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1 Introduction

The discovery of a Higgs particle at the Large Hadron Collider is a major leap forward

towards the construction of a more complete theory of nature. If the discovered parti-

cle is the standard model Higgs, it is imperative to understand the gauge dynamics of

nonsupersymmetric four-dimensional gauge-Yukawa theories.

Among all possible quantum field theories, the ones developing quantum conformal

fixed points have a central role [1, 2]. Quantum chromodynamics is a time-honored ex-

ample [3, 4], where the celebrated property of asymptotic freedom comes from a non-

interacting ultraviolet fixed point [3, 4]. One can also imagine the existence of ultraviolet

fixed points that are interacting, and this scenario is referred to as asymptotic safety [5].

Recently, phenomenological ultraviolet conformal extensions of the standard model

with and without gravity have received much attention [6–21]. More generally, model

building requiring scale invariance both in particle physics and cosmology [22–46] is an

active area of research. Furthermore, following Weinberg [5], even quantum aspects of

gravity can be addressed in an asymptotic safety scenario [47–53]. However, in four di-

mensions, asymptotic safety has only recently [54] been guaranteed to occur in calculable
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nonsupersymmetric gauge-Yukawa theories. Last but not least, perturbative and non-

perturbative infrared interacting fixed points are very interesting, both theoretically and

phenomenologically [55–81]. For infrared non-perturbative fixed points in gauge theories,

lattice computations are making remarkable progress [82–99].

In this work, we therefore wish to press forward and investigate explicit conformal

properties of nonsupersymmetric gauge-Yukawa theories. We are particularly interested

in the properties associated with enforcing crossing symmetry on four-point correlation

functions. The microscopic theories investigated here are SU(Nc) gauge theories featuring

Nf Dirac fermions transforming according to the fundamental representation of the gauge

group, ` adjoint Weyl fermions, and N2
f complex scalars, encapsulated in the Higgs matrix

H. The scalars are coupled to the fermion and gauge sectors via Yukawa interactions.

The existence of Banks-Zaks (BZ) [100] interacting fixed points in such a model has been

established in [75, 101–104]. Furthermore, in [54] the reader will find an in depth study

of the asymptotic safety scenario and crucial properties which are guaranteed to exist for

some of these theories. In this case, the underlying gauge theory is fundamental even in

the presence of elementary scalars [54].

Having nonsupersymmetric, interacting, four-dimensional conformal field theories

(CFTs) at our disposal, we determine the physical properties of the singlet Tr[HH†] and

the adjoint Tr[T aHT aH†] composite operators. Via an explicit computation, we discover

that the singlet anomalous dimension is substantially larger than the adjoint one. We then

construct the four-point correlations functions in which these operators play an important

role, and check the crossing relations. Furthermore in the Veneziano limit, and at the max-

imum known order in perturbation theory, we argue that the singlet sector of the theory

is nontrivial. We finally compare, when possible, our precise results with the numerical

bootstrap constraints [105–107, 109, 110].

The work is organized as follows. In section 2 we briefly review the conformal bootstrap

idea and the associated bounds [105–107]. We then move on to derive the conformal boot-

strap sum rules in a CFT with non-Abelian global symmetry SU(Nf )×SU(Nf ) in section 3.

The four dimensional gauge-Yukawa theories used here are introduced in section 4. In the

same section we also argue that the singlet sector decouples from the other operators. In

section 5, we offer our conclusions.

2 Conformal bootstrap review

To set the stage, we provide a short, self-contained introduction to the idea of the conformal

bootstrap and highlight its salient properties. We consider the set of correlation functions

for all local operators of some quantum field theory. For this to constitute a conformal field

theory, the set of correlation functions must obey a corresponding set of constrains, and

presently, we set out to find it. A CFT consists of its conformal primary operators Oi,1

and their associated conformal dimensions ∆i and spins li. Because of conformality, the

1Primary operators are annihilated by generators of special conformal transformation [Kµ,O(0)] = 0

where we inserted primary operator at x = 0 point and Kµ denotes the generator of the special conformal

transformation.
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normalization is completely arbitrary, and we select a basis for the scalar operators such

that the 2-point functions have the form

〈Oi(x)Oj(y)〉 =
δij

|x− y|2∆i
. (2.1)

∆i must satisfy the unitarity constraints [108]:

∆i ≥ 1 (li = 0) (2.2)

∆i ≥ li + 2 (li ≥ 1) . (2.3)

In any CFT, it is possible to express the product of two local operators as a sum over all

local operators in the theory which have a finite radius of convergence. This is called the

operator product expansion (OPE), and we have

Oi(x)Oj(y) =
∑
k

ckij(x− y)Mk(y) (2.4)

where, as mentioned, the sum is over all (primary and non-primary) local operators Mk

and ckij(x − y) are functions of the dimensions and spins (which we denote collectively by

the index k = (∆k, lk)) of the operators involved, and of the dynamics of the theory. Using

equation (2.4) inside correlation functions, we can replace a product (like the l.h.s.) by a

sum (like the r.h.s.), as long as there are no other operators at smaller distances from y

than |x− y|.
The OPE above is quite general, and by also imposing conformal invariance it can be

shown [111] that the kinematics of the primary operators uniquely determines the coeffi-

cients ckij(x−y) belonging to their descendant operators.2 Thus, all dynamical information

in the OPE is encoded in the coefficients for the primary operators

Oi(x)Oj(y) =
∑
k

CkijOk
1

|x− y|∆i+∆j−∆k
+ descendants contribution, (2.5)

where the new coefficients Ckij are translation invariant constants. The complete OPE

(with both primary and descendant contributions) is then

Oi(x)Oj(y) =
∑
k

Ckij Lk(x− y, ∂y)Ok(y)
1

|x− y|∆i+∆j−∆k
(2.6)

where Lk(x−y, ∂y) are differential operators that only depend on the kinematics, that is the

dimensions and spins of the primary operators Ok. They do not depend on the dynamics

of the CFT. By using the OPE on the two operators that are closest together, it is now a

straightforward matter to reduce an n-point function to an infinite sum over (n− 1)-point

functions, which in turn can be reduced to an infinite sum of (n− 2)-point functions, and

so on down to the 2-point functions, which have the simple structure seen in (2.1). Thus,

2The descendant operators are obtained by acting on the primaries with the translation operator i.e.

taking derivatives of the primaries.
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if we know the conformal dimensions ∆i, the spins li and the 3-point coefficients Ckij of the

primary operators, we know the entire CFT.

If we have multiple operators, there are several ways of using the OPE to reduce an

n-point function. However, this obviously cannot change the result, and thus we must

insist that regardless of the order in which multiple OPE contractions are used, the end

results must be equal. This leads to non-trivial constraints on the possible values of ∆i

and Ckij that can make up a consistent CFT. For comprehensive review on both of these

constraints see [107].

As an instructive example, we consider the 4-point function 〈O1(x1)O2(x2)O3(x3)

O4(x4)〉. We can evaluate this using the OPE between the operators at x1 and x2 and simul-

taneously at x3 and x4, or alternatively by performing the OPE between the operators at

x1 and x4 and simultaneously at x2 and x3. This corresponds to the s-channel (12)→ (34)

and t-channel (14)→ (23) respectively.3 The contraction in the s-channel yields

〈O1(x1)O2(x2)O3(x3)O4(x4)〉=
∑
k

Ck12C
k
34Lk(x12, ∂x2)Lk(x34, ∂x4)〈Ok(x2)Ok(x4)〉
|x12|∆1+∆2−∆k |x34|∆3+∆4−∆k

. (2.7)

In this expression, only the OPE coefficients Ck12 and Ck34 depend on the dynamics of the

CFT. It is therefore convenient to define the conformal blocks

G12,34
k (x1, x2, x3, x4) ≡ 1

|x12|∆1+∆2−∆k

1

|x34|∆3+∆4−∆k

× Lk(x12, ∂x2)Lk(x34, ∂x4)〈Ok(x2)Ok(x4)〉 , (2.8)

which contain every contribution from the local operator Ok and its many descendants.

As mentioned above, these conformal blocks are dependent only on the kinematics of the

conformal group, and explicit expressions for them are given in [112, 113].

The above evaluation was done in the s-channel (12)→ (34), but we could equally well

have performed it in the t-channel (14) → (23). This would have given us a similar, but

distinct, expression with 2 and 4 interchanged. Imposing that these two procedures give

equal expressions is what yields the non-trivial conformal bootstrap equation∑
k

Ck12C
k
34 G12,34

k (x1, x2, x3, x4) =
∑
k

Ck14C
k
23 G14,23

k (x1, x4, x2, x3) , (2.9)

which, together with (2.8), tells us how the dimensions, spins and OPE coefficients must

relate to each other in order for the theory in question to be conformal.

In addition, conformal symmetry allows us to further constrain the coordinate depen-

dence of the 4-point function and the most general conformally invariant expression is

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑
k

Ck12C
k
34 G12,34

k (x1, x2, x3, x4) (2.10)

≡
(
|x24|
|x14|

)∆1−∆2
(
|x14|
|x13|

)∆3−∆4 g(u, v)

|x12|∆1+∆2 |x34|∆3+∆4
,

3It is also possible to make the contractions in the u-channel (13) → (24), but this gives no additional

constraints.

– 4 –



J
H
E
P
0
6
(
2
0
1
5
)
0
3
0

where g(u, v) is an arbitrary function4 of the conformally-invariant cross-ratios:

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (2.11)

In [105], the bootstrap equation for the 4-point function of four identical scalar oper-

ators 〈φφφφ〉 was considered. Starting from the OPE:

φ(x)φ(0) =
1

x2d

(
1 + Cφφ|x|∆φ2(0) + . . .

)
, d ≡ ∆φ , (2.12)

and using (2.10) with all ∆i = d equal, we obtain:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x2d
12 x

2d
34

, (2.13)

g(u, v) = 1 +
∑

pk gk(u, v) , pk ≡ (Ckφφ)2 ≥ 0, (2.14)

where we explicitly separated the contribution of the identity operator. The explicit ex-

pression for the conformal blocks gk(u, v) reads:

gk(u, v) = g∆,l(u, v) =
(−1)l

2l
zz̄

z − z̄
[ k∆+l(z)k∆−l−2(z̄)− (z ↔ z̄)] , (2.15)

kβ(x) ≡ xβ/22F1 (β/2, β/2, β;x) , u = zz̄, v = (1− z)(1− z̄) ,

where 2F1 is Gauss’s hypergeometric function.

The 4-point function on the left-hand side of eq. (2.13) is obviously symmetric under

the interchange of any two xi, and its conformal block decomposition (2.14) must therefore

also respect this symmetry. Invariance with respect to x1 ↔ x2 or x3 ↔ x4 implies that

only operators of even spin are exchanged. The non-trivial constraint comes from the

symmetry with respect to x1 ↔ x3 and gives the following condition (see figure 1 for an

illustration)

vdg(u, v) = udg(v, u) , (2.16)

which is not automatically satisfied for g(u, v) as given in equation (2.14).5

Following [105], it is useful to rewrite (2.16) by separating the unit operator contribu-

tion, which gives

ud − vd =
∑
k

pk

[
vdgk(u, v)− udgk(v, u)

]
, (2.17)

where the index k covers the conformal dimension ∆ and the spin l, as in (2.15). The l.h.s.

of this equation is the imbalance created by the presence of the unit operator in the OPE.

This imbalance has to be compensated by contributions of the other fields on the r.h.s..

4Note that we absorbed the OPE coefficients Ck12 and Ck34 into the definition of g(u, v).
5The appearance of the (u/v)d factor in this relation is due to a nontrivial transformation of the prefactor

1/(x2d12x
2d
34) in (2.13).
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Figure 1. Diagrammatic expression of the conformal bootstrap equation. The double line denotes

a conformal block, summing up exchanges of a primary operator O and all of its descendants.

In practice, it is convenient to normalize (2.17) by dividing both sides by ud− vd. The

resulting sum rule takes the form:

1 =
∑
k

pkFd,k , Fd,k ≡
vdgk(u, v)− udgk(v, u)

ud − vd
. (2.18)

For a given spectrum of operator dimensions and spins {∆, l} the sum rule (2.18) can

be viewed as an equation for the coefficients p∆,l ≥ 0. If there are no solutions to this

equation, the corresponding CFT would be ruled out.

To achieve a concrete realization of this idea, it is necessary to have a practical recipe

to show that the solution does not exist. For a simple example of such recipe, imagine that

a certain derivative, e.g. ∂x, when applied to every Fd,∆,l and evaluated at a certain point,

is strictly positive. Since the same derivative applied to the l.h.s. of (2.18) gives identically

zero, a solution where all coefficients p∆,l are non-negative would clearly be impossible.

Using this logic, a first model-independent bound on the dimension of the operator φ2 was

numerically found in [105, 106] by using linear programming methods:

∆ ≤ ∆min = 2 + 0.7
√
d− 1 + 2.1(d− 1) + 0.43(d− 1)3/2 , (2.19)

where d is the conformal dimension of the scalar φ, d ≡ ∆φ, and ∆ is the dimension of the

operator φ2, ∆ ≡ ∆φ2 . In [107] a semidefinite programming algorithm was used and the

bound was improved further to the current strongest limit:

∆ ≤ ∆max = 2 + 3.006(d− 1) + 0.16
(

1− e−20(d−1)
)
. (2.20)

There does not seem to be any known 4D unitary CFT saturating this bound.

3 Conformal bootstrap sum rules in CFT with SU(Nf)L × SU(Nf)R
global symmetry

We will construct explicit examples of CFTs stemming from four-dimensional, nonsuper-

symmetric gauge-Yukawa theories possessing the global, non-Abelian symmetry SU(Nf )L×
SU(Nf )R. For this reason, we will proceed to generalize the conformal block decomposition

to this particular case since it has not, to our knowledge, previously been studied in the liter-

ature. Similar analyses have been carried out for the SO(N) and SU(N) cases in [114]. The
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relevant gauge singlet complex scalar degrees of freedom are bi-fundamental with respect

to the SU(Nf )L × SU(Nf )R global symmetry and can be mathematically represented as:

Hα∗
i = (Nf ,N

∗
f ) and Hβ

j∗ = (N∗f ,Nf ) , (3.1)

where all indices i, j, α, β = 1, 2, . . . , Nf . Latin indices are for SU(Nf )L and Greek indices

for SU(Nf )R respectively. It is convenient to introduce the following matrix notation

Hα∗
i = (H)iα and Hβ

j∗ = (H†)βj . (3.2)

We start with the OPE analysis for the following composite operator:

Hiα(x)×H†βj(0) ∼ 1

|x|2dH

{
δijδαβ

[
1 + cS |x|∆S Tr[HH†](0)

]
(3.3)

+ cL|x|∆LδijMkkαβ(0)+cR|x|∆RδαβMijγγ(0)+cA|x|∆AMijαβ(0)+· · ·
}
,

where, in the free theory, Mijαβ ≡ HiαH
†
βj −

1
N2
f

Tr[HH†]δijδαβ and dH is the conformal

dimension of the H field. The group-theoretical content of the OPE above is:

(Nf ,N
∗
f )× (N∗f ,Nf ) = (1,1) + (1,Adj) + (Adj,1) + (Adj,Adj) . (3.4)

The crossing symmetry constraints are derived by equating the (12)→(34) and

(14)→(23) s- and t-channel conformal block decompositions of the following 4-point

function

〈H(x1)H(x2)†H(x3)H(x4)†〉 = 〈H(x1)H(x4)†H(x3)H(x2)†〉 . (3.5)

There are four basic invariants contained in [H(x1) × H(x2)†] × [H(x3) × H(x4)†].

Using (3.4), we see that the overall singlet terms contributing are:{[
(1,1)+(1,Adj)+(Adj,1)+(Adj,Adj)

]
×
[
(1,1)+(1,Adj)+(Adj,1)+(Adj,Adj)

]}
singlet

= GS(1,1) + GL(1,1AA) + GR(1AA,1) + GA(1AA,1AA) (3.6)

where 1AA means that we have to extract the singlet from the tensor product of the

two adjoint representations. In general, each of the four basic invariants GS,L,R,A contain

operators of both even and odd spins.

We now derive the constraint stemming from crossing symmetry in terms of these four

basic invariants. For the s- and t-channel conformal block decompositions we obtain:

〈H1H
†
2H3H

†
4〉 =

1

x2dH
12 x2dH

34

{(
•
◦ •

◦
)2

GS +

( • ◦
◦ •

− 1

Nf

•
◦

◦
•

)2

GA

+
•
◦ •

◦
( • ◦
◦ •

− 1

Nf

•
◦

◦
•

)
GL +

( • ◦
◦ •

− 1

Nf

•
◦

◦
•

)
•
◦ •

◦
GR

}
,

(3.7)

〈H1H
†
4H3H

†
2〉 =

1

x2dH
14 x2dH

23

{( • ◦
◦ •

)2

G̃S +

(
•
◦

◦
• −

1

Nf

• ◦

◦ •

)2

G̃A

+
• ◦

◦ •

(
•
◦

◦
• −

1

Nf

• ◦

◦ •

)
G̃L +

(
•
◦

◦
• −

1

Nf

• ◦

◦ •

) • ◦

◦ •
G̃R

}
,

(3.8)
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where Hi = H(xi), dH is the quantum physical dimension of the H field, G̃ ≡ Gu↔v and

we used a graphical notation for the tensor contractions. The squaring of the contractions

(. . .)2 means that we have to perform the same contraction for both SU(Nf ) factors. Every

line means that the corresponding indices are contracted with the δ−tensor:

•

◦ •

◦
= δij δαβ , etc. (3.9)

Now, equating the s- and t-channel decompositions and demanding that the coefficients

multiplying the corresponding tensors match, we deduce:(
•
◦ •

◦
)2

: vdH

(
GS −

1

Nf
(GL +GR) +

1

N2
f

GA

)
= udH G̃A , (3.10)

( • ◦
◦ •

)2

: vdH GA = udH

(
G̃S −

1

Nf
(G̃L + G̃R) +

1

N2
f

G̃A

)
, (3.11)

• ◦

◦ •
•
◦ •

◦
: vdH

(
GR −

1

Nf
GA

)
= udH

(
G̃L −

1

Nf
G̃A

)
, (3.12)

•
◦ •

◦ • ◦

◦ •
: vdH

(
GL −

1

Nf
GA

)
= udH

(
G̃R −

1

Nf
G̃A

)
, (3.13)

which yields four equations with four unknowns.

These equations generalize (2.16) to the theories possessing the non-abelian sym-

metry SU(Nf )L × SU(Nf )R and can be solved numerically. The 4-point function

〈H(x1)H(x2)†H(x3)H(x4)†〉 can also be expanded in the (13)→(24) u-channel. For com-

pleteness, in appendix A we derive the crossing symmetry constraints using this channel

while in a follow-up study we will analyze the system (3.10)–(3.13).

4 A four-dimensional calculable Gauge-Yukawa CFT

We consider an SU(Nc) gauge theory with Nf fundamental Dirac fermions Q = (q, q̃∗),

` adjoint Weyl fermions λ, and a gauge singlet complex scalar H that transforms in the

bifundamental representation of the SU(Nf )L × SU(Nf )R global symmetry of the theory.

For the benefit of the reader, the field content and the quantum symmetries of the theory

with ` = 1 are summarized in table 1. The hermiticity property of H is defined as (Hα∗
i )† ≡

H i
α∗ and the matrix H may be decomposed in terms of 2N2

f real scalar fields as follows:

Hα∗
i = Hiα =

φ+ iη√
2Nf

δiα +

N2
f−1∑
A=1

(
hA + iπA

)
TAiα (4.1)

where TAiα are the usual generalized Gell-Mann matrices. The fields H and H† can be

contracted to form a singlet

(1,1) = δijδαβHiαH
†
βj = Tr[HH†] , (4.2)

– 8 –



J
H
E
P
0
6
(
2
0
1
5
)
0
3
0

Fields [SU(Nc)] SU(Nf )L SU(Nf )R U(1)V U(1)AF

λ Adj 1 1 0 1

q 1
Nf−Nc
Nc

−Nc
Nf

q̃ 1 −Nf−Nc
Nc

−Nc
Nf

H 1 0 2Nc
Nf

Gµ Adj 1 1 0 0

Table 1. Field content of the example. The first three fields are Weyl spinors in the ( 1
2 , 0)

representation of the Lorentz group. H is a complex scalar and Gµ is the gauge field. U(1)AF is

the extra Anomaly Free symmetry arising due to the presence of λ.

or an adjoint with respect to the right or left handed groups:

(Adj,1) = HiαH
†
αj = (HH†)ij or (1,Adj) = HiαH

†
βi = (HH†)αβ , (4.3)

while (Adj, Adj) can be formed as a tensor product.

The Lagrangian of the theory is

L = Tr

[
−1

2
FµνFµν + iλ̄ /Dλ+Qi /DQ+ ∂µH

†∂µH + yHQHQ

]
− u1(Tr[HH†])2 − u2 Tr[HH†HH†]. (4.4)

Here Tr refers to the trace over both color and flavor indices and Dµ is the usual covariant

derivative. At the renormalizable level we have the double trace (Tr[HH†])2 and the single

trace Tr[HH†HH†] operators.

Throughout this section we will work with the rescaled couplings which enable a finite

Veneziano limit of the theory at fixed `. That is, we let both Nc, Nf → ∞ while keeping

x ≡ Nf/Nc fixed. The appropriately rescaled couplings are

ag =
g2Nc

(4π)2
, aH =

y2
HNc

(4π)2
, z1 =

u1N
2
f

(4π)2
, z2 =

u2Nf

(4π)2
. (4.5)

This model was introduced in [75, 101] to investigate near-conformal dynamics and its

impact on the spectrum of the theory. Special attention was paid to the appearance of a

dilaton, the Goldstone boson associated with the breaking of conformal symmetry, and its

properties. The model was further investigated at higher orders in [102], and the properties

related to the a-theorem were considered in [103].

4.1 Beta functions and Weyl consistency conditions

In order to perform a four-dimensional comparison with the bootstrap bound, we start by

providing a calculable CFT at the highest known perturbative order. Following previous
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studies [103, 104] the beta functions of the theory are

βag = −2

3
a2
g

[
11− 2`− 2x+ (34− 16`− 13x) ag + 3x2aH +

81x2

4
agaH

−3x2(7 + 6x)

4
a2
H +

2857 + 112x2 − x(1709− 257`)− 1976`+ 145`2

18
a2
g

]
,

(4.6)

βaH = aH

[
2(x+ 1)aH − 6ag + (8x+ 5)agaH +

20(x+ `)− 203

6
a2
g

−8xz2aH −
x(x+ 12)

2
a2
H + 4z2

2

]
,

(4.7)

βz1 = 4
(
z2

1 + 3z2
2 + 4z1z2 + z1aH

)
, (4.8)

βz2 = 2
(
2z2aH + 4z2

2 − xa2
H

)
. (4.9)

Here we have already assumed the Veneziano limit and ` is the number of SU(Nc) adjoint

Weyl fermions of the theory.6 We used the results of [115–118] to determine the beta

functions and anomalous dimensions of the gauge-Yukawa theories investigated here.

The perturbative gauge beta function is considered up to and including the three

loop order, the Yukawa to two and the scalar quartic couplings to the first order. This

is the proper way of organizing perturbation theory for a multiple coupling theory as

shown in [103, 104]. In fact this counting can be mathematically related to the Weyl

consistency conditions unveiled in the pioneering work by Osborn [119] and demonstrated

to be relevant also for the standard model in [103, 104]. These conditions require the

different beta functions to be related across different loop orders. Mathematically these

conditions read:
∂(χjkβk)

∂gi
=
∂(χimβm)

∂gj
, (4.10)

with

χij ≡ diag

(
N2
c

128π2a2
g

,
N2
f

384π2aH
, 0 ,

N2
f

192π2

)
, (4.11)

where gi ≡ (ag, αH , z1, z2) refers to the couplings collectively. To help the reader identify

the related terms, according to the Weyl conditions, across the different couplings, we

color-coded them directly in the beta functions. It is clear that these conditions relate the

two-loop coefficients in the gauge beta function with one-loop coefficients in the Yukawa

beta function (red color) and the two-loop coefficients in the Yukawa beta function with the

one-loop coefficients in the quartic beta function (blue and brown colors). Our perturbative

interacting CFTs live at the fixed point (FP) identified by the simultaneous zeros of the

previous beta functions, i.e. we need to solve for βag = βaH = βz1 = βz2 = 0. The

study of the beta functions above allowing us to establish the existence of perturbative

CFTs has been performed in [54, 103]. We will investigate the explicit physical results

stemming from the analysis of these beta functions in 4.4 while in appendix B.5 we review,

for completeness, the leading finite Nf corrections to the beta functions [102].

6In table 1 we assumed ` = 1.
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4.2 Higgs anomalous dimensions

The existence of a perturbative CFT permits us to determine the conformal dimensions of

the (1, 1) singlet ∆S ≡ 2+γS and of the (Adj,Adj) adjoint ∆A ≡ 2+γA composite operators.

For the reader’s convenience, we recall how these dimensions enters the OPE (3.3):

Hiα(x)×H†βj(0)∼ 1

|x|2dH

{
δijδαβ

[
1+cS |x|∆S Tr[HH†](0)

]
+cA|x|∆AMijαβ(0)+· · ·

}
. (4.12)

To compute these anomalous dimensions, we add to the Lagrangian (4.4) two mass terms

m2
S Tr[HH†] and m2

A Tr[T aHT aH†],7 and use [120] to specialize the formulae given in [115]

to the present case.

We know from the Weyl consistency conditions [103, 104] that the order to which beta

functions are computed in a gauge-Yukawa theory is distinctly non-trivial, and we must

therefore also take care to compute the anomalous dimensions of the composite operators,

as well as the Higgs field, to the proper order. To find this, we consider that if two of the

four external legs on a Feynman digram that contributes to the quartic beta function are

joined together, the resulting diagram is a constituent of the anomalous dimension of the

composite operators to one higher order in the loop expansion. We therefore conclude that

the anomalous dimensions should be computed to two loop order.

Thus, for the Higgs field H, we have that the anomalous dimension is

γH ≡ dH − 1 = aH + 2z2
2

(
1 +

1

N2
f

)
−

3xa2
H

2
+

5agaH
2

(
1− x2

N2
f

)
+ 2z2

1

(
1

N2
f

+
1

N4
f

)
+

8z1z2

N2
f

,

(4.13)

and for the singlet and the adjoint composite operators:

γA = γTr[TaHTaH†]≡∆A−2=2γH+
4z1

N2
f

− 8aHz1

N2
f

−4z2
1

(
2

N2
f

+
6

N4
f

)
− 32z1z2

N2
f

−24
z2

2

N2
f

(4.14a)

γS = γTr[HH†]≡∆S−2=γA+4(z1+2z2)−8aH(z1+2z2)−24z2
2−

16z2
1

N2
f

− 64z1z2

N2
f

. (4.14b)

In appendix B.5 we show, for completeness, the leading finite Nf corrections to these

anomalous dimensions.

Having precisely computed, for the first time, the anomalous dimensions of relevant

composite operators in this theory, it would be interesting to compare them with the boot-

strap analysis. Such a comparison is, however, hampered by the fact that the analytic

bootstrap conditions, we derived for SU(Nf )L × SU(Nf )R, have not yet been solved nu-

merically, like it is instead the case for SU(N) or SO(N) global symmetries [107]. In this

initial exploration we will use partial simplifications occurring in the Veneziano limit of the

theory to compare our precise results with some of the existing numerical bounds.

7Using the SU(N) generator identity T aijT
a
kl = 1

2
δilδjk − 1

2N
δijδkl, it is easy to see that Tr[T aHT aH†] =

1
2

Tr[H] Tr[H†]− 1
2N

Tr[HH†] = 1
2
Mijij and thus how it is related to Mijαβ .
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4.3 Bootstrap in the Veneziano limit

Interestingly, in the Veneziano limit, the conformal dimension of the (Adj, Adj) operator

factorizes ∆A = 2dH (γA = 2γH), suggesting that, to two-loop order and in the Veneziano

limit, we can identify Mijαβ(0) in (4.12) with the operator

Mijαβ(0) ∼ : HjβH
†
αi : (0) , (4.15)

where we define the normal-ordered product : : of two operators as the non-singular part

of the OPE in the limit where the two space-time points are brought together. Because

the anomalous dimension of the adjoint is twice that of the H field, this sector of the

theory enjoys properties resembling those of a generalized free scalar H(x) with conformal

dimension dH = 1 + γH . Therefore the correlation functions involving the composite

adjoint operator are disconnected and can be written as products of 2-point functions. For

example, using (4.15):

〈Hiα(x1)H†βj(x2)Mijαβ(y)〉 = 〈Hiα(x1)H†αi(y)〉 〈Hjβ(y)H†βj(x2)〉 , (4.16)

we can compute the 4-point function using the basic 2-point function:

〈Hiα(x)H†αi(0)〉 =
1

|x|2dH
. (4.17)

Moreover, since the 3-point function, defining the OPE coefficient cA in (4.12), is fixed

(∆1 = ∆2 = dH and ∆y = ∆A = 2dH )

〈Hiα(x1)H†βj(x2)Mijαβ(y)〉 =
cA

|x12|∆1+∆2−∆y |x1y|∆1+∆y−∆2 |x2y|∆2+∆y−∆1

=
cA

|x1y|2dH |x2y|2dH
(4.18)

by comparing with (4.16) and using (4.17) we see that cA = 1.

The factorization property of the (Adj, Adj) operators allows us to compute GA and

G̃A to this order in perturbation theory and in the Veneziano limit. Indeed, to compute

GA, for example, we start with the general expressions (2.10) (with all ∆i = dH) and using

notation of (3.7) write:

〈Hiα(x1)H†βj(x2)Hkδ(x3)H†σm(x4)〉 =

[( • ◦
◦ •

)2

GA

]
· 1

x2dH
12 x2dH

34

+ · · · (4.19)

where we showed explicitly only the contributions from the conformal block GA. As in-

dicated by index contractions, we have to consider the correlator with external indices

(i = m, j = k) and (α = σ, β = δ). Using the factorization property of (Adj,Adj), we
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calculate the GA contribution as follows [121]8

[〈Hiα(x1)H†βj(x2)Hkδ(x3)H†σm(x4)〉]GA =
1

x2dH
14 x2dH

23

(4.21)

and therefore by comparing with (4.19) we deduce that:

GA =

(
u

v

)dH
=
x2dH

12 x2dH
34

x2dH
14 x2dH

23

. (4.22)

Similarly, for G̃A we obtain G̃A = (v/u)dH . In terms of Feynman diagrams, factorization

implies that the conformal block GA contributes only to the disconnected diagrams to this

order in perturbation theory and in the Veneziano limit. These disconnected contributions

provide the leading-Nf dependence of the correlators which is known as large-Nf factor-

ization [122]. In fact, using the standard ’t Hooft counting, it is easy to show that the

disconnected contribution to our 4-point function in (4.21) appear at the O(1) while the

fully connected contributions appear at the O
(
1/N2

f

)
.

To take advantage of the large-Nf factorization, following [121], we will be solving our

bootstrap conditions (3.10)–(3.13) in the 1/Nf expansion:

GS,A ≡
∑
∆,l

pS,A∆,l g
S,A
∆,l (u, v) = Gdisc

S,A +
Gconn
S,A

N2
f

+ · · · (4.23)

GL,R ≡
∑
∆,l

pL,R∆,l g
L,R
∆,l (u, v) =

GL,R
Nf

+ · · · (4.24)

where we formally divided the connected (conn) and disconnected (disc) contributions [121]

to the conformal blocks GS and GA. We also used the fact that GL and GR appear at the

order O(1/Nf ) because they are disconnected with respect to just one of the two SU(Nf )

factors.

At the leading O(1) in the large-Nf expansion, from the bootstrap equations (3.10)–

(3.11) we have:

O(1) : udH G̃disc
A = vdHGdisc

S , with G̃disc
A =

(
v

u

)dH
, (4.25)

O(1) : vdHGdisc
A = udH G̃disc

S , with Gdisc
A =

(
u

v

)dH
, (4.26)

which means that Gdisc
S = G̃disc

S = 1. These equations exemplify crossing symmetry con-

straints for the disconnected contributions to the 4-point function represented schematically

in figure 2.

8Here we assume a complete factorisation in the (Adj, Adj) channel although we have shown that it

holds only for the leading operator. Therefore we have the generalized free Gaussian theory with OPE [121]:

H(x1)×H†(x2) =
1

x2dH12

+
∑
n,l

cAn,l

xn+l12

OAn,l (4.20)

where only double-trace operators OAn,l = (OA
←→
∂µ1 . . .

←→
∂µl(
←→
∂ν
←→
∂ν )nOA - traces) contribute. Here l is the

spin of the operator and ∆n,l = 2dH + 2n + l +O
(
1/N2

f

)
. The leading operator OA0,0 = Tr[T aHT aH†] =

1
2
Tr[H]Tr[H†] +O(1/Nf ) has dimension 2dH .
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Figure 2. Disconnected contributions to the 4-point function.

The relevant bootstrap conditions at O
(
1/N2

f

)
are derived by combining the condi-

tions (3.10)–(3.13) with the expansion (4.23)–(4.24), Gdisc
A = (u/v)dH , G̃disc

A = (v/u)dH and

Gdisc
S = G̃disc

S = 1. By matching the 1/N2
f terms we have:

O
(
1/N2

f

)
: vdH (Gconn

S − (GL +GR)) + udH = udH G̃conn
A , (4.27)

O
(
1/N2

f

)
: udH

(
G̃conn
S − (G̃L + G̃R)

)
+ vdH = vdHGconn

A , (4.28)

O
(
1/N2

f

)
:

[
vdH (GL +GR)− udH (G̃L + G̃R)

]
= 2

(
udH − vdH

)
. (4.29)

The last equation is obtained by subtracting (3.13) from (3.12). Using (4.29) in the equation

obtained by subtracting (4.28) from (4.27) we arrive at:

vdHGconn
S − udH G̃conn

S = udH (1 + G̃conn
A )− vdH (1 +Gconn

A ) . (4.30)

Let us now consider the contributions to the conformal blocks Gconn
S,A and G̃conn

S,A more

carefully. We will be using the work of [121] where the 4-point function of the singlet

operators O(x) was considered. In this case, the lowest dimensional operator, aside from

the unit operator, in the O × O OPE is the double trace operator O2 whose dimension

2d[O] +O
(
1/N2

f

)
factorises at the lowest order in 1/Nf expansion.

In our model, from (4.14), the dimensions of the adjoint operator satisfy the same

factorization property and therefore the analysis of [121] applies. There it was shown that

the conformal block Gconn
A (and G̃conn

A ) receives the contributions from the sum of two terms:

• O
(
1/N2

f

)
correction to the OPE coefficients pA∆,l. We will denote this contribution

by (Gconn
A )OPE

• O
(
1/N2

f

)
corrections to the anomalous dimension ∆A which enter the functions

gA∆,l(u, v). We will denote this contribution by (Gconn
A )AD.

The connected contribution to the conformal block can thus be expanded [121]:

Gconn
A = (Gconn

A )OPE + (Gconn
A )AD . (4.31)

Furthermore, in our model the anomalous dimension for the singlet operator from (4.14)

equals the anomalous dimension of the adjoint plus an additional non-factoriziable contri-

bution 4(z1 + 2z2)− 8aH(z1 + 2z2)− 24z2
2 and two additional O

(
1/N2

f

)
terms −16z2

1/N
2
f −
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64z1z2/N
2
f not present in the anomalous dimensions for the adjoint (4.14). The non-

factorizable contribution is not present in the analysis of [121] and it will be taken into

account.

Based on the above discussion it seems reasonable, but should still be proven, that

Gconn
A matches the factorazible part of Gconn

S . Assuming that this is true, the contributions

due to the conformal blocks ((Gconn
S,A )AD,(G̃conn

S,A )AD) and ((Gconn
S,A )OPE,(G̃conn

S,A )OPE) cancel

out in (4.30):

vdH
(
(Gconn

S )AD + (Gconn
S )OPE

)
− udH

(
(G̃conn

S )AD + (G̃conn
S )OPE

)
=

udH
(
(G̃conn

A )AD + (G̃conn
A )OPE

)
− vdH

(
(Gconn

A )AD + (Gconn
A )OPE

)
. (4.32)

The non-factorizable contribution to the singlet anomalous dimension quantifies the

departure from the Gaussian limit and stems from an additional part of the singlet confor-

mal block (Gconn
S )non−fact. This part will not be balanced by an appropriate term associated

with the adjoint composite operator in (4.30). This leads to a suggestive bootstrap equation

for the non-factorizable part of the singlet

vdH (Gconn
S )non−fact − udH

(
G̃conn
S

)non−fact
= udH − vdH , (4.33)

which has precisely the form of (2.17), and we can even expand the conformal block in

functions of the kinematics of the CFT (Gconn
S )non−fact =

∑
pS,nf∆,l g

S,nf
∆,l (u, v).

Just as in (2.17), the right-hand side of (4.33) is the contribution from the Gaussian

part of the theory which is balanced by the left-hand side. Therefore it would be tempting

to interpret this result as a bound for ∆S , similar to the bound on the lowest dimensional

operators of the theory coming from eq. (2.17), though holding only to the next-to-leading

order in the couplings and in the Veneziano limit. This would mean that for low values

of the couplings and high values of Nf , ∆S should obey the bound given by eq. (2.20)

with d = dH .

However, there are several caveats to this suggestive statement that require further

investigation. The most pressing is that our expression holds only for a part of GS , and

it is not clear how (or even if) a consistency equation on such a part would translate into

a bound on ∆S . Another concern is that, as pointed out in [121], unitarity only implies

positivity of p∆,l to leading order in 1/Nf , and if the expansion parameters pS,nf∆,l are

allowed to take either sign, the large Nf analogue of the proof provided in [105] would be

affected. Finally, the function GS contains an implicit sum over even and odd spins, while

the bound of (2.20) is obtained for real scalars, where only even spins enter the crossing

symmetry constraint.

The bound of [107] applies directly to the adjoint composite operator, the lowest

dimensional operator, without any caveats and as we shall see in the specific examples

provided below, the bound is well satisfied. As for the singlet composite operator, a direct

comparison with the bound (2.20) quantifies the extent to which the caveats described

above are under theoretical control. We stress again that a proper comparison requires a

dedicated numerical bootstrap analysis for this theory.

In the examples below, we will also see that the anomalous dimension of the singlet

composite operator can be substantially larger than that of the adjoint composite operator.
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Given that the bound on the singlet is unknown, this is a welcome feature which has been

long sought after for nonperturbative models of near conformal dynamics used to describe

composite Higgs scenarios, see [55] for a recent review.

4.4 Physical results

Now we review the salient points behind the existence of perturbative interacting CFTs [54,

103] and then determine the physical dimensions of the composite operators at the FPs of

the theory.

The two-loop gauge beta function has a perturbative Banks-Zaks FP if the one-loop

coefficient b0 of the gauge beta function is small and the signs of the one-loop b0 and

two-loop b1 coefficients are opposite. Therefore, our first task is to find a region in the

parameter space of the model where the BZ FP exists. Solving (4.7) to one-loop and

substituting into (4.6) we obtain

b0 =
2

3

(
11− 2(`+ x)

)
, b1 =

2

3

(
(34− 16`− 13x) +

9x2

x+ 1

)
. (4.34)

From the asymptotic freedom (AF) boundary condition b0 = 0, we obtain x = (11− 2`)/2.

After substituting this value of x into b1

b1AF = −25

2
− `− 3(11− 2`)2

4`− 26
, (4.35)

we observe that for the unphysical value `∗ ≈ 0.37 the coefficient b1AF vanishes. For ` = 1

we have that b1AF is negative and for ` = 0 it is positive. Therefore in the first case we have

an infrared BZ FP, and in the second we have an ultraviolet BZ FP. Note also [103] that

in the absence of the Yukawa interactions the coefficient b1AF in (4.35) is always negative

and therefore the physical BZ FP can lead only to an infrared FP.

We are now ready to present our results for the ` = 0 and ` = 1 cases. Our strategy

is the following

• For a given FP in all the couplings (a∗g, a
∗
H , z

∗
1 , z
∗
2) at a given value of x ≡ Nf/Nc, we

determine the anomalous dimensions for the composite operators γS and γA. We also

determine the associated anomalous dimension of the scalar field γH . These results

were obtained by means of the equations (4.13) and (4.14).

• We then insert d = dH = 1 + γH in the right hand-side of (2.19) and (2.20) to

determine ∆max − 2. Finally, we compare the result with γA, which turns out to be

the operator for which the bootstrap bound applies in all cases under consideration,

and display γS , which is a more interesting quantity for phenomenology.

4.4.1 The ` = 0 case

The asymptotic freedom boundary, where the first coefficient of the gauge beta function

vanishes, b0 = 0, occurs at xAF = (11 − 2`)/2 = 5.5. Increasing x > xAF slightly results

in the appearance of an ultraviolet BZ FP, see figure 3a. An in depth analysis of the FP

structure and its theoretical and phenomenological consequences for the asymptotic safety

scenario has just appeared in [54].
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(a) Fixed point structure of the model with ` = 0.

The boundary of asymptotic freedom is on the left-

hand edge of the plot at x = 5.5, the FP value of ag
is the solid red line, aH is the dotted black, z1 is the

dot-dashed green, and z2 is the dashed blue.
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0.15
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x

ΓH2

(b) Comparison with the conformal bootstrap

bounds. The solid line is the bound (2.19), the dot-

dashed black is the revised bound (2.20), the dashed

gray line is γTr[HH†] (4.14b), and the dotted light

gray line is γTr[TaHTaH†] (4.14a).

Figure 3. FP structure and comparison with the bootstrap bound for the model with ` = 0.

When the three-loop gauge beta function is considered, an infrared FP emergers along

with the ultraviolet BZ FP in the range x ≤ x∗ ≈ 5.617. At x∗ the ultraviolet BZ FP and

the infrared FP collide and both fixed points disappear. Perturbation theory is, of course,

valid only for values of (x− xAF )/xAF � 1. As shown in [54] perturbation theory is valid

for (x− xAF )/xAF < 0.1.

The comparison with the bootstrap bound is shown in figure 3b. We first note that

as expected, the bound is clearly respected by the anomalous dimension of the adjoint

operator. More interestingly, we discover that the anomalous dimension of the singlet

composite operator γS is substantially larger than the anomalous dimension of the adjoint

operator. If this also holds in the non-perturbative regime, this has important and welcome

implications for model building.

4.4.2 The ` = 1 case

When the model is expanded to include adjoint fermions, the infrared BZ FP originates

just below the asymptotic freedom boundary xAF = (11−2`)/2 = 4.5 as shown in figure 4a.

The comparison of the composite operator anomalous dimensions with the two numerical

bootstrap bounds is shown in figure 4b. As explained above, γA is consistently below the

bound in the perturbative regime. As for the ` = 0 case we determine the relevant quantity

γS and show that it is, also in this case, substantially larger than the adjoint operator.

5 Conclusions

We provided a systematic investigation of interesting properties of relevant composite op-

erators stemming from gauge-Yukawa theories developing conformal fixed points in four

dimensions. These theories are structurally similar to the standard model of particle in-

teractions and have already been employed for interesting model building [40]. Having at
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dotted black, z1 is the dot-dashed green, and z2 is

the dashed blue.
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ΓH2

(b) Comparison of the conformal bootstrap bound.

The solid gray line is the bound (2.19), the dot-

dashed black is the revised bound (2.20), the dashed

gray line is γTr[HH†] (4.14b), and the dotted light

gray line is γTr[TaHTaH†] (4.14a).

Figure 4. FP structure and comparison with the bootstrap bound for the model with ` = 1.

our disposal explicit examples of nonsupersymmetric interacting four-dimensional CFTs,

we investigated the critical exponents (anomalous dimensions at fixed points) associated

to singlet Tr[HH†] and the adjoint Tr[T aHT aH†] operators.

We showed that in the Veneziano limit, and at the maximum known order in per-

turbation theory, the adjoint composite operator is Gaussian and automatically obeys the

bootstrap bounds on the anomalous dimension. We also discovered that the singlet com-

posite operator anomalous dimension at the interacting FP is substantially larger than

the one for the adjoint composite operator. This is an interesting observation for phe-

nomenologically driven questions regarding the possibility of large anomalous dimensions

for singlet operators needed, for example, in theories of composite Higgs dynamics [55].

It would be interesting to analyze more generally the full bootstrap equations for these

patterns of chiral symmetry.

Our results demonstrate the relevance of constructing conformal nonsupersymmetric

four dimensional gauge-Yukawa theories that can be used for demonstrating the existence

of four dimensional asymptotically safe theories [54], for interesting model building [40],

probing the a-theorem [103], but also to either accurately test numerical solutions of the

bootstrap constraints or determine novel anomalous dimensions of relevant composite op-

erators. Following the pioneering work of Seiberg [123] it would be interesting to explore

whether the weakly coupled four dimensional gauge-Yukawa theories investigated here have

strongly coupled duals [124, 125].
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A The u-channel sum rule

To extract the full information on the 4-point function, we also need to consider the

(13)→(24) u-channel OPE which reads:

H×H=(Nf ,N
∗
f )×(Nf ,N

∗
f )=(2S,2S∗)++(2A,2A∗)++(2S,2A∗)−+(2A,2S∗)− (A.1)

where 2S and 2A stand for the two-index symmetric and antisymmetric tensors respec-

tively. Due to the permutation symmetry of the HH state, the tensors (2S,2S∗)+ and

(2A,2A∗)+ contain only even spins while the tensors (2S,2A∗)− and (2A,2S∗)− contain

only odd spins.

As discussed in [114], the additional crossing symmetry constraints can be derived

by equating the (12)→(34) and (14)→(23) s- and t-channel conformal block decompo-

sitions of the “transposed” (H(x3) → H(x3)† and H(x4)† → H(x4)) 4-point function

〈H(x1)H(x2)†H(x3)†H(x4)〉:

〈H(x1)H(x2)†H(x3)†H(x4)〉 = 〈H(x1)H(x4)H(x2)†H(x3)†〉 . (A.2)

Now in the t-channel we have the same OPE as we would have in the u-channel of the

original 4-point function and in the s-channel we have the same OPE up to the transposition

of the fields at spacetime points x3 and x4. This transposition is taken into account

by reversing the signs of the odd-spins contributions and permuting the flavor indices

accordingly.

There are four basic invariants contained in the t-channel of the “transposed” 4-point

function [H(x1)×H(x4)]× [H(x2)†×H(x3)†]. Using (A.1), we see that the overall singlet

terms contributing are:[[
(2S, 2S∗) + (2A, 2A∗) + (2S, 2A∗) + (2A, 2S∗)

]

×
[
(2S∗, 2S) + (2A∗, 2A) + (2S∗, 2A) + (2A∗, 2S)

]]
singlet

= G2S,2S + G2A,2A + G2A,2S + G2S,2A (A.3)

where 12S and 12A means that we have to extract the singlet from the tensor product of

the corresponding two-index representations.

From the s = t channel crossing symmetry constrain of the “transposed” 4-point

function we obtain:

〈H1H
†
2H
†
3H4〉 =

1

x2dH
12 x2dH

34

{(
•

◦ ◦

•
)2

(G+
S −G

−
S ) +

(
•

◦◦

•
− 1

Nf

•

◦ ◦

•
)2

(G+
A −G

−
A)

+
•

◦ ◦

•
(
•

◦◦

•
− 1

Nf

•

◦ ◦

•
)

(G+
L −G

−
L )

+

(
•

◦◦

•
− 1

Nf

•

◦ ◦

•
)
•

◦ ◦

•
(G+

R −G
−
R)

}
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〈H1H4H
†
2H
†
3〉 =

1

x2dH
14 x2dH

23

{(
•

◦

•

◦
+
•

◦◦

•
)2

G̃+
2S,2S +

(
•

◦

•

◦
−
•

◦◦

•
)2

G̃+
2A,2A

+

(
•

◦

•

◦
+
•

◦◦

•
)(

•

◦

•

◦
−
•

◦◦

•
)
G̃−2S,2A

+

(
•

◦

•

◦
−
•

◦◦

•
)(

•

◦

•

◦
+
•

◦◦

•
)
G̃−2A,2S

}
.

The s-channel decomposition is obtained from the previous case by transposing the index

structure and flipping the sign of the odd-spin contributions. The t-channel decomposition

is obtained by using the second OPE (A.1). The index structure is fixed by (anti)symmetry

of the exchanged fields. Now, equating the s- and t-channel decompositions and demanding

that the coefficients multiplying the corresponding tensors match we deduce:(
•
◦ •

◦
)2

: vdH

(
G+
S −G

−
S +

1

N2
f

(
G+

A −G
−
A

)
− 1

Nf

(
G+
L −G

−
L +G+

R −G
−
R

))
=

udH
(
G̃+

2S,2S + G̃+
2A,2A + G̃−2S,2A + G̃−2A,2S

)
(A.4)(

•

◦◦

•
)2

: vdH
(
G+

A −G
−
A

)
= udH

(
G̃+

2S,2S + G̃+
2A,2A − G̃

−
2S,2A − G̃

−
2A,2S

)
•

◦◦

• •

◦

•

◦
: vdH

(
G+
R−G

−
R−

1

Nf

(
G+

A−G
−
A

))
= udH

(
G̃+

2S,2S− G̃
+
2A,2A+G̃−2S,2A− G̃

−
2A,2S

)
•

◦

•

◦

•

◦◦

•
: vdH

(
G+
L−G

−
L−

1

Nf

(
G+

A−G
−
A

))
=udH

(
G̃+

2S,2S− G̃
+
2A,2A− G̃

−
2S,2A+G̃−2A,2S

)
.

Working to lowest order in 1/Nf and concentrating on the even spins conformal blocks

G+
2S,2S and G+

2A,2A we have:

vdH (G+
S +G+

A) = 2udH
(
G̃+

2S,2S + G̃+
2A,2A

)
. (A.5)

B Complete beta functions and anomalous dimensions beyond the

Veneziano limit

We provide here the full beta functions and anomalous dimensions of the gauge-Yukawa

system. The conventions are the ones given in the main text.

For the beta functions we have:

βag = −2

3
a2
g

[
11− 2x− 2`+ ag

(
3x3

N2
f

− 13x− 16`+ 34

)
+ 3x2aH

+ agaH

(
81x2

4
− 9x4

4N2
f

)
+ a2

g

{
3x5

4N4
f

− 11x3(2x+ 2`− 17)

12N2
f

(B.1)

+
1

18

(
112x2 + x(257`− 1709) + 145`2 − 1976`+ 2857

)}
− 3

4
(6x+ 7)x2a2

H

]
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βaH = 2aH

[
ag

(
3x2

N2
f

−3

)
+(x+1)aH+a2

g

(
−3x4

4N4
f

−x
2(5x+5`−53)

3N2
f

+
1

12
(20x+20`−203)

)

+ agaH

(
−(8x+ 5)x2

2N2
f

+ 4x+
5

2

)
+ a2

H

(
2x2

N2
f

− 1

4
x(x+ 12)

)
(B.2)

− 8xz1aH
N2
f

+ z2aH

(
− 4x

N2
f

− 4x

)
+ z2

1

(
2

N2
f

+
2

N4
f

)
+

8z1z2

N2
f

+ z2
2

(
2

N2
f

+ 2

)]

βz1 = 4z1aH + z2
1

(
16

N2
f

+ 4

)
+ 16z2z1 + 12z2

2 (B.3)

βz2 = −2xa2
H + 4z2aH +

24z1z2

N2
f

+ 8z2
2 . (B.4)

And for the anomalous dimensions:

γH = aH + 2z2
2

(
1+

1

N2
f

)
−

3xa2
H

2
+

5agaH
2

(
1− x2

N2
f

)
+ 2z2

1

(
1

N2
f

+
1

N4
f

)
+

8z1z2

N2
f

(B.5)

γS = γTr[HH†] = 2aH+4z1

(
1+

1

N2
f

)
+8z2 − 3a2

Hx+5agaH

(
1− x2

N2
f

)
− 8aHz1

(
1 +

1

N2
f

)

− 20z2
1

(
1

N2
f

+
1

N4
f

)
− 16aHz2 −

80

N2
f

z1z2 − 20z2
2

(
1+

1

N2
f

)
(B.6)

γA = γTr[TaHTaH†] = 2aH +
4z1

N2
f

− 3a2
Hx+ 5agaH

(
1− x2

N2
f

)
− 8aHz1

N2
f

− 4z2
1

(
1

N2
f

+
5

N4
f

)
− 16z1z2

N2
f

+ 4z2
2

(
1− 5

N2
f

)
. (B.7)

Remarkably all the leading 1/Nf corrections emerge only at the order 1/N2
f order.
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any medium, provided the original author(s) and source are credited.

References

[1] K.G. Wilson, Renormalization group and critical phenomena. 1. Renormalization group and

the Kadanoff scaling picture, Phys. Rev. B 4 (1971) 3174 [INSPIRE].

[2] K.G. Wilson, Renormalization group and critical phenomena. 2. Phase space cell analysis of

critical behavior, Phys. Rev. B 4 (1971) 3184 [INSPIRE].

[3] D.J. Gross and F. Wilczek, Ultraviolet Behavior of Nonabelian Gauge Theories, Phys. Rev.

Lett. 30 (1973) 1343 [INSPIRE].

[4] H.D. Politzer, Reliable Perturbative Results for Strong Interactions?, Phys. Rev. Lett. 30

(1973) 1346 [INSPIRE].

– 21 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevB.4.3174
http://inspirehep.net/search?p=find+J+Phys.Rev.,B4,3174
http://dx.doi.org/10.1103/PhysRevB.4.3184
http://inspirehep.net/search?p=find+J+Phys.Rev.,B4,3184
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://dx.doi.org/10.1103/PhysRevLett.30.1343
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,30,1343
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://dx.doi.org/10.1103/PhysRevLett.30.1346
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,30,1346


J
H
E
P
0
6
(
2
0
1
5
)
0
3
0

[5] S. Weinberg, Ultraviolet Divergences In Quantum Theories Of Gravitation, in General

Relativity: An Einstein centenary survey, S.W. Hawking and W. Istrael eds., Cambridge

University Press (1979), pg. 790–831 [INSPIRE].

[6] D.I. Kazakov, Ultraviolet fixed points in gauge and SUSY field theories in extra dimensions,

JHEP 03 (2003) 020 [hep-th/0209100] [INSPIRE].

[7] H. Gies, J. Jaeckel and C. Wetterich, Towards a renormalizable standard model without

fundamental Higgs scalar, Phys. Rev. D 69 (2004) 105008 [hep-ph/0312034] [INSPIRE].

[8] T.R. Morris, Renormalizable extra-dimensional models, JHEP 01 (2005) 002

[hep-ph/0410142] [INSPIRE].

[9] P. Fischer and D.F. Litim, Fixed points of quantum gravity in extra dimensions, Phys. Lett.

B 638 (2006) 497 [hep-th/0602203] [INSPIRE].

[10] P. Fischer and D.F. Litim, Fixed points of quantum gravity in higher dimensions, AIP Conf.

Proc. 861 (2006) 336 [hep-th/0606135] [INSPIRE].

[11] D.I. Kazakov and G.S. Vartanov, Renormalizable 1/N(f) Expansion for Field Theories in

Extra Dimensions, JHEP 06 (2007) 081 [arXiv:0707.2564] [INSPIRE].

[12] O. Zanusso, L. Zambelli, G.P. Vacca and R. Percacci, Gravitational corrections to Yukawa

systems, Phys. Lett. B 689 (2010) 90 [arXiv:0904.0938] [INSPIRE].

[13] H. Gies, S. Rechenberger and M.M. Scherer, Towards an Asymptotic-Safety Scenario for

Chiral Yukawa Systems, Eur. Phys. J. C 66 (2010) 403 [arXiv:0907.0327] [INSPIRE].

[14] J.-E. Daum, U. Harst and M. Reuter, Running Gauge Coupling in Asymptotically Safe

Quantum Gravity, JHEP 01 (2010) 084 [arXiv:0910.4938] [INSPIRE].

[15] G.P. Vacca and O. Zanusso, Asymptotic Safety in Einstein Gravity and Scalar-Fermion

Matter, Phys. Rev. Lett. 105 (2010) 231601 [arXiv:1009.1735] [INSPIRE].

[16] X. Calmet, Asymptotically safe weak interactions, Mod. Phys. Lett. A 26 (2011) 1571

[arXiv:1012.5529] [INSPIRE].

[17] S. Folkerts, D.F. Litim and J.M. Pawlowski, Asymptotic freedom of Yang-Mills theory with

gravity, Phys. Lett. B 709 (2012) 234 [arXiv:1101.5552] [INSPIRE].

[18] F. Bazzocchi, M. Fabbrichesi, R. Percacci, A. Tonero and L. Vecchi, Fermions and Goldstone

bosons in an asymptotically safe model, Phys. Lett. B 705 (2011) 388 [arXiv:1105.1968]

[INSPIRE].

[19] H. Gies, S. Rechenberger, M.M. Scherer and L. Zambelli, An asymptotic safety scenario for

gauged chiral Higgs-Yukawa models, Eur. Phys. J. C 73 (2013) 2652 [arXiv:1306.6508]

[INSPIRE].

[20] O. Antipin, M. Mojaza and F. Sannino, Conformal Extensions of the Standard Model with

Veltman Conditions, Phys. Rev. D 89 (2014) 085015 [arXiv:1310.0957] [INSPIRE].
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