+
1

(m+1)!

∫
[dΦm+1](F |U(tF , t0)|Φm+1)

[
(Φm+1|ρ(0)

m+1)−
∫ tF

t0

dτ(Φm+1|HI(τ)|ρ(0)
m )

]
.

In the Mc@Nlo approach, the parton shower splitting kernels are used to provide sub-
traction terms for the infrared divergences in |ρ(1)

m ) and |ρ(0)
m+1). Thus, the infrared cutoff

tF may be removed by taking the limit tF → ∞. Even though this is a source of a mis-
match between the fixed order and the shower calculation, it is numerically small due to
the exponential damping by the Sudakov form factor as discussed in ref. [2]. In the real
subtracted cross section, described in the second line of eq. (3.6), we use the definition of
the real splitting operator from eq. (2.36) and write∫ ∞

t0

dτ HI(τ) =
∑
l

Sl

∫ ∞
0

dτ δ(τ − tl)Θ(τ − t0) =
∑
l

SlΘ(tl − t0) . (3.7)

Here the sum runs over all external legs and Sl is the total splitting kernel for a given
external leg l. We want to emphasize that Sl also contains non-singular contributions
like the massive g → QQ̄ splitting. Therefore, the operator HI(t) contains more than is
needed for a subtraction scheme. The parameter tl is the shower time defined in section 2.7.
Hence, Θ(tl− t0) represents the ordering of the emissions and the t0 dependence introduces
a dynamical restriction of the subtraction phase space. The choice of t0 will be discussed at
the end of this chapter, because it has non-trivial consequences. The real subtracted cross
section is finite in d = 4 dimensions, as tl is allowed to approach infinity.

Integrating the virtual operator V(τ) without an infrared cutoff is more complex, con-
sidering that there is an explicit integration over the splitting variables. Hence, we have to
integrate this part in d = 4− 2ε dimensions analytically to extract the 1/ε2 and 1/ε poles.
The integrated virtual operator takes the form∫ ∞

t0

dτ V(τ) =
∑
l

∫
dΓl SlΘ(tl − t0) ≡ I(t0) + K(t0) , (3.8)

where dΓl is the phase space integration of the additional parton. The decomposition of the
integrated V(τ) into two operators I(t0) and K(t0) is arbitrary. However, we choose I(t0)

to match the divergencies of the virtual amplitude, as it is customary. We emphasize this
structure to illustrate that the parton shower naturally incorporates a subtraction scheme
similar to the Catani-Seymour framework [14, 15]. In the case of initial state partons it
is necessary to include additional collinear counterterms, denoted by P, needed for the
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renormalization of the parton distribution functions. Thus, the matched cross section reads

σ̄[F ] =

∫
[dΦm]

m!
(F |U(tF , t0)|Φm)

[
(Φm|ρ(0)

m ) + (Φm|ρ(1)
m ) + (Φm|[I(t0) + K(t0) + P]|ρ(0)

m )
]

+

∫
[dΦm+1]

(m+ 1)!
(F |U(tF , t0)|Φm+1)

[
(Φm+1|ρ(0)

m+1)−
∑
l

(Φm+1|Sl|ρ(0)
m )Θ(tl−t0)

]
. (3.9)

For future reference, let us define the shorthands, as in ref. [26]:

(Φm|S) ≡ (Φm|ρ(0)
m ) + (Φm|ρ(1)

m ) + (Φm|[I(t0) + K(t0) + P]|ρ(0)
m ) , (3.10)

(Φm+1|H) ≡ (Φm+1|ρ(0)
m+1)−

∑
l

(Φm+1|Sl|ρ(0)
m )Θ(tl − t0) . (3.11)

The total cross section is then given by

σ̄NLO[1] =
1

m!

∫
[dΦm](1|Φm)(Φm|S) +

1

(m+ 1)!

∫
[dΦm+1](1|Φm+1)(Φm+1|H) , (3.12)

whereas including parton shower evolution amounts to the integrals

σ̄[F ]PS =
1

m!

∫
[dΦm](F |U(tF , t0)|Φm)(Φm|S)

+
1

(m+ 1)!

∫
[dΦm+1](F |U(tF , t0)|Φm+1)(Φm+1|H) .

(3.13)

Matching is a two step procedure, which consists of first generating the samples according
to eq. (3.10) and (3.11), followed by the application of U(tF , t0).

3.3 Matching in the presence of singularities in the born approximation

For processes with massless partons at leading order, the matching prescription as described
in eq. (3.9) must be slightly modified by the inclusion of generation cuts, as discussed for
example in refs. [58, 59]. A naive modification to the matching prescription would be to
make the following replacements

(Φm|S)→ (Φm|S)FI({p̂, f̂}m) , (3.14)

(Φm+1|H)→ (Φm+1|H)FI({p, f}m+1) , (3.15)

where FI({p, f}λ) is a jet function applied during the generation of events, on the momenta
and flavours of Φλ. Applying the parton shower to these ensembles shows that double count-
ing is not removed. Indeed, substituting eq. (3.14) and eq. (3.15) in eq. (3.13) we obtain

σ̄[F ]PS =
1

m!

∫
[dΦm](F |U(tF , t0)|Φm)(Φm|S)FI({p̂, f̂}m)

+
1

(m+ 1)!

∫
[dΦm+1](F |U(tF , t0)|Φm+1)(Φm+1|H)FI({p, f}m+1) .

(3.16)
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Expanding the evolution operator, as given by eq. (3.4), yields

σ̄[F ]PS ≈ 1

m!

∫
[dΦm](F |Φm)(Φm|

[
|ρ(0)
m ) + |ρ(1)

m ) + P|ρ(0)
m )
]
FI({p̂, f̂}m)

+
1

(m+ 1)!

∫
[dΦm+1](F |Φm+1)(Φm+1|ρ(0)

m+1)FI({p, f}m+1)

+

∫
[dΦm]

m!

[dΦm+1]

(m+ 1)!

∫ tF

t0

dτ (F |Φm+1)(Φm+1|HI(τ)|Φm)

× (Φm|ρ(0)
m )
[
FI({p̂, f̂}m)− FI({p, f}m+1)

]
+O(α2

s) ,

(3.17)

where the I(t0) + K(t0) contribution of (Φm|S) has been cancelled by the linear expan-
sion of the Sudakov form factor. The offending term is present in the 3rd and 4th lines
of eq. (3.17). It does not vanish because FI({p̂, f̂}m) is not equal to FI({p, f}m+1) for
non-singular configurations, despite the fact that their momenta and flavours are related
according to {p, f}m+1 = Rl({p̂, f̂}m,Γl, χl). The mismatch can be cured by enforcing the
subtraction terms to fulfill FI({p̂, f̂}m), i.e. by modifying the real subtracted cross section
according to

(Φm+1|H) −→
(Φm+1|H̃) ≡

(
Φm+1|ρ(0)

m+1

)
−
∑
l

(Φm+1|Sl|ρ(0)
m )Θ(tl − t0)FI(Ql({p, f}m+1)) , (3.18)

where we make use of the inverse momentum mapping Ql, as defined in eq. (2.30). Thus,

FI(Ql({p, f}m+1)) = FI({p̂, f̂}m) . (3.19)

This modification allows us to compute cross sections with massless partons, at the same
time introducing restrictions on the functional form of FI . Using eq. (3.18) in addition
to eq. (3.15) in the definition of the cross section in eq. (3.13) and expanding the shower
evolution yields

σ̄[F ]PS ≈ 1

m!

∫
[dΦm](F |Φm)(Φm|

[
|ρ(0)
m ) + |ρ(1)

m ) + P|ρ(0)
m )
]
FI({p̂, f̂}m)

+
1

(m+ 1)!

∫
[dΦm+1](F |Φm+1)(Φm+1|ρ(0)

m+1)FI({p, f}m+1)

+

∫
[dΦm]

m!

[dΦm+1]

(m+ 1)!

∫ tF

t0

dτ (F |Φm+1)(Φm+1|HI(τ)|Φm)

× (Φm|ρ(0)
m )
[
1− FI({p, f}m+1)

]
FI({p̂, f̂}m) +O(α2

s) .

(3.20)

The double counting is removed from eq. (3.20), if the following condition is satisfied[
1− FI({p, f}m+1)

]
F ({p, f}m+1) = 0 , (3.21)

where we have used the fact that (F |Φm+1) ∼ F ({p, f}m+1). This is achieved if

FI({p, f}m+1) = 1 , for F ({p, f}m+1) 6= 0 , (3.22)
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and can be understood as the generation cuts FI({p, f}m+1) being more inclusive than cuts
that are applied on the final observable F ({p, f}m+1).

Our previous discussion of double counting relied on the fact that the splitting func-
tions were the same in the NLO subtraction scheme and in the parton shower. However, in
the case of initial state splittings, this is not the case due to mass effects and the presence
of different PDFs. The parton shower PDFs are evolved as explained in section 2.8 using
modified leading order splitting kernels. On the other hand, the fixed order calculation
employs NLO PDFs. We point out that the implied mismatch is of order O(α2

s) as long as
both PDF sets are equal at some scale. This means that we use an NLO PDF parameteriza-
tion as an input for the parton shower PDF evolution. A second source of mismatch is the
treatment of mass effects in the initial state. In the case of the parton shower, the splitting
kernels are modified as explained in section 2.8, whereas the specifics of the treatment of
mass thresholds depends on the PDF collaboration [60].

Finally, let us note that a last source of mismatch is due to scales in the strong coupling
constant in the subtraction terms and in the shower. However, just like in the case of PDF
evolution, it is of higher order.

3.4 On-shell projection

As mentioned before, the Nagy-Soper parton shower allows for massive initial state partons
and treats the charm and bottom quarks as massive. In an NLO calculation the charm
quark is usually assumed massless, whereas the bottom quark is only present in the initial
state if it is massless as well, which corresponds to the 5-flavour scheme. The practical
application of the matching procedure requires, therefore, an on-shell projection for charm
and bottom quarks. We use different procedures in the initial and final state cases.

Initial state quarks. We proceed iteratively by making one quark massive at a time.
For definiteness, we will modify pa which is assumed to have p2

a = 0, whereas the mass, mb,
of pb is arbitrary. The total momentum is given by

Q = pa + pb , (3.23)

where

pa = ηapA , pb = ηbpB +
m2
b

ηbs
pA , (3.24)

with ηa and ηb the momentum fractions, pA/B the hadron momenta and s = 2(pA · pB) the
hadronic center of mass energy squared. This can be written as

Q =

(
ηa +

m2
b

ηbs

)
pA + ηbpB , Q2 = sηaηb +m2

b . (3.25)

We shall determine η̂a, such that

p̂a = η̂apA +
m2
a

η̂as
pB , p̂2

a = m2
a 6= 0 . (3.26)
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The new total momentum Q̂ = p̂a + pb and its invariant mass then read

Q̂ =

(
η̂a +

m2
b

ηbs

)
pA +

(
ηb +

m2
a

η̂as

)
pB ,

Q̂2 = sηbη̂a +
m2
bm

2
a

sηbη̂a
+m2

b +m2
a .

(3.27)

The requirement, Q̂2 = Q2, yields

η̂a = ηa

1

2
− m2

a

2Q2
+

√
(m2

a −Q2)2 − 4m2
am

2
b

2Q2

 . (3.28)

To ensure total momentum conservation, the complete final state has to be boosted in the
z-direction. The rapidity of the boost, ω, is

eω =
Q2 +m2

b −m2
a

2m2
b

−

√(
Q2 +m2

b −m2
a

)2 − 4Q2m2
b

2m2
b

, (3.29)

which for mb = 0 reduces to

eω =
Q2

Q2 −m2
a

. (3.30)

Final state quarks. In the case of a final state massless quark with momentum pl, we
exploit the momentum mapping procedure of the Nagy-Soper parton shower to generate a
non-zero mass ml. The new momentum is given by

p̂l = λpl +
1− λ+ y

2al
Q , p̂2

l = m2
l , (3.31)

where Q is the total final state momentum and

al =
Q2

2pl ·Q
, bl =

m2
l

2pl ·Q
. (3.32)

The parameter y is determined by requiring that the invariant mass of the total recoiling
momentum, K = Q− pl, be preserved, i.e. K2 = K̂2, with K̂ = Q− p̂l. The result is

y = bl . (3.33)

As a consequence, K and K̂ are connected by a boost [16] given by

Bµν = gµν − 2
(K + K̂)µ(K + K̂)ν

(K + K̂)2
+ 2

K̂µKν

K2
. (3.34)

The parameter λ is determined by the on-shell condition p̂2
l = m2

l , which yields

λ =
√

(1 + y)2 − 4albl , (3.35)

which is well-defined if
pl ·Q > ml

(√
Q2 − ml

2

)
. (3.36)
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In the center-of-mass frame of Q, this becomes

El > ml

(
1− ml

2
√
Q2

)
. (3.37)

Clearly, arbitrarily soft quarks cannot be projected on the mass-shell.
In case of 2→ 2 processes, al = 1 and the boost in eq. (3.34) is singular. In that case

one can use an alternative boost [16]

Bµν = gµν +

(
K · n
K̂ · n

− 1

)
nµn̄ν +

(
K̂ · n
K · n − 1

)
n̄µnν , (3.38)

with

n =

√
2

Q2
pl , n̄ =

√
2

Q2

(
Q− pl

)
. (3.39)

3.5 Initial conditions for the parton shower

As described in section 2.7, the shower evolution emissions are strongly ordered in the
parameter Λ2

l , which is related to the shower time t as follows,

e−t =
Λ2
l

Q2
0

, Λ2
l =
|(p̂l ± p̂m+1)2 −m2

l |
2pl ·Q0

Q2
0 , (3.40)

where pl is the emitter momentum and Q0 is the total final state momentum before emission.
The emitter momentum after emission is p̂l, while p̂m+1 is the momentum of the emitted
particle. The parton shower evolution starts at an initial time t0, which has to be determined
by the user. Since the choice of t0 has a noticable influence on the differential distributions,
it is necessary to provide a sensible prescription, which is the purpose of this section.

Consider first a process at leading order, e.g. pp→ tt̄. The parton shower will generate
additional radiation. However, the resulting hard jets are described very poorly, because
the parton shower description is only valid close to infrared limits. As a consequence,
the pT distribution of the top quark pair is not reliably reproduced for large values of the
transverse momentum. Since the initial time t0 restricts the available phase space for parton
emissions, it will have a strong influence on the distribution, as reported, for example, in
ref. [61]. Notice that the situation may be improved with merging of different multiplicity
samples, see ref. [62].

Matching at NLO has the advantage of providing one hard emission exactly through the
matrix element. According to our modified quantum density matrix, we removed all parton
shower contributions to the first emission. Therefore, corrections to the pT distribution are
formally of higher order, even though they can be a priori large [57, 63]. The ultimate goal
is to choose t0 such that the description of the high pT regime is close to that of the NLO
fixed order approximation. This can be achieved by restricting the parton shower phase
space to allow only splittings with virtualities lower than the splittings already present in
the hard matrix element.
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We choose t0 to approximate the virtuality of the hard process on an event-by-event
basis. Inspired by refs. [27, 64], we define

e−t0 = min
i 6=j

{
2pi · pj
Q2

0

}
, (3.41)

where pi and pj are pairwise different external momenta of the process considered.
For the real radiation contribution, we use the subtraction terms eq. (3.18) to determine

t0 as follows

1. For each subtraction term

(Φm+1|Sl|ρ(0)
m )Θ(tl − t0)FI(Ql({p, f}m+1)) , (3.42)

determine its individual t0 according to eq. (3.41) while tl according to eq. (3.40).
Retain tl if tl > t0.

2. If there is at least one tl, then evaluate t0 according to

e−t0 = min
l

(
e−tl

)
, (3.43)

where the minimum runs over all tl found in the previous step.

3. Otherwise, apply eq. (3.41) to the (m+ 1)-particle kinematics.

Let us note that the separate determination of t0 in step 1 for each subtraction term, is
necessary to avoid double counting.

3.6 A summary of ambiguities

In this section, we recapitulate by listing the intrinsic uncertainties introduced by the
Mc@Nlo matching formalism in combination with the Nagy-Soper parton shower.

Parton distribution functions: parton distribution functions are evolved differently in
the NLO calculation and in the parton shower. Nevertheless, we pointed out in
section 3.3, that the evolution itself is of higher order. Thus, the NLO accuracy is
obtained as long as the evolutions share a common point, e.g. at the low scale.

Parton masses: a generic feature of the Nagy-Soper parton shower is that it requires
massive bottom and charm quarks in the initial state. However, the fixed order
calculation involves massless charm quarks at least. Although the implied mismatch
is power suppressed, it is necessary to introduce masses for the relevant quarks in the
fixed order sample used as input for the shower. In section 3.4, we have provided a
possible algorithm. Nonetheless, other choices might influence the final result.

Initial state shower time: the choice of t0 in the parton evolution is, to a large extent,
arbitrary. The only requirement is that the NLO prediction be recovered for hard
emissions. This can be achieved by several different choices of t0, with either fixed
or configuration dependent values. In section 3.5, we have presented our choice, but
others are possible. Nevertheless, it is recommended to vary t0 by rescaling it by a
common value within some reasonable range, see section 5.1.
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4 Implementation

In this section, we present a realization of the matching scheme within the Helac-Nlo
framework [65]. Due to the restricted functionality of the Nagy-Soper parton shower present
in Deductor version 1.0.0 [24], which we used as basis for practical studies, our implemen-
tation is simplified as far as spin and colour treatments are concerned. Since Deductor
uses spin averaged splitting functions, we only provide unpolarized event samples for show-
ering. On the other hand, we supply only leading colour events even though Deductor
works with the LC+ approximation and may shower non-diagonal colour configurations.
While proper colour matching does not present conceptual challenges, it requires some ad-
ditional programming effort. The latter will be necessary once Deductor has full colour
functionality. We believe that, for a first study, our simplification is justified. More details
on our approach can be found in appendix A. Finally, we note that, at present, Deductor
lacks unstable particle decays and a hadronization model.

4.1 Modifications in Helac-Dipoles

The implementation of the matching scheme in the Helac-Nlo multi-purpose event gen-
erator only concerns Helac-Dipoles [33, 35]. We base our work on the previous imple-
mentation [33], where the majority of the parton shower operators HI and V have already
been included.

Momentum mapping for initial state splitting. The momentum mapping imple-
mented in Helac-Dipoles is based on ref. [16]. For reasons, which we shortly discussed
in section 2.4, the mapping implemented in Deductor is slightly different [19]. Here, we
reproduce the necessary formulae used in the new version of Helac-Dipoles.

We start from a set of momenta {p̃}m and consider the splitting p̃a → pa + pm+1. The
incoming momenta are given by

p̃a = η̃aPA , p̃b = η̃bPB , (4.1)

where PA and PB are the hadron momenta. After the splitting, there is

pa =
1

z
p̃a , pb = p̃b , (4.2)

and the momentum pm+1 of the emitted particle is parametrized by

pm+1 = xap̃a + xbp̃b + k⊥ , (4.3)

where
|k⊥|2 = 2xaxb(p̃a · p̃b) , xa =

1

z
− 1− y , xb = zy . (4.4)

The phase space variables y, z and φ are defined as

z =
η̃a
ηa

=
sη̃aη̃b
sηaηb

=
Q̃2

(pa + pb)2
,

y = −(pa − pm+1)2

2(p̃a · p̃b)
=

2pa · pm+1

Q̃2
,

φ ∈ [0, 2π] ,

(4.5)
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where Q̃ = pa + pb − pm+1 = p̃a + p̃b. To ensure momentum conservation the remaining
final state particles have to be boosted, pi = Bp̃i, with the Lorentz transformation [22]

Bµν(ω, v⊥) = gµν⊥ +
eωp̃µa p̃νb + e−ωp̃µb p̃

ν
a

p̃a · p̃b

+

√
2

p̃a · p̃b
[
eωvµ⊥p̃

ν
b − p̃µb vν⊥

]
− eωv2

⊥
p̃µb p̃

ν
b

p̃a · p̃b
,

(4.6)

where

gµν⊥ = gµν − p̃µa p̃νb + p̃µb p̃
ν
a

p̃a · p̃b
,

eω =
1

z
− xa = 1 + y ,

v⊥ = − e−ω√
2p̃a · p̃b

k⊥ .

(4.7)

In the case, where p̃b is the emitter one simply exchanges p̃a and p̃b in the equations above.
This momentum mapping is implemented in the I and KP operators of theHelac-Dipoles
package, while the modification only concerns initial-final state interference contributions.
For the real subtracted cross section, the inverse transformation has to be applied

p̃a = zpa , p̃b = pb ,

p̃i = B−1pi (i = 1, . . .m) ,
(4.8)

with (
B−1

)µν
(ω, v⊥) = gµν⊥ +

e−ωp̃µa p̃νb + eωp̃µb p̃
ν
a

p̃a · p̃b

+

√
2

p̃a · p̃b
[
eωp̃µb v

ν
⊥ − vµ⊥p̃νb

]
− eωv2

⊥
p̃µb p̃

ν
b

p̃a · p̃b
.

(4.9)

Dynamical phase space restriction. A second modification to the existing subtraction
scheme is the implementation of a dynamical cutoff Θ(tl− t0) on the available dipole phase
space, which represents the ordering of the emissions in the parton shower evolution. The
new subtraction terms read (see section 3.2)∫ ∞

t0

dτ HI(τ) =
∑
l

SlΘ(tl − t0) , (4.10)

where the splitting operator Sl is already available in Helac-Dipoles. The shower time
tl is given by (see section 3.5)

e−tl =
|(p̂l ± p̂m+1)2 −m2

l |
2pl ·Q0

, (4.11)

and can be reconstructed from the {p̂, f̂}m+1 kinematics. The numerator is given by real
radiation momenta, whereas the denominator 2pl ·Q0 is given by the momenta before the
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splitting. However, the denominator can also be reconstructed by making explicit use of
the momentum mappings.

This phase space restriction is also implemented in the integrated dipoles. In order to
use as much existing code as possible, we implement it in the form of∫ ∞

t0

dτ V (τ) =
∑
l

∫
dΓl SlΘ(tl − t0) =

∑
l

∫
dΓl Sl [1−Θ(t0 − tl)] . (4.12)

Therefore, we can calculate the finite remainder in d = 4 dimensions and subtract it
from the complete expression. We follow closely the outlined semi-numerical strategy
presented in [33].

We note that, even though the restriction is necessary for matching, it can be also used
in fixed order NLO calculation as an effective cutoff on the subtraction phase space similar
to αmax in the Catani-Seymour subtraction scheme [66–68].

4.2 Monte Carlo techniques

With the modifications described above, it is possible to use Helac-Nlo to generate an
event sample ready for showering with Deductor. We produce events subprocess by
subprocess. First, we use Helac-1Loop [69] to obtain a set of unweighted leading order
events with the virtual contributions

ωi({p, f}m) = 1 +
({p, f}m|ρ(1)

m )

({p, f}m|ρ(0)
m )

, (4.13)

where only the finite part of |ρ(1)
m ) is included. At this point

σ[LO + V] =
σ[LO]

N

N∑
i=1

wi . (4.14)

This set of weighted events is subsequently reweighted using Helac-Dipoles in order to
include the parton shower virtual operator. This corresponds to taking into account the
integrated subtraction terms. The weights become

ωi({p, f}m) = 1 +
({p, f}m|ρ(1)

m )

({p, f}m|ρ(0)
m )

+
({p, f}m|I(t0) + K(t0) + P|ρ(0)

m )

({p, f}m|ρ(0)
m )

, (4.15)

yielding

σ[LO + V + I + KP] =
σ[LO]

N

N∑
i=1

wi . (4.16)

Notice that the integrated subtraction terms are Monte Carlo integrals on the phase space
dΓl of the additional unresolved parton. In order to obtain a good approximate of this
integral, we sample several points for a fixed born phase space point {p, f}m. This proved
to be advantageous in case of large cancellations in V(τ).

The real radiation events are generated separately with Helac-Dipoles, which was
extended to provide unweighted events with positive and negative weights, ±1 [70]. Notice
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that unweighting is possible, because both the real radiation and the respective subtraction
weights correspond to the same phase space point as described in section 3.2. For each
accepted event, we choose the most probable diagonal colour flow with the colour weight

Cw({p, f, c}m+1) =

(
{p, f, c}m+1|ρ(0)

m+1

)∑
{c′}m+1

(
{p, f, c′}m+1|ρ(0)

m+1

) . (4.17)

The generated events are stored in a Les Houches file [71], with the initial parton shower
time t0 assigned to the variable SCALEUP.

4.3 Interface to Deductor

Events generated by Helac-Nlo are transferred to Deductor. This requires an on-shell
projection for charm and bottom quarks (see section 3.4) and the determination of a starting
colour configuration for each event.

On-shell projection. The on-shell projection of section 3.4 is applied iteratively to each
charm and bottom quark. In the case of an initial state transformation for two massless
quarks bound to become massive, the order of longitudinal boost is relevant. Indeed,
the first boost has a lower rapidity than the second as can be proven by inspection of
eqs. (3.29) and (3.30). We choose the order at random in order to reduce the systematics.
In case the projection fails, which is only possible for soft bottom and charm quarks in the
real radiation contribution, the event is rejected. Vetoing such emissions may only induce a
negligible modification of the cross section. Otherwise, effects, which are not under control,
would be substantial. This problem has to be studied case-by-case.

Colour configurations. A colour flow generated as described before in the Les
Houches [71] format must be translated to the internal representation of Deductor in
terms of colour strings, see section 2.1. Notice that only one colour flow is needed in the
leading colour approximation per event. A colour flow is given by a list of two colour indices.
Thus, the i-th particle carries the following pair of indices

q(i)→ (colour1[i] , 0)

q̄(i)→ (0 , colour2[i])

g(i)→ (colour1[i] , colour2[i]) .

(4.18)

In Deductor, on the other hand, quarks, anti-quarks and gluons are represented by

q(i)→ [Q , next[i])

q̄(i)→ (prev[i] , A]

g(i)→ (prev[i] , next[i]) ,

(4.19)

where Q denotes the beginning and A the end of an open colour string. prev[i] refers to
the particle index in the event, which is to the left of particle with index i. In the same
way next[i] refers to the right partner on the colour string. The algorithm to translate
colour flows into colour string configurations is
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1. Swap the flavour and the colour indices for initial state partons.

2. Enumerate all partons starting from −1, where −1 and 0 are reserved for the initial
state partons. Colour-neutral particles are enumerated with numbers less than −1.

3. Iterate over all particles with index i applying

(a) If (colour1[i] 6= 0 and colour2[i] = 0) then prev[i] = Q.
If (colour1[i]= 0 and colour2[i] 6= 0) then next[i] = A.

(b) Iterate over all particles with index k 6= i applying
If (colour1[i] 6= 0 and colour1[i]= colour2[k]) then next[i]=k; prev[k]=i.

5 tt̄j production at the LHC with next-to-leading order matching

In this section, we present results for pp → tt̄j + X production at next-to-leading order,
obtained with Helac-Nlo, matched with the Nagy-Soper parton shower as implemented
in Deductor. The NLO QCD corrections to the considered process have been previously
computed in ref. [72–74]. Matching to a parton shower has been first considered in ref. [75,
76] using the Powheg method [28, 30].

5.1 Setup

The results for tt̄j production are presented for pp collisions at the LHC with a center-
of-mass energy of 8TeV. The top quark is assumed to be stable and its mass is set to
mt = 173.5GeV, while the charm and bottom quarks are considered to be massless at fixed
order. Results are obtained using the Mstw2008nlo PDF set [77] with five active flavours
and the corresponding two-loop running of the strong coupling. We set the renormalization
and factorization scales to the top quark mass, µR = µF = mt, and the starting shower
time to

e−t0 = min
i 6=j

{
2pi · pj
µ2
TQ

2
0

}
, (5.1)

where pi and pj are external momenta, Q0 is the total final state momentum and µT = 1 for
the central prediction as explained below. Partons with pseudorapidity |η| < 5 are clustered
using the anti-kT jet algorithm [78], with the separation parameter R = 1. The resulting
jets are sorted in decreasing order of pT . We require the tagged jets to have transverse
momentum of pT > 50GeV and rapidity in the range of |y| < 5.

We restrict our analysis to the perturbative parton shower evolution. Decays of unstable
particles, hadronization and multiple interactions are not taken into account. The parton
shower treats the charm and bottom as massive particles with masses mc = 1.4GeV and
mb = 4.75GeV. We provide the Mstw2008nlo PDF set at µF = 1 GeV as the starting
point for the evolution in Deductor. We also use the corresponding two-loop running of
αs, and restrict the parton shower to the leading colour approximation. Therefore, results
presented in this section are accurate up to O(1/N2

c ).
In order to address the theoretical uncertainties, we investigate the scale dependence of

cross sections and distributions on the unphysical scales µR, µF and the rescaling parame-
ter µT . Here, µR is varied simultaneously with µF between µR,F = mt/2 and µR,F = 2mt.
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Figure 10. Differential cross section distributions as a function of the transverse momentum of
the tt̄j1 system (left panel) and of the second hardest jet (right panel) for pp→ tt̄j+X at the LHC
with

√
s = 8TeV. Comparison between the NLO result obtained with Helac-Nlo and the results

produced by matching NLO predictions to Deductor for three different choices of the starting
time. The scale choice is µF = µR = mt. The lower panels display the relative deviation from
the fixed order result. Notice, that t0 = 0 corresponds to unrestricted shower radiation without
relation to the kinematics of the underlying event. This choice should not be used in practice and
it is shown for illustration purposes only.

On the other hand, both the central value of µT , µT0, and its variation range require a more
thorough discussion, because this parameter is specific to the Nagy-Soper parton shower.
Guidelines for a suitable choice of t0 have already been presented in section 3.5. In prac-
tice, we consider exclusive distributions, which are especially sensitive to the parton shower
effects, e.g. the transverse momentum, pT , spectrum of the tt̄j1 system or of the second jet,
j2, which are equivalent at NLO. For large pT values, the fixed order prediction is reliable
and we would not like the shower to introduce substantial shape differences there. This can
be achieved by a suitable choice of µT0 as shown in figure 10, where the lower panel shows
the relative deviation from the fixed order result defined as

∆σ

σ
≡ σNLO+PS − σNLO

σNLO
. (5.2)

The pT spectra of tt̄j1 and j2 coincide at NLO because of momentum conservation.
After including shower effects, they deviate since the tt̄j1 system recoils against several
jets. In addition, the parton shower generates corrections to the structure of the second
jet. We can see that for t0 = 0 and µT = 2 the parton shower overshoots the tail of the
transverse momentum spectra. The large higher order corrections can be explained by the
exponentiation of non-singular emissions, as already reported in ref. [57] in the case of Higgs
production. Decreasing the value of µT helps to recover the NLO predictions. We conclude
that an appropriate choice of the central value of the starting time rescaling parameter is

µT0 = 1 . (5.3)
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Figure 11. Differential cross section distribution as a function of the rapidity of the second
hardest jet (left panel) and inclusive jet cross sections (right panel) for pp → tt̄j + X at the LHC
with

√
s = 8TeV. Comparison between the NLO result obtained with Helac-Nlo and the results

produced by matching NLO predictions to Deductor for three different choices of the starting
time. The scale choice is µF = µR = mt. The lower panels display the relative deviation from the
fixed order result.

We expect that the choice of µT will affect all exclusive distributions. We present two
examples in figure 11: the rapidity of the second jet, y(j2), and the number of hard jets.
Finally, after fixing the central value of µT , we choose to vary it between µT = µT0/2 and
µT = 2µT0. This initial time variation is the dimensionless analogue of the resummation
scale variation originally introduced in refs. [79–83] and first used in the context of event
generators in ref. [84].

5.2 Results

The fixed order cross section at NLO obtained from the Helac-Nlo framework, including
the theoretical error estimated via scale variation, reads

σNLO
pp→tt̄j+X = 86.04

+5.10 ( +6%)
−11.41 (−13%) pb . (5.4)

In order to obtain a reliable result including showering effects, we study the dependence of
the cross section on the generation cut, denoted by pcut

T . Table 1 contains values obtained at
µF = µR = mt and µT = 1. We see that for all values of pcut

T but the last one, for which the
generation cut is equal to the analysis cut, the total cross section is compatible with the fixed
order prediction. For the following study, we choose a generation cut of pT (j1) > 30GeV.
Varying the renormalization/factorization scale between mt/2 ≤ µR,F ≤ 2mt and the initial
shower time rescaling parameter between 1/2 ≤ µT ≤ 2, the total cross section, together
with its uncertainties, obtained after applying the parton shower is

σNLO+PS
pp→tt̄j+X = 86.11

+4.38 ( +5%)
−10.88 (−13%) [scales] +0.80 (+1%)

+2.17 (+3%) [PS time] pb , (5.5)
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pcut
T [GeV] σNLO+PS

pp→tt̄j+X [pb] ε [%�]

5 86.51± 0.21 2.4

10 86.26± 0.17 2.0

15 86.22± 0.14 1.6

30 86.11± 0.13 1.5

40 86.01± 0.08 0.9

50 84.58± 0.07 0.8

Table 1. Total cross section for pp→ tt̄j+X at the LHC with
√
s = 8TeV, together with statistical

and relative errors, for different values of the generation cut. Results are produced by matching
Helac-Nlo predictions to Deductor. The cross section is calculated for µF = µR = mt and
µT = 1.
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Figure 12. Differential cross section distributions as a function of the transverse momentum of
the tt̄j1 system (left panel) and of the hardest jet (right panel) for pp → tt̄j + X at the LHC
with

√
s = 8TeV. Results are produced by matching Helac-Nlo predictions to Deductor. The

uncertainty bands depict scale and initial shower time variation. The lower panels display the
corresponding relative deviation from the central value, separately for µR,F and µT .

where the upper, (lower) values are given for µR,F = mt/2 (2mt) and µT = 1/2 (2). The
scale dependence of the total cross section, taken very conservatively as a maximum of the
upper and lower results, is 13% or 9% after symmetrization. The dependence on the initial
shower time is, by comparison, negligible. The situation is quite different when it comes
to differential distributions as can be observed in figures 12 and 13, where the transverse
momentum of the tt̄j1 system, the first and second hard jets together with inclusive jet cross
sections are given. The variation bands for µR,F and µT in figures 12 and 13 have been
obtained using the following sets of three parameter values: µR,F = {mt/2,mt, 2mt} and
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Figure 13. Differential cross section distribution as a function of the transverse momentum of
the second jet (left panel) and inclusive jet cross sections (right panel) for pp → tt̄j + X at the
LHC with

√
s = 8TeV. Results are produced by matching Helac-Nlo predictions to Deductor.

The uncertainty bands depict scale and initial shower time variation. The lower panels display the
corresponding relative deviation from the central value, separately for µR,F and µT .

µT = {1/2, 1, 2 }, respectively. The lower panels of figures 12 and 13 display corresponding
relative deviations from the central value, separately for µR,F and µT .

We start the discussion with the transverse momentum of the pT (tt̄j1) system, which
is presented in figure 12 (left panel). At leading order, this observable is zero due to
momentum conservation. When real emission contributions at the NLO level are included,
this observable diverges as the transverse momentum of the entire system goes to zero.
Therefore, it can only be reliably described by the fixed order calculation in the high pT
region. However, including the parton shower, the low pT behavior is altered strongly by
the Sudakov form factor as can be seen in figure 12. Indeed, for low values of the transverse
momentum, the distribution is generated mostly by the parton shower. The reason is
that the real radiation contribution, which is responsible for the divergent behaviour at
fixed order receives subtractions, which match the singular behaviour for pT → 0. These
subtractions belong to the same bin as the real radiation events themselves, contrary to
the fixed order calculation, where they belong to the zero bin. Thus, the subtracted real
radiation sample has low weight contributions for low pT . In consequence, we observe a
moderate dependence on µT in this region, which reaches factors of 1.5 at the lower end
of the spectrum. This dependence decreases down to just a few percent around 30GeV,
whereas for moderate values of pT (tt̄j1) it is at the level of 20%–45%. The presence of a
minimum dependence on µT is due to a crossing of the distribution for µT = 1/2, which
dominates at low pT with the distribution for µT = 2, which dominates at high pT . The
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reason for a larger cross section for low values of µT and pT is that the parton shower
generates low pT radiation only barely shifting events with zero pT to non-zero values. On
the other hand, high µT results in radiation of high pT partons, which shift events to high
pT values. The situation is reversed when it comes to the renormalization and factorization
scale dependence. Here, visible deviations from the central value occur once the matrix
element is present. They grow substantially up to almost 80% at the end of the spectrum.
This can be explained by the fact that the variation of µR,F is only implemented in the
matrix element, while the shower does not depend directly on those scales but rather on t0.

The pT (j1) distribution of the hardest jet, which is given in figure 12 (right panel)
shows a rather constant and small dependence on both parameters, µR/F and µT , as it has
NLO accuracy. The pT (j2) distribution of the second jet, which is presented in figure 13
(left panel), also shows a rather constant scale dependence with a somewhat larger variation
range, as it is only LO accurate.

Finally, inclusive jet cross sections are shown in figure 13 (right panel). As expected, the
NLO cross section with exactly one jet, which is given in the first bin, is rather insensitive
to µT . Its theoretical error is at the 12% level. The µT dependence is slightly larger in the
second bin, where the two jet cross section, correct only at the LO level, is stored. Also
here, the theoretical error increases up to 16%. Starting from the third bin, cross sections
are described via the shower evolution alone, therefore, fairly large variations can be noticed
for both parameters, µT and µR,F . For example, the scale dependence for the cross section
with five jets is found to be around 35%. In addition, cross sections for higher multiplicities
are severely affected by the cutoff on the parton shower emission phase space. This strong
dependence can be partially cured when matrix elements for higher multiplicities are merged
together and matched to the shower evolution as described e.g. in refs. [62, 85] for the LO
and in refs. [64, 86] for the NLO case.

5.3 Comparison with other Monte Carlo event generators

In this section we compare our implementation of the NLO matching to the Nagy-Soper
parton shower from Deductor, as implemented in Helac-Dipoles, with other matching
procedures and shower programs. To be more specific, we use:

1. the Powheg-Box [30] implementation of pp→ tt̄j +X [76] in conjunction with the
Pythia 8.1 [45] Monte Carlo program version 8.183, with the transverse-momentum
ordered shower (dubbed Powheg+Pythia8),

2. the automatic solution of aMc@Nlo [59] including Pythia 6.4 [44] (version 6.428)
with the virtuality-ordered or mass-ordered shower (dubbed aMc@Nlo+Pythia6Q),

3. the automatic solution of aMc@Nlo together with Pythia 8.1, once more with the
transverse-momentum ordered shower (dubbed aMc@Nlo+Pythia8).

Once again, we do not include top quark decays, hadronization and multiple interactions.
Thus, we are only comparing the perturbative evolution of different parton showers. In each
case the default setup of the programs is used.
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The total cross sections together with their theoretical errors are

σNLO+PS
pp→tt̄j+X(aMc@Nlo+Pythia6Q) = 84.85

+8.95 (+11%)
−13.75 (−16%) [scales] pb , (5.6)

σNLO+PS
pp→tt̄j+X(aMc@Nlo+Pythia8) = 89.55

+8.44 ( +9%)
−15.41 (−17%) [scales] pb , (5.7)

σNLO+PS
pp→tt̄j+X(Powheg+Pythia8) = 89.12

+26.22 (+29%)
−8.96 (−10%) [scales] pb . (5.8)

We observe that all three calculations, although based on different shower ordering variables,
give compatible results and agree within 4% with the Helac-Nlo+Deductor result from
eq. (5.5). We note that, in case of Pythia8, the central prediction for our process is larger.
Moreover, the scale dependence after symmetrization is below 13% for all cases but the
Powheg+Pythia8, where it is slightly larger i.e. of the order of 20%.

In the next step, we extend our comparison to differential distributions and start with
observables that are rather insensitive to parton shower effects. In figure 14, the transverse
momentum and rapidity distributions of the top quark and the first jet are presented.
For each observable the NLO result obtained with Helac-Nlo is plotted together with
results produced by matching various NLO predictions to different parton showers. The
lower panels display the relative deviation from the next-to-leading order result. All parton
showers reproduce the corresponding NLO result correctly, and slight deviations from the
fixed order calculation can only be seen in the tails of the distributions due to smaller
statistics.

The same conclusions can be drawn from figure 15, where we show the invariant mass
of the tt̄ pair and the angular separation in the rapidity-azimuthal angle plane between the
top and the anti-top quark

∆Rij =
√

(yi − yj)2 + (φi − φj)2 . (5.9)

Overall, we observe that results obtained within the Helac-Nlo+Deductor framework
are consistent with those of the other Monte-Carlo event generators used in this study.
Let us emphasize, that not only various showers but also different matching schemes with
distinct systematic uncertainties are examined here.

To assess potential differences among showers and matching procedures used in our
analysis, we turn to observables, which are sensitive to the initial conditions of the parton
evolution. As an example, we present in figure 16 the differential cross section distribution
as a function of the transverse momentum of the tt̄j1 system. For clarity we give both a
linear-scale (left panel) and a log-scale (right panel) version of the plot. We observe that
the matching with Pythia8 yields similar results for both Mc@Nlo and Powheg, i.e.
the hardest spectra and a lack of agreement with the fixed order prediction in the region
where hard, well separated partons are produced. We have found discrepances even up
to 120%. This suggests, that for the process at hand, initial condition of the transverse-
momentum ordered shower from Pythia8 should be adjusted to restrict further the shower
phase space where emissions become hard. On the other hand, aMc@Nlo+Pythia6Q
nicely reproduces the NLO differential cross section in the high pT region. We also note
that it produces a softer spectrum. As for the Helac-Nlo+Deductor case, as already
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Figure 14. Differential cross section distributions as a function of the transverse momentum of
the top quark (left upper panel) and of the first jet (left lower panel) as well as the rapidity of the
top quark (right upper panel) and of the first jet (right lower panel) for pp→ tt̄j +X at the LHC
with

√
s = 8TeV. Comparison between the NLO result obtained with Helac-Nlo and results

produced by matching various NLO predictions to different parton showers. The scale choice is
µF = µR = mt. The lower panels display the relative deviation from the fixed order result.

explained, the parameter t0 was chosen to preserve the NLO shape in the tail of the pT
spectrum of the tt̄j1 system.

In figure 17, the kinematics of the second jet is analysed. To be more precise, dis-
tributions in the transverse momentum and in rapidity are given. There is a good agree-
ment between the spectra of aMc@Nlo+Pythia6Q and Helac-Nlo+Deductor, with
a somewhat narrower rapidity spectrum in the case of Helac-Nlo+Deductor. For
aMc@Nlo+Pythia8 and Powheg+Pythia8, a difference in normalization can be ob-
served, but the differential K-factor remains flat. This can be explained by larger emission
rates that increase the amount of radiation.

In figure 18, the differential cross section as a function of the transverse momentum
of the tt̄ pair is presented. We observe a good agreement among all programs for pT >
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Figure 15. Differential cross section distributions as a function of the invariant mass of the tt̄
pair (left panel) and of the ∆Rtt̄ (right panel) for pp → tt̄j + X at the LHC with

√
s = 8TeV.

Comparison between the NLO result obtained with Helac-Nlo and results produced by matching
various NLO predictions to different parton showers. The scale choice is µF = µR = mt. The lower
panels display the relative deviation from the fixed order result.
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Figure 16. Differential cross section distributions as a function of the transverse momentum of the
tt̄j1 system for pp → tt̄j + X at the LHC with

√
s = 8TeV. Comparison between the NLO result

obtained with Helac-Nlo and results produced by matching various NLO predictions to different
parton showers. The scale choice is µF = µR = mt. The lower panels display the relative deviation
from the fixed order result.

50GeV i.e. above the analysis cut. Below this value the prediction is only leading order
accurate and thus strongly depends on the initial shower conditions. Also shown in figure 18
are inclusive jet cross sections. In the first (second) bin the exclusive cross section is
accurate at next-to-leading order (leading order). Starting from the third bin on, cross
sections are only described with leading-logarithmic accuracy via the parton shower alone.
Results for exclusive cross sections with Njets = 1 and Njets = 2 are in agreement with our
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Figure 17. Differential cross section distributions as a function of the the transverse momentum
(left panel) and rapidity of the second jet (left panel) for pp→ tt̄j+X at the LHC with

√
s = 8TeV.

Comparison between the NLO result obtained with Helac-Nlo and results produced by matching
various NLO predictions to different parton showers. The scale choice is µF = µR = mt. The lower
panels display the relative deviation from the fixed order result.
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Figure 18. Differential cross section distribution as a function of the transverse momentum of
the tt̄ pair (left panel) and inclusive jet cross sections (right panel) for pp → tt̄j + X at the LHC
with

√
s = 8TeV. Comparison between the NLO result obtained with Helac-Nlo and results

produced by matching various NLO predictions to different parton showers. The scale choice is
µF = µR = mt. The lower panels display the relative deviation from the fixed order result.

observations for other observables. The picture is vastly different for all showers, however,
when Njets ≥ 3. In this case, the Powheg+Pythia8 framework (aMc@Nlo+Pythia6Q)
produces the highest (lowest) number of hard jets.

Finally, cross sections (in fb) for inclusive σ(tt̄+ n jets) rates are presented in table 2.
Table 3 contains cross section ratios, i.e. σ(tt̄+ n+ 1 jets)/σ(tt̄+ n jets).
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Framework σ[≥1 jet] σ[≥2 jets] σ[≥3 jets] σ[≥4 jets] σ[≥5 jets]

Helac-Nlo+Deductor 86110 17204 2780 362 38
aMc@Nlo+Pythia6Q 84850 15030 1230 106 7
aMc@Nlo+Pythia8 89556 21872 3377 372 32
Powheg+Pythia8 89121 23744 5458 992 129

Table 2. Cross sections (in fb) for the inclusive jet rates at the LHC with
√
s = 8TeV, according

to the default settings of the various codes.

Framework σ[≥2]/σ[≥1] σ[≥3]/σ[≥2] σ[≥4]/σ[≥3] σ[≥5]/σ[≥4]

Helac-Nlo+Deductor 0.20 0.16 0.13 0.10
aMc@Nlo+Pythia6Q 0.18 0.08 0.09 0.07
aMc@Nlo+Pythia8 0.24 0.15 0.11 0.09
Powheg+Pythia8 0.27 0.23 0.18 0.13

Table 3. Cross section ratios for (n + 1)/n inclusive jet rates at the LHC with
√
s = 8TeV,

according to the default settings of the various codes.

6 Conclusions

In this publication, we have presented a next-to-leading order matching scheme for the
Nagy-Soper parton shower. We based our construction on the original Mc@Nlo approach.
Besides the general formulation, we have performed real simulations for top-quark pair pro-
duction in association with a jet at the LHC, using an implementation within the framework
of the public codes Helac-Nlo and Deductor.

Our general conclusion is that the combination Helac-Nlo+Deductor is able to
provide results for non-trivial processes, which remain in reasonable agreement with other
Monte Carlo systems. Indeed, for observables, which are rather insensitive to showering
effects, the differential cross sections are in very good agreement between different programs
and the fixed order NLO calculation. Inevitable differences for infrared sensitive observables,
on the other hand, seem to be justifiable in size in the sense that all predictions have
overlapping uncertainty bands. Of course, further studies are needed here.

We note that our simulations are at the same level of logarithmic precision as those of
others. For now, we are only correct as far as the leading behaviour is concerned. Future
developments in Deductor will allow us to include soft-gluon intereference effects yielding
next-to-leading logarithmic accuracy. This step still requires some improvements of our
implementation in Helac-Dipoles. In particular, it will be necessary to transfer colour-
configuration information exactly, as opposed to the current leading-colour approximation.
We leave this to future work.

Finally, we expect that the Nagy-Soper parton shower will open new opportunities for
understanding parton shower systematics for processes with non-trivial colour exchange.
Here, the road is still long, as we must remember that, ultimately, hadronization models
must be included. The latter, however, require tuning to the shower. There are also
interesting problems in merging different multiplicity samples generated by our software.
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A Simplified matching scheme

In this appendix, we discuss the simplified matching prescription that we have implemented
starting from spin and colour averaged amplitudes. We also prove that it yields NLO
accuracy at leading colour, as long as the observable is not sensitive to spin correlations.
The simplifications match the current Deductor functionality and relate to a spin and
colour averaged quantum density

|ρ) =
∑
m

1

m!

∫
[d{p, f}m]|{p, f}m)({p, f}m|ρ) , (A.1)

where

({p, f}m|ρ) =
∑

{s}m,{s′}m

∑
{c}m,{c′}m

〈{s, c}m|{s′, c′}m〉 ρ({p, f, s′, c′, s, c}m) . (A.2)

Averaging over spin and colour reduces tremendously the complexity of the calculation.
However, the parton shower requires a colour configuration for each phase space point
{p, f}m in order to perform the evolution. Starting from colour averaged weights ({p, f}m|ρ)

one can recover leading colour correlations, ({p, f, c}m|ρ), by including a colour weight
Cw({p, f, c}m), defined by

Cw({p, f, c}m) =
({p, f, c}m|ρ(0)

m )∑
{ĉ}m({p, f, ĉ}m|ρ(0)

m )
. (A.3)

The simplified matching prescription accounting for generation cuts is then

σ[F ] =

∫
[d{p, f, c}m]

m!
(F |U(tF , t0)|{p, f, c}m)Cw({p, f, c}m)({p, f}m|Ω|ρ(0)

m )FI({p, f}m)

+

∫
[d{p, f, c}m+1]

(m+ 1)!
(F |U(tF , t0)|{p, f, c}m+1)Cw({p, f, c}m+1)

× ({p, f}m+1|R)FI({p, f}m+1)

≡ σm[F ] + σm+1[F ] , (A.4)
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where the action of the operator Ω is given by

({p, f}m|Ω|ρ(0)
m ) = ω({p, f}m)({p, f}m|ρ(0)

m ) , (A.5)

with

ω({p, f}m) = 1 +
({p, f}m|ρ(1)

m )

({p, f}m|ρ(0)
m )

+
({p, f}m|I(t0) + K(t0) + P|ρ(0)

m )

({p, f}m|ρ(0)
m )

. (A.6)

The density matrix for the real subtracted cross section, ({p, f}m+1|R), is defined as

({p, f}m+1|R) ≡ ({p, f}m+1|ρ(0)
m+1)−

∫ ∞
t0

dτ
∑

{s,s′,c,c′}

〈{s′, c′}m+1|{s, c}m+1〉

×
∫

[d{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m]

m!
({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m|ρ(0)

m ) FI({p̂, f̂}m)

× ({p, f, s′, c′, s, c}m+1|HI(τ)|{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m) ,

(A.7)

where we specified explicitly the full quantum correlations in the subtraction terms re-
quired for the removal of kinematic singularities. HI(t) is the Nagy-Soper real splitting
operator without any approximations. The inclusive jet functions FI({p, f}m) define the
generation cuts.

Let us now study the accuracy of eq. (A.4) after expansion to next-to-leading order.
The parton shower evolution operator, currently available in Deductor, reads

U(tF , t0) = NLC+(tF , t0) +

∫ tF

t0

dτ U(tF , τ)HLC+
I (τ)NLC+(τ, t0) , (A.8)

where HLC+
I (τ) denotes the spin averaged splitting operator in the LC+ approximation and

NLC+(tF , t0) the corresponding Sudakov form factor, as discussed in section 2.6. Inserting
eq. (A.8) in σm[F ] and expanding the evolution yields

σm[F ] =
1

m!

∫
[d{p, f, c}m](F |{p, f, c}m)Cw({p, f, c}m)({p, f}m|Ω|ρ(0)

m )FI({p, f}m)

+
1

m!

∫
[d{p, f, c}m]

∫ tF

t0

dτ
(
F |HLC+

I (τ)− VLC+(τ)|{p, f, c}m
)

× Cw({p, f, c}m)({p, f}m|ρ(0)
m )FI({p, f}m) +O(α2

s) .

(A.9)

Using the approximations
V(τ) = VLC+(τ) +O(1/N2

c ) , (A.10)

and
Cw({p, f, c}m)({p, f}m|ρ(0,1)

m ) = ({p, f, c}m|ρ(0,1)
m ) +O(1/N2

c ) , (A.11)

eq. (A.9) reduces to

σm[F ] =
1

m!

∫
[d{p, f, c}m](F |{p, f, c}m)({p, f, c}m|

[
|ρ(0)
m ) + |ρ(1)

m ) + P|ρ(0)
m )
]
FI({p, f}m)

+
1

m!

∫
[d{p, f, c}m]

∫ ∞
t0

dτ (F |HLC+
I (τ)|{p, f, c}m)({p, f, c}m|ρ(0)

m )FI({p, f}m)

+O(α2
s, 1/N

2
c ,∆σ) . (A.12)

Here, ∆σ represents the error resulting from the limit tF →∞.
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Let us now turn to the σm+1[F ]. Expanding the shower evolution and making use of
eq. (A.11) to recover the leading colour correlated real matrix element, we find

σm+1[F ] =

∫
[d{p, f, c}m+1]

(m+ 1)!
(F |{p, f, c}m+1)FI({p, f}m+1)

[
({p, f, c}m+1|ρ(0)

m+1)

−
∫ ∞
t0

dτ
∑

{s̄,s̄′,c̄′,c̄}m+1

〈{s̄′, c̄′}m+1|{s̄, c̄}m+1〉Cw({p, f, c}m+1)

×
∫

[d{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m]

m!
({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m|ρ(0)

m ) FI({p̂, f̂}m)

× ({p, f, s̄′, c̄′, s̄, c̄}m+1|HI(τ)|{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m)

]
+O(α2

s, 1/N
2
c )

≡ σRm+1[F ]− σSm+1[F ] +O(α2
s, 1/N

2
c ) .

(A.13)

In the following we will focus on the subtraction terms σSm+1[F ]. The summation over
{c}m+1 can be eliminated by∫

[d{p, f, c}m+1]Cw({p, f, c}m+1)(F |{p, f, c}m+1)

=

∫
[d{p, f}m+1](F |{p, f}m+1) +O(1/N2

c ) .

(A.14)

By a further approximation to the colour correlator

〈{c̄′}m+1|{c̄}m+1〉 = 〈{c̄}m+1|{c̄}m+1〉 δ
(
{c̄′}m+1; {c̄}m+1

)
+O(1/N2

c ) , (A.15)

we recover leading colour correlations∫
[d{p, f}m+1]

∑
{c̄}m+1

(F |{p, f}m+1) 〈{c̄}m+1|{c̄}m+1〉

=

∫
[d{p, f, c̄}m+1](F |{p, f, c̄}m+1) .

(A.16)

In the following we rename c̄→ c and drop the second colour index in ({p, f, s̄′, c, s̄, c}m+1|.
In addition, we use

HI(τ) = HLC+
I (τ) +O(1/N2

c ) , (A.17)

to obtain the following form for σSm+1[F ]

σSm+1[F ] =
1

(m+ 1)!m!

∫
[d{p, f, c}m+1][d{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m]FI({p̂, f̂}m)FI({p, f}m+1)

× (F |{p, f, c}m+1)

∫ ∞
t0

dτ
∑

{s̄,s̄′}m+1

〈{s̄′}m+1|{s̄}m+1〉 ({p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m|ρ(0)
m )

× ({p, f, s̄′, s̄, c}m+1|HLC+
I (τ)|{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m) +O(α2

s, 1/N
2
c ) . (A.18)

It is now necessary to remove spin correlations. This can only be achieved, if (F |{p, f, c}m+1)

and FI({p, f}m+1) are sufficiently inclusive to allow an azimuthal average. A typical case
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would be an observable with NLO accuracy, where the azimuthal average corresponds to
the complete phase space integral over unresolved jets. On the example of top-quark pair
production with at least one jet, this would be any observable insensitive to additional jets.
Once an azimuthal average has been performed, spin correlations vanish as demonstrated
in ref. [16] (chapter 12)∫

dφ

2π

∑
{s̄,s̄′}m+1

〈{s̄′}m+1|{s̄}m+1〉
(
{p, f, s̄′, s̄, c}m+1|HLC+

I (τ)|{p̂, f̂ , ŝ′, ĉ′, ŝ, ĉ}m
)

= 〈{ŝ′}m|{ŝ}m〉
(
{p, f, c}m+1|HLC+

I (τ)|{p̂, f̂ , ĉ′, ĉ}m
)
,

(A.19)

which can be further transformed with(
{p, f, c}m+1|HLC+

I (τ)|{p̂, f̂ , ĉ′, ĉ}m
)

=
(
{p, f, c}m+1|HLC+

I (τ)|{p̂, f̂ , ĉ}m
)

× δ
(
{ĉ′}m; {ĉ}m

)
+O(1/N2

c ) .
(A.20)

Substituting eq. (A.19) and eq. (A.20) into eq. (A.18) we obtain

σSm+1[F ] =
1

(m+ 1)!m!

∫
[d{p, f, c}m+1][d{p̂, f̂ , ĉ}m](F |{p, f, c}m+1)

×
∫ ∞
t0

dτ({p, f, c}m+1|HLC+
I (τ)|{p̂, f̂ , ĉ}m)FI({p̂, f̂}m)FI({p, f}m+1)

×
∑
{ŝ,ŝ′}m

〈{ŝ′}m|{ŝ}m〉 ({p̂, f̂ , ŝ′, ŝ, ĉ}m|ρ(0)
m ) +O(α2

s, 1/N
2
c ) .

(A.21)

The last line of eq. (A.21) corresponds to the leading colour, spin averaged quantum density
matrix ∑

{ŝ,ŝ′}m

〈{ŝ′}m|{ŝ}m〉 ({p̂, f̂ , ŝ′, ŝ, ĉ}m|ρ(0)
m ) = ({p̂, f̂ , ĉ}m|ρ(0)

m ) . (A.22)

With these approximations the final expression for σSm+1[F ] reads

σSm+1[F ] =
1

(m+ 1)!m!

∫
[d{p̂, f̂ , ĉ}m+1][d{p, f, c}m]

∫ tF

t0

dτ (F |{p̂, f̂ , ĉ}m+1)

× FI({p̂, f̂}m+1)
(
{p̂, f̂ , ĉ}m+1|HLC+

I (τ)|{p, f, c}m
)

× ({p, f, c}m|ρ(0)
m )FI({p, f}m) +O(α2

s, 1/N
2
c ,∆σ) .

(A.23)

Combining σm[F ] from eq. (A.12) with σRm+1[F ] and σSm+1[F ] from eqs. (A.13) and (A.23)
yields

σ[F ] = σm[F ] + σRm+1[F ]− σSm+1[F ]

= σLC−NLO[F ]

+
1

(m+ 1)!m!

∫
[d{p̂, f̂ , ĉ}m+1][d{p, f, c}m]

∫ tF

t0

dτ (F |{p̂, f̂ , ĉ}m+1)

× ({p̂, f̂ , ĉ}m+1|HLC+
I (τ)|{p, f, c}m)({p, f, c}m|ρ(0)

m )

× FI({p, f}m)
[
1− FI({p̂, f̂}m+1)

]
+O(α2

s, 1/N
2
c ,∆σ) .

(A.24)

The last term vanishes for suitable generation cuts as specified in section 3.3. In conclusion,
we have shown that the simplified matching approach yields a prescription that is accurate
at NLO to the level of leading colour.
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