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1 Introduction

Recent years have seen much progress in understanding the holographic duality between

3D vector-like theories and Vasiliev’s higher-spin gauge theories in 4D anti-de Sitter space

(AdS4) [1–6].1 According to the Klebanov-Polyakov conjecture, the singlet operators of

the 3D O(N) or U(N) vector model at large N are dual to the Vasiliev higher spin fields in

the bulk AdS4 [17–25].2 The singlet constraint can be dynamically imposed by gauging the

global symmetry and adding a Chern-Simons (CS) kinetic term for the gauge field [22, 30–

32]. The singlet (CS-gauged) vector models constructed in this way are conjectured to be

dual to the parity-violating Vasiliev theory in AdS4.

Singlet vector models can also be studied on higher genus spatial surfaces [33]. In

particular, on a spatial torus, these theories contain a set of states whose energies scale

as 1/N . These states are exactly degenerate at N = ∞, which corresponds to a classical

theory in the bulk. Such light states arise due to the non-trivial dynamics of the CS

theory on spaces with a non-trivial fundamental group [34, 35]; they are not present in the

Vasiliev theories studied before, and remain mysterious from the bulk point of view. Any

bulk theory that is conjectured to be dual to the singlet vector model on the boundary

should be able to accommodate these states.

1There have also been very interesting parallel developments of this story. The dual of the three-

dimensional higher spin gauge theory on AdS3 has been identified as the large-N limit of WN minimal

models in two dimensions [7], and these theories have also been related to a string theory on AdS3 [8] (see

also [9, 10]). The status and applicability of the higher-spin realization of dS/CFT correspondence has also

been fleshed out [11–16].
2Refs. [26–29] have attempted to derive this duality from first principles.
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Ref. [25] has recently made a very interesting proposal of the duality between super-

symmetric versions of Vasiliev theory in the bulk and bifundamental CS-matter theory

on the boundary with a simply connected spatial manifold. In this paper we supplement

their results by studying a simple, non-supersymmetric bifundamental CS-matter model

in various spacetimes. We focus on a theory with the gauge group SU(N)k × SU(M)−k,

where (k,−k) are the levels of the (SU(N),SU(M)) CSterms. The matter is a scalar field

transforming in the bifundamental representation (N, M̄) of the gauge group, and we work

in the ’t Hooft limit where we take N , M , and k to infinity while keeping λ = N/k and

ξ = M/N fixed. At N =∞, the two regimes of interest are ξ = 0, corresponding to a finite

M , or ξ > 0, corresponding to the double-scaling limit described above. In the bulk, these

two regimes map to regimes of zero and non-zero bulk ’t Hooft coupling, respectively.3 In

the limit when ξ is small the difference from the fundamental vector model with gauge

group SU(N)k is expected to be small. To see finite-M effects as ξ is taken to zero, one

must keep track of O(1/N) corrections in the bifundamental computation, which we do

not do in this paper.

Various aspects of CS theory coupled to fundamental matter have been studied in detail

in [30–33, 36–48]. In section 2 we study, following [25, 31], the non-supersymmetric CS

theory coupled to bifundamental scalar matter. We compute the two-loop β-functions of the

theory and find two lines of fixed points parametrized by the gauge coupling λ. In section 3,

following [33], we study the CS-bifundamental theories on a spatial torus. Encouragingly,

we find that there are no exactly degenerate states in the ’t Hooft limit. Instead, we

find that the gap is proportional to ξ, when ξ is small, and along the way we develop a

straightforward diagrammatic way of arranging the perturbation theory in ξ. Finally, in

the concluding section, we point out how these results suggest that bifundamental theories

can be used to regulate fundamental matter theories by tuning the ratio ξ of the two

ranks in a bifundamental theory. On a spatial torus, by changing ξ one tunes the mass

of the gauge field holonomies and, at ξ ∼ 1/N , transitions into a phase that looks like

the fundamental theory (i.e. the singlet vector model) on a torus. This indicates that the

heretofore mysterious modification of Vasiliev theory that can accommodate for the light

states found in [33] should be attainable as a particular limit of the bulk theory studied

in [25].

A note on conventions is in order. The two papers on which our analysis rests, [31]

and [33], employ different conventions and have slightly different actions. In order to be

able to check that our computations correctly reduce to the results of these two papers, we

work with different actions in different sections of this paper; in each section we follow the

conventions of its guiding reference.

2 Perturbative fixed points

We consider an SU(N)k × SU(M)−k Euclidean CS theory coupled to scalars in the bifun-

damental representation (N, M̄). Without loss of generality we will take M ≤ N . The

3This is so because, in the bulk, the SU(M) group can be understood as a gauge group with gauge

coupling 1/N . Please see [25] for further details.
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partition function of our theory is

Z =

∫
[dAdB dφ]e−S , (2.1)

and the action that contains all the marginal terms is

S =
ik

8π

∫
TrN

(
AdA+

2i

3
A3

)
− ik

8π

∫
TrM

(
BdB +

2i

3
B3

)
+

∫
d3x TrM

(
(Dµφ)†Dµφ

)
+

∫
d3x

{
g1
3

TrM (φ†φ)3 +
g2
2

TrM (φ†φ) TrM (φ†φ)2 +
g3
6

[
TrM (φ†φ)

]3}
. (2.2)

The covariant derivative is

Dµφ = ∂µφ− iAµφ+ iφBµ . (2.3)

The bifundamental scalar, φ, is an N ×M matrix transforming as φ 7→ UφV † for U ∈
SU(N), V ∈ SU(M), and A and B are Hermitian connections transforming as A 7→
UAU † + iUdU † and B 7→ V BV † + iV dV †. The traces TrN/M are taken in the funda-

mental representations of SU(N) and SU(M), respectively. Lie algebra conventions and

the Feynman rules stemming from this action are collected in appendix A.

In this section we perform the fixed point analysis of the ’t Hooft limit perturbatively

in λ = N/k. We work to two-loop order, closely following the work of [31]. The CS coupling

g2 = 4π/k is quantized and does not run under RG flows; hence we only need to compute

the β-functions for g1, g2, and g3. These are found by computing the two-loop amplitude

M =
〈
φ†ii′φjj′φ

†
kk′φll′φ

†
mm′φnn′

〉
(2.4)

when all external momenta are zero. At tree level, this amplitude is given by,

Mtree = −g1(δi′j′δjkδk′l′δlmδm′n′δni + 11 permutations)−
− g2(δi′j′δjkδk′l′δliδm′n′δnm + 17 permutations)−
− g3(δi′j′δjiδk′l′δlkδm′n′δnm + 5 permutations) . (2.5)

Once loop corrections are introduced, the amplitude must be regulated by counterterms

δgi(µ) multiplying the above tensor structures. These counterterms depend on the sub-

traction scale µ and can be used to extract the β-functions βi of all three couplings. We

will use dimensional reduction4 to regulate the UV divergences, and we will work in the

minimal subtraction scheme.

Despite the apparent complexity of this computation, Aharony et al. have shown that,

remarkably, only eight diagrams need to be computed when dealing with fundamental

CS-matter to two-loop order [31].5 The same argument goes through for bifundamental

CS-matter (figure 1). The additional complication in our case is the existence of two gauge

4The CS term cannot be written in general d 6= 3 dimensions, and so the standard dimensional regular-

ization cannot be applied to CS-matter theories. Instead, one uses the dimensional reduction scheme where

the tensor algebra appearing in the Feynman integrals is done in three dimensions and then the resulting

scalar integral is analytically continued to general space dimensions. This preserves gauge invariance at

least up to two loops. See [40] for details.
5In an earlier version of this paper, a diagram that is zero for O(N) was mistakenly concluded to be

zero for U(N), based on the findings in [31]. We thank Guy Gur-Ari and Raghu Mahajan for extensive

discussions that have clarified this issue.
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(A1) (A2) (A3) (A4)

(A7)(A5) (A6) (A8)

Figure 1. The Feynman diagrams that contribute to the flowing of six-point couplings at two

loops. This representation is schematic. Each six-point coupling in diagrams (A1), (A4), and (A8)

must be treated as a single-, double-, or triple-trace coupling in turn. Similarly, each gauge boson

must be treated as either an Aµ or a Bµ boson.

fields and two additional multi-trace scalar six-point couplings, so each diagram in the

fundamental matter theory can be thought to generate a number of related diagrams in the

bifundamental theory, each with the same momentum structure but with different index

contractions and multiplicity. These are all straightforward to enumerate and compute.

The Feynman rules are given in appendix A, and applying them gives

(A1) : δg1 = −3g1g
4(N2 +M2)IA1 ,

δg2 = g4
[
2g1(N +M)− 3g2(N

2 +M2 − 4NM)
]
IA1 ,

δg3 = g4
[
24g1 + 12(N +M)g2 − 3g3(N

2 +M2 − 4NM)
]
IA1 , (2.6)

(A2) : δg1 = 3g8(N2 +M2 − 8NM)IA2 , δg2 = 58g8(N +M)IA2 ,

δg3 = −12g8IA2 . (2.7)

(A3) : δg1 = −3g8(N2 +M2)IA3 , δg2 = −2g8(N +M)IA3 ,

δg3 = 12g8IA3 , (2.8)

(A4) : δg1 = 24g1g
4NMIA4 , δg2 = 24g4

(
g1(N +M) + g2NM

)
IA4 ,

δg3 = 24g3g
4NMIA4 , (2.9)

(A5) : δg1 = −48g8NMIA5 , δg2 = 16g8(N +M)IA5 , δg3 = 0 , (2.10)

(A6) : δg1 = 0 , δg2 = −2(N +M)g8IA6 , δg3 = −20g8IA6 , (2.11)

(A7) : δg1 = 0 , δg2 = −20g8(N +M)IA7 , δg3 = −168g8IA7 , (2.12)

(A8) : δg1 = 3g21NMIA8 , δg2 =
(
3g21(N +M) + 4g1g2NM

)
IA8 ,

δg3 = 6
(
g21 + g1g2(N +M) + g22NM

)
IA8 . (2.13)
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The quantities IAi label the dimensionally regulated momentum space integrals, which

evaluate to

IA1=IA2=IA3=IA5=IA8=
1

32π2
1

ε
, IA4=

1

16π2
1

ε
, IA6=− 3

64π2
1

ε
, IA7=

3

64π2
1

ε
.

(2.14)

Now we can switch to the ’t Hooft couplings,

λ = g2N , λ1 = g1N
2, λ2 = g2N

2M , λ3 = g3N
2M2, (2.15)

and find that the counterterms are given by

δλ1 =
3

32π2ε

[
ξλ21 − (1− 16ξ + ξ2)λ1λ

2 − 24 ξλ4
]
,

δλ2 =
1

32π2ε

[
3 ξ(1+ξ)λ21+4 ξλ1λ2+50 ξ(1+ξ)λ1λ

2−3(1−24ξ+ξ2)λ2λ
2+33 ξ(1+ξ)λ4

]
,

δλ3 =
3

32π2ε

[
2 ξ2λ21 + 2 ξ(1 + ξ)λ1λ2 + 2 ξλ22

+ 8 ξ2λ1λ
2 + 4 ξ(1 + ξ)λ2λ

2 − (1− 20ξ + ξ2)λ3λ
2 − 74 ξ2λ4

]
. (2.16)

As a rudimentary check, we notice that taking ξ = 1/N makes the contributions

to δλ1 from diagrams (A2) and (A3) exactly cancel, leaving diagram (A1) as the only

process contributing to the β-function for λ1; the same non-trivial cancellation occurs in

the fundamental CS-matter model. Moreover, in this limit, the counterterms are all the

same, and are given by

δλi = − 3

32π2ε
λiλ

2. (2.17)

This is precisely the leading N behavior found in [31]. This is expected, as each of the

three traces in the action (2.2) should collapse to the usual six-point term for fundamental

matter, (φ†φ)3, and so all three couplings λi should flow in the same way.

The field strength renormalization can be found by computing two-loop corrections to

〈φ†ii′φjj〉. These are given by four diagrams on figure 2, and these are regulated by the

following counterterms [40]:

(B1) : δZ = − g4

24π2
(N2 +M2)

1

ε
, (2.18)

(B2) : δZ =
g4

24π2

(
N2 +M2

4
+ 4NM

)
1

ε
, (2.19)

(B3) : δZ =
g4NM

6π2
1

ε
, (2.20)

(B4) : δZ =
g4NM

12π2
1

ε
. (2.21)

The total counterterm needed, expressed in terms of ’t Hooft couplings, is

δZ = − λ2

96π2ε
(3− 40ξ + 3ξ2) . (2.22)

This result precisely reduces to the leading N result found in [31] when ξ = 1/N .
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(B1) (B2) (B3) (B4)

Figure 2. A schematic depiction of diagrams contributing to the field strength renormalization to

two loops.

The β-functions, βi = µ∂µλi, are now found using standard methods. In dimen-

sional reduction (regularization), the scale independence of the bare six-point couplings

requires that

µ
∂

∂µ

[
µ2ε

λi + δλi
(1 + δZ)3

]
= 0 . (2.23)

This is the renormalization group equation. Differentiating through and setting µ∂µλ =

−ελ (the CS coupling runs with the scale in d− ε dimensions), we find

βi = −2ε

[
δλi − λj

∂(δλi)

∂λj
+ 3λiλj

∂(δZ)

∂λj

]
+ ελ

[
∂(δλi)

∂λ
− 3λi

∂(δZ)

∂λ

]
. (2.24)

Knowing that the counterterms are all quadratic or quartic functions of the couplings

simplifies these expressions down to

βi = 2ε(δλi − 3λiδZ) . (2.25)

Substituting the counterterms (2.16) and (2.22) finally yields

β1 =
ξ

16π2
[
3λ21 + 8λ1λ

2 − 72λ4
]
, (2.26)

β2 =
ξ

16π2
[
3λ21(1 + ξ) + 4λ1λ2 + 50(1 + ξ)λ1λ

2 + 32λ2λ
2 + 33(1 + ξ)λ4

]
, (2.27)

β3 =
ξ

8π2
[
3
(
ξλ21 + λ22 + (1 + ξ)λ1λ2

)
+ 12 ξλ1λ

2 + 6(1 + ξ)λ2λ
2 + 10λ3λ

2 − 111 ξλ4
]
.

(2.28)

In agreement with [31], we find that the β-functions all become suppressed when

ξ = 1/N . At finite ξ, we find two lines of fixed points parametrized by λ and given by

λ∗1 =
2

3

(
− 2±

√
58
)
λ2, (2.29)

λ∗2 = −21

8

4
√

58± 7√
58± 10

λ2(1 + ξ) , (2.30)

λ∗3 = − 1

1920

63(13103∓ 2056
√

58)(1 + ξ2) + (900002∓ 348400
√

58)ξ

(
√

58± 10)2
λ2. (2.31)

These two lines of fixed points are shown on figure 3.

We have found this two-loop fixed line in the large-N limit, but our analysis holds for

any value of the fixed ratio ξ = M/N . It will be interesting to see if this holds to all-loop

– 6 –
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-0.5 l1

l2

l3

Figure 3. Two sets of fixed points parametrized by the ’t Hooft coupling λ in the weak cou-

pling regime at ξ = 1/2. The diagram on the left corresponds to choosing the plus sign in

eqs. (2.29)–(2.31).

order, at least in the large-N limit. We can see that as the ’t Hooft coupling goes to zero

the fixed points approach the trivial value zero, which is consistent with the fact that that

the model has no fixed points in the absence of the CS term.

It is easy to see that, at both fixed point lines, the sign of the λ2 coupling is opposite

that of the other two couplings. Both lines could be stable. To answer that question one

has to compute the Coleman-Weinberg potential and see if the potential is bounded from

below for the specific values of the coupling constants. We will not try to do that in this

paper, but an argument may be given which shows that there is no tachyonic mode —

at least for small values of the ’t Hooft coupling λ. For example, one could compute the

self-energy of the scalar field and look for unphysical poles. In our case the self-energy

at least up to two-loop order does not get any contribution from the six-point couplings,

and so there cannot be a tachyonic pole caused by the negative coupling constants of the

six-point interactions.

In addition, the conformal symmetry may be spontaneously broken. For example, the

conformal symmetry is spontaneously broken in the vector model with only a φ6 interaction

and no CS term, if the coupling constant λ6 is greater than 4π2. It will be interesting to

compute the Coleman-Weinberg potential and study this spontaneous breaking, but we

leave that for future research.

3 No light states on a torus

In this section we change gears and study the low-energy, small-λ limit of the CS-bifun-

damental theory on the torus in a spacetime with Lorentzian signature. Our goal is to

retrieve the spectrum of the theory; our methods closely follow those in [33]. We will see

that this spectrum has no state whose energy vanishes in the ’t Hooft limit. In principle,

one should study the full bifundamental theory with its potential terms. Instead, we will

study the toy theory with only the CS terms and the covariant kinetic terms for the scalar

field. This captures the essential physics at small ’t Hooft coupling and at energy low

compared to the inverse size (KK scale) of the spatial torus.

– 7 –
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3.1 Low-energy effective Hamiltonian

As usual, we canonically quantize in the gauge A0 = B0 = 0, where 0 denotes the time

component. We are interested in low-energy degrees of freedom only, and so we disregard

the spatially varying (non-zero momentum) modes of all of the fields, as these necessarily

have a gap set by the size of the torus.6 This is just dimensional reduction onto a sin-

gle spatial point; naturally, the dimensionally reduced theory is just a form of quantum

mechanics. Its Lagrangian can be written as

L =
k

2π
Tr
(
A1Ȧ2 −B1Ḃ2

)
+ Tr

(
φ̇†φ̇− φ†A2φ− φB2φ† + 2AiφBiφ

†) . (3.1)

Note that the minus signs in the φ2A2 terms come from our choice of the metric convention

(mostly minus). From here on, we treat all variables (Ai, Bi, and φ, with i = 1, 2 and

A2 = AiAi = A2
1 + A2

2) as matrices of c- or q-numbers, and we drop the indices on the

traces. Moreover, to compactify notation, we write the sum of traces as a trace of a sum,

even when the matrices in this sum are not all of the same dimension.

In [33], a simpler version of this model — the one arising from the theory of fundamental

scalars coupled to one gauge field — was studied by canonical quantization, treating the

φ†A2
iφ term perturbatively in 1/N . This method readily gives the spectrum of the theory,

and we will follow the same approach here. We will also develop a formal justification for

using perturbation theory.

Letting g2 ≡ 4π/k, we choose the canonical variables defined by

A1 ≡
g√
2
PaT

a, A2 ≡
g√
2
QaT

a, B1 ≡
g√
2
PαT

α, B2 ≡ −
g√
2
QαT

α. (3.2)

We use a, b, etc. to denote generators of SU(N), and α, β, etc. to denote generators of

SU(M). The Hamiltonian is

H = Tr
(
π†π

)
+

1

2
g2(PaPb +QaQb)M

ab(φ)

+
1

2
g2(PαPβ +QαQβ)Mαβ(φ) + g2(PaPα −QaQα)Maα(φ) , (3.3)

with

Mab(φ) ≡ Tr
(
φ†T aT bφ

)
, (3.4)

Mαβ(φ) ≡ Tr
(
φTαT βφ†

)
, (3.5)

Maα(φ) ≡ Tr
(
T aφTαφ†

)
. (3.6)

It is useful to switch to variables that will give the ladder operators upon quantization,

and so we let

Pa ≡
1√
2

(
c†a + ca

)
, Qa ≡

1

i
√

2

(
c†a − ca

)
, (3.7)

Pα ≡
1√
2

(
d†α + dα

)
, Qα ≡

1

i
√

2

(
d†α − dα

)
. (3.8)

6See [33] for a detailed discussion on the justification of this process.
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The Hamiltonian becomes

H = Tr
(
π†π

)
+

1

2
g2
(
cac
†
b + c†acb

)
Mab(φ)

+
1

2
g2
(
dαd

†
β + d†αdβ

)
Mαβ(φ) + g2

(
c†ad
†
α + cadα

)
Maα(φ) . (3.9)

Notice that the choice of a negative level for the SU(M) CS action translates into the last

term of the Hamiltonian above. This term allows for simultaneous creation of SU(N) and

SU(M) holonomies. In other words, the conserved quantum number of “particles” created

by the ca’s and dα’s will be the difference (rather than the sum) of numbers of “particles”

of each species.

To quantize the holonomy degrees of freedom, we impose

[ca, c
†
b] = δab , [dα, d

†
β] = δαβ . (3.10)

Using T aT a = C2(N) for SU(N) (or for any simple group) and likewise for SU(M), the

normal-ordered Hamiltonian becomes

H = Tr
(
π†π

)
+

1

2
g2
(
C2(N) + C2(M)

)
Tr
(
φ†φ
)

+ g2 c†acb Mab(φ) + g2 d†αdβ Mαβ(φ) + g2
(
c†ad
†
α + cadα

)
Maα(φ) , (3.11)

and we see that the scalar fields will acquire a mass due to the vacuum energy of the

holonomies. This mass is set by

m2 ≡ 1

2
g2
(
C2(N) + C2(M)

)
=

2π

k

(
C2(N) + C2(M)

)
. (3.12)

The mass of the holonomy excitations will be set by the vacuum energy of the scalar

excitations, and to find it we must quantize the scalars as well. We let

π ≡
√
m

2

(
b† + a

)
, φ ≡ 1

i
√

2m

(
b† − a

)
, (3.13)

where a and b are, respectively, N ×M and M ×N q-number matrices. The conjugation

operation † acts on such a matrix by transposing it and taking a Hermitian conjugate of

each q-number element. We impose cannonical commutation relations on each of the NM

elements of a or b, and so instead of the standard cyclicity of the trace we have

Tr
(
aa†
)

= Tr
(
a†a
)

+NM . (3.14)

Similarly, for an M ×M matrix T , we find

Tr
(
aTa†

)
= Tr

(
Ta†a

)
+N TrT (3.15)

and, for an N ×N matrix S,

Tr
(
SaTa†

)
= Tr

(
Ta†Sa

)
+ (TrT )(TrS) . (3.16)
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These identities allow us to find the normal-ordered form of the Hamiltonian, which is

H = m Tr
(
b†b+ a†a

)
+mNM

+ g2 c†acb Mab(a, b) + g2 d†αdβ Mαβ(a, b) + g2
(
c†ad
†
α + cadα

)
Maα(a, b) , (3.17)

where, using Tr(T aT b) = C(N)δab,

Mab(a, b) =
M

2m
C(N)δab+

1

2m
Tr
(
a†T aT ba+T aT bb†b−bT aT ba−a†T aT bb†

)
, (3.18)

Mαβ(a, b) =
N

2m
C(M)δαβ+

1

2m
Tr
(
TαT βa†a+b†TαT βb−aTαT βb−b†TαT βa†

)
, (3.19)

Maα(a, b) =
1

2m
(TrT a)(TrTα)+

1

2m
Tr
(
Tαa†T aa+T ab†Tαb−T ab†Tαa†−T aaTαb

)
.

(3.20)

3.2 The unperturbed spectrum

The spectrum is now easily found using perturbation theory. We shift the ground state

energy to zero and choose the unperturbed Hamiltonian to be

H0 = m Tr
(
b†b+ a†a

)
+mSU(N) Tr

(
c†c
)

+mSU(M) Tr
(
d†d
)

+
g2

2m
Tr
(
a†c†ca+ c†cb†b+ d†da†a+ b†d†db

)
. (3.21)

This Hamiltonian can be exactly diagonalized in the ’t Hooft limit. The Hilbert space is

spanned by the standard SHO eigenstates of the quadratic part of H0, and we will later

show that the quartic term merely provides a correction to some of the eigenenergies.

Hence, we will from now on adopt the usual language of creation/annihilation operators.

The term that we have to treat perturbatively, V ≡ H −H0, is

V = − g2

2m
Tr
(
bc†ca+ a†c†cb† + ad†db+ b†d†da

)
+

g2

2m

(
c†ad
†
α + cadα

)
Maα(a, b) , (3.22)

where Maα(a, b) is defined in eq. (3.20). We have already disregarded the terms propor-

tional to the traces of group generators, as these are zero for the case at hand.

The unperturbed Hamiltonian contains a mass term for the holonomy degrees of

freedom. For any gauge group, one set of holonomy excitations has a bare mass of

g2MC(N)/2m.7 In our case, the generators T a are in the fundamental representation

of SU(N), for which C(N) = 1/2 and C2(N) = (N2 − 1)/2N . In the ’t Hooft limit

(N →∞ while N/k = λ and M/N = ξ are held fixed) the bare mass is

mSU(N) =
ξ

1 + ξ
m ∝

√
λ

ξ√
1 + ξ

. (3.23)

We approach the regime of CS coupled to fundamental matter by taking ξ → 0, and in this

limit the holonomy states become light, as found in [33]. On the other hand, the states of

the other holonomy have bare mass g2NC(M)/2m, and in the ’t Hooft limit this is

mSU(M) =
1

1 + ξ
m ∝

√
λ

1√
1 + ξ

. (3.24)

7As already hinted, this mass will be corrected by some of the quartic terms, and hence we refer to the

coefficients of the quadratic terms in H0 as bare masses.
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These states remain massive as we approach the fundamental representation by letting ξ

become O(1/N).

The physical eigenstates of the unperturbed Hamiltonian must be invariant under the

remaining SU(N)×SU(M) gauge transformations. Thus, if |Ω〉 is the vacuum of the theory,

c†a|Ω〉 is not a physical state, but Tr(c†)2 is, and so is any state created by a gauge-invariant

combination of creation operators.8 The operators we consider transform as

c† 7→ Uc†U † , d† 7→ V d†V † , a† 7→ V a†U † , b† 7→ Ub†V † . (3.25)

(Recall that c† and d† are N×N and M×M matrices, while a† is M×N and b† is N×M .)

The following single-trace operators are all gauge-invariant:

Cn ≡ Tr
(
c†
)n
, Dn ≡ Tr

(
d†
)n
, E~k, ~̀n ≡ Tr

[ n∏
i=1

a†
(
c†
)kib†(d†)`i] . (3.26)

The vectors ~k and ~̀ have n components each, and it is understood that permuting the

entries of either one does not generate a physically new state. Furthermore, due to the

relations between traces of matrix powers, not all single-trace operators are independent.

For instance, out of the holonomy degrees of freedom, only C2, . . . , CN and D2, . . . ,DM are

independent; the others can all be written as multi-trace combinations of these operators.

The interdependence of these operators is a finite-N or high-energy effect, and it will not

figure in our analysis of the low-energy spectrum.

The states created by these operators must all have unit norm. In the ’t Hooft limit,

one can check that the correct normalization is

|Cn〉 =
2n/2√
n

1

Nn/2
Cn|Ω〉 , (3.27)

|Dn〉 =
2n/2√
n

1

Mn/2
Dn|Ω〉 , (3.28)

|E~k, ~̀n 〉 =
2(k+`)/2√

s

1

N (k+n)/2M (`+n)/2
E~k, ~̀n |Ω〉 , k ≡

n∑
i=1

ki , ` ≡
n∑
i=1

`i . (3.29)

Above we use s to denote the “symmetry factor”, with s = n if `i = `/n and ki = k/n for

all i, and with s = 1 otherwise. These normalizations can be derived using planar diagram

techniques that we will introduce below, and then we will also explain why one may think

of each gauge boson as contributing a factor of 1/
√
N or 1/

√
M to the normalization of a

state, while each pair of scalar excitations contributes 1/
√
NM .

We will now demonstrate that the states (3.27), (3.28), and (3.29) are approximate

eigenstates of the Hamiltonian H0, given by (3.21). Focus on the action of the quartic terms

on these states. Each of the quartic terms annihilates any |Cn〉 or |Dn〉, so states formed

from purely gauge excitations have unperturbed masses equal to their bare masses. (The

lightest state in the spectrum, |C2〉, falls in this group, and has bare/unperturbed energy

2mSU(N).) Similarly, states |E0,0n 〉 with only matter excitations preserve their bare mass

8The state Tr(c†)|Ω〉 is not physical because the generators of SU(N) are traceless.
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once the quartics in H0 are introduced. All other states will be non-trivial eigenstates of

the quartic operators in H0, at least at large N . For instance, |E1,01 〉 is an exact eigenstate

of H0. A short computation shows that

Tr
(
a†c†ca

)
|E1,01 〉 = N (E1,01 ) Tr

(
a†c†ca

)
Tr
(
a†c†b†

)
|Ω〉

= N (E1,01 ) Tr
(
a†c†cc†b†

)
|Ω〉

=
N

2
|E1,01 〉 . (3.30)

Similarly, |E1,01 〉 is an eigenstate of Tr(c†cb†b) with the same eigenvalue, and so

H0|E1,01 〉 =

(
2m+mSU(N) +

g2

2m
N

)
|E1,01 〉 =

4 + 3ξ

1 + ξ
m|E1,01 〉 . (3.31)

In general, it is true that

g2

2m
Tr
(
a†c†ca

)
|E ~̀, ~kn 〉 =

g2

2m
Tr
(
c†cb†b

)
|E ~̀, ~kn 〉 = n(1− δ`,0)

m

1 + ξ
|E ~̀, ~kn 〉+O

(
1

N

)
(3.32)

and

g2

2m
Tr
(
d†da†a

)
|E ~̀, ~kn 〉 =

g2

2m
Tr
(
b†d†db

)
|E ~̀, ~kn 〉 = n(1−δk,0)

ξm

1 + ξ
|E ~̀, ~kn 〉+O

(
1

N

)
. (3.33)

The 1/N corrections come from the multi-trace operators generated by the action of the

quartics on some of the n > 1 states. For instance, take n = 2 and ~̀= (1, 1); we find

Tr
(
a†c†ca

)
|E(1,1), 02 〉 = N |E(1,1), 02 〉+

N (E(1,1), 02 )

N 2(E1,01 )
|E1,01 , E1,01 〉 , (3.34)

where we use N (O) to denote the normalization of the state created by O, as shown in

eqs. (3.27), (3.28), and (3.29). The second term has an O(1) coefficient that is negligible

in the ’t Hooft limit.

The upshot of these calculations is that the unperturbed Hamiltonian at large N and

M has the same eigenstates as the quadratic, SHO Hamiltonian, with unperturbed energies

E0(Cn) = nmSU(N) ,

E0(Dn) = nmSU(M) , (3.35)

E0(E ~̀, ~kn ) = 2nm+
[
`+ 2n(1− δ`,0)

]
mSU(N) +

[
k + 2n(1− δk,0)

]
mSU(M) .

3.3 Perturbative corrections

The remaining quartic couplings, assembled in (3.22), can be treated perturbatively. We

wish to find corrections En to energies of the non-degenerate eigenstates of H0. Calculating

En’s at n > 2 can in principle be done by the usual methods of quantum-mechanical

perturbation theory. However, studying all possible contractions between traces quickly

becomes a very involved task.
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a a

ac

d

c c

b

c

d

a

b

c

d

a

b

Figure 4. Some of the interactions that appear in perturbation theory, as follows from the per-

turbation potential V in eq. (3.22). Time flows from left to right, as indicated by the arrows on

the scalars. All other allowed vertices are found by switching the time direction or by exchanging

c↔ d or a↔ b. For the purposes fo counting planar diagrams, it is crucial to preserve the correct

ordering of lines that emerge from each vertex (not shown in the figure); these must match the order

of appearance in the trace contained in V , and one is only allowed to cyclically permute them.

We will now show that, fortunately, perturbative calculations drastically simplify by

using a diagrammatic technique that automatically keeps track of index contractions in

expressions like 〈s1|V |s2〉〈s2|V |s3〉〈s3|V |s1〉. We do not rederive quantum mechanical per-

turbation theory; we merely note that known expressions for perturbative corrections can

be efficiently encoded using diagrams. The “Feynman rules” for computing energy correc-

tions are as follows:

1. The perturbatively corrected energy E(O) of a state |O〉 can be represented as a

Feynman diagram computation of the self-energy of this state. Each of the particle

species (a, b, c and d) is assigned a distinct line in these diagrams.

2. Draw all diagrams that have the particles comprising |O〉 in both the in- and the

out-state. Each interaction is represented by a four-point vertex, see figure 4. The

amplitude 〈out|V |in〉 contains only one vertex. The nth order correction to the energy,

En(O), comes from diagrams with n vertices, with the sum over intermediate states

replaced by the sum over planar, connected diagrams. The planar diagrams are those

in which no lines cross; when drawing diagrams, it is important to note that diagrams

can be planar up to a cyclic rearrangement of lines coming out of a vertex.
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7→

7→

7→

7→

a

b

c

d

Figure 5. Converting to double-line notation. Dashed lines correspond to indices running from 1

to N , and full lines correspond to indices running from 1 to M .

3. For each vertex in a given diagram, write a factor of g2/2m with the sign that appears

in eq. (3.22).

4. For each internal gauge boson contraction in a given diagram, write a factor of 1/2.

This is because the gauge boson propagator is found through

〈
cij(c

†)kl
〉

=
〈
cac
†
b

〉
T aijT

b
kl = T aijT

a
kl+(norm. ord.) =

1

2
δijδkl+(norm. ord.)+O

(
1

N

)
.

(3.36)

The scalar propagator has no corresponding prefactors, so we can just contract scalars

with each other without further worries. We must only contract particles of one type

with other particles of the same type.

5. For each amplitude 〈out|V |in〉, write a factor of 1/
√
sinsout to account for the correct

normalization of each intermediate state. Here s is the symmetry factor introduced

in eq. (3.29).

6. For each intermediate state |S〉 different from the incoming state |O〉, write a factor

of 1/(E0(O)−E0(S)). This allows us to mimic the results from perturbation theory.

7. Each time an intermediate state is |O〉, i.e. when we encounter a one-particle-reducible

diagram, write a factor of −1. If |O〉 appeared k times as an intermediate state, take

the non-zero energy differences E(O)−E(Si), write all possible products of n−k−1 of

these differences, sum the inverses of each product, and multiply the total amplitude

by this factor.

8. Finally, and most importantly, write down the factors of N and M that come from

internal indices that got contracted. These can be found by converting each Feynman

diagram into a double-line diagram à la ’t Hooft (see figure 5) and counting the

number of loops associated to each of the two types of indices. These loop numbers

are the powers of N and M that must be written for each diagram. It is important

to note that we use the double-line notation only to count the relevant powers of N

and M and not to find all possible diagrams and compute them; if we applied the

typical double-line analysis of ’t Hooft, we would end up computing diagrams that

do not represent processes in perturbation theory.
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These rules allow for a quick estimate of the size of the effect of each order in pertur-

bation theory. To do so, notice that each energy is of order m ∼
√
λ, while each vertex

contributes a factor of order
√
λ/N . At order n, the product of these factors gives

√
λ/Nn.

On the other hand, a connected diagram in double-line notation can only have up to n

loops in total.9 Any diagrams with fewer than n loops will be suppressed in the ’t Hooft

limit, so they may be discarded. If a diagram has exactly n loops, some of these loops will

be M -loops and some will be N -loops. In the case of interest to us (i.e. when computing

corrections to E(C2), which we will do in the next section in order to find the gap in the

theory), studying the allowed vertices shows that a diagram of order 2n will have n loops

of each type, while a diagram of order 2n + 1 will have n + 1 M -loops and n N -loops.

Thus, perturbation theory gives an expansion in powers of ξ ≡ M/N , with perturbations

of orders 2n− 1 and 2n both being suppressed by ξn. This shows that perturbation theory

is well-defined at low energies (where the 1/N corrections cannot be compensated for by

pure combinatorics, i.e. where n � N). In particular, in the case of fundamental matter

coupled to CS theory, ξ becomes of order 1/N , and we recover the perturbation in powers

of 1/N found in [33].

3.4 State normalizations and vacuum amplitudes

The rules above are a bit formal and perhaps unintuitive. As already mentioned, the

double-line formalism can be used to simply derive the normalizations of physical states,

as given in eqs. (3.27)–(3.29). As an illustration of our diagrammatic approach — and as a

means of justifying the specifics of our Feynman rules — we now derive these normalizations

and explain the origin of the symmetry factors s.

Consider any gauge-invariant creation operator O. Let the normalized state created

by this operator be |O〉 = NO|Ω〉. The normalization condition is

〈O|O〉 = N 2〈Ω|O†O|Ω〉 = 1 . (3.37)

How is this condition to be achieved?

The first expectation value, 〈O|O〉, is given by the zero-vertex diagram with particles

from |O〉 being both in- and out-going states. Following the Feynman rules we formulated,

we find that there are precisely s planar diagrams, where s is the symmetry factor intro-

duced earlier. Only these diagrams need be taken into account. There are no vertices,

intermediate states, or internal gauge boson contractions, so each diagram is just given a

value of 1/
√
s · s as per rule 5. The symmetry factors cancel each other out, and this shows

that the way we have defined the symmetry factor and Feynman rules precisely ensures

that each gauge-invariant state is normalized.

9This is so because each vertex contributes a total of eight outgoing lines in double-line notation, and

four of these must be “wasted” on ensuring that the diagram is actually connected. This leaves four lines

per vertex. Looking at the allowed vertices, we find that the new lines emanating from each vertex must be

a pair of N -lines and a pair of M -lines. There are no loops involving just one vertex allowed by the theory,

so each vertex must pair up with at least one more vertex to give a loop. Thus, there can be no more than

one loop per vertex.
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The second expectation value is a vacuum amplitude, and the normalization factor is

given as the inverse square root of this amplitude. Now O acts as an interaction term,

and all it does is insert a vertex that creates all the particles in |O〉 with their indices

properly contracted in the past. The diagram giving 〈Ω|O†O|Ω〉 can be drawn by using

the diagram for 〈O|O〉, focusing on the external states, and connecting all adjacent lines

in the double-line notation, with the first line being connected to the last one. These

connections correspond to index contractions as they appear in the trace. Each boson

contraction is now an internal one, and this accounts for the factors of two appearing in

the normalization. Each incoming particle now also gives rise to a loop (in the ’t Hooft

limit), and these account for the factors of N and M in the normalization. (In particular,

our heuristic N -counting is justified; each pair of a and b matter particles contributes

NM to the vacuum amplitude, each c boson contributes N , and each d boson contributes

M .) Finally, it is now apparent that there can be only s diagrams that contribute at

leading order in N ; only diagrams that are planar or that can be made planar by cyclic

permutations contribute, and there are exactly s of these. In short, we conclude that the

vacuum amplitude is

〈Ω|O†O|Ω〉 = s · (NM)#(ab) ·N#(c) ·M#(d) ·
(

1

2

)#(c)+#(d)

, (3.38)

where the #’s count the number of c†’s, d†’s, and a†b† pairs in O. The normalization factor

N = 1/
√
〈Ω|O†O|Ω〉 is thus precisely what has been stated in eqs. (3.27)–(3.29).

3.5 Perturbative calculation of the gap

As an application of interest for studying the low-energy behavior of the system, we now

show how the diagrammatic rules above can be used to calculate the first correction to the

gap of the system.

The ground state only receives corrections from disconnected (bubble) diagrams. As

usual, these do not affect the gap calculation; they merely renormalize the ground state

energy which we may always shift to zero. (This is why we only need to compute connected

diagrams, as per rule 2.) Thus, we take E(Ω) = E0(Ω) = 0. The only corrections to the

gap come from the corrections to E(C2), the energy of the first excited state.

The state |C2〉 has energy E0(C2) = 2mSU(N), and so the unperturbed gap is

∆0 = E0(C2)− E0(Ω) = 2mSU(N) =
2mξ

1 + ξ
= 2ξ

√
λπ +O(ξ2) . (3.39)

The first order corrections is trivially

E1(C2) = 〈C2|V |C2〉 = 0 . (3.40)

The second order correction is non-trivial, and hence we resort to the Feynman rules

developed in the previous section.

We have already argued that E2(C2) scales like ξ, and is hence of the same order as the

unperturbed energy. The diagrams contributing up to second order in perturbation theory
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b

c

c

a

a

c

c

b

c

c
= + +

c

c

+ 2 ×=

Figure 6. The three diagrams that contribute to E(C2) up to second order in perturbation theory,

shown in single-line notation (above) and double-line notation (below). The first diagram is the zero-

vertex (unperturbed) energy, and the other two are the only two-vertex diagrams that contribute

in the ’t Hooft limit.

are shown on figure 6. The zero-vertex term is just the unperturbed energy E0(C2). The

second order term in perturbation theory (i.e. the sum of two-vertex diagrams) is calculated

following our diagrammatic rules. Each of the two two-vertex diagrams has one N -loop,

one M -loop, one gauge boson contraction, and two vertices. The intermediate state is in

both cases |E2,01 〉, with s = 1 and E0(E2,01 ) − E0(C2) = 2(m + mSU(N)), while the in- and

out-states have s = 2. Hence, the two-vertex contribution, or the second order term in

perturbation theory, is

E2(C2) = −2 · 1

2
· 1

2
·
(
g2

2m

)2
1

2(m+mSU(N))
NM = − ξm

(1 + ξ)(1 + 2ξ)
. (3.41)

We are working up to first order in ξ, and in this regime the second-order-corrected gap is

∆ =
2ξm

1 + ξ
− ξm

(1 + ξ)(1 + 2ξ)
= ξ
√
λπ +O(ξ2) . (3.42)

Higher order corrections can be found in a similarly straightforward way. Note that this

answer reduces to the answer for CS-fundamental on a torus when ξ = 1/N .

4 Discussion

In this paper we have studied the Chern-Simons theory coupled to bifundamental scalar

fields. At two-loop order, in the ’t Hooft limit, the theory has two lines of fixed points

parametrized by the ’t Hooft coupling. These lines exist for all values of the fixed ratio

M/N . When this ratio is zero the theory goes over to the CS theory coupled to the

fundamental matter which has a dual description in terms of a parity-violating version of the

Vasiliev higher-spin gauge theory in AdS4. When the ratio is small the dual gravitational

theory should be some deformation of the Vasiliev theory, as has been conjectured in [25].

When this ratio approaches unity, the field theory is some kind of a non-supersymmetric

version of the ABJM theory. The dual gravitational theory should be an Einstein gravity
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theory in the large ’t Hooft coupling limit. It will be fascinating to better understand this

bosonic theory in the bulk.

We have also studied the low-lying spectrum of this theory placed on a torus. CS

theory coupled to fundamental matter has a set of low lying states whose energy goes like√
λ/N and so in the strict classical limit, N =∞, they are exactly degenerate zero energy

states. Our analysis shows that the bifundamental matter has no such states on the torus.

The energy in this case goes like
√
λ M/N for small value of M/N , and this gap stays

nonzero even when N = ∞. This is encouraging and leads to the picture where one can

think of the bifundamental theory as a regulator of the fundamental theory which regulates

the singular low-energy states of the fundamental theory on a torus whose bulk dual is still

mysterious.

Let us now place the theory on a genus g ≥ 2 Riemann surface, Σg. The number

of states in the Hilbert space of pure CS theory on Σg with gauge group U(N) and level

k goes like k(g−1)N
2

for large k [34]. So, for the bifundamental theory, this will go like

k(g−1)(N
2+M2). These states have exactly zero energy in the pure CS theory. It will be

very interesting to know the fate of these large number of exactly degenerate states once

we add matter to it. If we add fundamental matter, then the degeneracy is not lifted at

least in the very weakly coupled regime. However, for the bifundamental matter things

could be different. We saw in the case of torus that adding bifundamental matter lifts the

degeneracy of pure CS states even in the classical limit in the bulk. The same thing could

happen for higher genus surfaces and if this is the case then it will be fascinating. We leave

this question for future study.

We have left untouched many important things in this paper. For example, we have not

provided any argument for the all-loop existence of the fixed line. One can also compute the

anomalous dimensions of the operators, and it is known that the currents acquire non-zero

anomalous dimensions in the bifundamental theory. It would be good to have an expression

for that as a function of the ’t Hooft coupling and the fixed ratio M/N . Another important

thing is to compute the free energy of this theory. It will give us a wealth of information

about the bulk gravity theory, in particular about black holes in the bulk. In passing we

would like to mention that the bifundamental fermions coupled to CS gauge theory may be

simpler in this respect, because by standard arguments the fermionic theory is a conformal

field theory for all values of the ’t Hooft coupling and the ratio M/N .

We have not touched upon the issue of duality [36–38] in these bifundamental theories.

For that one has to study the scalar and fermion theories in much more detail. We leave

that for future research.
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A Feynman rules for CS-bifundamental theories

The action of the CS-bifundamental theory is given by eq. (2.2). The Feynman rules are

easily obtained if the notation is decompactified and all indices are explicitly written. This

gives

S=SA + SB + Smatter , with (A.1)

SA=

∫
d3x

(
i

2
C(N)εµνλA

a
µ∂νA

a
λ −

i

6
gC(N)εµνλf

abcAaµA
b
νA

c
λ

)
, (A.2)

SB=

∫
d3x

(
− i

2
C(M)εµνλB

α
µ∂νB

α
λ +

i

6
gC(M)εµνλf

αβγBα
µB

β
νB

γ
λ

)
, (A.3)

Smatter=

∫
d3x

(
∂φ†ii′∂φii′ + 2ig φ†ii′A

a
µT

a
ij∂µφji′ + 2ig φii′B

α
µT

α
i′j′∂µφ

†
ij′

+g2φ†ii′A
a
µT

a
ijA

b
µT

b
jkφki′ +g

2φii′B
α
µT

α
i′j′B

β
µT

β
j′k′φ

†
ik′−2g2φ†ii′A

a
µT

a
ijφjj′B

α
µT

α
j′i′

+
g1
3
φ†ii′φij′φ

†
jj′φjk′φ

†
kk′φki′ +

g2
2
φ†ii′φij′φ

†
jj′φji′φ

†
kk′φkk′ +

g3
6
φ†ii′φii′φ

†
jj′φjj′φ

†
kk′φkk′

)
.

(A.4)

As elsewhere in the text, a, b, c, etc. run over generators of SU(N), α, β, γ, etc. run

over generators of SU(M). The mid-alphabet Roman indices i, j, k, etc. run over the

components of SU(N) vectors in the fundamental representation, and the corresponding

primed indices run over components of SU(M) fundamentals. Everything is done in Landau

gauge, ∂µAµ = 0. We have defined the CS coupling

g2 ≡ 4π

k
, (A.5)

rescaled all the gauge fields by g, and defined

TrN (T aT b) = C(N)δab, TrN
(
[T a, T b]T c

)
= iC(N)fabc. (A.6)

In this paper, consistently with the choice of the CS action in section 2 and following [31],

we choose

C(N) = 1 and C2(N) = N +O

(
1

N

)
, (A.7)

where the latter equality for C2(N) ≡ T aT a comes as a special case of the choice

T aijT
a
kl = δilδjk +O

(
1

N

)
. (A.8)
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The Feynman rules can now be read off. The propagators are:

〈
Aaµ(p)Abν(q)

〉
0

= δabεµλν
pλ

p2
(2π)3δ3(p− q) , (A.9)

〈
Bα
µ (p)Bβ

ν (q)
〉
0

= −δαβεµλν
pλ

p2
(2π)3δ3(p− q) , (A.10)〈

φ†ii′(p)φjj′(q)
〉
0

= δijδi′j′
1

p2
(2π)3δ3(p− q) . (A.11)

Note that the gluon propagators must be assigned a direction. Taking into account the

overall minus sign from the Boltzmann factor e−S , the vertices are found to be:〈
φ†ii′(p1)φjj′(p2)φ

†
kk′(p3)φll′(p4)φ

†
mm′(p5)φnn′(p6)

〉
0

=

− g1(δi′j′δjkδk′l′δlmδm′n′δni +11 other permutations)(2π)3δ3
(∑

pi

)
−

− g2(δi′j′δjkδk′l′δliδm′n′δnm +17 other permutations)(2π)3δ3
(∑

pi

)
−

− g3(δi′j′δjiδk′l′δlkδm′n′δnm +5 other permutations)(2π)3δ3
(∑

pi

)
, (A.12)〈

φ†ii′(p1)A
a
µ(p2)φjj′(p3)

〉
0

= −2g p3µ δi′j′T
a
ij (2π)3δ3

(∑
pi

)
, (A.13)〈

φii′(p1)B
α
µ (p2)φ

†
jj′(p3)

〉
0

= −2g p3µ δijT
α
i′j′ (2π)3δ3

(∑
pi

)
, (A.14)〈

φ†ii′(p1)A
a
µ(p2)A

b
ν(p3)φjj′(p4)

〉
0

= −g2 δi′j′ δµν
(
T aikT

b
kj+T

b
ikT

a
kj

)
(2π)3δ3

(∑
pi

)
, (A.15)〈

φii′(p1)B
α
µ (p2)B

β
ν (p3)φ

†
jj′(p4)

〉
0

= −g2 δij δµν
(
Tαi′k′T

β
k′j′ +T

β
i′k′T

α
k′j′
)
(2π)3δ3

(∑
pi

)
,

(A.16)〈
φ†ii′(p1)A

a
µ(p2)φjj′(p3)B

α
ν (p4)

〉
0

= 2g2 δµν T
a
ijT

α
j′i′ (2π)3δ3

(∑
pi

)
, (A.17)〈

Aaµ(p1)A
b
ν(p2)A

c
λ(p3)

〉
0

= ig εµνλf
abc (2π)3δ3

(∑
pi

)
, (A.18)〈

Bα
µ (p1)B

β
ν (p2)B

γ
λ(p3)

〉
0

= −ig εµνλfαβγ (2π)3δ3
(∑

pi

)
. (A.19)

These can be depicted using a variant of the usual double-line notation with two types

of lines. We introduce these diagrams in section 3, figure 5. This notation has the usual

advantage of allowing one to quickly estimate which diagrams dominate in the ’t Hooft

limit. Note that we do not include any Feynman rules for ghosts because these do not

appear in any of the diagrams relevant for our purposes.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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