
J
H
E
P
0
6
(
2
0
1
5
)
0
2
6

Published for SISSA by Springer

Received: March 23, 2015

Accepted: May 3, 2015

Published: June 4, 2015

Large field inflation from axion mixing

Gary Shiu,a,b Wieland Staessensc and Fang Yea,b

aDepartment of Physics, University of Wisconsin-Madison,

Madison, Wisconsin, U.S.A.
bInstitute for Advanced Study, Hong Kong University of Science and Technology,

Hong Kong, P.R. China
cInstituto de F́ısica Teórica UAM-CSIC,
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1 Introduction

Observational results on the cosmic microwave background (CMB) and the large scale

structure of our universe continue to provide increasingly strong support for the inflationary

paradigm. While the generic predictions of inflation are in good agreement with data, its

theoretical underpinnings remain to be uncovered. An observable that plays a decisive role

in discriminating classes of models are primordial gravitational waves, imprinted in B-mode

polarization of the CMB. Although a detectable level of primordial B-mode is not a must
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for inflation, such signal if observed would naturally point us to “large field” inflationary

models.1 Models in which the inflaton transverses super-Planckian distance in field space

are sensitive to the ultraviolet completion of gravity. Thus, a proper formulation of large

field models calls for inputs from quantum gravity.

In this regard, axions are a particularly well-motivated inflaton candidate. Other

than their abundance in string theory, the approximate shift symmetries that they enjoy

serve to protect the inflaton potential over a large field range. Symmetry protection is

what underlies the idea of natural inflation [10]. Non-perturbative effects breaking an

otherwise exact shift symmetry generate a sinusoidal potential with the periodicity of the

canonically normalized field set by the axion decay constant. However, detailed studies [11,

12] surveying different formulations of string theory have concluded that axions with super-

Planckian decay constant do not seem to arise in controlled (i.e., weak coupling and large

volume) regimes of string theory.

A way out of this conundrum is to break the periodicity of the axions perturba-

tively [13–25]. Common features in string compactifications such as fluxes, branes, and

torsional cycles can provide sources of monodromies, leading to a change in the axion po-

tential upon transport around a (naive) cycle. As pointed out in [16], the monodromy

inflation idea can be implemented in supersymmetric compactification (concrete realiza-

tions can be found in [16–18]) if the monodromy is induced by an F-term potential; the

shift symmetry is spontaneously broken rather than explicitly broken, and the F-term

monodromy inflationary models have a direct connection with the 4d effective framework

developed in [26–28]. Unlike natural inflation, the form of the inflaton potential is not

universal. A variety of potentials have been found [16, 21] and thus the signatures of these

large field models depend on the sources of monodromy.

Instead of breaking the axion periodicity, the inflaton field range can also be enhanced

when one extends natural inflation to multiple axion fields. Cumulative wisdom from earlier

works [29–31] to recent investigations [32–43] has highlightened several mechanisms for field

range enhancements, including kinetic alignment [30] from eigenvector delocalization [40]

and axion decay constant alignment [29]. A common feature shared by these multi-axion

models is that the field range enhancement feff/f is tied to the number of low energy

degrees of freedom (including the axions and the rank of the non-Abelian groups which

generate the non-perturbative instanton effects). Thus, the enhancement needed for super-

Planckian field excursion also takes away the elegance and simplicity of natural inflation.

In this paper, we propose a new way to realize large field inflation without breaking the

axion periodicity or introducing large number of fields. In addition to kinetic mixings and

mass mixings arising from the non-perturbative instanton potential, there are in general

other mixings in a multi-axion system. In the presence of Stückelberg U(1)’s, axion mixings

are induced from their couplings to the Abelian gauge fields. Each Stückelberg U(1) gauge

field gains a mass by eating a combination of axions. As we will show, these Stückelberg

couplings not only give a perturbative mass to the combination of axions that are eaten,

1Among the assumptions in [1] is that both the scalar and tensor perturbations are generated by vacuum

fluctuations. Exceptions involving gravitational waves sourced by particle production during inflation can

be found in [2–9].
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but also extend the field range of the axions that survive. The field range enhancement

does not require a large number of fields. In one of our simple examples, the low energy

degrees of freedom (below the Stückelberg U(1) mass scale) involve only a single axion and

some chiral fermions that are required in any case for anomaly cancellation. Our proposal

is therefore a minimal realization of natural inflation in theories with sub-Planckian axion

decay constants.

The axion couplings invoked in this work are rather generic. In fact, the Stückelberg

mechanism lies at the heart of anomaly cancellation in string theory and arises frequently

in D-brane constructions of particle physics.2 The lagrangian for the multi-axion system

considered here is more general and hence subsumes the considerations of previous pro-

posals. Our generalization thus provides an interesting starting point for further studies of

multi-axion inflation, and their statistical analysis using random matrix theory.

This paper is organized as follows. In section 2 we examine kinetically mixed axions in

three different scenarios and the possibility to generate a super-Planckian decay constant

in each case. We also discuss the gauge-invariance problem induced by an axion eaten by

the Abelian gauge field. In section 3 we implement the axion mixing scenarios in string

theory using Type II superstring compactifications with D-branes and provide some explicit

examples in the frameworks of intersecting D6-brane models in Type IIA and of intersecting

D7-brane models in Type IIB. The concluding remarks are given in section 4.

A summary of our conventions can be found in appendix A. In appendix B we offer

a short discussion about the definition of the axion decay constant (in two different yet

equivalent representation schemes) and how to read off the decay constant for kinetically

mixing axions. Appendix C contains a brief review on chiral rotations and their relation to

the scalar potential for axions. Appendix D provides technical details about the dualization

procedure between two-forms and zero-forms in four dimensions. In appendix E we provide

the full generalization of the system studied in section 2. And appendix F discusses methods

to find an explicit field theoretic model for the set-up analysed in 2.2.

2 Mixing axions in a field theory setting

Axions are CP-odd real scalars whose continuous shift symmetry can only be violated by

nonperturbative effects such as gauge instantons, D-brane instantons, etc. However, the

residual discrete shift symmetry still constrains how axions interact with other sectors and

anticipating some of the considerations presented in section 3, the effective lagrangian for

a system of N axions ai with i ∈ {1, . . . , N} can be written as follows:

Seff
axion =

∫ −1

2

N∑
i,j=1

Gij(dai − kiA) ∧ ?4(daj − kjA)− 1

g2
1

F ∧ ?4F −
1

g2
2

Tr(G ∧ ?4G)

+
1

8π2

(
N∑
i=1

ria
i

)
Tr(G ∧G)

]
, (2.1)

2It was recently pointed out in [44–46] that the mass mixings of Stückelberg U(1)’s provide an interesting

and natural portal into dark sectors.
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where Gij represents the metric on the axion moduli space. All axions are assumed to

carry a charge ki under the single U(1) gauge group (with potential A, field strength F

and gauge coupling g1) and couple simultaneously to the topological density associated

with a non-Abelian gauge theory (with field strength G and gauge coupling g2), and the

coefficients ri correspond to model-dependent discrete parameters.3

To simplify the analysis, we choose a basis and a normalization such that all the matter

fields carry integer charges under the U(1) and ki’s and ri’s are integers.4 The Stückelberg

type couplings between the axions and the U(1) gauge potential are invariant under the

local transformation:

∀ i : ai → ai + kiη, A→ A+ dη. (2.2)

By virtue of the Stückelberg mechanism the gauge boson acquires a mass when at least

one of the ki 6= 0. In case various ki are different from zero, the gauge boson eats a linear

combination of the respective axions with ki 6= 0.

In our set-up, we consider an anomalous coupling of the axions to a strongly cou-

pled non-Abelian gauge group, whose gauge instantons are considered to be the dominant

non-perturbative effect in the action (2.1), imposing a periodicity for the linear axion com-

bination of the form:
N∑
i=1

ria
i '

N∑
i=1

ria
i + 2π. (2.3)

The global continuous shift symmetry of the axions, manifestly preserved by the kinetic

term for the axions, is therefore explicitly broken for this particular axionic direction. Inde-

pendently, the axions ai can couple to other instanton effects (such as D-brane instantons),

causing a periodicity of the form:5

ai → ai + 2πνi, νi ∈ Z, (2.5)

for each axion separately, yet which do no necessarily contribute effectively to the

action (2.1). Which non-perturbative effects contribute to the effective action, is in prac-

tice a model-dependent consideration. The most straightforward examples clarifying these

3This set-up can be generalized straightforwardly to configurations of multiple axions carrying charges

under multiple U(1) gauge groups and coupling non-perturbatively to various non-Abelian gauge groups,

see equation (E.1) of appendix E. For simplicity, we will consider a minimal set-up with respect to the

number of gauge groups to illustrate our scenario.
4The integers ki’s can be understood as “axion charges”. For closed string axions these charges are

geometric in nature, as they depend on how the D-brane supporting the U(1) gauge group wraps the cycles

along the internal space, as discussed in section 3.2.
5For axions charged under a U(1) gauge symmetry, the field identification set by the U(1) gauge symmetry

reads:

ai → ai + 2πki νi. (2.4)

In this respect, the axion periodicity (2.5) can be interpreted [47] as a “fractional” 1/ki U(1) gauge trans-

formation, or equivalently to a transformation of the axion field under a discrete Zk gauge symmetry. Such

discrete symmetries remain present at low energies after the Stückelberg mechanism has taken place, given

that they are also preserved by the non-perturbative corrections. Consequently, discrete Zk symmetries can

be used to constrain perturbative n-point couplings at energies much lower than the Stückelberg scale, see

e.g. [48–51].
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statements can be found for closed string axions, which emerge from the dimensional re-

duction of the various differential p-forms along closed p-dimensional cycles. In case such

a closed p-cycle can for instance be deformed due to the presence of massless deforma-

tion moduli, the Euclidean D-brane instanton supported by the p-cycle will most likely

not contribute to the effective superpotential due to the presence of unsaturated fermionic

deformation zero-modes. Nonetheless, the axion associated to the “non-rigid” p-cycle is

characterised by a periodicity set by the D-brane instanton. We will discuss the instan-

ton contributions more explicitly in section 3.2 and the explicit examples considered in

section 3.3 will allow us to clarify these statements even further.

In this section, we will investigate the physical effects of kinetic mixing among axions as

reflected in the lagrangian (2.1) and discuss configurations for which one of the axion decay

constant can exceed the reduced Planck mass. To this end, we distinguish kinetic mixing

among axions due to a non-diagonal metric Gij on the moduli space (metric mixing) and

kinetic mixing due to the Stückelberg couplings (U(1) mixing). For simplicity, the number

of axions is set to N = 2, enabling us to highlight the differences between the two mixing

scenarios as well. The formulae presented here can be generalized straightforwardly to

set-ups with three or more axions, as we lay out in appendix E. Our analysis is divided

into three parts: in a first phase purely metric mixing for axions will be considered, after

which we continue the analysis with purely U(1) mixing. As a last step we combine both

mixing scenarios and discuss the most generic case.

2.1 Metric kinetic mixing

In four dimensional supergravity theories and compactifications of string theories, it is

customary for scalar fields to be characterised by non-canonical kinetic terms or a σ-

model like action, which clarifies the presumed presence of the non-trivial metric Gij in

the lagrangian (2.1). In order to expose the physical effects of this metric at fullest, we

simplify the two-axion system by assuming that neither of them is charged under a U(1)

gauge field, i.e. k1 = 0 = k2. The kinetic terms for the axions then reduce to the following

expression,

Skin
axion = −

∫
1

2

2∑
i,j=1

Gij(σ) dai ∧ ?4daj , (2.6)

where the metric Gij on the axion moduli space depends on other (usually CP-even) moduli

fields labeled collectively by σ encoding geometric information about the internal manifold.6

We will pay more attention to this point in section 3 and assume for now that the moduli

fields σ are stabilised with non-vanishing vevs. With respect to the axion basis (a1, a2) the

6In general, the axion shift symmetry can take a much more intricate form than an affine realisation of

a U(1) symmetry. In that case, the Lie-derivative of the metric with respect to the Killing vector fields has

to vanish, see e.g. [47], which constrains the dependence of the metric on the axions. In this paper, we will

assume that the shift symmetries of the axions are affine realisations of U(1) symmetries, in which case the

metric Gij does not depend on the axion fields ai.
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symmetric metric Gij reads:

G =

(
G11 G12

G12 G22

)
, with G11,G12,G22 ∈ R\{0}. (2.7)

The requirement that the metric is positive-definite boils down to the following two con-

straints by using Sylvester’s criterion:

G11 > 0, G11G22 − G2
12 > 0. (2.8)

The symmetric matrix Gij can be diagonalized to a matrix with eigenvalues:

λ± =
1

2

[
(G11 + G22)±

√
4G2

12 + (G11 − G22)2

]
, (2.9)

with associated normalized eigenvectors:

~u− =

(
sin

θ

2
,− cos

θ

2

)
, ~u+ =

(
cos

θ

2
, sin

θ

2

)
, (2.10)

and where the parameter θ appears through the parametrization:

cos θ =
G11 − G22√

4G2
12 + (G11 − G22)2

, sin θ =
2G12√

4G2
12 + (G11 − G22)2

, with 0 ≤ θ < 2π.

(2.11)

This parametrization enables us to expose the SO(2) rotation used to diagonalize the

metric Gij . With these set of manipulations the kinetic action for the axions reduces to a

diagonalized form:

Skin
axion = −

∫ [
1

2
λ−da− ∧ ?4da− +

1

2
λ+da+ ∧ ?4da+

]
, (2.12)

where we introduced the new axion basis (a−, a+):(
a−

a+

)
=

(
sin θ

2 − cos θ2
cos θ2 sin θ

2

)(
a1

a2

)
. (2.13)

In order to correctly determine the effective axion decay constants for a− and a+ respec-

tively, we also have to apply the SO(2) rotation on the anomalous coupling to Tr(G ∧G):

Sanom
axion =

1

8π2

∫ [(
r1 sin

θ

2
− r2 cos

θ

2

)
a− +

(
r1 cos

θ

2
+ r2 sin

θ

2

)
a+

]
Tr(G ∧G)

=
1

8π2

∫ [
ã+ + ã−

]
Tr(G ∧G). (2.14)

The second equation follows by rescaling the axions such that the anomalous coupling

is rewritten in a purely topological form (i.e. in terms of representation scheme 2 of

appendix B):

ã− ≡
(
r1 sin

θ

2
− r2 cos

θ

2

)
a−, ã+ ≡

(
r1 cos

θ

2
+ r2 sin

θ

2

)
a+ . (2.15)
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Through the combination of equations (2.12) and (2.14) the axion decay constants for the

rescaled version of the physical axions (ã−, ã+) can be read off:7

fã− =

√
λ−

|r1 sin θ
2 − r2 cos θ2 |

, fã+ =

√
λ+

|r1 cos θ2 + r2 sin θ
2 |
. (2.16)

At this point, we should also pay attention to the consistency of the change of axion basis

with respect to the initial discrete shift symmetry of (2.5). With respect to the physical

basis (ã−, ã+) this discrete shift symmetry translates into the following shift symmetry:

ã− → ã− + 2π

(
r1 sin2 θ

2
− r2

2
sin θ

)
ν1 − 2π

(
r1

2
sin θ − r2cos2 θ

2

)
ν2, (2.17)

ã+ → ã+ + 2π

(
r1 cos2 θ

2
+
r2

2
sin θ

)
ν1 + 2π

(
r1

2
sin θ + r2 sin2 θ

2

)
ν2. (2.18)

Applying this result to the instanton coupling term in equation (2.14), one observes that

this topological term, undergoes a shift proportional to the Pontryagin index multiplied by

an integer and 2π,

Sanom
axion → Sanom

axion +
1

8π2
2π
(
r1 ν

1 + r2 ν
2
) ∫

Tr(G ∧G), (2.19)

which leaves the path integral invariant (see also appendix B). Hence, even expressed in

terms of the physical basis (ã−, ã+), the full theory remains consistent under the initial

shift symmetry (2.5).

In order to explore the physical range of the axion decay constants given in (2.16)

we consider a numerical example, satisfying the constraints in (2.8). Let us consider a

configuration where the entries in the metric (2.7) express a large fraction of metric mixing,

G11 ' G22 ' 16× 1032 GeV2, G12 ' 9× 1032 GeV2, (2.20)

such that the angle θ can be approximated by the value θ ' π
2 − 10−3. For this parameter

choice and setting r1 = −r2 = 1, the respective axion decay constants in the physical basis

are given by:

fã− = 1.87× 1016 GeV, fã+ = 7.07× 1019 GeV ' 30MPl, (2.21)

where MPl = (8πGN )−1 ∼ 2.4×1018 GeV corresponds to the reduced Planck mass. Hence,

for a sufficiently large mixing in the moduli space metric, i.e. O(G12) ' O(G11,G22), and

when both axions couple anomalously to the same non-Abelian gauge group with |r1| = |r2|,
one of the physical axions can acquire a super-Planckian decay constant and a hierarchy

among the axion decay constants emerges, i.e. fã+ � fã− .

Obviously, one is inclined to contemplate whether this large axion decay constant has

any chance to prevail and determine the characteristics of the inflationary potential such

7In case gcd (r1, r2) 6= 1, a subtlety arises in defining the axion decay constant. Namely, both axion

decay constants in (2.16) have to be divided by gcd (r1, r2) to obtain the shortest periodicity. The vacuum

configuration resulting from the instantons then consists of gcd (r1, r2) consistent and independent vacua,

separated from each other over a distance 2πfã± respectively by domain walls.
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that trans-Planckian field excursions can take place during inflation. In order to answer

this question, we have to expand the action around the instanton background (2.14), by

which the axions acquire their mass. The mass generating effects of instanton contributions

can be captured by a cosine-type potential for the axions:

V eff
axion(â−, â+) = Λ4

[
1− cos

(
â−

fã−
+
â+

fã+

)]
, (2.22)

where we have rescaled the axions (to operate in representation scheme 1)

â+ ≡ fã+ ã+, â− ≡ fã− ã+, (2.23)

and the full lagrangian is written as:

Saxion = −
∫ [

1

2
dâ− ∧ ?4dâ

− +
1

2
dâ+ ∧ ?4dâ

+ + V eff
axion(â−, â+) ?4 1

]
. (2.24)

One observes that the axion basis for which the kinetic terms are diagonalized does not yet

correspond to the proper basis which diagonalizes the mass matrix associated to V eff
axion:

M2
ij =

∂2V eff
axion

∂âi∂âj

∣∣∣∣∣
min

= Λ4

(
f−2
ã+ f−1

ã+ f
−1
ã−

f−1
ã− f

−1
ã− f−2

a−

)
. (2.25)

One can diagonalize this mass matrix through an additional SO(2) rotation:(
ξ

ζ

)
=

1√
f2
ã+ + f2

ã−

(
fã+ −fã−
fã− fã+

)(
â+

â−

)
, (2.26)

under which the full lagrangian reduces to the form,

Saxion = −
∫ [

1

2
dξ ∧ ?4dξ +

1

2
dζ ∧ ?4dζ + V eff

axion(ζ) ?4 1

]
, (2.27)

and where the effective axion potential only depends on one of the two axions:

V eff
axion(ζ) = Λ4

1− cos


√
f2
ã+ + f2

ã−

fã+fã−
ζ

 . (2.28)

The absence of the axion ξ in the potential can be traced back to the zero eigenvalue of

the mass matrix M2
ij in (2.25), while the effective axion decay constant feff ,

feff =
fã+fã−√
f2
ã+ + f2

ã−

, (2.29)

has the correct form to match the other mass eigenvalue. From this expression one can also

see that the smallest of the two axion decay constants (fã+ , fã−) sets the scale for feff , such

– 8 –
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that the axion ζ is not allowed to undertake trans-Planckian excursions.8 Considering for

instance the case fã+ � fã− , for which feff ' fã− obviously, one has to conclude that both

axion decay constants have to be sufficiently large in order for feff to be trans-Planckian.

In order to write down the trans-Planckian constraints, we introduce the ratio ε of the two

metric eigenvalues, with

ε =

√
λ−
λ+

. (2.31)

Under the assumption that the largest eigenvalue
√
λ+ lies below the reduced Planck

mass, i.e.
√
λ+ � MPl, both dimensionless pre-factors in the expressions of the decay

constants (2.16) are required to be sufficiently large:

ε

|r1 sin θ
2 − r2 cos θ2 |

� 1,
1

|r1 cos θ2 + r2 sin θ
2 |
� 1, (2.32)

in order for the effective decay constant feff to be super-Planckian. For a small hierarchy

between the eigenvalues of the metric (i.e. ε ' 1), these conditions cannot be satisfied

simultaneously.9 And also for a large hierarchy between the eigenvalues of the metric

(i.e. ε� 1), it is not possible to satisfy both constraints simultaneously, indicating that a

super-Planckian axion decay constant feff is excluded. Turning the rôles of fã− and fã+

around or taking both axion decay constants of the same order fã+ ' fã− does not alter

the constraints nor the argumentation. Hence, we can safely conclude feff < MPl.

This simple two-axion model enables us to draw some interesting conclusions regarding

axions and their decay constants. The expressions in equation (2.16) suggest a splitting

between the axion decay constants due to metric kinetic mixing, when the off-diagonal

entries in the moduli space metric are of the same order as the diagonal ones. Nonetheless,

despite the potential presence of a large axion decay constant, there is only one axionic

direction ζ that couples effectively to the nonperturbative correction and the shape of its

potential is set by the smallest axion decay constant eliminating the possibility of trans-

Planckian displacements for the axion ζ. This behavior can be awarded to the fact that

axionic couplings scale inversely with the axion decay constant.

8Observe that the shift symmetries for the original basis (2.5) translate into the desired shift symmetry

for ζ and a more involved one for ξ in the axion basis (ξ, ζ):

ζ → ζ + 2π feff

(
r1ν

1 + r2ν
2) ,

ξ → ξ +
2π√

f2
ã+

+ f2
ã−

[
ν1r1

(
f2
ã+ cos2 θ

2
− f2

ã− sin2 θ

2

)
+ ν2r2

(
f2
ã+ sin2 θ

2
− f2

ã− cos2 θ

2

)]

+ π
√
f2
ã+

+ f2
ã−

sin θ
(
r2ν

1 + r1ν
2) .

(2.30)

Note however that the ξ-direction does not couple anomously to the non-Abelian gauge group. In this

respect the axion ξ corresponds to a flat direction whose shift symmetry is not broken by the envisioned

gauge instanton.
9The argumentation goes as follows: in the limit where |r1 sin θ

2
− r2 cos θ

2
| → 0, one has tan θ

2
→ r2

r1

given that both axions couple to the instanton contribution in the original basis, i.e. ri 6= 0. This implies

for the other constraint |r1 cos θ
2

+ r2 sin θ
2
| →

(
r1 +

r22
r1

)
cos θ

2
. Obviously, cos θ

2
cannot be arbitrarly small,

otherwise the other constraint |r1 sin θ
2
− r2 cos θ

2
| � 1 cannot be satisfied.
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Meanwhile, the orthogonal axionic direction ξ corresponds to a flat direction whose

shift symmetry remains unbroken. This observation forms the keystone for the remainder

of our story. That is to say, if we interpret the axion ξ as the inflaton candidate, we would

have to invoke additional physical effects to create a proper inflationary potential for ξ.

At this point, we envision three plausible and distinguishable physical effects which could

generate a potential for ξ allowing for trans-Planckian displacements:

(1) Monodromy effects : a monomial potential of the form V (ξ) ∼ ξp can be generated

through torsional monodromy effects (p = 2) [16] or through fluxed induced mon-

odromies (p ≥ 2) [16, 21], such that the potential takes the simple chaotic inflation

form (p = 2) or even more generic forms. In order to generate a linear type of

potential (p = 1) one could also resort to D-term monodromies [13, 14].

(2) Alignment effects : adding a second strongly coupled non-Abelian gauge group to

which both axions (in the initial basis) couple anomalously provides for an additional

mass contribution to the potential, reminiscent of the Kim-Nilles-Peloso proposal [29].

This second instanton contribution is able to generate a potential for ξ provided that

the axion decay constants do not perfectly align. We will come back to this case in

more detail in section 2.1.1.

(3) Abelian U(1) gauge symmetry : a third alternative consists in adding an Abelian gauge

symmetry under which both axions are charged. Due to Stückelberg couplings, one

of the axions turns into the longitudinal component of the gauge field while the

remaining axion will acquire a mass by virtue of the non-perturbative correction. We

will study this scenario in detail in sections 2.2 and 2.3.

2.1.1 Aligned natural inflation

Two-axion models have already been considered in the past for inflationary purposes, but

the minimal set-up given above seems to be rather suitable to realize (and generalize)

the alignment mechanism [29] explicitly through metric mixing. Though aligned natural

inflation is not the main point of our paper, we make a digression here to illustrate how

kinetic mixing can relax the fine-tuning needed for alignment. To this end, we consider

a two-axion system with non-trivial kinetic terms as in (2.6), uncharged under local U(1)

symmetries, and coupling anomalously to two distinguishable non-Abelian gauge groups:

Sanom
axion =

∫ [
1

8π2

(
r1a

1+r2a
2
)

Tr
(
G(1)∧G(1)

)
+

1

8π2

(
s1a

1+s2a
2
)

Tr
(
G(2)∧G(2)

)]
. (2.33)

Following the same steps as above to diagonalize the metric and integrating out the strongly

coupled gauge sector reproduces effectively the Kim-Nilles-Peloso potential [29]:

V eff
axion = Λ4

1

[
1− cos

(
â−

f1
+
â+

g1

)]
+ Λ4

2

[
1− cos

(
â−

f2
+
â+

g2

)]
, (2.34)
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with the axion decay constants given by,

f1 =

√
λ−

|r1 sin θ
2 − r2 cos θ2 |

, g1 =

√
λ+

|r1 cos θ2 + r2 sin θ
2 |
,

f2 =

√
λ−

|s1 sin θ
2 − s2 cos θ2 |

, g2 =

√
λ+

|s1 cos θ2 + s2 sin θ
2 |
.

(2.35)

The hatted axion fields â± ≡
√
λ±a

± are introduced to rewrite the kinetic part (2.12) in

terms of representation scheme 1, in correspondence with [29, 35]. In the case of perfect

alignment we obtain the condition:

f1

g1
=
f2

g2
⇒

∣∣∣∣∣r1 cos θ2 + r2 sin θ
2

r1 sin θ
2 − r2 cos θ2

∣∣∣∣∣ =

∣∣∣∣∣s1 cos θ2 + s2 sin θ
2

s1 sin θ
2 − s2 cos θ2

∣∣∣∣∣ , (2.36)

while deviation from perfect alignment is measured [35] by the parameter αdev:

αdev ≡ g2 −
f2

f1
g1 =

√
λ+ (s1r2 − r1s2)(

s21−s22
2 sin θ − s1s2 cos θ

) (
r1 cos θ2 + r2 sin θ

2

) . (2.37)

In order for the alignment of the axionic directions to work, αdev has to be tuned appropri-

ately to small values (in comparison to the magnitude of the individual decay constants).

In settings where metric kinetic mixing is not taken into account, one is only able to tune

discrete parameters (such as ri and si), in order to fix the value of αdev, see e.g. [32, 37, 38].

However, due to kinetic metric mixing in the two-axion model an additional continuous pa-

rameter θ, is at our disposal and can be used to alleviate the earlier fine-tuning issue of αdev.

Let us consider a numerical example to clarify the previous statements. For sim-

plicity, we assume that both scales of the nonperturbative effects are of the same order,

i.e. Λ1 = Λ2 = Λ, such that the effective axion decay constant for the almost flat direction

is given by [35],

feff =
f2 g1

√(
f2

1 + f2
2

) (
f2

1 + g2
1

)
f2

1 |αdev|
, (2.38)

up to leading order in α−1
dev. In order for the parameter αdev in equation (2.37) to be small,

we see that the integers ri and si should make the denominator as large as possible and

make the numerator as small as possible (i.e. |s1 r2 − s2 r1| = 1). Let us for the sake of

argument choose values for ri and si of the order O(1− 10):

r1 = 9, r2 = 1, s1 = 10, s2 = 1. (2.39)

For this parameter choice the denominator of αdev can be at most of order O(103). By

tuning the continuous parameter θ, say for instance,

sin
θ

2
≈ 0.2195, cos

θ

2
≈ 0.9756, (2.40)

we do find a sufficiently small deviation parameter (with respect to the square root of the

metric eigenvalue λ+),

αdev ≈ 0.009
√
λ+. (2.41)
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Moreover, the hierarchy between the eigenvalues λ+ and λ− of the axion metric can be

made small, given the tuned value of the continuous parameter θ in (2.40), by ensuring

that the diagonal entries of the metric do not differ too much from each other, namely

when G11/G22 ∼ O(1). Under these assumptions the individual axion decay constants fi
and gi take the following expressions,

f1 ∼
√
λ+, f2 ∼

√
λ+ × 0.8201,

g1 ∼
√
λ+ × 0.1111, g2 ∼

√
λ+ × 0.1002.

(2.42)

The eigenvalue
√
λ+ can only take values around mass scales lower than the reduced Planck

mass MPl. If we consider the window
√
λ+ ∼ O(1016−1017GeV), the effective axion decay

constant in (2.38) can become trans-Planckian:

feff ∼ 132
√
λ+ ∼ 10MP . (2.43)

This numerical example shows that aligned natural inflation occurs as a consequence of

metric kinetic mixing due to a non-trivial metric on the axion moduli space. Furthermore,

for reasonable choices of the discrete parameters (ri, si)i=1,2 and a mild tuning of the

continuous parameter θ the effective axion decay constant can take on super-Planckian

values effortlessly.

2.2 U(1) kinetic mixing

An alternative mechanism inducing kinetic mixing among axions relies on their poten-

tially charged nature with respect to the same U(1) gauge symmetry, as expressed by

the Stückelberg terms in (2.1). We will see in section 3 that these Stückelberg couplings

emerge naturally in string compactifications (with D-branes),10 such that the relevant phys-

ical effects of this type of mixing on the axion decay constant deserve their own separate

analysis. To this end, we consider a two-axion system with diagonal metric G (G12 = 0)

and both axions charged under the same local U(1) symmetry, i.e. k1 6= 0 6= k2. With

these assumptions the kinetic terms for the axions in (2.1) read:

Skin
axion =−

∫ [
1

2
G11

(
da1−k1A

)
∧?4

(
da1−k1A

)
+

1

2
G22

(
da2−k2A

)
∧?4

(
da2−k2A

)]
. (2.44)

Given that both axions are charged under the same U(1) symmetry, the axion eaten by

the gauge field is a linear combination of a1 and a2. We can rewrite the kinetic terms as,

Skin
axion = −

∫ [
M2
A

2

(
da′2 −A

)
∧ ?4

(
da′2 −A

)
+
M2
A

2
da′1 ∧ ?4da′1

]
, (2.45)

by identifying the linear combination of axions eaten by the gauge field Aµ, as well as the

mass of the gauge boson:

a′2 =
G11 k

1 a1 + G22 k
2 a2

G11 (k1)2 + G22 (k2)2
, (2.46)

M2
A = G11 (k1)2 + G22 (k2)2. (2.47)

10Such Stückelberg couplings can provide a portal between the Standard Model and the hidden

sector [45, 46]. They are also part of the U(1) lagrangian for milli-charged dark matter scenarios [44].
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The linear combination a′1 of the axions (a1, a2) orthogonal to the direction a′2,

a′1 =

√
G11G22

(
k2 a1 − k1 a2

)
G11 (k1)2 + G22 (k2)2

, (2.48)

corresponds to an axion-like state uncharged under the U(1) gauge symmetry. The original

Abelian gauge transformation (2.2) can be recast in a gauge transformation for the eaten

axion a′2 (with charge k′2 = 1), while the other a′1-direction remains invariant under the

gauge transformation (k′1 = 0):

A→ A+ dη, a′2 → a′2 + η, a′1 → a′1. (2.49)

The new axion basis is related to the old axion basis through a rescaling followed by an

SO(2) rotation: (
a′1

a′2

)
=

1

MA

(
cosϕ −sinϕ

sinϕ cosϕ

)(√
G11 0

0
√
G22

)(
a1

a2

)
, (2.50)

where we introduced the parametrization:

cosϕ =

√
G22 k

2

MA
, sinϕ =

√
G11 k

1

MA
. (2.51)

Under the assumption that both axions couple anomalously to the same non-Abelian

strongly coupled gauge group, as presented in (2.1), one should carefully rewrite this topo-

logical coupling in terms of the physical axion basis (a′1, a′2) as well:

Sanom
axion =

1

8π2
MA

∫ [(
r1√
G11

cosϕ− r2√
G22

sinϕ

)
a′1+

(
r1√
G11

sinϕ+
r2√
G22

cosϕ

)
a′2
]
Tr(G∧G)

=
1

8π2

∫ [
ã1 + ã2

]
Tr(G ∧G) (2.52)

where we opted once more to rewrite the instantonic coupling in representation scheme 2,

with the axion fields ã1 and ã2 given by,

ã1 = MA

(
r1√
G11

cosϕ− r2√
G22

sinϕ

)
a′1,

ã2 = MA

(
r1√
G11

sinϕ+
r2√
G22

cosϕ

)
a′2. (2.53)

This allows us now to read off the effective axion decay constants for the basis (ã1, ã2),

purely from the pre-factors in the kinetic terms for (ã1, ã2):11

fã1 =

(
r1√
G11

cosϕ− r2√
G22

sinϕ

)−1

=

√
G11G22

√
G11 (k1)2 + G22 (k2)2

|r1 k2 G22 − r2 k1 G11|
,

fã2 =

(
r1√
G11

sinϕ+
r2√
G22

cosϕ

)−1

=

√
G11 (k1)2 + G22 (k2)2

|r1 k1 + r2 k2|
.

(2.54)

11A similar comment as in footnote 7 on page 7 is in order here: in case gcd (r1, r2) 6= 1, the axion decay

constants have to be divided by gcd (r1, r2) to account for the smallest periodicity.
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As a consistency check we now translate the periodicity (2.5) of the axions in the original

basis into a discrete shift symmetry for the physical axionic states (ã1, ã2),

ã1 → ã1 +
2π
(
r1 G22 k

2 − r2 G11 k
1
) (
k2 ν1 − k1 ν2

)
M2
A

,

ã2 → ã2 +
2π
(
r1 k

1 + r2 k
2
) (
G11 k

1 ν1 + G22 k
2 ν2

)
M2
A

, (2.55)

and verify that the anomalous couplings to the non-Abelian gauge group remain invariant

under this shift symmetry:

Sanom
axion → Sanom

axion +
1

8π2
2π
(
r1 ν

1 + r2 ν
2
)∫

Tr(G ∧G). (2.56)

A similar argument as the one presented in section 2.1, based on the Pontryagin index in

the path integral, is valid here to prove the invariance. Recalling that one of the axions

(ã2) is charged under a local U(1) symmetry, we notice that the potential term (2.52)

might no longer be invariant under local U(1) transformations, raising questions about

unitarity properties of this simple two-axion system. In the next section, we will see how

this conundrum can be solved by introducing chiral fermions charged under the U(1) gauge

group and/or by generalized Chern-Simons terms.

Before doing so, let us first see whether a trans-Planckian axion decay constant can be

realised in this setting by appropriate choices of the parameters (G11,G22, ri, k
i). Without

loss of generality, we assume G11 > G22, such that we can relate the two eigenvalues G11 and

G22 through the parameter ε introduced in (2.31), which reduces in the absence of metric

kinetic mixing to:

ε2 =
G22

G11
, with 0 < ε < 1. (2.57)

Inserting this parameter into (2.54) allows us to write the axion decay constant fã1 as,

fã1 =
ε
√
G11

√
(k1)2 + ε2 (k2)2

|r1 ε2 k2 − r2 k1|
. (2.58)

Next, we assume the following relation between the integer parameters (ri, k
i),

r1 k
2 = r2 k

1, (2.59)

such that a high amount of isotropy between the metric entries G11 and G22, i.e. ε → 1−,

can enhance the value of the axion decay constant fã1 :

fã1 ∼
√
G11

ε

1− ε2
∼
√
G11

1− ε2
. (2.60)

Assuming that the square root of the metric eigenvalue G11 (thus also the Stückelberg mass

MA in (2.47)) is of the order 1017 GeV, and that the eigenvalue G22 is exactly of the same

order as G11, say for instance ε2 = 0.99, we find as a numerical estimate for the decay

constant fã1 :

fã1 ∼ 102
√
G11 ∼ 1019 GeV = 10MPl. (2.61)
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Hence, a small deviation from isotropy between the eigenvalues G11 and G22 is able to

induce a super-Planckian effective axion decay constant for pure U(1) mixing.

Let us also point out that to generate a super-Planckian axion decay constant the

eigenvalues G11 and G22 do not need to be almost perfectly isotropic and imposing (2.59) is

not absolutely necessary, provided that |r1 ε
2 k2 − r2 k

1| is sufficiently small. For example,

when r1 = k1 = r2 = 1, k2 = 2, the axion decay constant fã1 is super-Planckian when the

dimensionless ratio ε2 asymptotes to 1
2 :

fã1 =
ε
√
G11

√
1 + 4ε2

|2ε2 − 1|
∼

√
1
2

√
1 + 2

√
G11

10−2
∼ 102

√
G11 ∼ 10MPl , (2.62)

where ε2 = 1
2 + 10−2 and

√
G11 is assumed to be of the order O(1017 GeV). More generally,

we can say that an enhancement of the axion decay constant occurs when the ratio ε2

asymptotes to r2k
1/r1k

2.

2.2.1 U(1)-invariance & generalized Chern-Simons terms

Given that a super-Planckian decay constant can be achieved in this set-up, it is definitely

worthwhile to investigate the setting further and ensure that all the gauge symmetries

in the system are preserved at all times. Therefore, let us for the moment consider the

subsystem consisting of the charged axion ã2 and the U(1) gauge symmetry with one-form

A, captured by the action,

Ssub =

∫ [
−
f2
ã2

2

(
dã2−k̃2A

)
∧ ?4

(
dã2−k̃2A

)
− 1

g2
1

F ∧ ?4F +
1

8π2
ã2Tr(G ∧G)

]
, (2.63)

which is manifestly invariant under the local U(1) transformation except for the anomalous

coupling ã2 Tr(G ∧G),

A→ A+ dη, ã2 → ã2 + k̃2η . (2.64)

In this axion basis the charge k̃2 is given by,

k̃2 = MA

(
r1√
G11

sinϕ+
r2√
G22

cosϕ

)
= r1k

1 + r2k
2. (2.65)

The non-invariance of the anomalous coupling indicates the required presence of chiral

fermions charged both under the U(1) as well as under the non-Abelian gauge symmetry.

More explicitly, if we consider a set of chiral fermions ψiL and ψiR with i ∈ {1, . . . , nF },
corresponding to the following representations under the respective gauge groups,

SU(N) U(1)

ψiL Ri1 qiL
ψiR Ri2 qiR

(2.66)

the fermions are chirally rotated under the local U(1) gauge transformation in (2.64). The

non-invariance of the fermionic measure in the path integral under this chiral rotation then

leads to an anomalous term, see appendix C for a brief explanation,

δSanom
mixed =

∫
1

8π2
AmixηTr(G ∧G), (2.67)
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where the anomaly coefficient Amix is given by,

Amix =

nF∑
i=1

[
Tr
(
qiL

{
T
Ri1
a , T

Ri1
b

})
− Tr

(
qiR

{
TR

i
2

a , T
R
i
2

b

})]
. (2.68)

The term δSanom
mixed is able to compensate the transformation of the anomalous coupling

ã2 Tr(G ∧G) under the U(1) gauge symmetry, provided that the following relation holds:

k̃2 +Amix = 0. (2.69)

Nevertheless, in some models the anomaly coefficient Amix might not suffice to com-

pensate for the U(1) gauge transformation of the anomalous coupling ã2 Tr(G ∧ G), in

which case U(1) gauge invariance can be restored [52–55] by introducing a generalized

Chern-Simons term (or GCS-term) of the form:

SGCS
sub = −

∫
1

8π2
AGCSA ∧ Ω, (2.70)

where Ω corresponds to the Chern-Simons three-form introduced in appendix A. Micro-

scopically, such GCS-terms can be linked to the exchange of massive off-shell closed strings

in Type II orientifold models with D-branes [54], or emerge due to the presence of internal

flux along the internal directions of a six-dimensional manifold suited for string theory com-

pactifications [52, 53]. In the presence of a GCS-term, U(1) gauge invariance is guaranteed

when the following generalization of relation (2.69) is satisfied:

k̃2 +Amix +AGCS = 0. (2.71)

This relation represents only one part of the consistency conditions ensuring U(1) gauge

invariance, with the second consistency check played by the vanishing of the pure cubic

Abelian U(1) gauge anomaly:

AU(1)3
=

nF∑
i=1

[
(qiL)3 − (qiR)3

]
= 0. (2.72)

Quantum consistency of the non-Abelian gauge symmetry on the other hand implies two

additional constraints: the vanishing of the pure cubic non-Abelian anomaly coefficient,

ASU(N)3
=

nF∑
i=1

[
Tr
(
T
Ri1
a

{
T
Ri1
b , T

Ri1
c

})
− Tr

(
TR

i
2

a

{
T
R
i
2

b , TR
i
2

c

})]
= 0, (2.73)

and the vanishing of the mixed Abelian non-Abelian gauge anomaly,

AGCS −Amix = 0, (2.74)

to which the GCS-term contributes as well if present. In case the mixed anomaly Amix does

not vanish on its own by virtue of the specific representations of the chiral fermions un-

der the gauge groups, a consistent field theory model requires unequivocally the presence

– 16 –



J
H
E
P
0
6
(
2
0
1
5
)
0
2
6

of a GCS-term. For string compactifications with D-branes, the mixed anomaly is can-

celed by virtue of the generalized Green-Schwarz mechanism and the GCS-term is usually

not present. Section 3.3 contains explicit examples in Type IIA superstring theory with

intersecting D6-branes and in Type IIB superstring theory with intersecting D7-branes

which do not require GCS-terms and where the cancelation of the mixed anomaly and the

preservation of the U(1) gauge symmetry correspond to the same constraint (2.69).

Hence, by ensuring gauge invariance for our set-up we extend its field content and

reconstruct the most generic lagrangian, including the GCS term, in the basis (ã1, ã2):

S full
axion =

∫ [
−
f2
ã1

2
dã1 ∧ ?4dã

1 −
f2
ã2

2

(
dã2 − k̃2A

)
∧ ?4

(
dã2 − k̃2A

)
− 1

g2
1

F ∧ ?4F (2.75)

− 1

g2
2

Tr(G ∧ ?4G) +
1

8π2

[
ã1 + ã2

]
Tr(G ∧G)− 1

8π2
AGCSA ∧ Ω + . . .

]
,

where the . . . refer to the terms involving the fermions ψiL and ψiR, which will be omitted

for the remainder of our story. The remaining question at this stage concerns the shape of

the inflationary potential which has to be extracted from the lagrangian S full
axion. In order

to answer this question we have to integrate out the massive U(1) gauge field, as well as

the chiral fermions charged under the non-Abelian gauge group. First of all, we adopt the

unitary gauge for the gauge potential A:

A −→ A+
1

k̃2
dã2, (2.76)

such that the lagrangian can be written as:

S full,unitary
axion =

∫ − f2
ã1

2
dã1 ∧ ?4dã

1 −
(
fã2 k̃2

)2
2

A ∧ ?4A−
1

g2
1

F ∧ ?4F −
1

g2
2

Tr(G ∧ ?4G)

+
1

8π2
ã1Tr(G ∧G)− 1

8π2
AGCSA ∧ Ω +A ∧ ?4Jψ

+
1

8π2

(
k̃2 +AGCS +Amix

)
k̃2

ã2Tr(G ∧G) + . . .

 . (2.77)

The term related to the anomaly Amix arises through a chiral rotation of the chiral fermions,

as reviewed in more detail in appendix C. The current Jψ consists of the vector and axial-

vector coupling of the chiral fermions to the U(1) gauge potential A, which can be written

in local (flat) coordinates as:

J µψ =
∑
i

[
(qiL)ψ

i
Lγ

µψiL + (qiR)ψ
i
Rγ

µψiR

]
. (2.78)

In the unitary gauge, the axion ã2 is eaten by the gauge potential and turns into the

longitudinal component of the (massive) gauge potential A. By virtue of the U(1) gauge

invariance (2.71) the anomalous coupling of axion ã2 to the non-Abelian gauge group

vanishes in the unitary gauge. Under the assumption that the energy scale at which the
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Stückelberg mechanism takes place is much higher than the scale Λ associated to the

instanton contributions of the strongly coupled gauge group, we can integrate out the

Abelian gauge field A. To this end, we determine its equations of motion:

− 1

g2
1

d(?4dA)−
(
fã2 k̃

2
)2
?4 A =

AGCS

8π2
Ω− ?4Jψ. (2.79)

The lefthand side corresponds to the usual Proca equation of motion for a massive gauge

boson, while the righthand side can be seen as a combination of source terms. Note however

that the Chern-Simons three-form and the current are related to each other through the

anomalous continuity relation:

d(?4Jψ) = − 1

8π2
Amix dΩ = − 1

8π2
Amix Tr(G ∧G). (2.80)

The Lorenz gauge condition for A follows by taking the exterior derivative at both sides of

the equation of motion (2.79):

(
fã2 k̃2

)2
d(?4A) =

AGCS +Amix

Amix
d(?4Jψ). (2.81)

From this Lorenz gauge condition we can extract an expression for A in terms of the current

Jψ (up to a closed 1-form):

A =
AGCS +Amix

Amix

1

(fã2 k̃
2)2
Jψ. (2.82)

Inserting this expression back into the action (2.77) allows us to eliminate the gauge po-

tential A in favour of the current Jψ:

S full,unitary
axion =

∫ [
−
f2
ã1

2
dã1 ∧ ?4dã

1 +
1

8π2
ã1Tr(G ∧G)

+
(AGCS +Amix)2

2(Amix)2

1(
fã2 k̃2

)2Jψ ∧ ?4Jψ + . . .

]
, (2.83)

and we are left with one axion ã1, one non-Abelian gauge group and a set of chiral fermions

charged under the non-Abelian gauge group. By integrating out the massive U(1) gauge

boson, four-point couplings among the chiral fermions emerge, suppressed by the squared

mass of the gauge boson. Integrating out the chiral fermions and the non-Abelian gauge

bosons, for which the procedure is briefly outlined in appendix C, yields a cosine-potential

for the remaining axion ã1:

Vaxion

(
ã1
)

= Λ4

[
1− cos

(
ã1

fã1

)]
, (2.84)

which provides an explicit realisation of natural inflation with a single axion field. In

appendix F we propose a method to identify a proper spectrum of chiral fermions satisfying

the anomaly constraints.
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2.3 Generic kinetic mixing

With the insights gathered in sections 2.1 and 2.2 we can now tackle the most generic case:

a two-axion system for which the metric on the axion moduli space is non-diagonal and

where both axions are charged under the same U(1) gauge symmetry through Stückelberg-

couplings. The action is given by the most general form (2.1) with N = 2 and supplemented

with the generalized Chern-Simons term to ensure U(1) gauge invariance:

SN=2
axion =

∫ −1

2

2∑
i,j=1

Gij(dai − kiA) ∧ ?4(daj − kjA)− 1

g2
1

F ∧ ?4F −
1

g2
2

Tr(G ∧ ?4G)

+
1

8π2

(
r1a

1 + r2a
2
)

Tr(G ∧G)− 1

8π2
AGCSA ∧ Ω

 . (2.85)

In order to determine the physical axion basis in which the axion decay constants can be

read off properly, one has to combine the manipulations of the previous two sections.

Step 1: diagonalizing the metric Gij. In the first place the kinetic mixing due to a

non-trivial metric on the axion moduli space has to be disengaged. To this end we use the

orthogonal transformation introduced in section 2.1, under which also the charges (k1, k2)

of the axions are now transformed accordingly:(
a−

a+

)
=

(
sin θ

2 − cos θ2
cos θ2 sin θ

2

)(
a1

a2

)
,

(
k−

k+

)
=

(
sin θ

2 − cos θ2
cos θ2 sin θ

2

)(
k1

k2

)
, (2.86)

with the same parameter θ defined through the parametrization (2.11). By virtue of this

SO(2) rotation the kinetic terms for the two axions can be written in the following form:

SN=2,kin
axion =−

∫ [
1

2
λ−
(
da−−k−A

)
∧ ?4

(
da−−k−A

)
+

1

2
λ+

(
da+−k+A

)
∧ ?4

(
da+−k+A

)]
,

(2.87)

where the eigenvalues λ± are given by (2.9). The kinetic terms for the gauge bosons

remain unaltered by this SO(2) rotation and the effects on the anomalous couplings and

the generalized Chern-Simons term will be discussed at the end, once the physical axion

basis has been found.

Step 2: identifying the eaten axion direction. In the next step we identify the linear

combination of axions (a−, a+) eaten by the U(1) gauge field A. To this end, we rescale

the axions and their respective charges:

a− → ã− ≡M−1
st

√
λ−a

−, a+ → ã+ ≡M−1
st

√
λ+a

+,

k− → k̃− ≡M−1
st

√
λ−k

−, k+ → k̃+ ≡M−1
st

√
λ+k

+,
(2.88)

where Mst is the Stückelberg mass of the U(1) gauge boson:

M2
st = λ− (k−)2 + λ+ (k+)2. (2.89)
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Next, we use a similar parametrization as the one introduced in (2.51) from section 2.2:

k̃− = cosϕ, k̃+ = sinϕ. (2.90)

This parametrization allows us to perform the SO(2) transformation on the axion fields in

order to extract the physical axion basis:(
ζ

ξ

)
=

(
cosϕ sinϕ

− sinϕ cosϕ

)(
ã−

ã+

)
, (2.91)

where ζ corresponds to the axion eaten by the U(1) gauge field, and ξ to the orthogonal

direction. The resulting kinetic terms for the axions read in the basis (ζ, ξ):

SN=2,kin
axion = −

∫ [
1

2
M2
st (dζ −A) ∧ ?4 (dζ −A) +

1

2
M2
st dξ ∧ ?4dξ

]
. (2.92)

From the original gauge symmetry (2.2), we can deduce that the gauge symmetry in the

physical axion basis (ζ, ξ) can be expressed as:

A→ A+ dη, ζ → ζ + η, ξ → ξ. (2.93)

In summary, the physical axion basis (ζ, ξ), in which the kinetic terms take a diagonal form

and the axion eaten in the Stückelberg mechanism can be identified unambiguously, relates

to the original basis (a1, a2) through a combination of SO(2) rotations and a rescaling:(
ζ

ξ

)
= M−1

st

(
cosϕ sinϕ

− sinϕ cosϕ

)(√
λ− 0

0
√
λ+

)(
sin θ

2 − cos θ2
cos θ2 sin θ

2

)(
a1

a2

)
. (2.94)

Step 3: rewriting the anomalous couplings in the physical basis. Now that

we have identified the physical basis, it is time to express the anomalous couplings and

generalized Chern-Simons term in term of the basis (ζ, ξ). To this end, we invert the set

of transformations in equation (2.94):(
a1

a2

)
= Mst

(
sin θ

2 cos θ2
− cos θ2 sin θ

2

) 1√
λ−

0

0 1√
λ+

( cosϕ − sinϕ

sinϕ cosϕ

)(
ζ

ξ

)
, (2.95)

and plug these expressions back into the anomalous couplings and the generalized Chern-

Simons terms:

Sanom
axion =

1

8π2

∫ [
Tr(G ∧G)Mst

[
ζ

fζ̃
+

ξ

fξ̃

]
−AGCSA ∧ Ω

]

=
1

8π2

∫ [[
ζ̃ + ξ̃

]
Tr(G ∧G)− 1

8π2
AGCSA ∧ Ω

]
, (2.96)

where the second equality results from a rescaling of the axions such that we can read off

the axion decay constants in representation scheme 2 for the rescaled physical basis (ζ̃, ξ̃):

fζ̃ =

√
λ+λ−∣∣∣√λ+ cosϕ

(
sin θ

2 r1 − cos θ2 r2

)
+
√
λ− sinϕ

(
cos θ2 r1 + sin θ

2 r2

)∣∣∣ ,
fξ̃ =

√
λ+λ−∣∣∣√λ+ sinϕ

(
cos θ2 r2 − sin θ

2 r1

)
+
√
λ− cosϕ

(
cos θ2 r1 + sin θ

2 r2

)∣∣∣ .
(2.97)
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With respect to the physical basis (ζ̃, ξ̃) the lagrangian for the full two-axion system can

now be written as:

SN=2
axion =

∫ [
−
f2
ζ̃

2

(
dζ̃ − kζ̃A

)
∧ ?4

(
dζ̃ − kζ̃A

)
−
f2
ξ̃

2
dξ̃ ∧ ?4dξ̃ − 1

g2
1

F ∧ ?4F

− 1

g2
2

Tr(G ∧ ?4G) +
1

8π2

(
ζ̃ + ξ̃

)
Tr(G ∧G)− 1

8π2
AGCSA ∧ Ω

]
. (2.98)

Also here we wonder how the periodicity (2.5) in the original axion basis translates into a

discrete shift symmetry for the physical axion basis (ζ, ξ):

ζ→ζ+2π

(√
λ− cosϕ sin θ

2 +
√
λ+ sinϕ cos θ2

)
ν1+

(
−
√
λ− cosϕ cos θ2 +

√
λ+ sinϕ sin θ

2

)
ν2

Mst
,

ξ→ξ+2π

(
−
√
λ− sinϕ sin θ

2 +
√
λ+ cosϕ cos θ2

)
ν1+

(√
λ− sinϕ cos θ2 +

√
λ+ cosϕ sin θ

2

)
ν2

Mst
,

(2.99)

and investigate how the anomalous couplings to the non-Abelian gauge group transforms

under such a shift:

∆Sanom =
1

8π2
2π
(
r1 ν

1 + r2 ν
2
)∫

Tr(G ∧G), (2.100)

with other terms cancelling each other out. In this computation we explicitly included the

anomalous coupling for the eaten axion as well.

The global consistency of this model requires the introduction of chiral fermions

charged under the non-Abelian gauge group and the U(1) gauge group, analogous to the

discussion in section 2.2.1. Non-Abelian gauge invariance is guaranteed provided that the

anomaly conditions (2.73) and (2.74) are satisfied, while the vanishing of the U(1) anoma-

lies is secured by conditions (2.72) and (2.71), upon replacing the U(1) charge k̃2 with

the U(1) charge kζ̃ = Mstf
−1

ζ̃
. Regarding the massive U(1) boson, we can repeat the

same reasoning as in section 2.2.1 and integrate out the gauge potential A in favour of

the current Jψ. Upon integrating out the massive U(1) gauge boson, we are left with the

axion ξ̃ coupling anomalously to the non-Abelian gauge theory. By integrating out the

heavy fermions and the non-Abelian gauge bosons we are left with a cosine-potential for

the remaining axion ξ̃, which is interpreted at the end of the road as the inflaton.

We end this section by exploring the physical excursion range of this inflaton-axion

by virtue of a closer investigation of the axion decay constant fξ̃ in equation (2.97). First

intuition regarding the range of this decay constant can be obtained through a numerical

examination of the expression in (2.97). To this end, we assume that the larger eigenvalue√
λ+ of the axion metric (and thus also the U(1) Stückelberg mass Mst) takes values around

an energy scale of the order 1017 GeV:√
λ+ ∼ O

(
1016–1017

)
GeV. (2.101)
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Then from equations (2.86), (2.88) and (2.90) we can deduce the expressions:

cosϕ ∼ ε
(

sin
θ

2
k1 − cos

θ

2
k2

)
, sinϕ ∼ cos

θ

2
k1 + sin

θ

2
k2, (2.102)

such that the decay constant fξ̃ can be written as,

fξ̃ ∼
ε
√
λ+∣∣(cos θ2 k

1+sin θ
2 k

2
) (

cos θ2 r2−sin θ
2 r1

)
+ε2

(
sin θ

2 k
1−cos θ2 k

2
) (

cos θ2 r1+sin θ
2 r2

)∣∣ ,
(2.103)

where ε2 is the ratio between the smaller and the larger eigenvalues of the metric in the

axion space as defined in (2.31). Based on this expression for the decay constant, we

can already discover two regions in the axion moduli where the axion decay constant can

enhance to super-Planckian values, namely θ = π
2 and θ = 0.

Region 1 (θ = π
2 ): it is easy to check that for the following choice of discrete

parameters:

r1 = r2 ∼ O(1), k1 = −k2 ∼ O(1), (2.104)

the decay constant reduces to the following simple expression:

fξ̃ ∼
ε
√
λ+(

cos θ2 − sin θ
2

)2
+ ε2

(
sin θ

2 + cos θ2
)2 =

ε
√
λ+

1 + ε2 − (1− ε2) sin θ
, (2.105)

which can grow larger than
√
λ+ when ε is small enough and θ asymptotes to π

2 .

Indeed when θ = π
2 , the decay constant scales as,

fξ̃ ∼
√
λ+

2ε
. (2.106)

If there is a hierarchy between the two eigenvalues λ+ and λ−, say ε ∼ O(10−2), then

the axion decay constant for ξ̃ can become super-Planckian, i.e. fξ̃ ∼ 102
√
λ+ ∼

10MPl. Expressed in terms of the entries of the axion moduli space metric,

G11 =
λ+

2

[
1 +

λ−
λ+

+

(
1− λ−

λ+

)
cos θ

]
∼ λ+

2
, (2.107)

G22 =
λ+

2

[
1 +

λ−
λ+
−
(

1− λ−
λ+

)
cos θ

]
∼ λ+

2
, (2.108)

G12 =
λ+

2

(
1− λ−

λ+

)
sin θ ∼ λ+

2
, (2.109)

a hierarchy λ− � λ+ among the eigenvalues translates into a configuration with

large metric mixing. Hence, if the off-diagonal entries are of the same order as the

diagonal ones in the metric on the axion moduli space, and the discrete parameters

satisfy the relation (2.104), the decay constant fξ̃ for the axion ξ̃, orthogonal to the

axionic direction devoured by the U(1) gauge boson, becomes trans-Planckian.
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Region 2 (θ = 0): also for configurations where there is a small or no hierarchy

between the eigenvalues (i.e. ε → 1−), one can locate regions of isotropy in the

parameter space where the axion decay constant takes super-Planckian values. To

see this more explicity, let us rewrite the denominator of (2.103) as follows,

Denominator =

∣∣∣∣cos2 θ

2
k1 r2 −

sin θ

2

(
k1 r1 − k2 r2

)
− sin2 θ

2
k2 r1

+ ε2

[
sin θ

2

(
k1 r1 − k2 r2

)
− cos2 θ

2
k2 r1 + sin2 θ

2
k1 r2

]∣∣∣∣
=

∣∣∣∣(1− ε2)

[
−sin θ

2

(
k1 r1 − k2 r2

)
+ k2 r1 cos2 θ

2
− k1 r2 sin2 θ

2

]
+
(
k1r2 − k2r1

) ∣∣∣∣ . (2.110)

Note that for a small amount of metric kinetic mixing, we are located in a region of

the parameter space where the angle θ asymptotes to 0, such that in that limit the

denominator can be approximated by,∣∣∣∣(1− ε2)

[
−sin θ

2

(
k1 r1 − k2 r2

)
+ k2 r1 cos2 θ

2
− k1 r2 sin2 θ

2

]
+ k1r2 − k2r1

∣∣∣∣
θ→0−→

∣∣k1r2 − k2r1ε
2
∣∣ . (2.111)

Assuming k2r1 ∼ O(k1r2) and that the parameter k1 and r2 are not monstrously

large, the axion decay constant in (2.103) thus scales roughly as,

fξ̃ ∼
ε
√
λ+

1− ε2
. (2.112)

From this estimate one notices that the decay constant f reaches large values in the

limit ε → 1−. For instance, if the parameter ε ≈ 0.995, we find a trans-Planckian

decay constant: fξ̃ ∼ 102
√
λ+ ∼ 10MPl. Naturally, this region of the parameter

space resembles the case discussed in section 2.2, where no metric mixing occurs at all.

To investigate regions of the moduli space where metric mixing occurs and the non-diagonal

entries are not of the same order as the diagonal entries (like in region 1), we have to adopt

a different strategy. In the first place, we exchange the ϕ-parametrization for the charges

(k−, k+) in the axion decay constant:

fξ̃ =

√
λ+λ−Mst

cos θ2 (λ+k+r2 + λ−k−r1) + sin θ
2 (λ−k−r2 − λ+k+r1)

. (2.113)

Through the expressions (2.86) the charges (k−, k+) are given in terms of the angle θ and

the original discrete charges (k1, k2), implying that the Stückelberg mass depends on these

parameters as well by virtue of equation (2.89). Recall that the continuous parameter θ

measures the amount of metric kinetic mixing through the parametrization:

cos θ = G11
1− Σ2

λ+ − λ−
, sin θ =

2G12

λ+ − λ−
, (2.114)
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0 < Σ2 ≤ 1Σ2 ≥ 1

G12 > 0

G12 < 0

G12 > 0

G12 < 0

π/2

−π/2
Figure 1. Each quadrant of the unit circle corresponds to a region in the parameter space (θ,Σ),

depending on the sign of metric entry G12 and the relative magnitude between G11 and G22, namely

Σ2 ≤ 1 or Σ2 ≥ 1.

where we introduced the ratio Σ2 = G22/G11 to measure the relative magnitude between

the diagonal entries of the axion metric Gij . Through this parametrization the eigenvalues

λ+ and λ− can be written in terms of the continuous parameters θ, Σ2 and G11. Upon

fixing the discrete parameters ri and ki the axion decay constant (2.113) in units of
√
G11

can be represented through a two-dimensional contour plot spanned by Σ and θ. Based on

the sign of the non-diagonal metric entry G12 and the value of Σ we can distinguish four

different regions in the parameter space (Σ, θ) and assign to each of them a quadrant of

a unit circle as depicted in figure 1. In the two-dimensional plot of the parameter space

(θ,Σ) one can depict two quadrants simultaneously, and we have chosen to differentiate

the regions in the parameter space based on the values of the ratio Σ2: 0 < Σ2 ≤ 1 (green

in the unit circle) or Σ2 ≥ 1 (blue in the unit circle). We consider three different examples,

distinguishable from each other by the relation among the discrete parameters (ri, k
i). The

contour plots for the three different examples are given in figures 2, 3 and 4 respectively.

The black areas in these figures correspond to unphysical regions with a complex decay

constant. Physical values for fξ̃-magnitude follow the color-coding: small (green) to large

(red). The white bands denote the region where the axion decay constant enhances to

fξ̃ ≥ O(20 − 30)
√
G11. The shape and position of these white bands in the (θ,Σ)-plane

clearly depends on the relation among the discrete parameters (ri, k
i) and the sign of G12.

In their center one can locate regions in the moduli space where trans-Planckian axion

decay constants fξ̃ are possibly realised, depending on the scale of
√
G11.

3 Implementation in string theory

As already indicated in the introduction, a proper understanding of quantum (gravita-

tional) corrections are crucial to probe the viability and sustainability of any inflationary

model. The next chapter in our story of kinetically mixing axions thus consists in em-

bedding the proposed mechanisms of section 2 into string theory, the best framework

up-to-date for computing quantum corrections to inflationary models, for recent reviews
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θ

Σ

θ

Σ

Figure 2. Contour plot for example 1 with discrete parameters 2k1 = k2 = 2r1 = 2r2, and with

0 < Σ ≤ 1 (left) or Σ ≥ 1 (right). Black regions correspond to unphysical values for fξ̃, while the

physical values follow the color-coding from small (green) to large (red).

θ

Σ

θ

Σ

Figure 3. Contour plot for example 2 with discrete parameters k1 = 2k2 = r1 = 2r2, and with

0 < Σ ≤ 1 (left) or Σ ≥ 1 (right). Black regions correspond to unphysical values for fξ̃, while the

physical values follow the color-coding from small (green) to large (red).

θ

Σ

θ

Σ

Figure 4. Contour plot for example 3 with discrete parameters k1 = −2k2 = r1 = 2r2, and with

0 < Σ ≤ 1 (left) or Σ ≥ 1 (right). Black regions correspond to unphysical values for fξ̃, while the

physical values follow the color-coding from small (green) to large (red).
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see e.g. [56–60]. Furthermore, it is also well known [11, 12, 61–63] by now that axions arise

abundantly through compactifications of superstring theories to four spacetime dimensions.

In the framework of string inflation, the axions that are mostly used as candidates for the

inflaton field emerge from the dimensional reduction of p-forms appearing in the NS-NS

and RR-sector, the so-called closed string axions.12

In this section we review some well-known facts about Type II compactifications, which

will allow us to argue for the string embedding of the ideas presented in section 2. An

important aspect of this review concerns the origin of the closed string axions in Type

II compactifications and how their effective action in four dimensions can be spelled out.

Observe that our assumptions about the internal manifold for the dimensional reduction are

reduced to a minimum to emphasize the generic character of the effective four dimensional

action. Last but not least, we end this section by presenting explicit Type II models.

3.1 General observations for Type II compactifications

In a first phase we review briefly how closed string axions and the related effective la-

grangian in (2.1) arise naturally from the dimensional reduction of type II superstring

theory compactified on the product spacetime M1,3 × X6, where M1,3 corresponds to a

maximally symmetric four dimensional spacetime and X6 to a six dimensional internal

manifold. Under these assumptions the ten dimensional metric can be factorized as,

ds2
10 = ηµν(x)dxµdxν + gab(y)dyadyb, (3.1)

where {xµ} represent the local coordinates of M1,3 and the coordinates {ya} parametrise

the compact manifold X6 with metric gab.

Recall [64] that the low energy effective action for the ten dimensional massless bosonic

string modes of type II superstring theory is given in the string frame by,

Sbulk = SNS + SR,

SNS =
1

2κ2
10

∫
M1,3×X6

e−2Φ

[
R ?10 1 + 4dΦ ∧ ?10dΦ− 1

2
H3 ∧ ?10H3

]
(3.2)

SR = − 1

8κ2
10

∫
M1,3×X6

∑
p

G2p ∧ ?10G2p,
Type IIA: p = 1, . . . , 4

Type IIB: p = 1/2, . . . , 9/2
(3.3)

where we opted for the democratic formulation [65] to express the action for the massless

RR-modes. The ten dimensional gravitational coupling κ10 is related to the string scale `s
as expressed in equation (A.1). Besides the ten dimensional Einstein-Hilbert term (R?10 1)

and the dilaton Φ kinetic term, the Neveu-Schwarz action SNS also contains the kinetic

term for NS three-form H3, which derives locally from the NS-NS two-form, i.e. H3 = dB2.

The Ramond action SR captures the kinetic terms for all differential RR-forms C2p−1,

12In the case of type II superstring compactifications with D-branes, one can also identify two types of

open string axions: the Wilson-line arising from the dimensional reduction of the gauge field living on the

D-brane world-volume, and the phase of a complex scalar field within a chiral multiplet located at the

intersection of two separate D-branes. We will not discuss open string axions any further, as we will not

work with them in this section.
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namely (C1, C3, C5, C7) for Type IIA and (C0, C2, C4, C6, C8) for Type IIB superstring

theories. Their respective gauge-invariant field strengths G2p are defined as:

G1 = dC0, G2 = dC1, G2p = dC2p−1 −H3 ∧ C2p−3 (otherwise). (3.4)

The action SR fulfills more the rôle of a pseudo-action, as the equations of motion resulting

from the action have to be supplemented by the duality constraints:

Gm+1 = (−)(m+1)/2 ?10 G9−m (IIA), Gm+1 = (−)m/2 ?10 G9−m (IIB), (3.5)

effectively reducing the number of physical degrees of freedom. The democratic formula-

tion might seem a bit involved, but it represents the natural formulation to write down

the Chern-Simons action for the D-branes including all RR-forms. More explicitly, the

(massless) excitations of a (single) Dp-brane are captured by an effective p+ 1 dimensional

action consisting of the Dirac-Born-Infeld (DBI) part and the Chern-Simons action, which

read in the string frame:13

SD−brane = SDBI + SCS,

SDBI = −µp
∫
Dp
dp+1ξ e−Φ

√
− det(ι∗g + ι∗B2 − 2πα′FMN ), (3.6)

SCS = µp

∫
Dp

∑
q

ι∗Cq ∧ e2πα′F−ι∗B2 , (3.7)

with the parameter µp related to the string lengths `s as given in (A.2). ι∗ represents the

pullback of the ten dimensional fields to the Dp-brane worldvolume parametrized by the

local coordinates ξ.14 Assuming that the Dp-brane fills the maximally symmetric spacetime

and wraps a p− 3 dimensional cycle ∆p−3 on the internal space X6 for which ι∗B2 = 0, we

can write the pullback of the ten dimensional metric as follows:

ι∗g = ηµνdx
µdxν + gab

∂ya

∂ξk
∂y

∂ξl
dξkdξl + D-brane fluctuations , (3.8)

and we assume the following decomposition for the gauge field on the D-brane:

FMN =

(
Fµν 0

0 Fab

)
. (3.9)

Regarding the RR-forms, we assume that the q-forms are only turned on along the direc-

tions of the D-brane such that the pullback acts trivially, i.e. ι∗Cq = Cq.

Dimensional reductions of type II superstring theory with and without D-branes have

been investigated in various places, see for instance [66–73] for detailed discussions on

13For a stack of N coincident D-branes the gauge group on the collective worldvolume enhances to a

non-Abelian gauge group, implying that the DBI-action and Chern-Simons action need to be generalized

accordingly to capture the non-Abelian features. For our purposes it suffices to replace e2πα′F by Tr(e2πα′F )

in the Chern-Simons action (3.7) for a non-Abelian gauge group.
14Implicitly, we assume that p > 3 such that the Dp-brane wraps p − 3 cycles along the internal space.

And in practice, we have D6-brane configurations for Type IIA and D7-brane configurations for Type IIB

superstring theory in the back of our minds.
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Calabi-Yau orientifold compactifications. Therefore, it is not our intention to repeat these

results in great detail. Instead, we wish to highlight some relations which can be obtained

without specifying the geometric properties of the internal space X6 too explicitly, similar

to the approach considered in [12].

The dimensional reduction of the (bulk) NS-sector SNS to four dimensions is com-

pletely equivalent for Type IIA and IIB superstring theory such that we do not yet have to

differentiate between the two theories at this point. Inserting the metric ansatz (3.1) into

the kinetic term for the ten-dimensional metric and comparing to the four-dimensional

Einstein-Hilbert action with gravitational coupling κ2
4 leads to the well-known relation

between the reduced Planck mass MPl and the string mass scale Ms:

1

κ2
4

=
1

κ2
10

e−2〈Φ〉Vol(X6)  
M2

Pl

M2
s

=
4π

g2
s

T
6
, (3.10)

where the string coupling gs is set by the vev of the dilaton, i.e. gs = e〈Φ〉. We also

introduced the dimensionless volume T of the internal space X6: T = 6`−6
s Vol(X6). A

controlled compactification is in the first place characterised by a small string coupling

gs < 1, so let us assume gs ∼ 10−1. As a second requirement the characteristic size of the

internal space has to be larger than the string scale `s to sustain geometrical control and

keep α′ corrections small. This means that the dimensionless volume T can lie within the

region 102 . T . 1030, where the (more flexible) upper bound is set by the non-observation

of fifth forces assuming an isotropic internal space T . Hence, from equation (3.10) we

deduce that the window for the string mass scale in Type II compactifications is roughly

given by,

103 GeV .Ms . 1017 GeV. (3.11)

A string mass scale larger than the reduced Planck mass would require us to dive into

perturbatively uncontrollable regions of the moduli space, with either a large string coupling

gs > 1 or a small internal volume T < 1.

Also the dimensional reduction of the Dirac-Born-Infeld-action SDBI is very analogous

for both Type II superstring theories. Only the dimensionality of the cycles wrapped by

the Dp-branes will differ. Under the assumptions of equations (3.8) and (3.9), and by

ignoring the D-brane fluctuations in the pullback of the metric the DBI-action reduces to

a Yang-Mills type action (at leading order in α′) with tree-level gauge coupling given by,

2π

g2
YM

=
1

gs

1

`p−3
s

Γ∆(F), (3.12)

where we introduce the function Γ∆(F) (with a slightly different notation than [69]):

Γ∆(F) ≡
∫

∆p−3

dp−3ξ
√

det
(
ι∗g(6) + 2πα′Fab

)
. (3.13)

In the absence of internal flux F the function reduces to

Γ∆(F = 0) = Vol(∆p−3), (3.14)
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where ∆p−3 represents the p − 3 dimensional subspace wrapped by the Dp-brane on the

internal manifold X6. In supersymmetric compactifications of Type IIB superstring the-

ory with D7-branes, a non-trivial internal flux F can give rise [68, 69] to field-dependent

D-terms involving the Kähler moduli. For Type IIA compactifications with D6-branes, the

flux corresponds to a flat connection, such that the function Γ∆(F) reduces to the volume

of the internal three-cycle wrapped by the D6-brane.

Recalling that the string coupling gs has to be smaller than one to be in the pertur-

bative regime of Type II string theory, we conclude that the gauge theory on the D-brane

worldvolume is weakly (strongly) coupled when the volume of the cycle ∆p−3 wrapped

by the D-brane is large (small) in comparison to the string length. Notice, however, that

this statement is only true at tree-level. Once massive string state contributions are taken

into account through gauge threshold corrections at one-loop, the one-loop gauge kinetic

functions can receive positive or negative contributions scaling with other moduli than

the volume of the three-cycle ∆p−3. In the case of substantial negative contributions, one

might even expect the gauge theory to be strongly coupled when a D-brane wraps a (clas-

sically) large cycle.15 In this respect clear-cut statements about the coupling strength of

the gauge theory on the D-brane worldvolume can only be made for explicit examples of

D-brane configurations. If the compactification is not asymmetric, we generically expect

the size of the p − 3 dimensional cycle to be set by the volume of the entire manifold,

i.e. Vol(∆p−3) ∼
√
T .16

3.2 The effective action for closed string axions

Axion-like fields arise abundantly from the various differential q-forms in the massless

closed string spectrum upon dimensional reduction, which has motivated the extensive use

of these states as candidate inflatons in stringy inflationary models. In our discussion we

will focus on the closed string axions emerging from the RR-sector through the dimensional

reduction of various massless q-forms, and for concreteness, we illustrate such reduction

with axions associated to the C3 form in Type IIA and to the C4 form in Type IIB. The

(bulk) RR-action SRR can be dimensionally reduced for both q-forms with field strength

defined in equation (3.4) in the same manner. Namely, decomposing the q-form Cq with

respect to a basis of harmonic forms αi for the cohomology group Hq(X6):

Cq =
1

2π

bq∑
i=1

ai(x)αi(y) + . . . , (3.15)

15The observation regarding gauge treshold corrections has been exploited recently to discuss gauge

coupling unification [74, 75] and lower bounds on the string mass scale [76] in global intersecting D6-brane

models on toroidal orbifolds. In the area of large field inflation, it is the dependence of the gauge threshold

corrections on geometric moduli that has prompted the authors of [77, 78] to use them as a building block

in the construction of axionic inflation models with a trans-Planckian decay constant.
16In principle, we should also assume that the internal cycle ∆p−3 wrapped by the D-brane has the

smallest volume within its homology class. In mathematical terms, this assumption can be recast in the

existence of a calibration form φ on the internal space such that the volume of the internal cycle ∆p−3

equals the integrated pullback of the calibration form φ
∣∣
∆p−3

with respect to ∆p−3. In case the internal

space allows for a Calabi-Yau geometry, such calibration forms can be naturally identified by virtue of the

Kähler two-form or Calabi-Yau three-form and can be used to express the geometric conditions for the

D-branes to be supersymmetric, see e.g. [79] for a review.
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already exposes the coefficients ai(x) as scalar fields along the four dimensional spacetime

M1,3. In this expression bq = bq(X6) = dim Hq(X6) represents the qth Betti number of the

internal manifold X6, and the factor 2π has been introduced to ensure a periodicity of 2π for

the scalar field ai. The . . . stands for the decomposition with respect to a basis of harmonic

forms in Hk(X6) with degree k < q. Next, we introduce a basis of closed q-cycles γi for the

homology group Hq(X6,Z) that is (de Rham) dual to the basis of closed q-forms αi:

`−qs

∫
γj

αi = `−6
s

∫
X6

αi ∧ βj = δi
j . (3.16)

In the second expression we exploit Poincaré-duality to introduce a basis βj of (6 − q)-
forms for the cohomology group H6−q(X6). Note that the C3 form of Type IIA requires

a small adjustment as both the αi and the βj-basis have to fit in the cohomology group

H3(X6). In that case the indices i, j will run from 1 to 1
2b3 and the basis (αi, β

j) forms a

symplectic basis for H3(X6). Recalling that the various q-forms are related through Hodge

duality (3.5) in ten dimensions we can play the same game for the Hodge-dual C8−q form

and decompose it with respect to the basis βi:

C8−q =

b6−q∑
i=1

D(2)i ∧ βi + . . . , (3.17)

where the . . . include the decomposition with respect to the bases of other cohomology

groups. The two-forms D(2)i can be seen as the four dimensional Hodge duals of the scalar

fields ai. Observe that the decomposition of the self-dual C4 form of Type IIB contains

both the axions ai as well as their Hodge dual 2-forms D(2)i.

Let us now focus on the kinetic terms for the Cq form and its dual form in the RR-

action (3.3),

SR = − 1

8κ2
10

∫
M1,3×X6

[Gq+1 ∧ ?10Gq+1 +G9−q ∧ ?10G9−q + . . .] , (3.18)

and perform the dimensional reduction over X6 using the decomposition of the forms

in (3.15) and (3.17) respectively:

SR = − 1

4`2s

∫
M1,3

[
dai ∧ ?4da

jKij + dD(2)i ∧ ?4dD(2)jK
ij + . . .

]
, (3.19)

where we introduced the moduli-dependent metric Kij on the axion moduli space:

Kij =
1

2π`6s

∫
X6

αi ∧ ?6αj , (3.20)

and its inverse Kij :
Kij =

2π

`6s

∫
X6

βi ∧ ?6β
j . (3.21)

For a generic compact manifold X6 with metric gab it is rather difficult to compute the

metric Kij on the axion moduli space, as it would require an explicit form for the internal

– 30 –



J
H
E
P
0
6
(
2
0
1
5
)
0
2
6

metric gab as well as knowledge about all possible deformations of the internal metric. By

adding geometric structures to the internal space X6, allowing for instance a Calabi-Yau

structure, one can provide more details about the metric on the axion moduli space. It is for

instance well known that the moduli space of a Calabi-Yau manifold is spanned by two types

of deformations: complex structure deformations and Kähler deformations, see e.g. [80].

The massless scalars ai are regrouped with these deformations into complex coordinates

which parametrise the moduli space of X6. Locally, the moduli space can be written as the

direct product of the two complex submanifolds MKähler ×MComplex, each with a Kähler

structure and each parametrized by one type of deformations. An additional orientifold

projection along the internal space is required to bring the amount of four dimensional

spacetime supersymmetry down to N = 1 supersymmetry for Type IIA and Type IIB

superstring theory. For Type II superstring theory on a Calabi-Yau orientifold, the moduli

space can still be written as a direct product M̂Kähler×M̂Complex, with M̂Kähler (MKähler

and M̂Complex ( MComplex. The subspaces M̂Kähler and M̂Complex are not necessarily

Kähler manifolds, but the metric on these subspaces are inherited from the N = 2 parent

spaces upon applying the orientifold projection. Hence, for Type II Calabi-Yau orientifold

compactifications the metric Kij on the axion moduli space will depend explicitly on the

set of deformations tied to the associated axions: complex structure moduli U i in the case

of Type IIA and Kähler moduli T i in the case of Type IIB. For a consistent embedding

of the effective field theory approach in section 2 into superstring theory, one implicitly

assumes that the respective moduli have been stabilised at energy scales below the Kaluza

Klein-scale and higher than the energy scale at which action (2.1) is valid.

The appearance of the field strengths Gp is mandated by gauge invariance, such that

ten dimensional kinetic terms for the q-forms in the RR sector lead upon dimensional re-

duction to standard kinetic terms for the fields ai (and their Hodge duals) as presented

in equation (3.19), and thus only yield derivative interactions involving ai or D(2)i. This

observation suggests the existence of a shift symmetry for the fields ai inherited from the

remnants of the gauge invariance of the Cq forms and justifies the interpretation of the

scalars ai as axions. The shift symmetry of the axions is, however, broken by nonperturba-

tive effects, such as D-brane instantons and gauge instantons. The strength of a Euclidean

D-brane wrapping the q-cycle γi is set by its instanton amplitude [81, 82]:

e
−SEq−1 = e

− 2π

`
q
s

(
1
gs

Vol(γi)+i
∫
γi
Cq

)
= e
− 2π

`
q
s

1
gs

Vol(γi)−i ai
, (3.22)

where we inserted the decomposition (3.15) in the last equality. The amplitude of the

D-brane instanton is determined by the volume of the wrapped cycle (measured in units

of string length `s), while its phase corresponds to the axion ai. The non-perturbative

coupling in gs thus breaks the continuous shift symmetry of the axion ai to a discrete shift

symmetry, which clarifies the assumed periodicity in (2.5). As a direct consequence we can

conclude that the moduli space for bq closed string axions corresponds to a bq dimensional

torus T bq endowed with metric Kij as defined in equation (3.20). Gauge instantons on the

other hand are characterised by an amplitude:

e−Sgauge = e
−|In|

(
8π2

g2
YM

+i θ

)
, (3.23)
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with In the topological instanton number as introduced in (B.3) and θ the axionic di-

rection coupling anomalously to the non-Abelian gauge group, thereby breaking the shift

symmetry along the θ-direction down to a discrete shift symmetry justifying the assumed

periodicity in (2.3).

In string theory, gauge field theory instantons can be interpreted as a particular type

of D-brane instantons, namely as Euclidean D(p− 4)-branes lying on top of the Dp-branes

while wrapping the cycle ∆p−3. Expression (3.12) allows us to compare the strength

between the stringy D-brane instantons in (3.22) and the gauge instantons in (3.23) (if

both types of instantons are present), from which we can conclude that the stringy D-

brane instanton amplitude on a (p − 3)-cycle γi 6= ∆p−3 is subleading with respect to the

gauge instanton amplitude provided:

Vol(∆p−3)

Vol(γi)
<

1

2
. (3.24)

In order to determine the effective contribution of an instantonic effect to an explicit

model, one has to integrate over the moduli space of the instanton solution. The inte-

gration measure over the instanton moduli space decomposes into bosonic instanton zero-

modes (expressing the position, the size and possible deformations of the instanton) and

fermionic instanton zero-modes (related to broken supersymmetries, to the superpartners

of the deformations and to chiral fermions located at the intersections between instantonic

branes and/or D-branes). The instanton corrections will only contribute if all fermionic

zero modes can be saturated, which has to be checked explicitly for each instanton in each

individual model.

Which linear combinations of closed string axions couple to the gauge instantons can

be read off from the dimensional reduction of the D-brane Chern-Simons action (3.7) upon

identifying the topological G∧G term as introduced in (2.1). For the first time, we will have

to distinguish between Type IIA and Type IIB, given that the dimensionality of the D-

branes differs for both string theories. On the bright side, the usefulness of the democratic

formulation will be truly exposed by the reduction of the D-brane Chern-Simons action to

four dimensions.

D6-branes in Type IIA. For a D6-brane wrapping a three-cycle ∆3 along X6 the

relevant terms in the Chern-Simons action are captured by,

SD6
CS = µ6

∫
M1,3×∆3

C5 ∧ (2πα′)F +
1

2
C3 ∧ (2πα′)2F ∧ F + . . . . (3.25)

The three-cycle ∆3 can be decomposed in terms of the closed three-cycles (γi, δ
j), serving

as the de Rham-duals to the symplectic basis (αi, β
j) respectively:

∆3 =

b3/2∑
i=1

(
riγi + piδi

)
, with ri, pi ∈ Z. (3.26)
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Plugging in both the expansions (3.15) and (3.17) for the C3 and C5 form respectively, as

well as the decomposition of the three-cycle ∆3, yields the following expression:

SCS =
1

8π2

b3/2∑
i=1

ri
∫
M1,3

aiF ∧ F +
1

`2s

b3/2∑
j=1

pj
∫
M1,3

D(2)j ∧ F + . . . . (3.27)

The first term resembles indeed the non-perturbative coupling of axions to the topological

charge density of a gauge group, while the second term corresponds to the dual description

of the Stückelberg coupling between an Abelian gauge field and CP-odd scalars. Geomet-

rically, a C3-axion ai couples to the topological term F ∧F when the three-cycle ∆3 wraps

its associated three-cycle γi (i.e. ri 6= 0). And non-vanishing Stückelberg charges pj 6= 0

under a D6-brane U(1) gauge group arise for those axions ai whose associated Poincaré

dual three-cycle δi is wrapped by the D6-brane. Note that we have tried to take a mini-

malistic stance in the dimensional reduction, by assuming as little as possible concerning

the geometry of the internal space or the embedding of the D6-brane in X6. One can be

more explicit by considering type IIA superstring theory on a Calabi-Yau orientifold, for

which the axions emerging from C3 form the CP-odd partners of the complex structure

moduli. In this Calabi-Yau orientifold setting the dimensional reduction [71–73] is much

more involved than presented here, due to the presence of the orientifold projection and of

additional moduli describing the position of the D-brane which we ignore here.

D7-branes in Type IIB. D7-branes are embedded on four-dimensional cycles ∆4 along

X6 and can be written in terms of a basis of closed 4-cycles γi, (de Rham) dual to the basis

of harmonic 4-forms αi on X6 introduced above:

∆4 =

b4∑
i=1

riγi, with ri ∈ Z. (3.28)

For axions associated to the RR-form C4 there is only one term in the Chern-Simons part

of the D7-brane action of particular interest:

SD7
CS =

µ7

2

∫
M1,3×X6

C4 ∧ (2πα′)2F ∧ F, (3.29)

but the term yields both the anomalous coupling and the Stückelberg coupling depending

on the interpretation of the flux F :

SD7
CS =

1

8π2

b4∑
i=1

ri
∫
M1,3

aiF ∧ F +
1

`2s

b2∑
i=1

pi(F)

∫
M1,3

D(2)i ∧ F. (3.30)

The first term results from interpreting the flux F ∧ F as the topological charge density

alongM1,3, while the second term arises by taking one of the F -factors as the flux F along

the internal direction on ∆4. This ambiguity is a direct consequence of the self-duality of

the four-form C4. In analogy with the D6-brane reduction we introduced the symbol pi(F)

which now also depends on the flux F apart from the embedding of the 4-cycle ∆4:

pi(F) ≡ 1

2π

1

`2s

∫
∆4

βi ∧ F ∈ Z. (3.31)
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Hence, when the four-cycle ∆4 wraps a four-cycle γi in geometric terms, its associated axion

ai will couple to the topological density F ∧ F . For the axion to be charged under the

U(1) gauge group supported by the D-brane, the four-cycle ∆4 has to wrap the four-cycle

that is Poincaré-dual to the two-cyle supporting the internal flux F . Also here we have

tried to avoid making particular assumptions about the geometric features of X6 or of the

four-cycle ∆4. In case X6 is taken to be a Calabi-Yau orientifold various geometric aspects

can be expressed in a more explicit way thanks to the virtues of complex geometry [68, 69].

The C4 axions fit within the same N = 1 supermultiplet as the Kähler moduli for a

compactification set-up where the holomorphic involution maps the Calabi-Yau three-form

to minus itself.17

Despite the fact that axions emerge from different q-forms for type IIA and type IIB

superstring respectively, we obtain the same four-dimensional effective field theory for the

axions:

Saxion =
1

2`2s

∫
M1,3

[
−1

2
dai ∧ ?4da

jKij −
1

2
dD(2)i ∧ ?4dD(2)jK

ij + 2
∑
i

piD(2)i ∧ F

]

+
1

8π2

∑
i

ri
∫
M1,3

aiF ∧ F. (3.32)

In order to end up with an action written in the form of (2.1), the two-forms D(2)i have to

be dualised to their Hodge-dual 0-forms following the procedures outlined in appendix D.

By applying these dualization methods on the action in (3.32), we find the following dual

action (with two-forms Di eliminated):

Saxion =− 1

2`2s

∫
M1,3

[
1

2

(
dai−2piA

)
∧?4

(
daj−2pjA

)
Kij
]
+

1

8π2

∑
i

ri
∫
M1,3

aiF∧F, (3.33)

which is exactly of the same type as proposed in (2.1). The missing kinetic terms for the

gauge fields follow from the dimensional reduction of the DBI-action for the D-brane. For

a stack of N coincident Dp-branes with a non-Abelian gauge group the topological term

F ∧F has to be replaced by Tr(G∧G), with G the field strength of the non-Abelian gauge

group. And with this last consideration it is now clear how the effective action in (2.1)

emerges from string theory compactifications with moduli space metric Gij = (2`2s)
−1Kij .

Note that the axions ai are represented as dimensionless fields in (3.33) and that the

eigenvalues of Gij are measured in units of the string mass scale Ms. Hence, the numerical

examples presented in section 2 should be seen in the light of a high string scale mass

Ms ∼ O
(
1016–1017 GeV

)
.

The couplings in (3.27) and (3.30) following from the reduction of the D-bane Chern-

Simons action form the building blocks for the Green-Schwarz-mechanism in four dimen-

sions by which the mixed Abelian-non-Abelian and cubic Abelian gauge anomalies cancel.

17If the orientifold projection leaves the Calabi-Yau three-form invariant, the axions emerging from the

reduction of the C4-form recombine with the scalars associated to the reduction of the NS-NS B2 form.

Moreover, there are no O7-planes whose charges can compensate the D7-brane charges. Hence, such an

orientifold projection does not seem to provide a favourable setting for the string embedding of our ideas.
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The Green-Schwarz terms associated to (3.27) and (3.30) usually suffice to cancel these

gauge anomalies. Furthermore, the pure non-Abelian gauge anomalies vanish automati-

cally when the RR tadpole cancelation conditions are satisfied.

In section 2.2.1 we indicated that in situations where the anomaly coefficient also

contains a non-symmetric part, a generalized Chern-Simons term has to be introduced to

ensure U(1) gauge invariance, as discussed in more detail in [54, 55]. One could wonder

whether this generalized Chern-Simon term can be obtained directly from string theory,

thereby offering a microscopic explanation for its required presence. To this end, the

authors of [54] derived Chern-Simons terms directly from string theory by computing the

appropriate open and closed string amplitudes (for D5-D9 brane modelbuilding scenarios on

toroidal orientifolds). Generalized Chern-Simons terms also arise from the D-brane Chern-

Simons action in case the internal manifold of a string theory compactification allows for

non-vanishing fluxes and the U(1) gauge symmetry descends from the closed string sector,

as shown in [52] by using the descent formalism of Wess and Zumino. Whether or not

generalized Chern-Simons terms are required is thus a model-dependent consideration, as

is the question how these terms arise microscopically within a string model.

3.3 Some explicit examples

3.3.1 Factorizable D6-branes in Type IIA on toroidal orientifolds

The toroidal orientifold T 6/ΩR is probably the easiest internal space X6 that comes to mind

to clarify the set-up in section 2.2 through explicit examples. To simplify their construction,

the six-dimensional torus is taken to be of the factorizable type T 2
(1) × T

2
(2) × T

2
(3), where

each two-torus can be parametrized by a complex coordinate zi=1,2,3 respectively with

periodicity relations:

zi ' zi + 1, zi ' zi + τ i, (3.34)

and where the parameter τ i corresponds to the modular parameter for torus T 2
(i).

18 Con-

sidering Type IIA string theory on T 6 leads to a four dimensional theory with a maximal

amount of supersymmetry, namely N = 8 supersymmetry. To reduce the amount of su-

persymmetry by a factor 1/2, one usually introduces an orientifold projection ΩR(−)FL ,

consisting of a worldsheet parity Ω, a projection (−)FL by the left fermion number and an

anti-holomorphic involution R acting on the coordinates as:

R(zi) = zi, ∀ i = 1, 2, 3. (3.35)

The orientifold projection has to be a symmetry of the torus lattice, which constrains the

torus lattice to be rectangular (a-type lattice) or tilted (b-type lattice), as depicted in

figure 5. For a tilted two-torus lattice the angle θi between the two basic one-cycles is set

by the ratio R
(i)
2 /R

(i)
1 , namely cos θi = 1

2
R

(i)
2

R
(i)
1

.

18To emphasize the structural properties of the background, we simplify the coordinate-dependent ex-

pressions by considering dimensionless coordinates zi, i.e. the dimensionful coordinates have been divided

by `s, such that also the three-forms αi and βi are dimensionless.

– 35 –



J
H
E
P
0
6
(
2
0
1
5
)
0
2
6

T 2
(i)

π2i−1

π2i

O6

O6

R
(i)
1

R
(i)
2

xi

yi

T 2
(i)

π2i−1

π2i

O6
R

(i)
1

R
(i)
2

xi

yi

θi

Figure 5. (left) a-type lattice for a rectangular two-torus T 2
(i) with area R

(i)
1 R

(i)
2 and modu-

lar parameter τ (i) = i R
(i)
2 /R

(i)
1 , and (right) b-type lattice for a tilted two-torus T 2

(i) with area

R
(i)
1 R

(i)
2 sin θi and modular parameter τ (i) = R

(i)
2 /R

(i)
1 ei θi . On a rectangular lattice the fixed planes

under the ΩR-projection are located at Im (zi) = 0 and Im (zi) = 1/2, while a tilted torus-lattice

only has one fixed plane under the ΩR-projection, namely Im (zi) = 0. The basic one-cycles π2i−1

and π2i transform as follows under the ΩR-projection: π2i−1
ΩR−→ π2i−1 − 2biπ2i and π2i

ΩR−→ −π2i,

where the discrete parameter bi captures whether the two-torus T 2
(i) is rectangular (bi = 0) or tilted

(bi = 1/2).

When considering D6-branes on type IIA orientifolds it is easier to work with the real

coordinates (xi, yi) on torus T 2
(i), with periodicity conditions:

xi ' xi + n, yi ' yi + bin+m, n,m ∈ Z (3.36)

in line with the representation in figure 5, and bi = 0
(

1
2

)
for a rectangular (tilted) lattice.

The ΩR projection acts as follows on these coordinates:(
xi, yi

) ΩR−→
(
xi,−yi

)
. (3.37)

In this coordinate system the symplectic basis (αi, β
i) introduced in (3.16) reads:

α0 = dx1 ∧ dx2 ∧ dx3, β0 = dy1 ∧ dy2 ∧ dy3,

α1 = dx1 ∧ dy2 ∧ dy3, β1 = dy1 ∧ dx2 ∧ dx3,

α2 = dy1 ∧ dx2 ∧ dy3, β2 = dx1 ∧ dy2 ∧ dx3,

α3 = dy1 ∧ dy2 ∧ dx3, β3 = dx1 ∧ dx2 ∧ dy3,

(3.38)

and the metric on the six-dimensional torus in this coordinate system is given by:

gab = diag
((
R

(1)
1 sin θ1

)2
,
(
R

(2)
1 sin θ2

)2
,
(
R

(3)
1 sin θ3

)2
,
(
R

(1)
2

)2
,
(
R

(2)
2

)2
,
(
R

(3)
2

)2)
. (3.39)

In order to accommodate the D6-branes we have to introduce a proper basis of three-cycles

on T 6/ΩR, which will depend on the shape of the two-torus lattices. For example, for

the aaa lattice configuration of T 6/ΩR the basis of ΩR-even three-cycles γi and ΩR-odd
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three-cycles δi is given by:

γ0 = [π1][π3][π5], δ0 = [π2][π4][π6],

γ1 = [π1][π4][π6], δ1 = [π2][π3][π5],

γ2 = [π2][π3][π6], δ2 = [π1][π4][π5],

γ3 = [π2][π4][π5], δ3 = [π1][π3][π6].

(3.40)

This basis of three-cycles is de Rahm-dual with respect to the symplectic basis of three-

forms (αi, β
j): ∫

γj

αi = δi
j ,

∫
δj
βi = δij . (3.41)

The only non-vanishing intersections between the three-cycles are then given by:

γi · δj = −δj · γi = δi
j . (3.42)

As there are four ΩR-even three-cycles γi on T 6/ΩR, the reduction of the C3 form leads

to four independent closed string axions ai with periodicity 2π, following the discussion

in section 3.2. The metric Kij of (3.20) on the four-dimensional axion moduli space is

diagonal and can be expressed as:

Kij = diag

(
u1u2u3,

u1

u2u3
,
u2

u1u3
,
u3

u1u2

)
, (3.43)

by introducing the parameters ui:

ui =
R

(i)
2

R
(i)
1 sin θi

. (3.44)

Note that θ1 = θ2 = θ3 = π
2 in case all three two-tori are rectangular.

With all the geometric utensils at hand, we can start considering an explicit model

with factorizable D6-branes. The three-cycle Πx wrapped by a D6x-brane along T 6/ΩR
can be decomposed in terms of the basis (γi, δ

j) as:

Πx = rix γi + six δ
i. (3.45)

In case of a factorizable three-cycle Πx, the integer coefficients rix and six can be written

in terms of the torus wrapping numbers (n1
x,m

1
x;n2

x,m
2
x;n3

x,m
3
x) describing how the three-

cycle wraps each two-torus individually:

r0
x = n1

xn
2
xn

3
x, s0

x = m1
xm

2
xm

3
x,

r1
x = n1

xm
2
xm

3
x, s1

x = m1
xn

2
xn

3
x,

r2
x = m1

xn
2
xm

3
x, s2

x = n1
xm

2
xn

3
x,

r3
x = m1

xm
2
xn

3
x, s3

x = n1
xn

2
xm

3
x,

(3.46)

where nix,m
i
x ∈ Z for i ∈ {1, 2, 3}. We consider a D6-brane stack a supporting the gauge

group U(1)a and a D6-brane stack b supporting the gauge group U(Nb) with wrapping
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Factorizable D6-branes on T6/ΩR for rectangular two-tori

stack torus wrapping numbers rix = 0, six = 0 gauge group

a
(
n1
a,m

1
a;n

2
a,m

2
a; 1, 0

)
r1
a = 0 = r2

a, s0
a = 0 = s3

a U(1)a

b
(
n1
b ,m

1
b ;n

2
b ,m

2
b ; 0, 1

)
r0
b = 0 = r3

b , s1
b = 0 = s2

b U(Nb)

Table 1. Two-stack D6-brane configuration with factorizable three-cycles supporting a gauge factor

U(1)a ×U(Nb) on the toroidal orientifold T 6/ΩR.

numbers presented in table 1. For the D6-brane configuration given in table 1, the effective

action for the four axions can be written as,

Saxion =

∫ − 1

2`2s

∑
i=0,3

Kii(dai −Nbs
i
bAb) ∧ ?4(dai −Nbs

i
bAb) +

1

8π2

(
r0
aa

0+r3
aa

3
)
Fa ∧ Fa

− 1

2`2s

∑
l=1,2

Kll(dal − slaAa) ∧ ?4(dal − slaAa) +
1

8π2

(
r1
ba

1 + r2
ba

2
)

Tr(Gb ∧Gb)

+
1

8π2

(
r1
ba

1 + r2
ba

2
)
Nb(Fb ∧ Fb)

 . (3.47)

With this D6-brane configuration the axions (a0, a3) and (a1, a2) form two decoupled sys-

tems of axions, such that we can focus only on the second one. A linear combination of the

axions (a1, a2) couples anomalously to the U(1)b field strength, but this coupling is ignored

as the U(1)b gauge field acquires a mass due to the Stückelberg mechanism involving the

other two axions (a0, a3) and the Abelian U(1)b does not give rise to gauge instantons.

Hence, only the second line in the action (3.47) will be considered and matches the set-up

discussed in section 2.2. Applying the formulae, and in particular equation (2.54), from

that section straightforwardly to the current two-axion system yields the following decay

constant (in units of the string scale mass Ms):

fã1 =

√
u1u2

u3

√
(u1)2(s1

a)
2 + (u2)2(s2

a)
2∣∣r1

bs
2
a(u2)2 − r2

bs
1
a(u1)2

∣∣ Ms, (3.48)

for the axionic direction ã1 not absorbed by the U(1)a gauge boson. At the enhancement

point, where the denominator of the axion decay constant becomes small, the internal

geometry of T 2
(1)×T

2
(2) has to be chosen such that the parameters u1 and u2 exhibit a form

of isotropy:

r1
bs

2
a(u2)2 ' r2

bs
1
a(u1)2. (3.49)

In order to appreciate the meaning of this relation, we introduce the axio-dilaton S and

the three complex structure moduli Ui defined as:

S ≡ e−Φ

∫
γ0

Ω3 + i

∫
γ0

C3, Ui ≡ e−Φ

∫
γi

Ω3 + i

∫
γi

C3 i = 1, 2, 3, (3.50)
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with Φ the ten dimensional dilaton, and Ω3 the Calabi-Yau three-form which reads in terms

of the symplectic basis three-cycles on the aaa lattice:

Ω3 =

3∏
i=1

R
(i)
1 α0 −

3∑
i=1

R
(i)
1 R

(j)
2 R

(k)
2 αi − i

3∏
i=1

R
(i)
2 β0 + i

3∑
i=1

R
(i)
2 R

(j)
1 R

(k)
1 βi, (3.51)

with (i, j, k) an even permutation of (1, 2, 3). The isotropy condition (3.49) can now be

written in terms of the complex structure moduli U1 and U2 as:

r1
bs

2
a(ReU1)2 ' r2

bs
1
a(ReU2)2, (3.52)

which should be read as an isotropy relation between U1 and U2 in the complex structure

moduli space.

Note however that this point of the moduli space does not correspond to a supersym-

metric configuration for the D6-branes wrapping lagrangian three-cycles on the orientifold

T 6/ΩR. It is well-known that factorizable three-cycles wrapped by supersymmetric D6-

branes are calibrated with respect to the same Calabi-Yau three-form Ω3 as the O6-planes,

which boils down to the condition:

ϕ1
x + ϕ2

x + ϕ3
x = 0 mod 2π, (3.53)

where the angle ϕix represents the angle between the O6-plane and the D6-brane Πx on

two-torus T 2
(i):

tanϕix =
mi
x + binix
nix

ui. (3.54)

It is not difficult to show that the enhancement requirement (3.49) is incompatible with

the supersymmetry requirement (3.53) for both D6-brane stacks a and b. Let us therefore

start from the assumption that the b-stack is wrapped along a special lagangian three-cycle

and in order to be more explicit we specify the torus wrapping numbers (n1
b ,m

1
b ;n

2
b ,m

2
b) =

(1,−1; 1,−1). The angles ϕ1
b and ϕ2

b are then chosen such that the b-stack corresponds to a

supersymmetric three-cycle satisfying (3.53), which sets the values for the ratios u1 and u2.

As a last step, the torus wrapping numbers of the a-stack are chosen in compliance with

equation (3.49) in such a way that the respective three-cycle can be seen as a three-cycle

slightly deviating from the three-cycle with wrapping numbers (1, 0; 1, 0; 1, 0) by a rotation

over a small angle along T 2
(1) × T

2
(2). In table 2 we list some explicit examples of a-stack

configurations obtained through this method.

Even though the closed string sector on T 6/ΩR preserves N = 4 supersymmetry, the

open string sector associated to the D-brane configurations in tables 1 and 2 do not preserve

any supersymmetry, indicating the possible presence of non-vanishing NS-NS tadpoles. The

NS-NS tadpoles are an artefact of the wrong vacuum and can be remediated by a shift of

the NS-NS background fields. The consistency of the model is rather measured by the

vanishing of the RR tadpoles: ∑
x

Nx(Πx + Π′x) = 4ΠO6. (3.55)
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a-stack configuration for SUSY b-stack on T6/ΩR(
ϕ1
b , ϕ

2
b , ϕ

3
b

)
u1 u2

(
n1
a,m

1
a;n

2
a,m

2
a

) (
ϕ1
a, ϕ

2
a, ϕ

3
a

)(
−π

3 ,−
π
6 ,

π
2

)
∼
√

3 ∼ 1/
√

3 (8, 1; 4, 1) ∼ (12◦, 8◦, 0)(
−π

4 ,−
π
4 ,

π
2

)
∼ 1 ∼ 1 (4, 1; 4, 1) ∼ (14◦, 14◦, 0)(

−π
6 ,−

π
3 ,

π
2

)
∼ 1/

√
3 ∼

√
3 (4, 1; 8, 1) ∼ (8◦, 12◦, 0)

Table 2. Overview of some explicit D-brane configurations for the a-stack: the supersymmetric

b-stack configuration are represented by the angles in the first column, while the second column

provides the parametric values for the ratios u1 and u2. The third column lists the torus wrapping

number along T 2
(1) × T

2
(2) for the a-stack, corresponding to the non-supersymmetric angles in the

fourth column.

Overview of Chiral Spectrum for Factorizable D6-branes

sector SU(Nb)(Qa,Qb) multiplicity

ab (Nb)(1,−1)

∣∣(n1
a +m1

a)(n
2
a +m2

a)
∣∣

ab′ (Nb)(−1,−1)

∣∣−(n1
a −m1

a)(n
2
a −m2

a)
∣∣

bb′ (Antib)(0,−2) |−4|

bb′ (Symb)(0,2) 4

Table 3. Chiral Spectrum for the two-stack D6-brane models on T 6/ΩR considered in table 1 with

wrapping numbers (n1
b ,m

1
b ;n

2
b ,m

2
b) = (1,−1; 1,−1) for the b-stack. For the explicit examples in

table 2 the relations nia > mi
a > 0 with i = 1, 2 are valid.

For the D6-brane configurations listed in table 2 one can easily check that the RR tadpole

cancelation conditions are not satisfied. In order for the RR tadpoles to vanish one can

introduce additional stacks of D6-branes whose RR charges compensate the RR charges

of the a-stack, b-stack and O6-planes. Given the sum of the RR charges of the latter we

expect the additional stacks to be wrapped along non-supersymmetric three-cycles as well.

Moreover, there might be additional contributions to the RR tadpoles upon introducing

fluxes intended to stabilize the various Kähler and complex structure moduli. We postpone

the introduction of a consistent moduli stabilization scheme for future research and leave

the RR tadpoles uncanceled for now. As an immediate consequence thereof, the cubic

SU(Nb) non-Abelian gauge anomalies are not automatically canceled. And unless the

spectrum of chiral fermions is particularly constrained, the two-stack set-up is plagued

by gauge anomalies. Using the generic chiral spectrum listed in table 3 the cubic SU(Nb)

non-Abelian gauge anomaly coefficient associated to the two-stack models in tables 1 and 2

can be determined:

ASU(Nb)
3

=
[
− 2n1

an
2
a − 2m1

am
2
a

]
+
[
− (Nb − 4)4 + (Nb + 4)4

]
, (3.56)

where the first part on the righthand side comes from the chiral fermions in the anti-

fundamental representation and the second part from the chiral fermions in (anti-) sym-
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metric representation of SU(Nb). One can easily check that this anomaly coefficient does

not vanish for any of the explicit models considered in table 2, implying that supplementary

D6-brane stacks intersecting chirally with the b-stack are inevitable for the consistency of

these models. Next, we can also consider the mixed Abelian non-Abelian anomaly coeffi-

cients for the D6-brane set-up in tables 1 and 2:

AU(1)a−SU(Nb)
2

= n1
am

2
a + n2

am
1
a = −s1

ar
1
b − s2

ar
2
b , (3.57)

AU(1)b−SU(Nb)
2

= −n1
an

2
a −m1

am
2
a + 16 = −r0

as
0
b − r3

as
3
b + 16, (3.58)

and the Abelian anomaly coefficients:

AU(1)3
a = Nb

(
2n1

am
2
a + 2m1

an
2
a

)
= −2Nb

(
s1
ar

1
b + s2

ar
2
b

)
= AU(1)a−U(1)2

b , (3.59)

AU(1)3
b = −Nb

(
2n1

an
2
a + 2m1

am
2
a − 32

)
= −Nb

(
2r0
as

0
b + 2r3

as
3
b − 32

)
, (3.60)

AU(1)b−U(1)2
a = −Nb

(
2n1

an
2
a + 2m1

am
2
a

)
= −Nb

(
r0
as

0
b + r3

as
3
b

)
. (3.61)

Note that the anomaly coefficient AU(1)a−SU(Nb)
2

matches the charge k̃2 of the axion ã2

serving as the longitudinal component of the massive U(1)a gauge boson, namely:

AU(1)a−SU(Nb)
2

= −s1
ar

1
b − s2

ar
2
b = −k̃2, (3.62)

implying that constraint (2.69) is trivially satisfied in this set-up and that a GCS-term

is not required to ensure U(1)a gauge invariance. This is an immediate consequence of

the generalized Green-Schwarz mechanism, by which also the other mixed Abelian non-

Abelian and Abelian anomalies vanish. Hence, only the non-vanishing RR tadpoles and

related non-Abelian gauge anomalies remain a worrisome element for this set-up.

One could try to remediate the non-vanishing RR tadpoles by considering the D6-

brane setting on the toroidal orbifold T 6/Z2×Z2 (with discrete torsion η = −1), for which

global intersecting D6-brane models with vanishing RR tadpoles were found [83]. On

this background, one can consider fractional three-cycles consisting of a bulk three-cycle

(inherited from the ambient space T 6) and exceptional three-cycles stuck at the Z2 fixed loci

of the orbifold action. The bulk part of such a fractional three-cycle can easily be played

by the D6-brane configuration given in table 1. Given the technicalities of the exceptional

three-cycles, we refrain from introducing the required algebraic elements to fully appreciate

those fractional three-cycles and postpone the search for global models on T 6/(Z2×Z2×ΩR)

to future work. Nonetheless, we can already speculate about potential D-brane instanton

corrections on T 6/(Z2 × Z2 × ΩR) (with discrete torsion) coupling to the closed string

axions a1 and a2, using reasonings and arguments analogous to [84]. The axion a1 couples

to Euclidean D-branes wrapping the ΩRZ(1)
2 -plane, while the axion a2 couples to Euclidean

D-branes wrapping the ΩRZ(2)
2 -plane. Given that both axions are charged under the U(1)a

symmetry, their respective D-brane instanton amplitude violates the U(1)a symmetry. The

violation of the U(1)a symmetry can be traced back to the presence of additional charged

zero-modes arising at the intersections between the D6a-brane and the Euclidean D2-branes

wrapping the ΩRZ(1)
2 -plane or ΩRZ(2)

2 -plane respectively. These fermionic zero-modes can

be saturated due to interactions with charged matter fields whose collective U(1)a charge

cancels the U(1)a charge violation by the instanton amplitude [81, 82, 85, 86]. Moreover,

deformation zero modes for the Euclidean D-branes wrapping the ΩRZ(1,2)
2 -planes are
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absent due to the rigid nature of the respective three-cycles. Nonetheless, it is the choice

of the exotic O6-plane that determines which of the four O6-plane is ΩR-invariant and

supports O(1)-instantons, as expressed by the topological condition in table 10 of [87]

(see also [88]). In case the ΩR-plane or the ΩRZ(3)
2 -plane are chosen as the exotic O6-

plane, neither the ΩRZ(1)
2 nor the ΩRZ(2)

2 -plane support O(1)-instantons, implying that

additional effects are needed to lift the universal fermionic zero-modes of the U(1)-type

D-brane instantons.19 Based on these considerations, we expect the anomalous coupling of

the axions a1 and a2 to the gauge instantons in (3.47) to be the dominant non-perturbative

effect generating the cosine-type potential for ã1.

One might wonder whether the characteristics of the two-stack models in tables 1 and 2

are influenced by the chosen aaa lattice configuration of T 6/ΩR. Let us therefore pick the

aab lattice configuration, where only the third two-torus is tilted, and investigate whether

this lattice configuration offers better perspectives with respect to model building. We still

use the orthogonal coordinate system (xi, yi)i=1,2,3 introduced in the previous section such

that the symplectic basis of three-forms (αi, β
j) is still given by (3.38). The tiltedness of

T 2
(3) does alter the basis of ΩR-even and ΩR-odd three-cycles:

γ0 = 2[π1][π3][π5]− [π1][π3][π6], δ0 = [π2][π4][π6],

γ1 = [π1][π4][π6], δ1 = 2[π2][π3][π5]− [π2][π3][π6],

γ2 = [π2][π3][π6], δ2 = 2[π1][π4][π5]− [π1][π4][π6],

γ3 = 2[π2][π4][π5]− [π2][π4][π6], δ3 = [π1][π3][π6].

(3.63)

The basis of three-cycles are still de Rahm-dual to the basis of three-forms:∫
γj

αi = ci δi
j ,

∫
δj
βi = di δ

i
j , (3.64)

but an additional constant ci or di slips in: c0 = 2c1 = 2c2 = c3 = 2 and 2d0 = d1 = d2 =

2d3 = 2. Moreover, the lattice of ΩR-even and ΩR-odd three-cycles does no longer form a

uni-modular lattice:

γi · δj = −δj · γi = 2δi
j . (3.65)

The reduction of the C3 form, as reviewed in section 3.2, yields a closed string axion ξi

for each of the ΩR-even three-cycles γi with periodicity 2π/ci. The decomposition of a

factorizable three-cycle Πx according to (3.45) leads to the following coefficients:

r0
x =

1

2
n1
xn

2
xn

3
x, s0

x = m1
xm

2
x

(
m3
x +

1

2
n3
x

)
,

r1
x = n1

xm
2
x

(
m3
x +

1

2
n3
x

)
, s1

x =
1

2
m1
xn

2
xn

3
x,

r2
x = m1

xn
2
x

(
m3
x +

1

2
n3
x

)
, s2

x =
1

2
n1
xm

2
xn

3
x,

r3
x =

1

2
m1
xm

2
xn

3
x, s3

x = n1
xn

2
x

(
m3
x +

1

2
n3
x

)
,

(3.66)

19Generically, U(1)-type D-brane instanton contributions are also expected from the Euclidean D2-branes

wrapping the cycle Πa. From the wrapping numbers in table 1 one can however deduce that the axions a1

and a2 do not couple to these D-brane instantons.
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with nix,m
i
x ∈ Z for i ∈ {1, 2, 3}. One can repeat the steps leading up to action (3.47)

for the aab lattice configuration, yet there are no substantial differences with respect to

the aaa lattice configuration. More explicitly, the T 2
(3) tiltedness alters the torus wrapping

numbers for the a-stack: a = (n1
a,m

1
a;n

1
a,m

1
a; 2,−1), but leads to the same effective action

as in (3.47). Furthermore, the discussion below that action remains valid as well, such

that physical considerations regarding action (3.47) are lattice independent for factorizable

D6-brane models on T 6/ΩR.

3.3.2 Non-factorizable D6-branes in Type IIA on toroidal orientifolds

In the factorizable D6-brane set-up of the previous section it was implicitly assumed that

the U(1) gauge group participating in the Stückelberg mechanism does not correspond to

the center of a U(N) gauge group supported by a stack of N D6-branes. However, if we

consider for a moment that the Stückelberg U(1) is indeed the center of a non-Abelian gauge

group, we might also be able to associate the instanton background responsible for the axion

potential to this U(N) gauge group. In this respect, a single stack of N D6-branes would

provide a minimal realization of the model discussed in section 2.2. Keeping the number

of axions charged under this U(1) equal to two, one can deduce from expression (3.46)

that the corresponding D6-brane configuration is not realizable using factorizable three-

cycles. As an alternative route we investigate whether such a D6-brane configuration can

be consistently obtained by using so-called non-factorisable three-cycles on T 6/ΩR.

The factorizable three-cycles in (3.66) live in the homology group [H1(T 2,Z)]3, which

forms an eight-dimensional sublattice Λ8 spanned by the basis (γi, δ
i) of the homology group

H3(T 6,Z) of all three-cycles. Note however that the sum Πc = Πa + Πb of two factorizable

three-cycles Πa and Πb is not necessarily factorizable, yet the three-cycle Πc is a three-cycle

in the sublattice Λ8 and can be decomposed in terms of the basis (γi, δ
i). This means that

for a generic three-cycle Πx ∈ Λ8, its coefficients rix and six are not necessarily decomposable

in terms of one-cycle wrapping numbers (nix,m
i
x) as in expression (3.66) and its coefficients

do not necessarily satisfy [89, 90] specific relations as is the case for factorizable three-

cycles, such as for instance r0
xs

3
x = r1

xs
2
x = r2

xs
1
x = r3

xs
0
x. Non-factorizable three-cycles

on the Λ8-lattice can result from a brane recombination process of two factorizable three-

cycles, when the volume of the non-factorizable three-cycle is smaller than the volumes of

the two factorizable three-cycles (in the same homology class).

Releasing the geometrically appealing picture of factorizable D6-branes will provide

us with some additional freedom, which will allow us to satisfy the constraints from

section 2.2.1 in an explicit example. Let us thus consider a stack of Na D6-branes wrapping

a non-factorizable three-cycle Πa and a single D6-brane wrapping a non-factorizable three-

cycle Πb whose presence is required to ensure vanishing RR tadpoles. In terms of the basis

of three-cycles (γi, δ
j) from (3.40) the respective three-cycles can be decomposed as:20

U(Na) : Πa = r2
aγ2 + r3

aγ3 + s2
aδ

2 + s3
aδ

3, U(1)b : Πb = ribγi. (3.67)

20For simplicity, we assumed that none of the axions is charged under the U(1) gauge group supported

by the b-stack. One could consider a more generic D6-brane configuration where the axions a0 and a1 are

charged under U(1)b through Stückelberg charges s0
b and s1

b respectively.
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The coefficients rix associated to the ΩR-even cycles will be determined later on when

discussing the RR tadpole cancelation conditions. The effective action for the four axions

is given by:

Saxion =

∫ − 1

2`2s

∑
i=0,1

Kiidai ∧ ?4da
i − 1

2`2s

∑
l=2,3

Kll
(
dal −Nas

l
aAa

)
∧ ?4

(
dal −Nas

l
aAa

)
+

1

8π2

(
r2
aa

2 + r3
aa

3
)

Tr(Ga ∧Ga) + +
1

8π2

(
r2
aa

2 + r3
aa

3
)
NaFa ∧ Fa

+
1

8π2

(
3∑
i=0

riba
i

)
(Fb ∧ Fb)

]
. (3.68)

Due to the last anomalous coupling, the axion system does not perfectly decouple as the

previous model, but the absence of U(1)b gauge instantons allows us to treat the four axions

as two decoupled axion systems (a0, a1) and (a2, a3). Focusing on the second axion system,

we observe that a linear combination is absorbed by the U(1)a gauge boson, by which

the latter acquires its mass, while the orthogonal direction remains uncharged under the

Abelian gauge symmetry and couples anomalously to the non-Abelian gauge group with

axion decay constant:

fã1 =

√
u2u3

u1

√
(u2)2(s2

a)
2 + (u3)2(s3

a)
2

|r2
as

3
a(u3)2 − r3

as
2
a(u2)2|

Ms. (3.69)

The axion decay constant follows from a straightforward computation by inserting the

metric components (3.43) and the U(1) charges into the expression (2.54). The denominator

of the axion decay constant acquires a small value in regions of the moduli space where

the following relation is valid:

r2
as

3
a(u3)2 ' r3

as
2
a(u2)2, or r2

as
3
a(ReU2)2 ' r3

as
2
a(ReU3)2, (3.70)

where we used the expressions for the complex structure moduli introduced in (3.51) to

obtain the second relation. Note also the similarities between this isotropy relation and

the isotropy relation (3.52) for the model with factorisable three-cycles.

Next, we focus on RR tadpoles for this two-stack model, which cancel provided the

following relations among the coefficients rix are satisfied:

r0
b = 16, r1

b = 0, Nar
2
a = −r2

b , Nar
3
a = −r3

b . (3.71)

An immediate consequence of the vanishing RR tadpoles is the cancelation of the non-

Abelian anomalies. This can be checked explicitly by determining the chiral spectrum

for this two-stack model as in table 4 and by computing the associated cubic anomaly

coefficient:

ASU(Na)3
= −2

(
s2
ar

2
b + s3

ar
3
b

)
− (Na + 4)

(
r2
as

2
a + r3

as
3
a

)
− (Na − 4)

(
r2
as

2
a + r3

as
3
a

)
, (3.72)

where the first contribution comes from the chiral states in the (anti-)fundamental rep-

resentation, the second and third term from the chiral states in the symmetric and anti-

symmetric representation respectively. The cubic anomaly coefficient vanishes upon im-

posing the last two relations in (3.71). To investigate the U(1)a gauge invariance constraint
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Overview of Chiral Spectrum for Non-factorizable D6-branes

sector SU(Nb)(Qa,Qb) multiplicity

ab (Na)(1,−1)

∣∣−s2
ar

2
b − s3

ar
3
b

∣∣
ab′ (Na)(1,1)

∣∣−s2
ar

2
b − s3

ar
3
b

∣∣
aa′ (Antia)(2,0)

∣∣−r2
as

2
a − r3

as
3
a

∣∣
aa′ (Syma)(2,0)

∣∣−r2
as

2
a − r3

as
3
a

∣∣
Table 4. Chiral Spectrum for the two-stack non-factorizable D6-brane models on T 6/ΩR consid-

ered in eq. (3.67).

we have to consider the mixed Abelian non-Abelian anomaly coefficient associated to the

U(1)a − SU(Na)
2 triangle diagram:

AU(1)a−SU(Na)2
= −Na

(
r2
as

2
a + r3

as
3
a

)
= −k̃2. (3.73)

The last equality implies the conservation of U(1)a gauge invariance as expressed in (2.69),

such that a GCS-term is not required for this model. The other anomaly coefficients

can be calculated from the chiral spectrum in table 4, in analogy with the discussion in

the previous section. Let us for instance focus on the anomaly coefficient of the mixed

U(1)a −U(1)2
b triangle diagram:

AU(1)a−U(1)2
b = −2Na

(
r2
bs

2
a + r3

bs
3
a

)
= 2N2

a

(
r2
as

2
a + r3

as
3
a

)
, (3.74)

where we have used the tadpole condition (3.71) in the second equality. This computation

serves as an additional check for the U(1)a gauge invariance, that is to say, the U(1)a
gauge variation of the Fb ∧ Fb coupling terms in (3.68) is cancelled by the anomalous

U(1)a−U(1)2
b triangle diagram. Thus, a GCS-term mixing the U(1)a gauge potential with

the U(1)b field strength is not required for the gauge consistency of this model either.

Thus, the generalized Green-Schwarz mechanism acts as the underlying mechanism in the

intersecting D6-brane models to ensure the cancelation of Abelian anomalies and mixed

Abelian non-Abelian anomalies and thereby also the quantum consistency of the models.

Considerations regarding other instanton contributions apart from the SU(Na) gauge

instantons follow the same line of reasoning as for the factorizable D6-branes in the pre-

vious section, upon lifting the D6-brane configuration to the toroidal orbifold T 6/Z2 × Z2

with discrete torsion. The axions a2 and a3 couple to D-brane instantons whose Euclidean

worldvolumes wrap the three-cycles parallel to the ΩRZ(2)
2 -plane and ΩRZ(3)

2 -plane re-

spectively on this background. If we choose a background configuration where neither the

ΩRZ(2)
2 -plane nor the ΩRZ(3)

2 -plane are chosen to be the exotic O6-plane, then the Eu-

clidean D-branes do not support O(1)-instantons but rather U(1)-instantons, which will

contribute effectively only if all fermionic zero modes are saturated.

A last consideration concerns the amount of supersymmetry preserved by the two-stack

non-factorizable D6-brane set-up in (3.67). In order for the D6-brane to preserve super-

symmetry, its corresponding three-cycle Πx has to wrap a special lagrangian submanifold
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which can be expressed in geometric terms as, see e.g. [87]:

ω(1,1)

∣∣
Πx

= 0, Im

(∫
Πx

Ω3

)
= 0, Re

(∫
Πx

Ω3

)
> 0, (3.75)

where the first relation expresses a condition on the pull-back of the Kähler two-form ω(1,1)

to the three-cycle Πx, and Ω3 is the same calibration form as the one used for the O6-

planes. It is not difficult to show that these conditions are satisfied for supersymmetric

factorizable D-branes, provided relation (3.53) is satisfied. For non-factorizable D6-branes,

it is much harder to compute the pull-back of the Kähler two-form to the respective three-

cycle due to the non-factorizability. Given that the non-factorizable three-cycles in (3.67)

correspond to three-cycles within the lattice Λ8, we still expect them to wrap lagrangian

subspaces. The remaining two calibration conditions on the other hand can be computed

straightforwardly for the non-factorizable three-cycles in (3.67). Based on the RR tadpole

cancelation conditions (3.71) one can then deduce that only one of the two stacks pre-

serves the same supersymmetry as the O6-planes, while the other stack violates the third

condition in (3.75).

To end this section, let us have a look at an explicit example with a modest non-Abelian

U(Na) gauge group with gauge factor Na = 3. A point in the parameter space for which

both the super-Planckian condition (3.69) and the tadpole condition (3.71) are satisfied, is

specified in the first place by the wrapping numbers of the three-cycles for both stacks:

r2
a = r3

a = 1, r0
b = 16, r1

b = 0,

s2
a = 2, s3

a = 3, r2
b = r3

b = −3.
(3.76)

For this choice of parameters, the chiral spectrum in line with table 4 contains the following

states: 15× (3)(1,−1) + 15× (3)(1,1) + 5× (3A)(−2,0) + 5× (6S)(−2,0) in the respective rep-

resentations under the gauge factor SU(3)U(1)a×U(1)b . In the region of the parameter space

where the ratio u3/u2 asymptotes to the value
√

2/
√

3, the axion decay constant (3.69)

reaches trans-Planckian values for a high enough string scale, e.g. Ms ∼ 1017 GeV:

fã1 ≈
Ms

3
× 103 ∼ 10MPl. (3.77)

In conclusion, this two stack set-up with non-factorizable intersecting D6-branes forms an

explicit string theory example of the effective field theory model discussed in section 2.2.

3.3.3 D7-branes in Type IIB on Swiss-cheese Calabi-Yau’s

In order to find explicit stringy examples characterized by metric mixing and U(1) mixing

as analyzed in section 2.3, we now turn to backgrounds other than toroidal orbifolds. Metric

kinetic mixing is expected for Calabi-Yau backgrounds with a Swiss-cheese type structure,

where the volume T of the internal space is controlled by the volume τ` of one large four-

cycle Db subtracted by the volumes τs of small four-cycles Ds, which arise as blow-up

cycles upon resolving the Zn singularities in the Calabi-Yau manifold.21 Considering such

21In this set-up the volumes of the four-cycles are measured with respect to the string length `s, and we

work with conventions for which basis 4-forms αi and 2-forms βi are dimensionless.
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Swiss-Cheese Calabi-Yau three-folds allows us to kill two birds with one stone by sketching

how the set-up from section 2.3 can be realized in Type IIB string theory with intersecting

D7-branes, as anticipated in section 3.2.

When considering Type IIB string theory on a Calabi-Yau three-fold X6, the metric

Kij on the C4 axion moduli space in (3.20) can be seen [66, 80, 91] as the Kähler metric

resulting from a Kähler potential K expressed in the volumes τi of the four-cycles with

i ∈ {1, . . . , h11}. The volumes of the four-cycles relate to the Kähler deformations ti
through the relations:

τi =
1

2

∫
γi

J ∧ J =
1

2
κijkt

jtk, i, j, k ∈ {1, . . . , h1,1}, (3.78)

where the Kähler two-form J is expanded with respect to a basis of harmonic (1,1)-forms

βi, the Poincaré duals to the basis of four-cycles γi: J = t`β`−
∑h11−1

s=1 tsβs. The coefficients

κijk correspond to the triple intersection numbers for the basis βi. The C4 axions are defined

as in equation (3.15) with respect to the basis of four-cycles γi. For a Swiss-Cheese type

Calabi-Yau the Kähler potential then takes the schematic form (in the large volume limit):

K = −2 ln T = −2 ln

√2

3
a`τ`

3/2 −
√

2

3

h11−1∑
s=1

bsτs
3/2

 , a`, bs ∈ R. (3.79)

This form of the Kähler potential results from expressing the Kähler deformations in terms

of the four-cycle volumes through (3.78) and inserting the inverted expressions into the

internal volume T = 1
6κijkt

itjtk. The effective four dimensional theory upon dimensional

reduction preservesN = 1 supersymmetry when considering the orientifold X6/ΩR(−)FL of

the Swiss-Cheese Calabi-Yau three-fold. The appropriate orientifold projection ΩR(−)FL

consists of a worldsheet parity Ω, a projection (−)FL involving the left fermion number FL
and an involution R, which will be chosen here such that h11 = h11

+ and h11
− = 0 for the

remainder of our discourse.22

Intuition gathered from sections 2.3, 3.3.1 and 3.3.2 suggests us to consider Swiss-

Cheese Calabi-Yau’s with Hodge number h11
+ ≥ 3: given that large axion decay constants

seem to be connected to isotropy relations among volume moduli and the validity of the

large volume limit approach prohibits a vanishing value for the internal volume T , we are

naturally led to consider Swiss-Cheese Calabi-Yau’s with 3 or more Kähler moduli. An

intensive search through databases of constructed Calabi-Yau three-folds reveals that such

Swiss-Cheese Calabi-Yau’s are abundantly present [93, 94] and some of them were already

fruitful in the past to investigate various aspects regarding D7-brane model building, see

e.g. [95–97]. Let us thus consider a Swiss-Cheese type Calabi-Yau with h11
+ = 3 and for

simplicity we assume the presence of a certain amount of isotropy among the volumes of

the small four-cycles τ1 and τ2:

τ1 ∼ τ2, b1 ∼ b2. (3.80)

22This has as an immediate consequence that the axions associated to the NS-NS 2-form B2 and RR

2-form C2 are projected out from the start. Choosing a different orientifold projection where not all of the

C2-axions are projected out, one could consider stringy realizations of the set-up in section 2.3 using the

C2-axions, as proposed in [92].
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With these two assumptions we can expand the metric on the axion moduli space in powers

of ε2 ≡ τ1/τ`:

Kij =
∂2K
∂τi∂τj

=
1

τ2
`

 3 − 9b1
2a`
ε − 9b1

2a`
ε

− 9b1
2a`
ε 3b1

2a`
1
ε O(ε2)

− 9b1
2a`
ε O(ε2) 3b1

2a`
1
ε

 , (3.81)

where we neglect entries of order O(ε2) and higher in the limit where τ1 � τ`. With

this simple setting a small amount of metric kinetic mixing among axions can be built in

from the start.

Next, we introduce a single D7-brane supporting the U(1)a gauge group under which

the axions a1 and a2, associated to the four-cycles γ1 and γ2 respectively, are charged. In

order for the axions to acquire Stückelberg charges, we have to turn on an internal flux Fa
as reviewed in section 3.2:

Fa = f1
aβ

1 + f2
aβ

2, f ia ∈ Q0. (3.82)

Note that we turn on the internal flux Fa along the two-forms that are Poincaré dual to

the four-cycles wrapped by the U(1)a stack:

γa = n1
aγ1 + n2

aγ2, nia ∈ Q0. (3.83)

With respect to this D7-brane configuration the charge vector (p`, p1, p2) is given by:

p` = 0, p1 =
1

4π

f1
an

1
a

b21
, p2 =

1

4π

f2
an

2
a

b21
, (3.84)

where we used the triple intersection numbers adapted to the basis in which the Kähler

potential (3.79) has been expressed:

I3 =
1

a2
`

γ3
` +

1

b21
γ3

1 +
1

b22
γ3

2
(3.80)

=
1

a2
`

γ3
` +

1

b21
γ3

1 +
1

b21
γ3

2 , (3.85)

with a−2
` , b−2

1 , b−2
2 ∈ Z. Notice that the D7-brane configuration is chosen in such a way

that only the two axions associated to the small four-cycles γ1 and γ2 are charged under

the U(1)a gauge group supported by the a-stack.23

Thirdly, we also introduce a stack of Nb D7-branes wrapping a four-cycle γb such that

both axions a1 and a2 couple anomalously to the U(Nb) gauge group supported by the

D7-brane stack:

γb = m1
bγ1 +m2

bγ2, mi
b ∈ Q0. (3.86)

23Intuitively one might expect a D7-brane stack to wrap only a single four-cycle. Note that the expression

for the internal volume T in (3.79) is closely related to the explicit form of the triple intersection numbers

in (3.85) and is thus only valid in this particular basis of four-cycles. This particular basis of four-cycles

consists of linear combinations of ΩR-even four-cycles used to define the resolved Calabi-Yau manifold in

terms of toric geometry. In this respect a D7-brane wrapping a linear combination of four-cycles γ1 and γ2

results naturally from a configuration where the D7-brane wraps a single ΩR-even four-cycle in the original

toric geometry basis.
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In order to prevent that the axions a1 and a2 are charged under the U(1)b center of the

non-Abelian gauge group, we assume that the vector bundle along the internal directions is

flat. Taking all these elements into account, we find that the effective action for the three

axions al, a1 and a2 in this set-up is given by:

Saxion =

∫ − 1

2`2s

∑
i,j∈{`,1,2}

Kij(dai−piAa) ∧ ?4(daj−pjAa)+
1

8π2

(
n1
ba

1 + n2
ba

2
)

(Fa ∧ Fa)

+
1

8π2

(
m1
ba

1+m2
ba

2
)

Tr(Gb ∧Gb)+
1

8π2

(
m1
ba

1+m2
ba

2
)
Nb(Fb ∧ Fb)

. (3.87)

Determining the decay constants for the axions and the axionic direction eaten by the

U(1)a gauge boson requires us to apply the same steps as presented in section 2.3 for the

three-axion system. As a first step, we diagonalize the metric Kij on the axion moduli

space, whose eigenvalues are given by:

λ+ '
3

τ2
`

+O(ε3), λ− '
3b1
2a`

1

ετ2
`

+O(ε3), λ3 =
3b1
2a`

1

ετ2
`

, (3.88)

such that the kinetic terms for the axions can be written as,

Skin
axion 3

∫ [
− 1

2`2s
λ+

(
da+ − p+

π
Aa

)
∧ ?4

(
da+ − p+

π
Aa

)
− 1

2`2s
λ−

(
da− − p−

π
Aa

)
∧ ?4

(
da− − p−

π
Aa

)
− 1

2`2s
λ3

(
da3 − p3

π
Aa

)
∧ ?4

(
da3 − p3

π
Aa

)]
, (3.89)

where also the Stückelberg charges have to be expressed in terms of the new axion basis: p+

p−

p3

 =
1√

2
√

1 + 18ε4


√

2 3
√

2ε2 3
√

2ε2

0 −
√

1 + 18ε4
√

1 + 18ε4

−6ε2 1 1


 p`

p1

p2

 =

O(ε2)
p2−p1
√

2
p2+p1
√

2

 . (3.90)

From the righthand side we deduce that the charge of the axion a+ under the U(1)a gauge

symmetry is negligible, such that only the axions a− and a3 are characterized by Stückelberg

charges. In order to determine the axion decay constants, we also have to write down the

anomalous couplings to the gauge groups in terms of the new axion basis:

Sanom
axion =

1

8π2

∫ [(
m2
b −m1

b√
2

a− +
m2
b +m1

b√
2

a3

)
Tr(Gb ∧Gb)

+

(
n2
b − n1

b√
2

a− +
n2
b + n1

b√
2

a3

)
(Fa ∧ Fa)

+

(
m2
b −m1

b√
2

a− +
m2
b +m1

b√
2

a3

)
Nb(Fb ∧ Fb)

]
. (3.91)
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Once the SU(Nb) instanton background is taken into consideration, a cosine-type potential

for the axions will be generated, and therefore only the anomalous coupling to the non-

Abelian gauge group deserves our attention in the remainder of this discussion. Combining

the kinetic part and the potential terms for the axions (a−, a3) we notice that the effective

action for this two-axion system matches the set-up from section 2.2. Applying the analysis

from that section to this two-axion system, we can identify a linear combination ã2 of the

axions (a−, a3) as the axionic direction absorbed by the U(1)a gauge boson which acquires

a Stückelberg mass of the order:

Ma =

√
3b1
2a`

1

ετ2
`

√
(p1)2 + (p2)2Ms. (3.92)

The orthogonal linear combination ã1 of (a−, a3) then survives as the inflaton candidate

coupling to the non-Abelian gauge group with an axion decay constant (2.54) given by:

fã1 =

√
3b1
2a`

1

ετ2
`

√
(p1)2 + (p2)2∣∣p1m2

b −m1
bp

2
∣∣Ms. (3.93)

Large axion decay constants (fã1 � Ms) can be found in regions of the parameter space

where p1m2
b −m1

bp
2 asymptotes to zero:

f1
an

1
am

2
b ' m1

bf
2
an

2
a. (3.94)

At first sight this condition seems rather restrictive, but it should actually be combined with

the isotropy relations in (3.80). By relaxing the latter conditions, a trans-Planckian decay

constant is realized for a sufficiently high string scale Ms ∼ O(1016–1017) GeV, provided

that the following isotropy relation between the volumes τ1 and τ2 of the small four-cycles

is valid:
τ1

τ2
'
b21
(
m2
b +m1

b

)2 (
f2
an

2
a − f1

an
1
a

)2
b22
(
m2
b −m1

b

)2
(f2
an

2
a + f1

an
1
a)

2
. (3.95)

In this expression b1 and b2 are constants fixed by the geometry of the internal space, mi
b,

nia and f ia are integer (or at most rational) parameters which can be freely chosen. This

latter isotropy condition seems more flexible and easier to satisfy from a model building

perspective than the one in (3.94), but we have to keep in mind that the Kähler moduli are

constrained to lie within the Kähler cone such that the volumes of all curves and four-cycles

on X6 are positive. It has to be verified for a specific Swiss-Cheese Calabi-Yau whether the

isotropy condition in (3.95) is compatible with the Kähler cone constraints.

Similar to the D6-branes models in the previous sections, the quantum consistency

of these D7-brane models relies on the vanishing of the RR tadpoles (D3-brane and D7-

brane tadpoles) and the cancelation of mixed anomalies by virtue of the generalized Green-

Schwarz mechanism [98, 99]. Discussing the quantum consistency is facilitated when consid-

ering an explicit Swiss-Cheese Calabi-Yau background with specific orientifold projection,

which we will postpone for future work. Nevertheless, we can already speculate that for

the considered D7-brane configurations all anomalies involving an Abelian gauge factor
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can be canceled through the generalized Green-Schwarz mechanism and a GCS-term is not

required to restore U(1)a gauge invariance. More explicitly, at the intersections between

the a-stack and the b-stack we expect the presence of chiral matter in the bifundamental

representation under the respective gauge groups with multiplicity:

Iab =

∫
X6

(
c1(Fa)− c1(Fb)

)
∧ [γa] ∧ [γb] =

f1
an

1
am

1
b

b21
+
f2
an

2
am

2
b

b22
∈ Z, (3.96)

where c1(Fa,b) corresponds to the first Chern-class of the respective gauge bundles Fa,b
and [γa,b] denote the Poincaré dual two-forms to the respective four-cycles γa,b. Similar

expressions can be written down for the ab′, aa′ and bb′ sectors. The anomaly coefficients

for the triangle diagrams associated to the chiral anomaly match the couplings for the

Green-Schwarz diagrams, such that the sum of both types of diagram equals zero for

the mixed Abelian non-Abelian and the pure Abelian anomalies. The cubic non-Abelian

SU(Nb) gauge anomaly on the other hand vanishes provided that the RR tadpoles vanish.

The presence of a U(1) bundle along γa also induces a moduli-dependent Fayet-

Iliopoulos term ξa:

ξa =
1

T

∫
[γa] ∧ c1(Fa) ∧ J =

1

T

(
n1
af

1
a

b21
t1 +

n2
af

2
a

b22
t2
)
. (3.97)

In combination with the scalar fields φ(i) from the chiral D7-brane sector charged under

U(1)a gauge group with charge q
(i)
a , the associated D-term potential scales as,

VD ∼

(∑
i

q(i)
a

∣∣∣φ(i)
∣∣∣2 − ξa)2

. (3.98)

In order for this D-term to vanish, there exist two possible options: either the FI-term ξa
vanishes, or there is a scalar field (singlet under the SU(Nb) gauge group) whose vacuum

expectation value matches the FI-term. In case neither of the two options can be met, the

non-vanishing D-term potential might indicate that the considered D7-brane configuration

is not supersymmetric. A second issue, absent in the intersecting D6-brane picture but

instrumental for the consistency of the D7-brane models, concerns the presence of Freed-

Witten anomalies, whenever the D7-branes are wrapped on four-cycles which do not admit

a spin structure [100]. In order to cancel the Freed-Witten anomalies associated to non-spin

four-cycles, the internal flux supported by the D-branes has to contain a contribution that

is half-integer quantized.

Once a specific Swiss-Cheese Calabi-Yau is chosen and a consistent D7-brane model is

constructed according to the set-up given above, one has to determine whether there exist

(rigid) Euclidean D3-brane instantons wrapping the four-cycles associated to the axions a1

and a2 and verify that their instanton amplitudes are suppressed with respect to the gauge

instanton responsible for the axion potential. Yet, the biggest and most exciting challenge

in this framework will consist in tying the aforementioned D7-brane configuration to the

mechanisms responsible for stabilizing the volumes τi of the four-cycles, allowing us to find

a dynamical explanation for the isotropy relation (3.95).
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4 Conclusion

In this paper, we proposed a new mechanism to obtain an effective super-Planckian axion

decay constant in theories where the axion periodicities are intrinsically sub-Planckian.

Our mechanism involves neither monodromy nor alignment of the axion decay constants,

but kinetic mixing effects among 2 or more axions. The simplicity of our approach brings

several virtues. First of all, the field range enhancement we obtained with kinetic and

U(1) mixings is not tied to the number of low energy degrees of freedom (such as the

number of axions or the rank of non-Abelian gauge groups). In fact, the simplest model we

presented involves only two axions, a U(1) and a small rank non-Abelian gauge group.24

The simplicity of our scenario further enables us to explicitly integrate out the heavy fields

to obtain an effective single axion lagrangian, providing a minimal realization of natural

inflation. Unlike the alignment mechanism [29], the effective field range in our scenario is

enhanced not by a fine-tuning of discrete parameters, but rather by fine-tuning continuous

moduli-dependent quantities. Thus, the requirement enhancement feff/f & 100 can be

satisfied much more readily. Our mechanism is also different from monodromy inflation in

that there is only a single branch of the potential. Hence, there is no additional requirement

on model building for the tunneling between different branches to be suppressed. While

our scenario applies generally to field theories with multiple axions, it is most naturally

realized in string theory, as exposed by the explicit examples consisting of intersecting D6-

branes in Type IIA and intersecting D7-branes in Type IIB string theory. As is inevitable

in string inflation models, moduli stabilization is a major challenge. While our scenario

may seem to impose additional requirements on moduli stabilization, it is interesting to

note that the effective axion decay constant is enhanced (or reduced) at symmetric points

in the moduli space and thus the tuning needed in fact may be natural from a moduli

stabilization standpoint.

The kinetic and U(1) mixings invoked in this work appear rather generically in string

compactifications. Axions in string theory are typically mixed kinetically (at tree level)

and Stückelberg couplings are in fact a necessity for anomaly cancellation in string theory.

The lagrangian for the multi-axion system considered here is thus more general, and sub-

sumes that of previous proposals. The general lagrangian presented in appendix E thus

provides a well-motivated starting point for further studies of multi-axion inflation, both

in terms of model building and statistical studies. It would be interesting to carry out

a random matrix analysis of an ensemble of lagrangians of the form of eq. (E.1). Other

than inflation, a broader range of axion decay constants made possible by axion mixings

may find applications in other contexts [92]. It would also be interesting to find explicit

string compactifications realizing the inflationary conditions outlined in this work, perhaps

in conjunction with realistic particle physics features. We hope to return to these issues in

future work.

24Some chiral fermions charged under it are also needed but they are there in any case for anomaly

cancellation (their presence is implicit in models that invoke non-perturbative instanton potentials).
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A Scales, conventions and notations

We provide here an overview of various scales appearing throughout the paper. In the first

place, there is the reduced Planck mass MPl, i.e. MPl = (8πGN )−1 ∼ 2.4 × 1018 GeV in

natural units. Secondly, there are the string mass scale Ms and string length `s, which

are both related to the α′ parameter: M−1
s = `s = 2π

√
α′. The ten-dimensional gravity

coupling κ2
10, expansion parameter for the bulk NS-NS action, is in its turn set by the

string length `s:

κ2
10 =

1

4π
(4π2α′)4 =

`8s
4π
. (A.1)

The parameter appearing in the Dirac-Born-Infeld action for a Dp-brane, related to the

D-brane tension and charge, is also set by the string length `s:

µp =
1

(2π)p(α′)(p+1)/2
=

2π

`p+1
s

, (A.2)

where we used the conventions of [82, 101].

Let us also present our conventions regarding differential p-forms defined on an n-

dimensional differentiable manifold M. A differential p-form (or simply p-form) C(p) ∈
Ωp(M) is a totally antisymmetric tensor of type (0, p):

C(p) = Cµ1...µpdx
µ1 . . . dxµp =

1

p!
Cµ1...µpdx

µ1 ∧ . . . ∧ dxµp , (A.3)

where we introduced the local coordinates
(
xµ=1,...,n

)
on M. The differential operator

acting on p-forms is offered by the exterior derivative d : Ωp(M) → Ωp+1(M), acting as

follows in local coordinates:

dC(p) =
1

p!
∂µCν1...νpdx

µ ∧ dxν1 ∧ . . . ∧ dxνp . (A.4)

Some useful properties regarding differential form calculus are:

C(p) ∧D(r) = (−)prD(r) ∧ C(p),

d(C(p) ∧D(r)) = dC(p) ∧D(r) + (−)pC(p) ∧ dD(r).
(A.5)
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In case the differentiable manifold is equipped with a metric ds2 = gµνdxµ ⊗ dxν and

g = det(gµν), we can introduce the Hodge star ?(n) as the linear map Ωp(M)→ Ωn−p(M)

between the space of p-form and space of (n− p)-form on M,

?(n) (dxµ1 ∧ . . . ∧ dxµp) =

√
|g|

(n− p)!
gµ1ρ1 · · · gµpρpε(n)

ρ1...ρpνp+1...νndxνp+1 ∧ . . . ∧ dxνn , (A.6)

such that the action of the Hodge star on a p-form leads to the following expression for the

(n− p)-form in local coordinates:

?(n) C(p) =

√
|g|

p!(n− p)!
Cµ1...µpg

µ1ρ1 · · · gµpρpε(n)
ρ1...ρpνp+1...νndxνp+1 ∧ . . . ∧ dxνn . (A.7)

The invariant volume element can also be written using the Hodge star:

?(n) 1 =

√
|g|
n!

εµ1...µndxµ1 ∧ . . . ∧ dxµn =
√
|g|dx1 ∧ . . . ∧ dxn. (A.8)

The Hodge star and the differential form language is most convenient to write down the

kinetic parts for p-forms in a compact way:∫
M
C(p) ∧ ?nC(p) =

∫
M

1

p!(n− p)!
Cµ1...µpC

µ1...µp
√
|g|dnx. (A.9)

The language of differential forms is extremely suited for gauge theories, both Abelian

as well as non-Abelian. We will limit our expressions to four dimensions, but they can be

generalized without any problem to other dimensions. For the Abelian gauge symmetry

in this paper we denote the field strength by F and the gauge potential by A, such that

F = dA. The kinetic terms for the Abelian gauge fields read in differential form language:∫
M
F ∧ ?4F =

∫
M

d4x
√
|g| 1

4
FµνF

µν . (A.10)

For a non-Abelian gauge group we first introduce a set of generators Ta spanning a Lie

algebra [Ta, Tb] = ifab
c Tc and satisfying Tr(TaTb) = 1

2δab. The gauge potential B = BaTa
corresponds to a set of one-forms transforming in the adjoint representation of the Lie

algebra. The field strength G for a non-Abelian gauge theory can also be defined in terms

of the gauge potential B as:

G = dB +B ∧B, (A.11)

or equivalently in local coordinates Gµν = ∂µBν − ∂νBµ + [Bµ, Bν ]. The kinetic terms for

the non-Abelian gauge fields can also be expressed elegantly by using differential forms:∫
M

Tr(G ∧ ?4G) =

∫
M

d4x
√
|g| 1

4
Tr(GµνG

µν) . (A.12)

For a non-Abelian gauge theory in four dimensions we can introduce the Chern-Simons

three-form Ω, defined as

Ω ≡ Tr

(
G ∧B − 1

3
B ∧B ∧B

)
, (A.13)

such that the closure of the three-form corresponds to the second Chern character associated

to the gauge potential B:

dΩ = Tr (G ∧G) . (A.14)

– 54 –



J
H
E
P
0
6
(
2
0
1
5
)
0
2
6

We can also treat these expressions in local coordinates, for which the Chern-Simons 3-form

is given by,

Ωµνρ =
1

3
Tr

({
GµνBρ −

1

6
[Bµ, Bν ]Bρ

}
+ cyclic permutations in (µ, ρ, ν)

)
. (A.15)

We finish this section with a couple of relations which will allow us to expose the

relation between the topological charge density Tr(G ∧ G) and the generalized Chern-

Simons term introduced in section 2.2.1. The topological charge density reads in local

coordinates: ∫
M

Tr(G ∧G) =

∫
M

d4x
1

4
εµνρσTr(GµνGρσ) (A.16)

=

∫
M

d4x εµνρσ∂µTr

(
Bν∂ρBσ +

2

3
BνBρBσ

)
. (A.17)

The generalized Chern-Simons term (2.70) on the other hand reads in local coordinates:∫
M
A ∧ Ω =

∫
M
d4x εµνρσAµΩνρσ (A.18)

=

∫
M

d4x εµνρσAµ
1

3
× 3× Tr

(
GνρBσ −

1

3
[Bν , Bρ]Bσ

)
(A.19)

= 2

∫
M

d4x εµνρσAµTr

(
Bν∂ρBσ +

2

3
BνBρBσ

)
, (A.20)

from which one can see the resemblance with the expression for the topological charge

density in local coordinates.

For the reader not accustomed to the differential form language, we spell out the action

in (2.1) in local coordinate form:

Seff
axion =

∫
d4x
√
|g|

−1

2

N∑
i,j=1

Gijgµν
(
∂µa

i − kiAµ
) (
∂νa

j − kjAν
)
− 1

4g2
1

FµνF
µν

− 1

4g2
2

Tr(GµνG
µν) +

1

32π2

(
N∑
i=1

ria
i

)
εµνρσTr(GµνGρσ)

]
, (A.21)

where gµν now represents the metric on the four-dimensional spacetime with metric signa-

ture (−+ ++).

B Some considerations about axions

An axion is a CP-odd scalar degree of freedom with a classical continuous shift symmetry

a→ a+ ε, with ε ∈ R. Non-perturbative effects are expected to break the shift symmetry,

in which case the continuous symmetry reduces to a discrete shift symmetry. In the vast

literature on axions one will find that there exist two different ways of representing the
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lagrangian for an axion:

rep (1): S(1) ⊃

∫ [
−1

2
da ∧ ?4da+

a

8π2fa
Tr(G ∧G)

]
with: a→ a+ 2πfa,

rep (2): S(2) ⊃

∫ [
−1

2
f2
a dα ∧ ?4dα+

α

8π2
Tr(G ∧G)

]
with: α→ α+ 2π.

(B.1)

Representation scheme (1) is very characteristic for field theory discussions, while represen-

tation scheme (2) is inherent to four dimensional reductions of string theories. Nevertheless,

the specific form of the action is always determined by the shift symmetry. Classically an

axion can couple to matter only through derivative terms of the form Jµ(X)∂µa, where

Jµ(X) corresponds to a pseudo-vector depending on other matter fields X, as imposed by

the shift symmetry. The topological term Tr(G ∧ G), responsible for the breaking of the

shift symmetry, is characteristic for non-perturbative effects in non-Abelian gauge theories

and can be related to the Pontryagin index (in case of strong interactions it corresponds

to the QCD instanton number):25

In =
1

8π2

∫
d4xTr(G ∧G) =

1

16π2

∫
d4x εµναβTr(GµνGαβ) ∈ Z. (B.3)

The generating functional (or partition function) for the gauge theory coupled to the axion

is given by (with external sources set to zero):

rep (1):

∫
DaDAµ e

iS(1)
kin+i

∫
a

8π2fa
Tr(G∧G)

,

rep (2):

∫
DαDAµ eiS

(2)
kin+i

∫
α

8π2 Tr(G∧G),

(B.4)

where Skin denotes the kinetic part of the action for the gluon field as well as the axion:

rep (1): S(1)
kin =

∫ [
− 1

g2
Tr(G ∧ ?4G)− 1

2
da ∧ ?4da

]
,

rep (2): S(2)
kin =

∫ [
− 1

g2
Tr(G ∧ ?4G)− 1

2
f2
adα ∧ ?4dα

]
.

(B.5)

The form of the shift symmetry in both representation schemes (B.1) now follows from

considerations regarding the required invariance of the path integral: the discrete shift

symmetry has to be defined in such a way that the exponent in the path integral transforms

as ei... → ei...+i 2πIn , implying the invariance of the partition function. One can easily switch

between the two representations through the rescaling:

a = fa α, (B.6)

25The conventions are chosen in correspondence with appendix A such that:

G =
1

2
Gµνdx

µ ∧ dxν , G̃µν =
1

2
εµναβG

αβ TrG(TaTb) =
1

2
δab. (B.2)
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which has obviously consequences for the mass dimensions of the fields:

[a] = M, [fa] = M, [α] = M0. (B.7)

Both representations schemes yield the same axion decay constant and are fully equivalent

to each other.

Reading off the correct axion decay constant can become rather tricky in the presence

of kinetic mixing among axions, as discussed in section 2 where we are required to perform

a set of SO(2) transformations to obtain a diagonalized form for the kinetic terms of the

axions. It is therefore of utmost importance to keep the representation schemes in mind

and to ensure that expressions are written in the same representation scheme to read off

the axion decay constant correctly. One can easily argue that the axion measure remains

invariant under an SO(2) rotation, such that the path integral does not alter when changing

the axion basis through an SO(2) rotation. When determining the axion decay constants

in case of kinetic mixing one should however assume one of the representation schemes

above and stick with it all the way to the end.

In summary, the (effective) axion decay constant can only be consistently determined

in an axion basis where both kinetic terms and mass terms are diagonalized, see for in-

stance 2.1. And depending on which representation scheme assumed, the axion decay

constant can be read off as the eigenvalue of the diagonalized metric in the kinetic term

(representation scheme 2), or as the dimensionful coupling suppressing the anomalous cou-

pling of an axion to a nonperturbative instanton correction (representation scheme 1). In

the presence of multiple instanton corrections, as in section 2.1.1, one can distinguish an

axion decay constant for each nonperturbative contribution. In this situation representa-

tion scheme 1 is the preferred representation scheme to read off the axion decay constants

per instanton seperately. Of course, in order to determine the effective axion decay con-

stants, one has to find an axion basis in which the mass matrix arising from the multiple

instanton corrections is diagonalized.

C Chiral rotations and axion potentials

In this appendix we gather some useful properties involving chiral rotations in the path

integral and additional information about the emergence of the cosine-potential of the

axion. These useful background results have been used in the main text, but were omitted

in order to keep up with the main storyline of the paper. More details can be found in

textbooks [102] and review literature on anomalies [103].

Let us first have a look at the effects of chiral rotations in the path integral. Considering

the chiral spectrum in equation (2.66) we can write down the gauge-invariant lagrangian

for the chiral fermions (in Minkowski spacetime) as follows,

Lfermion = ψ
i
L i
(
/∂ − iqiL /A− i /B

a
T
Ri1
a

)
ψiL + ψ

i
R i
(
/∂ − iqiR /A− i /B

a
T
Ri2
a

)
ψiR, (C.1)

where we used the common notation /C = γµCµ to denote the contraction with the Dirac

γ-matrices. Under a chiral transformation of the type,

ψiL → ei q
i
Lã

2
ψiL, ψiR → ei q

i
Rã

2
ψiR, (C.2)
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the fermionic path integral measure is not invariant and by using Fujikawa’s method [104]

one can show that the non-invariance corresponds to the inclusion of an anomaly term:

Leff
fermion = Lfermion + ã2

(
∂µJ µψ +

1

32π2
AmixεµνρσTr(GµνGρσ)

)
(C.3)

besides the Jψ current term for which the current is given in equation (2.78). These con-

siderations have been used to derive the action (2.77) in the unitary gauge. Notice that

the second part corresponds to the Adler-Bell-Jackiw anomaly equation given in equa-

tion (2.80), which expresses the violation of a chiral U(1) symmetry at the quantum level

due to instanton contributions.

In the configurations of sections 2.2 and 2.3 the rôle of the chiral U(1) symmetry

is played by the Abelian symmetry under which the axions and the chiral fermions are

charged. This set-up is very reminiscent of QCD, where the axial U(1)A symmetry is spon-

taneously broken due to the presence of the chiral anomaly. In this respect we can exploit

many of the well known results and translate them to our set-up. Assuming that the non-

Abelian gauge theory develops a strong gauge coupling, the chiral fermions with spectrum

given in (2.66) condense into mesonic-like states. The condensate is also responsible for

the generation of effective masses for the mesons. Indeed the four-point couplings in (2.83)

among the fermions, following from integrating out the massive U(1) gauge field, yield

effective masses of the order Ξ3/f2
ã2 , where Ξ is the characteristic scale of the condensate.

The calculation of the axion potential for the axion ã1 not absorbed by the gauge boson

can now be done in analogy with the computation of the QCD axion potential. Namely,

by integrating out the heavy mesons using non-linear sigma-models techniques, one finds

a cosine-potential of the form:

Vaxion

(
ã1
)

= Λ4

[
1− cos

(
ã1

fã1

)]
, (C.4)

with the axion decay constant fã1 given in (2.54) and the scale Λ depending on the dimen-

sionful ratio Ξ3/f2
ã2 . A more detailed analysis of an explicit model is however required to

determine the functional dependence of the scale Λ on Ξ3/f2
ã2 .

Nonperturbative corrections associated to gaugino condensation share various physical

properties with the previous setting. In case a supersymmetric gauge theory runs to strong

coupling, the vacuum also consists of a condensate but now formed by bilinears of the

gaugini. This gaugino condensate breaks the U(1)R symmetry and the Adler-Bell-Jackiw

anomaly equation is now valid for the R-current with the anomaly coefficient A proportional

to the rank N of the SU(N) gauge group. By integrating out the non-Abelian SU(N) gauge

bosons and the gaugini one obtains a nonperturbative correction to the superpotential:

W =Wper +Ae−
2π
N
T , (C.5)

where T is a chiral superfield appearing in the gauge kinetic function. In the case of rigid

supersymmetry this field is considered as a background superfield, whereas in string theory

the field T is promoted to a chiral superfield in which one of the moduli (Kähler or complex

structure moduli fields) resides. The coefficient A is then a function of other moduli that
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are already assumed to be stabilised. More explicitly, we write the scalar components of the

superfield T as t+ i a, where t is the CP-even real modulus field and a is its CP-odd scalar

partner, and assume for simplicity that the modulus field has a no-scale Kähler potential:

K(T, T ) = −3 ln(T + T ). (C.6)

Inserting the superpotential and no-scale Kähler potential in the F-term scalar potential

of N = 1 supergravity one obtains a cosine-type potential:

Vaxion(a) =
8π

N

〈t〉
T 2
|A| |Wper| e−2 π

N
t cos

(
2π

N
a+ iγ

)
, (C.7)

with γ = Arg (WperA
∗), T the dimensionless volume of the internal space as introduced in

equation (3.10) and 〈t〉 the stabilised vev of the modulus t.

D Dualization procedure for two-forms in four dimensions

In this appendix, we review the dualization procedure for the Stückelberg mechanism

expressed in terms of the two-forms D(2)i as they arise from dimensional reduction in

section 3.2. Let us for purposes of clarity consider such systems in a somewhat simplified

set-up, with one axion a and one dual 2-form D and in the absence of a gauge field. For

such a system the original action can be written as:

Sorig = −
∫

1

2c
dD ∧ ?4dD +

c

2
da ∧ ?4da. (D.1)

The two-form and axion are known to be related by the Hodge-duality relation:

?4 dD = c da, or equivalently, dD = c ?4 da. (D.2)

Turning to a first order formalism, we have to write the action in terms of a three-form H

and we do it in such a way that the field a serves as a Lagrange multiplier:

S(1) = −
∫

1

2c
H ∧ ?4H −

1

2
a dH − 1

2
H ∧ da . (D.3)

Varying the first order action yields the following equations:

δa : dH = 0 H = dD (locally),

δH : ?4H = c da d(?4da) = 0 (e.o.m. for a).
(D.4)

The first equation of motion corresponds to the Bianchi identity for H, which can be

solved locally in terms of a two-form D. The second equation of motion expresses the

Hodge-duality relation. Imposing first the Bianchi identity for H allows us to reproduce

the original action:

Sorig = −
∫

1

2c
dD ∧ ?4dD − 1

2
dD ∧ da, (D.5)
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provided we impose the Hodge-duality relation dD = c ?4 da afterwards as well. Imposing

on the other hand first the Hodge-duality relation eliminates the three-form from the action

in favor of the axion a:

Sdual = −
∫

c

2
da ∧ ?4da. (D.6)

The Bianchi identity for H reduces to the equations of motion for a upon imposing the

duality relation.

Next, we add a source term to the original action involving a U(1) gauge symmetry

with gauge potential A:

Sorig = −
∫

1

2c
dD ∧ ?4dD +

c

2
da ∧ ?4da−mH ∧A. (D.7)

A straightforward generalization of (D.3) yields the following parent action in the first

order formalism upon inclusion of the gauge potential:

S(1) = −
∫

1

2c
H ∧ ?4H −

1

2
a dH − 1

2
H ∧ da−mH ∧A (D.8)

for which the equations of motion now read:

δa : dH = 0 H = dD (locally),

δH : ?4H = c(da+mA) d(?4(da+mA)) = 0 (e.o.m. for a).
(D.9)

The first equation of motion corresponds again to the Bianchi identity for H, while the

second one expresses a more involved Hodge-duality relation. Imposing the Bianchi identity

first brings us back to the original action:

Sorig = −
∫

1

2c
dD ∧ ?4dD +

c

2
da ∧ ?4da−mH ∧A− c

2
m d(?4A)a, (D.10)

with an additional term which vanishes upon imposing (by hand) the Lorenz gauge condi-

tion for the gauge field: d(?4A) = 0. On the other hand, imposing first the Hodge-duality

relation brings us to the dual action, where the two-form B is eliminated:

Sdual = −
∫

c

2
(da+mA) ∧ ?4 (da+mA) , (D.11)

and the axion is now charged under the U(1) gauge symmetry in the form of a Stückelberg

mass term.

E Generalization to multiple U(1)’s and multiple gauge instantons

In this appendix, we generalize the N -axion system (2.1) by including M U(1) gauge fields

Aa under which the axions are charged through Stückelberg terms and adding anomalous
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coupling terms associated to P non-Abelian gauge groups with gauge potentials BA. The

full action then reads,

Seff =

∫ −1

2

N∑
i,j=1

Gij

(
dai −

M∑
α=1

kiαA
α

)
∧ ?4

daj −
M∑
β=1

kjβ A
β

− M∑
α,β=1

fαβ F
α ∧ ?4F

β

−
P∑
A=1

1

g2
A

TrGA ∧ ?4G
A +

1

8π2

P∑
A=1

TrGA ∧GA
(

N∑
i=1

siA a
i

)

+
1

8π2

M∑
α,β=1

Fα ∧ F β
(

N∑
i=1

riαβ a
i

)+ Sfermion + SGCS. (E.1)

The Abelian and non-Abelian field strengths are respectively given by:

Fα = dAα, GA = dBA +BA ∧BA, (E.2)

and the Abelian gauge kinetic function fab is generically non-diagonal. We start in a basis

such that the “axion charges” kiα, matter charges and the model-dependent parameters riαβ
and siA are all integers. The metric G on the axion space is of mass dimension 2. Supposing

that the U(1) mass (squared) matrix,

(M2)αβ = Gij kiα k
j
β = (kT · G · k)αβ , (E.3)

has rank R ≤ M , we identify R massive U(1) gauge fields and (M − R) massless U(1)

gauge fields in the mass eigenbasis. Furthermore, we have to assume N > R, so that R

axions turn into the longitudinal components of the massive U(1) fields and (N−R) axions

will remain uncharged under those massive U(1) gauge fields. Note that the anomalous

coupling terms are not U(1) gauge-invariant. Thus generalized Chern-Simons terms (GCS)

and chiral fermions are introduced (accompanied by anomalous triangle diagrams) as well

to ensure the invariance under U(1) transformations and the non-Abelian gauge invariance

as discussed in section 2.2.1. In order to make the Stückelberg mechanisms appearing in

the action (E.1) more explicit and before we can read off the axion field ranges, we need

to transform the basis for the axions and U(1) gauge bosons in such a way that:

(a) the U(1) gauge bosons are expressed in a basis reflecting their mass eigenstates;

(b) R axions are identified as the axionic directions eaten by the R massive U(1) bosons,

while the (N −R) orthogonal axionic directions remain uncharged under the massive

U(1) gauge symmetries;

(c) the kinetic terms for the axions and the U(1) gauge bosons are expressed in a basis

for which they take the canonical form.

In order to find such a basis, we have to perform four different orthogonal transformations:

1. Perform an orthogonal transformation on the space of U(1) gauge bosons to bring

the abelian gauge kinetic matrix [fαβ ] to a diagonal form:

OT1 · [fαβ ] ·O1 = diag
(
g−2

1 , . . . , g−2
M

)
≡ D2

1, (E.4)
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expressed in the new basis ~A′ which is related to the original basis ~A through the

SO(M) transformation:
~A′ = OT1 · ~A. (E.5)

In order to bring the diagonalized gauge kinetic matrix to the canonical form, we

perform a rescaling transformation on the U(1) space:

D−1
1 ·D

2
1 ·D−1

1 = I, (E.6)

with
~A′′ = D1 · ~A′. (E.7)

2. Perform an additional orthogonal transformation on the space of U(1) gauge bosons

to diagonalize the mass matrix (E.3) in terms of the mass eigenstates:

OT2 ·D−1
1 ·O

T
1 · kT · G · k ·O1 ·D−1

1 ·O2 = diag
(
M2

1 , . . . , M
2
M

)
, (E.8)

now expressed in the basis ~A′′′ related to the previous basis ~A′′ via the orthogonal

SO(M) transformation:
~A′′′ = OT2 · ~A′′. (E.9)

The diagonal matrix in (E.8) allows to identify the M−R massless U(1) gauge bosons

characterised by vanishing mass eigenstates:

M2
R+1 = . . . = M2

M = 0, (E.10)

and distinguish them from the R massive U(1) gauge bosons with non-vanishing mass

eigenstates:

M2
i 6= 0, ∀ i ∈ {1, . . . , R}. (E.11)

3. Perform an orthogonal transformation on the axion space to diagonalize the axion

moduli space metric Gij with eigenvalues f2
i along the diagonal entries:

OT3 · G ·O3 = diag
(
f2

1 , . . . , f
2
N

)
≡ D2

2, (E.12)

where the axion basis ~a′ relates to the original axion basis ~a through the SO(N)

transformation:

~a′ = OT3 · ~a. (E.13)

The eigenvalues fi with mass dimension M1 can be interpreted as axion decay con-

stants in the fundamental domain. Notice that at this stage, the axions ~a′ are scalar

fields with mass dimension M0 expressed in representation scheme 2. A transition

to representation scheme 1, where the axions have mass dimension M1, can be made

through a rescaling of the basis ~a′:

~a′′ = D2 · ~a′. (E.14)
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4. Perform an additional SO(N) transformation on the axion space such that R axions

become the longitudinal components of the R massive U(1) gauge bosons in this new

basis (denoted as Stückelberg axions in the following) while the orthogonal (N −R)

axionic directions remain as uncharged axions:

~a′′′ = OT4 · ~a′′. (E.15)

In the bases ~a′′′ and ~A′′′ satisfying the conditions (a)-(c) stated above, the kinetic terms

for the axions can be written as follows,

Seff,kin
axion 3 −

∫
1

2

N−R∑
i=1

da′′′i ∧ ?4da′′′i

+
1

2

N∑
i=N−R+1

[
da′′′i −

(
OT4 ·D2 ·OT3 · k ·O1 ·D−1

1 ·O2

)i
α
·A′′′α

]
∧ ?4

[
da′′′i −

(
OT4 ·D2 ·OT3 · k ·O1 ·D−1

1 ·O2

)i
β
·A′′′β

]
. (E.16)

The orthogonal matrix O4 has to satisfy a “chargeless” condition for each of the (N − R)

uncharged axions, i.e.

(
OT4 ·D2 ·OT3 · k ·O1 ·D−1

1 ·O2

)i
α

= 0,
∀ i ∈ {1, . . . , N −R},
∀α ∈ {1, . . . , R}.

(E.17)

We immediately point out that the orthogonal matrix O4 does not always exist to satisfy

the chargeless condition (E.17). More explicitly, in case the number of axions N is smaller

than or equal to the number of massive U(1) gauge bosons, it is possible that only the zero

matrix solves the chargeless condition (E.17).26

If we choose an appropriate gauge for each massive U(1) gauge field, such as the

unitary gauge in section 2.2.1, the Stückelberg axions will disappear from the spectrum.

The remaining uncharged axions are expected to couple to the (non-perturbative) effects,

such as the gauge instantonic effects induced by the non-Abelian gauge bosons. In the

26Focusing on the argument in more details, we define an N ×R matrix

Xi
α ≡

(
D2 ·OT3 · k ·O1 ·D−1

1 ·O2

)i
α, i = 1, . . . , N, α = 1, . . . , R. (E.18)

For a given i ∈ {1, 2, . . . , N − R}, the chargeless condition is now a set of R linear equations with N

unknowns, 
X1

1 X2
1 . . . XN

1

X1
2 X2

2 . . . XN
2

. . . . . .

X1
R X2

R . . . XN
R




(O4)1i

(O4)2i

. . .

(O4)Ni

 = 0. (E.19)

The condition to have non-zero solutions to these linear equations is

rank (X) < N. (E.20)

Since rank (XN×R) ≤ min (R, N), when R < N , (E.19) always has nontrivial solutions, but when

R ≥ N (E.19) may only be solved by a trivial solution, namely the zero-matrix for O4.
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eigenbases ~a′′′ and ~A′′′, the anomalous couplings of the uncharged axions to the topological

terms are given by,

Seff,anom
axion =

∫
1

8π2

P∑
A=1

TrGA ∧GA
N−R∑

k=1

N∑
i,j=1

siAO
ij
3

1

fj
Ojk4 a′′′k

 . (E.21)

From this expression, one can now deduce that the kth axionic direction a′′′k couples anoma-

lously to non-Abelian gauge group associated to gauge potential BA with a decay constant

f ′′′Ak given by:

f ′′′Ak =

 N∑
i,j=1

siAO
ij
3

1

fj
Ojk4

−1

. (E.22)

By integrating out the non-Abelian degrees of freedom as discussed in appendix C, the

effective axion potential generated by the non-perturbative effects takes the cosine-form

for each separate non-Abelian gauge group:

V =

P∑
A=1

Λ4
A

(
1− cos

N−R∑
i=1

a′′′i

f ′′′Ai

)
. (E.23)

On top of this linear combination, higher-order harmonics and cross-terms might arise,

which we neglect for the moment using similar arguments as the ones put forward in [30].

If each uncharged axion couples to a single gauge instanton, i.e. for a diagonal matrix f ′′′Ak,

a trans-Planckian axion decay constant might arise in regions of the axion moduli space

with a high level of isotropy, analogous to the examples in sections 2.2, 2.3 and 3.3.1.

For configurations where the uncharged axions couple anomalously to the gauge in-

stantons through linear combinations, i.e. for a non-diagonal matrix f ′′′Ak with no hierarchy

among the sub-Planckian decay constants, we can apply a similar analysis as the one pre-

sented in [32]. Under the assumptions in that paper, one linear combination of axions can

be formed corresponding to a nearly flat direction with an effective axion decay constant

scaling as feff ∝
√

(N −R)!nN−R−1, where the parameter n now depends not only on

anomaly coefficients, but also on the discrete U(1) charges inherent to U(1) kinetic mixing

and the continuous parameters resulting from kinetic metric mixing.

In this regard, we should emphasize that the axion decay constants (E.22) might not

be indicative of the effective axion field ranges, because the axions a′′′i do not correspond

to the mass eigenstates for a non-diagonal matrix f ′′′Ak. By expanding the potential (E.23)

around the minimum to the second order, we obtain the mass (squared) matrix for (N−R)

uncharged axions,

m2
NP =


∑

A
Λ4
A

(f ′′′A1)2

∑
A

Λ4
A

f ′′′A1 f
′′′
A2

. . .∑
A

Λ4
A

f ′′′A2 f
′′′
A1

∑
A

Λ4
A

(f ′′′A2)2 . . .

. . .

 , (E.24)

where we assumed for convenience that P = N−R. Hence, a further orthogonal SO(N−R)

transformation needs to be performed to transform those uncharged axions into the mass

eigenbasis,

~a′′′′ = OT5 · ~a′′′, (E.25)
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such that mass matrix diagonalizes to:

OT5 ·m2
NP ·O5 = diag

(
m2

1, . . . , m
2
N−R

)
, (E.26)

where m2
i are eigenvalues of (E.24). The smallest eigenvalue m2

i then corresponds to the

nearly flat direction with axion decay constant feff , which is supposed to play the rôle of

the inflaton. Furthermore, the mass eigenvalue is expected to scale inversely proportional

to feff , or more explicitly m2
flat ∼ f

−2
eff , as discussed in [32].27

F Anomaly-free chiral spectrum

In this appendix, we return to the two-axion system in section 2.2 and present a method

to find a consistent field theory model satisfying the constraints (2.71), (2.72), (2.73)

and (2.74). To this end, we assume that the chiral left-handed and right-handed fermions

in (2.66) correspond to fundamental representations under the non-Abelian SU(N) gauge

group, such that the mixed anomaly coefficient reduces to:

Amix =
1

2

nF∑
i=1

(
qiL − qiR

)
. (F.1)

Provided that the number of left-handed chiral fermions is equal to the number of right-

handed chiral fermions, the pure non-Abelian anomaly (2.73) vanishes trivially. This

leaves us with three conditions to be solved explicitly. Our method to find solutions now

distinguishes between two cases depending on whether the axion ã2 — the longitudinal

component of the massive U(1) gauge boson — couples anomalously to the U(1) field

strength or not:

(1) In the presence of an anomalous ã2F ∧ F term: combining the mixed gauge

anomaly (2.74) with the U(1) gauge invariance constraint (2.71) allows us to reduce

the three remaining constraints to two:

AGCS = Amix !
= − k̃

2

2
= −r1 k

1 + r2 k
2

2
, (F.2)

AU(1)3 !
= −k̃2, (F.3)

where the cubic U(1) anomaly cancelation condition slightly differs from equa-

tion (2.72) due to the presence of the anomalous coupling of ã2 to the Abelian gauge

group. Next, we want to determine the U(1) charges qiL(qiR) of the left(right)-handed

chiral fermions for which the remaining two conditions are satisfied. A possible solu-

tion consists in choosing equally distributed charges such that:

qiL − qiR = −r1 k
1 + r2 k

2

nF
, i = 1, 2, . . . , nF , (F.4)

27We also point out that the potential (E.23) was recognised in [40] in a different axion basis, where the

mass matrix generated by the non-perturbative effects is diagonalized but where the axion kinetic terms

are non-canonical. Nevertheless, the authors of [40] did not take kinetic U(1) mixing into consideration.

Hence, action (E.1) can be seen as the most generic effective action for axions expected to result from string

theory compactifications.
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Overview of Integer Charges

in the Presence of ã2F ∧ F

ν −2 −1 1 2

qiL 1 0 1 −1 0 −1

qiR −1 −1 0 0 1 1

Table 5. Summary of all solutions qL ∈ Z for various integer values of ν, based on eq. (F.6).

for which the mixed anomaly condition (F.2) is trivially satisfied. In order for the

charges to be rational, we assume that nF is a divisor of r1k
1 + r2k

2, such that

r1k
1 + r2k

2 = ν nF with ν ∈ Z0. These considerations allow us to write the cubic

Abelian anomaly cancelation condition as:

nF∑
i=1

(
3(qiL)2 + 3ν qiL + ν2

)
= nF . (F.5)

If we further also assume that all U(1) charges of the left-handed fermions are equal

to each other, i.e. qiL = qL ∀ i ∈ {1, . . . , nF }, we can solve the anomaly constraint for

qL as a function of ν:

qL(ν) =
−3ν ±

√
12− 3ν2

6
. (F.6)

An overview of integer charges for qL as a function of ν is given in table 5, including

the corresponding charges for the right-handed fermions.

For other integer values of ν the charges qL turn out to be complex. Hence, table 5

gives the full set of integer solutions satisfying our aforementioned assumptions and

each choice of charges from table 5 yields a chiral fermionic spectrum for which the

cubic U(1) anomaly vanishes.

(2) In the absence of an anomalous ã2F ∧ F term: also for this case we can reduce the

three remaining constraints to only two conditions:

AGCS = Amix !
= − k̃

2

2
= −r1 k

1 + r2 k
2

2
, (F.7)

AU(1)3 !
= 0, (F.8)

where the cubic U(1) anomaly condition is given by equation (2.72). If we try to

apply the same reasoning as the one used above, the charges qiL as a function of ν

are all complex numbers. Hence, the assumptions that all charge differences qiL − qiR
are equally distributed and that all charges qiL are equal to each other no longer work

in the search for a solution without GCS-term. Instead, we find that nF ≥ 2 and

assume that the charge differences satisfy the relation:

qiL − qiR = ξi, with

nF∑
i=1

ξi = −
(
r1 k

1 + r2 k
2
)
, and ∀ i : ξi ∈ Z0. (F.9)
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This ansatz ensures that the mixed anomaly condition (F.7) is satisfied. Let us now

discuss a method to determine the U(1) charges by looking at the simplest case,

namely nF = 2. Our reasoning will be based on some basic number theory applied

to the charges. To this end, we write the charge differences as,

q1
L − q1

R ≡ n, q2
L − q2

R ≡ m, (F.10)

with n + m = −
(
r1 k

1 + r2 k
2
)
6= 0, and n,m ∈ Z. Inserting (F.10) into the cubic

anomaly constraint (F.8) leads to:

n

[
3
(
q1
R +

n

2

)2
+
n2

4

]
+m

[
3
(
q2
R +

m

2

)2
+
m2

4

]
= 0. (F.11)

In order for this constraint to be satisfied, n and m must have opposite signs, so that

both contributions can cancel each other out. Without losing generality, we choose:

n > 0, m < 0. (F.12)

Note that with some minor algebra equation (F.11) can be re-written as,

3n
(
2q1
R + n

)2
+ 3m

(
2q2
R +m

)2
= −(m+ n)

(
m2 −mn+ n2

)
, (F.13)

from which we can deduce that one of the two factors on the righthand side has to

be divisible by three:

3
∣∣(m+ n) or 3

∣∣ (m2 −mn+ n2
)
. (F.14)

Let us seek a solution for 3|(m+ n) and write:28

m+ n = 3k 6= 0, k ∈ Z. (F.15)

Substituting m for k in the equation (F.13) allows us to write the cubic anomaly

constraint in terms of n and k as,

q1
Rn
(
q1
R + n

)
+ q2

R (3k − n)
(
q2
R + 3k − n

)
= −3k

(
n2 − 3kn+ 3kn

)
. (F.16)

We notice that the left hand side of the equation (F.16) is always even.29 Subse-

quently, we can check that the right hand side of (F.16) can only be even if both n

and k are even. Now let us summarize the constraints for integers n and k:

n > 0, k 6= 0, n > 3k, 2
∣∣n, 2

∣∣k. (F.17)

The minimal n and the maximal k that satisfy the above constrains are:

n = 2, k = −2. (F.18)

28Of course, one may use similar reasonings to obtain a solution in case 3
∣∣(m2 −mn+ n2).

29For arbitrary a, b ∈ Z, it is easy to see that ab(a+ b) is always even.
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Overview of Integer Charges

in the Absence of ã2F ∧ F

q1
R q1

L q2
R q2

L

10 12 9 1

−12 −10 9 1

10 12 −1 −9

−12 −10 −1 −9

Table 6. Summary of all solutions for nF = 2 considering the solution (F.18) and based

upon (F.20).

Substituting (F.18) into the cubic anomaly equation (F.16) yields:(
q1
R + 1

)2 − 4
(
q2
R − 4

)2
= 21, (F.19)

which is solved by 4 integer solutions:{
q1
R + 1 = ±11

q2
R − 4 = ±5.

(F.20)

Having determined the charges qiR, the integers n and k, we consider the charge

difference (F.10) again and find the complete spectra for nF = 2 as listed in table 6.

In all cases, the Stückelberg U(1) charge of the eaten axion is given by:

k̃2 = −3k = 6 6= 0, (F.21)

for the solution considered in equation (F.18).
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[50] P. Anastasopoulos, M. Cvetič, R. Richter and P.K.S. Vaudrevange, String Constraints on

Discrete Symmetries in MSSM Type II Quivers, JHEP 03 (2013) 011 [arXiv:1211.1017]

[INSPIRE].

[51] G. Honecker and W. Staessens, To Tilt or Not To Tilt: Discrete Gauge Symmetries in

Global Intersecting D-brane Models, JHEP 10 (2013) 146 [arXiv:1303.4415] [INSPIRE].
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[81] R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II

Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

[82] L.E. Ibanez and A.M. Uranga, String theory and particle physics: An introduction to string

phenomenology, Cambridge University Press, (2012).
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