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1 Introduction and summary

The setting of this paper is two-dimensional quantum field theories with (2, 2) supersym-

metry with left and right-moving U(1) R-symmetry. An interesting quantity to consider

in such theories is the partition function on the torus. If we give the fermions periodic

boundary conditions, and switch on a chemical potential z for the the left moving R-

charge, the resulting partition function χ(τ, z), called the elliptic genus, is a function of

the modular parameter τ ∈ H of the torus and the chemical potential z ∈ C [1–7]. In the

Hamiltonian formalism,

χ(τ, z) = TrHRR
(−1)F qL0 qL0 ζJ0 = 〈1〉(z,+) , (1.1)

where HRR is the Hilbert space of the theory with periodic (++) boundary conditions for

the fermions, L0 and L0 are the left and right-moving Hamiltonians, J0 is the left-moving

R-charge, F is the fermion number operator, and we have defined q = e2πiτ , ζ = e2πiz.

The elliptic genus can equivalently be thought of as the functional integral of the theory

with periodic boundary conditions on the right-moving fermions and twisted boundary

conditions on the left-moving fermions with twist parameter z, as we have indicated on
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the right-hand side of (1.1). The twisted boundary conditions can be implemented by

turning on a constant background gauge field. The invariance of the functional integral

under coordinate transformations of the torus of the type τ → τ + 1, τ → −1/τ implies

that the elliptic genus enjoys modular transformation properties. Similarly, the symmetry

of the quantum field theory under large gauge transformations implies nice transformation

properties under z → z + 1 and z → z + τ . These properties can be summarized concisely

in the statement that the elliptic genus is a Jacobi form of weight zero.1

As was explained in [4], the elliptic genus is invariant under continuous changes of the

parameters of the Hamiltonian. The basic argument is that massive representations of the

right-moving supersymmetry algebra come in pairs with the same value of energy L0 ≥ 0

and opposite values of (−1)F , and therefore do not contribute to the elliptic genus. A

continuous change of parameters in the supersymmetric Hamiltonian will only affect the

massive representations, and will therefore not affect the elliptic genus. The same argument

implies that the elliptic genus is a holomorphic function of τ , as the only right-movers that

contribute are in the ground state with L0 = 0.

The above heuristic argument can be made more precise with the assumption of a

discrete spectrum as in the case of compact target spaces, or, more generally, in a rational

superconformal field theory (SCFT). On the other hand, when there is a continuum in the

spectrum, then the trace in (1.1) needs to be well-defined, and the natural language to

describe such a situation is that of density of states. Some explicit examples of interesting

non-compact SCFTs have been known for quite a while. The basic example with all the

non-trivial features is the SL(2,R)/U(1) SCFT2 popularly known as the “cigar” theory

due to the semi-infinite shape of the target space manifold.

The elliptic genus of the N = (2, 2) supersymmetric SL(2,R)/U(1) theory was recently

computed in [11–13], by explicitly solving the path-integral of the theory. The result is

interesting because the cigar elliptic genus χcig(τ, z) is not holomorphic in τ . The func-

tion χcig(τ, z) is a product of a usual Jacobi form and a completed Appell-Lerch sum [14, 15].

(See (2.21) and appendix § A for the precise expression.) Appell-Lerch sums are intimately

related to a very interesting class of functions called mock-modular forms [14–16]. The key

feature of a function f̂(τ) of this type is that it transforms like a holomorphic modular

form of weight k, but it suffers from a holomorphic anomaly :

(4πτ2)
k ∂τ f̂(τ) = −2πi g(τ) , (1.2)

where g(τ) is a holomorphic modular form called the shadow of f with weight 2− k. The

cigar elliptic genus χcig(τ, z) shares this feature as exhibited in Equation (4.12).

The non-holomorphicity of the elliptic genus of the cigar theory has been attributed to

the difference in the density of states between the bosons and fermions in the spectrum of

1In the context of the geometric definition of elliptic genus, this was proven in [9].
2This is similar to how Liouville theory can be thought of as the basic example for bosonic non-compact

models. This parallel goes further because the supersymmetric cigar theory is mirror-symmetric to N = 2

Liouville theory [10]. From another point of view, the SL(2,R)/U(1) theory can be thought of as the

analytic continuation of SU(2)/U(1) theories that are the N = 2 minimal models.
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normalizable states [13]. This difference is dictated by the ratio of the reflection coefficients

in the cigar coset theory.3

The computation of the cigar elliptic genus leads to some natural questions:

1. Is there a simple setting to understand the essential features of the non-compact

models without having to understand all the details of strongly coupled CFTs?

2. Can the cigar result be generalized to a larger class of models?

3. Can the holomorphic anomaly be understood as arising from an anomaly in a physical

symmetry?

In this paper, we shall address and answer these questions in the context of gauged lin-

ear sigma models (GLSMs) [18]. In particular, we study examples of two-dimensional (2, 2)

supersymmetric quantum field theories with one U(1) gauge field multiplet and a set of

chiral multiplets with charges Qi under the gauge symmetry, that flow to non-compact the-

ories. In two dimensions, the gauge coupling is super-renormalizable and so these theories

undergo an RG flow. Their infra-red fixed points are generically interacting (2, 2) SCFTs.

By the same arguments as above, we expect that the elliptic genus does not depend on the

energy scale.

The GLSM that flows to the cigar coset was introduced and studied in an impressive

paper by Hori and Kapustin [10], and was later generalized to a class of models by the same

authors in [19] — these latter theories flow to SCFTs that are not explicitly known, and

are conjectured to arise on NS5-branes wrapped on various curved surfaces.4 The models

are known to have a radial non-compact direction in the IR, with a compact surface fibered

over this direction.

In this paper, we evaluate the elliptic genus of the class of GLSMs introduced in [10,

19] using supersymmetric localization, by adapting the method developed in [20] for the

compact models. We find that the elliptic genus has a simple expression in terms of a two-

dimensional integral over the Wilson lines around the torus of the U(1) gauge field. This

expression has a holomorphic anomaly in τ , and, in the simplest case (Equation (3.41)), it

is equal to the elliptic genus of the cigar theory as computed in [11–13]. In the other cases,

it is equal to the expression conjectured in [17].

These non-compact models are characterized by an anomaly in the chiral rotation of the

fermions due to the fact that
∑

iQi 6= 0. The models, however, do have conserved currents

that rotate the fermions chirally because there is an additional bosonic compensator field

with an axionic shift symmetry. On adding its derivative to the chiral fermion current, the

anomaly is cancelled. This compensator field, and the corresponding superfield P , is at

the heart of many of the interesting features of these models.

From our ultra-violet analysis, we show that the non-holomorphicity in the elliptic

genus arises from the contributions of the compact boson Im p, the imaginary part of the

lowest component of the chiral superfield P . This is in spirit similar to the identification

of the holomorphic anomaly in the topological string as coming from the zero mode at the

3If one considers the limit in which the tip of the cigar is pushed away infinitely to get a (singular) pure

linear-dilaton theory, the elliptic genus collapses to a holomorphic expression as for free field theories.
4There has been a very recent conjecture [17] for the elliptic genus of these theories.
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boundary of moduli space.5 In our case, the zero mode is compact, and instead of a power

of τ2 ≡ Im τ , we get a full theta function of the compact (non-chiral) boson Im p. We

have thus identified a simple physical source of the holomorphic anomaly in such models,

namely as arising from the chiral anomaly of a two-dimensional field theory. This seems to

be an example of the general idea that introducing compensators for anomalous symmetries

destroys some other nice property of the theory. See [21] for a nice discussion and examples

of this phenomenon in various contexts.

The plan of the paper is as follows. In § 2, we review the prototype GLSM of Hori

and Kapustin that flows to the supersymmetric SL(2,R)/U(1) SCFT. We discuss its sym-

metries, and discuss how the chiral anomaly manifests itself in the UV and the IR theory.

We then review the result of [11] for the elliptic genus of the cigar SCFT. In § 3, we review
the method of [20] to compute the elliptic genus of compact GLSMs using localization. We

then adapt this method to the non-compact models of interest to us, derive their elliptic

genera, and show how the non-holomorphic contributions can be understood as arising

from the contributions of the compensator multiplet P . In § 4, we express the holomorphic

anomaly of all the theories as a contour integral. In § 5, we end with some comments, a

discussion of issues that would be interesting to resolve, and by sketching some directions

for future research.

Note added. While this paper was being prepared for publication, the author received

communication of [22] which contains overlapping results.

2 The RG flow from a GLSM to the cigar

The prototype GLSM that we shall study is the one introduced by Hori and Kapustin [10],

which we now review. The field content consists of a vector superfield V with compo-

nents (vµ, σ, σ, λ±, λ±, D) in the Wess-Zumino gauge, a chiral superfield Φ with compo-

nents (φ, φ, ψ±, ψ±, F, F ) and a chiral superfield P with components (p, p, χ±, χ±, FP , FP ).

We follow the conventions of [18] in which the ± subscript implies left and right moving

fields. The fields vµ and D are real while the other fields are complex with the bar de-

noting complex conjugation. For reasons that will soon become clear, we shall refer to

the P -superfield as the compensator superfield.

Under the U(1) gauge transformation

V → V − iΛ + iΛ with D+Λ = D−Λ = 0 , (2.1)

the chiral superfields transform as follows:

Φ → eiΛΦ , P → P + iΛ . (2.2)

The field ImP is periodically identified with period 2π. The above inhomogeneous trans-

formation of the superfield field P is at the root of many of the interesting features of this

system.

5Indeed a baby example of a mock modular form is the quasi-holomorphic modular form Ê2(τ) =

E2(τ)−
3

πτ2
that arises in the topological string.
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The action is6

S =
1

4π

∫
d2x d4θ

[
ΦeV Φ+

k

4
(P + P + V )2 − 1

2e2
|Σ|2

]
, (2.3)

where Σ = D+D−V is a twisted chiral superfield, obeying D+Σ = D−Σ = 0. The action

in terms of the component fields is:

S =
1

4π

∫
d2x

[
−DµφDµφ+ iψ−(D0 +D1)ψ− + iψ+(D0 −D1)ψ+ +D|φ|2 + |F |2

− |σ|2|φ|2 − ψ−σψ+ − ψ+σψ− − iφλ−ψ+ + iφλ+ψ− + iψ+λ−φ− iψ−λ+φ

+
k

2

(
−DµpDµp+ iχ−(∂0 + ∂1)χ− + iχ+(∂0 − ∂1)χ+ +D(p+ p) + |FP |2

− |σ|2 + iχ+λ− − iχ−λ+ + iχ+λ− − iχ−λ+

)

+
1

2e2

(
−∂µσ∂µσ + iλ−(∂0 + ∂1)λ− + iλ+(∂0 − ∂1)λ+ + F 2

01 +D2
)]
. (2.4)

In the above expression, Dµφ = (∂µ + ivµ)φ and Dµψ± = (∂µ + ivµ)ψ± are the standard

covariant derivatives, while Dµp = ∂µp + ivµ. Note that the fermions χ± do not couple

to the gauge field. One can add a Fayet-Iliopoulos term to the above system, but this

can be absorbed into P, and a theta angle is not included because one wants to preserve

worldsheet parity.

The theory (2.3) is free in the ultra-violet, and is super-renormalizable. The mass of

the gauge field and its superpartners is set by the scale e
√
2k, below which one can integrate

out the vector multiplet and set the D-term to zero. These steps, along with a gauge fixing

condition, allow us to solve for all the other fields in terms of Φ and obtain a target-space

metric [10]. Defining the variables u = arcsinh
(√

2
k |φ|

)
, ψ = arg φ with ψ ∼ ψ + 2π, the

target-space metric is:

ds2 = 2k
(
cosh4 u du2 + tanh2 u dψ2

)
. (2.5)

The metric (2.5) is smooth near the origin u = 0, and as u → ∞ it approaches a flat

metric on a cylinder. Topologically speaking, this manifold has the shape of a semi-infinite

cigar, but the metric is not the target space of a conformal field theory and it undergoes a

further RG flow. As explained in [10], the end-point of the flow is the SL(2,R)k
U(1) SCFT with

central charge c = 3+ 6
k . In the large k limit, the coset has a geometric picture as a sigma

model with the metric:

ds2 = 2k
(
du2 + tanh2 u dψ2

)
. (2.6)

whose curvature is proportional to 1/k. In addition, there is a non-trivial background dila-

ton:

Φdil = Φdil 0 − log coshu . (2.7)

6In the context of string theory, we choose conventions for the fundamental length scale in target space

in which ℓ2s ≡ α′ = 2.

– 5 –



J
H
E
P
0
6
(
2
0
1
4
)
1
6
5

The target-space metric and dilation obey the equation 2DaDbΦdil +Rab = 0, where Da is

the covariant derivative and Rab is the curvature in target-space [23].

Asymptotically as u → ∞, the cigar theory consists of a linear dilaton direction ρ =√
2k u with slope Q =

√
2
k , and a U(1) direction θ =

√
2k ψ with θ ∼ θ + 2π

√
2k, and two

fermions (ψρ, ψθ). Together, they make up an N = 2 SCFT with the following holomorphic

currents of almost free fields (see e.g. [24]):

Tcig = −1

2
(∂ρ)2 − 1

2
(∂θ)2 − 1

2
(ψρ∂ψρ + ψθ∂ψθ)−

1

2
Q∂2ρ ,

G±
cig =

i

2
(ψρ ± iψθ)∂(ρ∓ iθ) +

i

2
Q∂(ψρ ± iψθ) ,

Jcig = −iψρψθ + iQ∂θ , (2.8)

as well as their anti-holomorphic counterparts.

The structure of the superconformal currents in the full SL(2,R)kU(1) Kazama-Suzuki coset

theory are more complicated than in the almost-free asymptotic region (2.8). One can,

nevertheless, solve the model using the algebraic approach which is exact in k.

2.1 Anomalous and conserved symmetries

At the classical level, the theory (2.3) has both vector and axial U(1) R-symmetries, un-

der which the lowest components of the superfields Φ, P and Σ have charges (qV , qA) =

(0, 0), (0, 0) and (0, 2), respectively. Equivalently, we can discuss the linear combinations

that correspond to the left- and right-moving R-symmetries with currents jL,R = 1
2(jA±jV ).

The components of the right-moving R-current j±R is:

j+R = ψ−ψ− +
k

2
χ−χ− +

i

2e2
(∂−σσ − σ∂−σ) , (2.9)

j−R =
1

2e2
λ+λ+ +

i

2e2
(∂+σσ − σ∂+σ) . (2.10)

In the IR limit e2 → ∞ where the Σ multiplet becomes very massive, j−R vanishes and j+R
obeys the right-moving condition ∂+j

+
R = 0 classically.

At the quantum level this condition is violated, and one has a chiral anomaly [10]:

∂µj
µ
R = 2F+− , (2.11)

with F+− = ∂+v− − ∂−v+. In general, one can modify the right-moving chiral current as

(j+R , j
−
R ) → (j+R − v− , j

−
R + v+) , (2.12)

to get a current which is conserved, but the new current is not gauge-invariant.

The interesting feature of the GLSM (2.3) is that the anomalous chiral current can be

modified in a gauge-invariant way so that it is conserved. The reason this is possible is the

presence of the field Im p that shifts like an axion under the gauge symmetry. In terms of

the gauge-invariant field

Aµ = ∂µIm p+ vµ , (2.13)
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we have F+− = ∂+A− − ∂−A+. The modified axial current

j̃+R = j+R − 2A−, j̃−R = j−R + 2A+, (2.14)

is then gauge-invariant and conserved.

This can be lifted to the ultra-violet theory. Using the explicit expressions of the

current jR (2.9) and the equation of motion of Im p, one finds

∂+

(
ψ−ψ− +

k

2
χ−χ− +

i

e2
σ∂−σ

)
+ ∂−

(
1

2e2
λ+λ+ − i

e2
σ∂+σ

)
= F+− = 2∂+A− . (2.15)

Using the Q-exact expression:

λ+λ+ − 2iσ∂+σ = {Q+, σλ+} , (2.16)

and a similar complex conjugate expression, we find

∂+

(
ψ−ψ− +

k

2
χ−χ− +

i

e2
σ∂−σ − 2A−

)
= 0 modulo {Q+, · · · } . (2.17)

These expressions have a supersymmetric generalization. The current jR is the bottom

component of a current superfield which has an anomaly that is the (1 + 1)-dimensional

version of the Konishi anomaly [25]. One can build a modified superfield that obeys a

supersymmetric chirality condition whose bottom component is equation (2.17). The Q-

exact expression (2.16) will be useful for us later in § 3 as well.

From the cigar point of view, the non-conservation of the chiral rotation can be un-

derstood as due to the anomaly at one-loop in the U(1) current jR which rotates only the

right-moving fermions, that is caused by the curvature of the cigar:

∂αj
α
R = R(ǫαβ ∂αρ ∂βθ), (2.18)

where R = −2DaDaΦdil =
−Q2

2 cosh2 Qρ
2

is the Ricci curvature of the cigar [24].

Due to the special form of the curvature in two dimensions, we can define a new current

which is conserved. Changing to complex coordinates on the worldsheet, this current is the

sum of the chiral rotation and another piece proportional to the left moving momentum:

∂jG := ∂

(
jR +Q

(
tanh

Qρ

2

)
∂θ

)
= 0 (2.19)

which reduces to the U(1) R current of the N = 2 SCFT (2.8) in the asymptotic region.

In addition to these R-symmetries, there is also a non-R symmetry whose only effect

is to shift the field Im p by a constant. In the infra-red, this becomes the momentum of

the cigar theory. The winding around this circle is not conserved in the full theory.

2.2 The elliptic genus of the cigar SCFT

The elliptic genus of the SL(2,R)k/U(1) SCFT has recently been explicitly computed

in [11–13]7 by evaluating the functional integral for the Euclidean version of the cigar,

7The holomorphic part of this partition function had been presented earlier in [26].
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i.e. the coset H+
3 /U(1) with H

+
3 = SL(2,C)/SU(2). The evaluation is based on the tech-

niques developed in [27–30] to compute the functional integral of G/H WZW cosets. This

is done by expressing the coset as G ×HC/H where HC is a complexification of the sub-

group H that is gauged, and adding a (b, c) ghost system of central charge c = − dim(H).

The three pieces are coupled only via zero modes.

In the case of the supersymmetric SL(2,R)k/U(1) coset, there is a bosonic H+
3 WZW

model at level k+2 of which a U(1) subgroup is gauged, and two free fermions ψ± (and their

right-moving counterparts). The coset HC/H is represented by a compact boson Y . The

zero mode that couples the various pieces corresponds to the holonomy of the gauge field

around the two cycles of the torus which is represented by a complex parameter u = s1τ+s2.

The bosonic SL(2,R), the two fermions, the Y boson, and the (b, c) ghosts are all solvable

theories and are coupled by this parameter u that has to be integrated over the torus

E(τ) = C/(Zτ + Z).

We refer the reader to [11–13] for the details of the computation. Here we quote the

result8 for the elliptic genus of the supersymmetric cigar theory at level k:

χcig(τ, z) = k

∫ 1

0
ds1 ds2

ϑ1(τ,−z − z
k + s1τ + s2)

ϑ1(τ,− z
k + s1τ + s2)

∑

m,w

e
2πizw−πk

τ2
|m+wτ+s1τ+s2|2 . (2.20)

The theta function appearing in this expression is the odd Jacobi theta function, we recall

its definition in appendix § A.

As was shown in [11], the integral (2.20) can be rewritten in terms of a function called

an Appell-Lerch sum. We briefly summarize the definition and some properties of Appell-

Lerch sums in § A. These functions are holomorphic in τ and meromorphic in z, and they

do not transform nicely under modular transformations. However, one can add to them a

simple non-holomorphic function such that the new function, called the completed Appell-

Lerch sum, is modular. As mentioned in the introduction, this property is the defining

feature of mock-modular forms, which are one-variable functions of τ . A precise relation

between the two-variable Appell-Lerch sums and one-variable mock-modular forms is spelt

out in [16].

In terms of the completed Appell-Lerch sums Â1,k(τ, z) of weight 1 and index k, we

have [12]:

χcig(τ, z) = −1

k

ϑ1(τ, z)

η(τ)3

∑

α,β∈Z/2kZ

e2πi
αβ
k q

α2

k ζ
2α
k Â1,k

(
τ,
z + ατ + β

k

)
. (2.21)

The overall normalization is such that the Witten index χcig(τ, 0) = 1.

The normalization of the R-charge is such that the elliptic genus transforms as a

Jacobi form of weight 0 and index 1
2 + 1

k . Recalling that the central charge of the cigar

is c = 3 + 6
k , this is consistent with the normalization used in Calabi-Yau manifolds of

complex dimension d, the elliptic genus of which is a Jacobi form of index d/2 [9].

8This expression should be taken to hold for real values of z. An expression for the cigar elliptic genus

has been derived in [31] for arbitrary complex values of z which agrees with the formula (2.21).
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3 The elliptic genus of the GLSM

The elliptic genus of GLSMs for compact theories has been computed in the 1990s follow-

ing [18], using the fact that one can compute it in the free-field limit. Very recently, this

problem has been revisited in [20] in the context of a direct evaluation of the path-integral

using supersymmetric localization. This is a technique that has been applied recently in

a variety of circumstances in supersymmetric field theories (following the work of [32])

including two-dimensional field theories [33–35], as well as in supergravities [36, 37], to

compute functional integrals that are independent of the coupling constants, or in related

situations, independent of the energy scales e.g. [39–41].

The problem at hand is to compute the functional integral of a GLSM on a two-

dimensional torus with periodic boundary conditions on the fermions and bosons, and

with an external constant R-symmetry gauge field AR turned on. In the GLSM description,

this background gauge field couples to all the fields carrying non-zero R-charges via their

covariant derivatives, consistent with the description of the elliptic genus as a partition

function with twisted boundary conditions (1.1).9

It is convenient to introduce the complex parameters u, z that correspond to the

holonomies of the dynamical U(1) gauge field A and the constant external gauge field AR

that couples to the left-moving R-current:

u =

∮

A
A− τ

∮

B
A , z =

∮

A
AR − τ

∮

B
AR , (3.1)

where A and B refer to the time and space circles of the torus respectively. Since shifting

the gauge field by an integer is a symmetry of the functional integral, these parameters

are defined on the torus E(τ) = C/(Zτ + Z). The parameter u is manifestly complex,

with its two real parameters corresponding to the holonomies of the gauge field on the two

independent cycles of the torus. The parameter z, on the other hand, corresponds to the

twist on the spatial circle in the Hamiltonian description, which is a priori real. Complex z

is taken to mean to be an analytic continuation of this twist parameter.10

The result of [20] for the elliptic genus of a compact GLSM is a two-dimensional

integral over (u, u) on the torus E(τ). As we shall review below, the integrand is a total

derivative in u and the integral reduces, via Cauchy’s theorem, to a contour integral in u

of a meromorphic function of u. The answer, which can then be expressed as a sum over

residues of this meromorphic function, can be easily seen to be a holomorphic function

of τ . In our case of non-compact GLSMs, the integrand is not a total derivative in u, and

we are left with a two dimensional integral over (u, u) that gives us the non-holomorphic

function (2.20).

9In particular, this definition of the path integral includes non-linear (in this case quadratic) self-couplings

of the field AR, as we shall see below. This is related to the fact that the elliptic genus is not modular

invariant but only covariant. The elliptic genus, a Jacobi form of weight zero and non-zero index, gains

a prefactor under modular transformations — see eq. (A.1). A path integral with linear couplings of the

type χ(τ, z) =
∫
[Dϕ][Dψ] exp

(
− S[ϕ,ψ]−

∫
ARµ JR

µ [ϕ,ψ]
)
, on the other hand, is invariant under modular

transformations, and differs from the elliptic genus by a prefactor eπmz2/τ2 , as described in [38].
10We thank Sungjay Lee for discussions on this matter.
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In subsection § 3.1, we review the method of [20] for compact theories with abelian

gauge groups, spelling out the details that are relevant to us. In subsection § 3.2, we shall

adapt the same method to the case of the non-compact theories that interest us.

3.1 A review of the compact case

The field content in this case is:

• A vector multiplet as in § 2, with supersymmetry variations:

δλ+ = iε+D + ∂+σ ε− − F01 ε+ , (3.2)

δλ− = iε−D + ∂−σ ε+ + F01 ε− , (3.3)

and their complex conjugate equations. The action of the vector multiplet, invariant

under the above supersymmetry transformations is:

Svec =
1

4π

∫
d2x

1

2e2

(
−∂µσ∂µσ+iλ−(∂0+∂1)λ−+iλ+(∂0−∂1)λ++F 2

01+D
2
)
. (3.4)

• Chiral multiplets Φi, (i = 1, · · · , N) coupled to the gauge multiplet with charge Qi,

and vector R-charge Ri for the bottom component φi, with supersymmetry variations:

δψi+ = iD+φi ε− +
√
2Fi ε+ − 2Qi φi σ ε+ , (3.5)

δψi− = −iD−φi ε+ +
√
2Fi ε− + 2Qi φi σ ε− , (3.6)

and their complex conjugate equations. The action of the chiral multiplet coupled to

the vector multiplet, invariant under the above supersymmetry transformations, is

SΦi =
1

4π

∫
d2x

(
−DµφiDµφi + iψi−(D0 +D1)ψi− + iψi+(D0 −D1)ψi+

+D|φi|2 + |Fi|2 − |σ|2|φi|2 − ψi−σψi+ − ψi+σψi−

− iφλ−ψi+ + iφλ+ψi− + iψi+λ−φi − iψi−λ+φi

)
. (3.7)

The covariant derivatives are Dµφi = (∂µ + iQivµ)φ and Dµψ± = (∂µ + iQivµ)ψ±.

The action of the theory of a U(1) vector multiplet coupled to N chiral multiplets is:

S = Svec +
N∑

i=1

SΦi (3.8)

In addition to the coupling given in (3.4), (3.7), all the fields couple to the external R-

symmetry gauge field via their R-charges. The R-charges of the bottom components of the

superfields are Ri for the chiral multiplets and 0 for the vector multiplet. The charges of the

other fields of the multiplets are determined by the the superalgebra, with the left-moving

supercharges (Q−,Q−) having charges (−1,+1), and the right-moving supercharges having

vanishing charges.

To apply the localization technique, we follow the general treatment of [32]. We first

need to choose a supercharge that is a symmetry of the action and that annihilates the
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observable that we want to compute. For this we choose the right-moving supercharge Q =

Q+ +Q+ that obeys the algebra

Q2 = L0 . (3.9)

The first step in supersymmetric localization is to deform the action by a Q exact term

of the form λQV , where V is a fermionic operator invariant under L0. A nice choice is

to pick

V =
∑

ψ=ψi±,λ±

∫
d2xψ(x)Qψ(x) . (3.10)

On taking λ→ ∞, the functional integral localizes to the Q-invariant configurations of the

theory. The result is an integral over the Q-invariant configurations of the action of the

theory (the localization locus) times a one-loop determinant coming from the fluctuations

in the directions normal to the localization locus:

3.1.1 The localization locus

With the above choice of Q, we need to put ε+ = 1 and ε+ = 1 in the supersymmetry

variations (3.2) and (3.5) and set them to zero. These equations imply:

∂+σ = ∂+σ = 0 , D = F01 = 0 , (3.11)

D+φi = D+φi = 0 , Fi = F i = 0 , (3.12)

φi σ = φi σ = 0 . (3.13)

In the Euclidean theory, the equations ∂+σ = ∂+σ = 0 imply that σ is a constant. Similarly,

the equations D+φi = D+φi = 0 on a torus with non-zero gauge field A imply that φ = 0.

This automatically solves the third line of equations. The full set of solutions is therefore

parameterized by the complex constant parameterizing the zero mode σ = σ0, and the zero

modes of the gauge field. On a torus the gauge field zero modes are parameterised by the

Wilson lines along the two directions of the torus, labelled by the complex parameter u

defined in (3.1), that takes values in the torus E(τ) = C/(Zτ +Z). Note that the measure

of integration is d2u
τ2

which is invariant under the translations by Zτ + Z, so the integral

over E(τ) of a function invariant under shifts of the lattice Zτ + Z is well-defined.

An equivalent way to reach the above conclusions is to notice that the actions (3.4)

and (3.7) are actually Q-exact quantities [20] and so we can work at any value of the

coupling constants of the action. Thus we recover, in the path-integral formalism, the

Hamiltonian statement that the elliptic genus is independent of the parameters of the

action. When e → 0, we obtain the elliptic genus of the UV GLSM, while when e → ∞,

we should obtain the elliptic genus of the IR interacting SCFT. Working at e → 0, we

can simply minimise the free Euclidean action of the vector multiplet. Similarly, we can

analyze the free action of the chiral multiplet. This gives the same solutions as above,

namely the locus is parameterized by the two complex zero modes (u, σ).

In fact, the locus can be reduced further for the specific problem of computing the

elliptic genus. Note that the path integral has an additional term which is the coupling

of the right-moving R-charge to the chemical potential z. This chemical potential can be
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thought of as a background value of a gauge field. As shown in Equation (2.16), the right-

moving part of the R-current of the vector multiplet is also Q-exact, and one can add this

to the free action of the vector multiplet. Note that both these terms scale as 1/e2, and

so it is consistent to keep these two terms as e→ 0. The additional term has the effect of

adding a mass proportional to z to σ, and therefore lifts the zero mode of σ. The same

term also gives a mass to the right-moving fermion λ+ proportional to z. These facts will

be useful in our further analysis.

The bottom line of the above analysis is that the localization locus is paramterized by

the complex parameter u ∈ E(τ) = C/(Zτ + Z) corresponding to the Wilson lines of the

gauge field around the torus, with all other fields vanishing.

3.1.2 The fluctuation integral

The next step in the localization procedure is to compute the one-loop determinant of the

quadratic fluctuations of the fields that are orthogonal to the localization locus. In this

case, this means we have to compute the integral over quadratic fluctuations of all the

fields in the theory with a background value of the gauge field zero mode u. In doing this

integral, one has to be careful with the treatment of various zero-modes of fields with kinetic

terms,11 for a naive treatment bosonic or fermonic zero-modes will lead to divergences or

zeros that dramatically affect the answer.

In the vector multiplet, we have the gauge field zero mode u that we keep explicit in the

analysis, and the zero modes of the left-moving gaugini (λ−, λ−). The other fields (σ, λ+)

and their complex conjugates are charged with respect to the R-symmetry gauge field

and thus do not have zero modes. In the chiral multiplet, all the dynamical fields are

charged with respect to the U(1) gauge field, so it seems that none of them have a zero

mode. However, there is a subtlety in the last statement because the boson ϕi can become

massless when the condition

Qiu+
Ri
2
z = 0 (mod Zτ + Z) (3.14)

is fulfilled. This can happen at a finite number of points on the torus E(τ), the set of

which is called Msing. The condensation of this boson can cause a potential divergence in

the path-integral. The authors of [20] argue that any such divergence is eliminated from

the integral in a natural way if one follows their prescription.

According to this prescription, one should first perform the u integral at a small but

finite value of coupling constant e — this implies keeping the integral over the constant

mode of the auxiliary field D in the vector multiplet. The integral is then defined by cutting

out a small disk of size ε around each potentially singular point, and the authors of [20]

show that this integral has a finite limit as ε→ 0.12 One can then perform the D-integral

and finally take the limit e→ 0.

Denoting this sequence of limits by limǫ,ε→0, the formula for the elliptic genus is:

χ(τ, z) = lim
ǫ,ε→0

∫

R

dD

∫

Eε

d2u

τ2
exp

(
− 1

2e2
D2

)
fe(u,D) . (3.15)

11The fields that do not have kinetic terms can be integrated exactly, and will not cause problems.
12See appendix A of [42] for a similar prescription in a closely related context.
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Here Eε is the torus defined by the modular parameter τ with disks of size ε excised

around each point u ∈ Msing defined after (3.14). The function fe(u,D) is the result

of the path integral over all fields in the weak coupling limit, as a function of u and D.

For models considered in [20], the no-chiral-anomaly condition
∑

iQi = 0 implies that the

function fe(u) above is invariant under the elliptic transformations u → λτ + µ, λ, µ ∈ Z.

This is a consistency condition that allows us to integrate such a function on the torus E(τ).

Thus we need to compute the one-loop fluctuation determinants of the quadratic op-

erators acting on the various bosons and fermions in the theory with z, u and D turned on.

The solution to this problem is well-known (see e.g. [43, 44]) and involves the evaluation

of infinite products of the form ∏

m,n

(m+ nτ + u) (3.16)

for left-moving fermions, its complex conjugate for right-moving fermions, and

∏

m,n

1

|m+ nτ + u|2 + iD
(3.17)

for bosons. Here we continue to follow the conventions of [20], which involves a Euclidean

rotation and a rescaling of D by π/τ2 compared to the usual conventions, say of [18].

The contribution from a chiral multiplet Φ of vector-like R-charge R and gauge

charge Q is

ZΦ,Q(τ, z, u,D) =
∏

m,n

(
m+ nτ + (1− R

2 )z −Qu
)(
m+ nτ + R

2 z +Qu
)

∣∣m+ nτ + R
2 z +Qu

∣∣2 + iQD
. (3.18)

When D = 0, this simplifies to

ZΦ(τ, z, u) =
ϑ1(τ, (R/2− 1)z +Qu)

ϑ1(τ, Rz/2 +Qu)
. (3.19)

The function ϑ1(τ, z) is the Jacobi theta-function that is odd in z. The contribution from

a U(1) vector multiplet is:

Zvec(τ, z) = − η(τ)3

ϑ1(τ, z)
. (3.20)

We have summarized the definitions and conventions for the Jacobi theta and Dedekind

eta function in appendix § A. One property that plays a role in the following is that the

Jacobi theta function ϑ1(t, z) is an odd function of z and has a simple zero at z = 0.

The one-loop determinants (3.19), (3.20) summarize the participating non-zero modes.

In the vector multiplet, the dynamical fields are a complex scalar σ (left- and right-moving)

and a left- and right-moving complex fermion λ±. The boson does not have any zero

mode, and neither does the right-moving fermion. The left-moving fermion has a complex

zero mode that we took out of this computation, we shall discuss this separately shortly.

Correspondingly, in the fermonic determinant (the numerator of (3.20)), we need to divide

out by the simple zero at z = 0 of the function ϑ1(τ, z) (A.6). In the chiral multiplet,

the dynamical fields are a complex boson φ and a complex fermion ψ±. All the oscillator

modes are present, but we can see that for u ∈Msing, Zvec diverges.
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The final ingredient is the integration over the zero mode of the complex gaugino λ−
which needs to be saturated. Since λ0− is a complex zero mode of the kinetic operator

in (3.4), its action is independent of e, and its only contribution comes from its coupling

to the chiral multiplet in (3.7). The effect of the integration is to pull down one factor of

the fields that it couples to. This gives rise to

fe(u,D) =

〈∫
d2x

∑

i

Qiψiφi

∫
d2x

∑

i

Qiψiφi

〉
. (3.21)

For the computation below, we will need to evaluate this in the e → 0 limit, i.e. one

can simply evaluate (3.21) in the free theory. For u ∈ Eε and for D whose imaginary part

is close enough to 0, we have

fe(u,D) −−−→
e→ 0

h(τ, z, u,D) g(τ, z, u,D) , (3.22)

where

g(τ, z, u,D) = Zvec(τ, z)
∏

i

ZΦ,Qi(τ, z, u,D) (3.23)

is the one-loop determinant without the zero modes, and

h(τ, z, u,D) = − i

π

∑

i,n,m

Q2
i(∣∣∣m+ nτ +Qiu+ Ri

2 z
∣∣∣
2
+ iQiD

)(
m+ nτ +Qiu+ Ri

2 z
) .

(3.24)

One can check that

h(τ, z, u,D) g(τ, z, u,D) = − 1

πD

∂

∂u
g(τ, z, u,D) . (3.25)

From the explicit expressions for the determinants (3.19), (3.20), we can check, using the

Jacobi properties, that the condition
∑

iQi = 0 implies that the function g(u) is invariant

under shifts u→ u+λτ+µ, λ, µ ∈ Z, and so the integral over the torus E(τ) = C/(Zτ+Z)

is well-defined, i.e. independent of the coset representative.

3.1.3 Reduction to a contour integral

Putting in all these ingredients into the integral (3.15), one gets an integral:

χ(τ, z) = lim
ǫ,ε→0

∫

Γ−

dD τ2 exp
(
− 1

2e2
D2

)∫

Eε

d2u

τ2
h(τ, z, u,D) g(τ, z, u,D) . (3.26)

The factor of τ2 in the measure arises because of the rescaling mentioned below (3.17). We

have also pulled the D-integral away from the real axis to a contour that runs just below

the real axis close enough to it so as to avoid all the poles i.e. D ∈ R± iδ with 0 < δ ≪ ε2.

(The final answer will be independent of such a δ.)

Using (3.25), (3.26), and Cauchy’s theorem, we get:

χ(τ, z) = − lim
ǫ,ε→0

∫

Γ+

dD
1

2πiD
exp

(
− 1

2e2
D2

)∮

∂Eε

du g(τ, z, u,D) . (3.27)
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We have thus expressed the elliptic genus as the result of two contour integrals D and u.

The final step in the manipulations is a deformation of the D contour that we shall not

spell out in detail (see section 3 of [20]). Following those steps, the D-integral simply

picks up the residue at D = 0, and the u-integral becomes a sum over closed contours

encircling {u ∈Msing/Ri > 0} ≡ {u ∈M+
sing}:

χ(τ, z) = −
∮

u∈M+
sing

du g(τ, z, u, 0) . (3.28)

Note that this slightly lengthy procedure above of treating the various zero modes

separately is necessary, otherwise we end up with the wrong two-dimensional integral over u

instead of the correct contour integral in u.

3.2 The inhomogeneous non-compact theories

Now we would like to consider a theory which has, in addition to a U(1) vector multiplet

and chiral multiplets Φi as in the previous section, a chiral compensator multiplet P , as

in § 2, which transforms inhomogeneously under super gauge transformations Λ as

P → P + iΛ . (3.29)

The action of the P multiplet coupled to the gauge multiplet is:

SP =
1

4π

∫
d2x

k

2

(
−DµpDµp+ iχ−(∂0 + ∂1)χ− + iχ+(∂0 − ∂1)χ+ +D(p+ p) + |FP |2

− |σ|2 + iχ+λ− − iχ−λ+ + iχ+λ− − iχ−λ+
)
. (3.30)

Recall that Dµp = ∂µp + ivµ, and that the imaginary part of P is periodically identified

with periodicity 2π. The full action of the theory is:

S = Svec +

N∑

i=1

SΦi + SP . (3.31)

As we saw in § 2, the conserved right-moving R-symmetry in the quantum theory is

j̃+R = j+R,Φ +
k

2
χ−χ− − 2∂−Im p− 2v− . (3.32)

Now we would like to compute the path integral with the inclusion of the P -multiplet.

We follow the same route as in the previous section using localization with respect to the

same superchargeQ, but there are crucial differences in the details of the two computations.

The first difference is that the action of the P -multiplet is not Q-exact due to the presence

of total-derivative terms as mentioned in [10, 17], so we cannot naively minimize the action

of the P -multiplet.

In order to proceed, we observe that since the vector multiplet action is Q-exact, we

have already reduced the problem to an evaluation of the path-integral at e → 0 in the

sense discussed in the last section. If we do the vector multiplet integral first, this means

that we are left with an essentially free P -multiplet. The only couplings we need to keep
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while computing the integral over the P -multiplet fields are the coupling to the zero modes

gauge fields (that do not have a 1/e2 self-coupling) i.e. the complex zero mode of the gauge

field u and the complex zero mode of the left moving gaugino λ−. The action of these

fields is:

Sfree
P =

1

4π

∫
d2x

k

2

(
−(∂µp− iuµ)(∂µp+ iuµ) + iχ−(∂0 + ∂1)χ− + iχ+(∂0 − ∂1)χ+

+D(p+ p) + |FP |2 + iχ0
+λ

0
− + iχ0

+λ
0
−

)
. (3.33)

Note that there are zero modes for the right-moving fermion (χ+, χ+), but not for the

left-moving fermion (χ−, χ−) because of its coupling to the R-symmetry gauge field via the

current (3.32).

The expression for the elliptic genus is as in (3.15):

χ(τ, z) = lim
ǫ,ε→0

∫

Γ−

dD τ2

∫

Eε

d2u

τ2
exp

(
− 1

2e2
D2

)
f (P )
e (u,D) , (3.34)

where the function f
(P )
e (u,D) is taken to mean the integral over all the fields except u

and D. We include a superscript to indicate that the integration over the P -multiplet

gives a different function than the one in the previous section.

As before, we first perform the integral over the fermion zero modes, but the answer

is now different because of the existence of new fermion zero modes (χ+, χ+), and the

coupling of these modes to (λ−, λ−) in (3.33). Integrating over all these fermion zero

modes, we simply get a factor of one in the integral. We are then left with the one-loop

determinants of all the non-zero modes in the theory as a function of u and D. We have

already computed the one-loop determinants for the fields of the chiral multiplets Φi and

the gauge multiplet. It remains to do so for the fields of the P -multiplet.

In the P -multiplet, the left-moving fermion (χ−, χ−) is charged under the R-symmetry

gauge field and it is not coupled to the U(1) gauge field nor to D. The non-zero modes

of the boson do not couple to either of the gauge fields nor to D, the zero mode of Re(p)

couples to D but not to z or u, while ϕP =
√
2k Im(p) with no oscillators, couples to u

and z but not to D. This mode has canonical kinetic term and lives on a circle with

radius R =
√
2k, i.e. for m,w ∈ Z, we have the periodic identification:

ϕP (x
1 + 2π, x2) = ϕP (x

1, x2) + 2πw
√
2k ,

ϕP (x
1 + 2πτ1, x

2 + 2πτ2) = ϕP (x
1, x2) + 2πm

√
2k . (3.35)

This periodicity allows for the following solutions to the free quadratic action (3.33):

ϕP (x1, x2) = x1w
√
2k + x2(m− wτ1)

√
2k/τ2 , (3.36)

that corresponds to momentum and winding in the target space. Summing over the con-

tributions of these modes, and taking into account the free oscillator modes, we obtain the

one-loop determinant of the P -multiplet:

ZP (τ, z, u) = −k 1

Dτ2

ϑ1(τ, z)

η(τ)3

∑

m,w∈Z

exp

(
−πk

τ2

(
m+ wτ + u+

z

k

)(
m+ wτ + u+

z

k

))
,

(3.37)
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where the factor of 1/D comes from integrating over the zero mode of Re(p). Here the

parameter z is real, consistent with a real twist in the boundary conditions in the Hamil-

tonian description, as discussed below eq. (3.1). In the next section, we shall discuss the

analytic continuation to arbitrary complex parameter z. Note that ϕP undergoes a transla-

tion under the action of the R-symmetry (3.32), which accounts for the fact that z appears

in both the left and the right-moving part of the exponential above.

We have to multiply this expression with the vector multiplet determinant and the

chiral multiplet determinant, and integrate over the parameter u. However, there is another

subtlety here coming from the fact that the correct gauge field background for the chiral

multiplet is now the modified expression Aµ = vµ + ∂µIm p. In this background we obtain

chiral determinant to be:

ZΦ(τ, z, u) =
ϑ1(τ, (R/2− 1)z +Q(u+m+ wτ))

ϑ1(τ, Rz/2 +Q(u+m+ wτ))
. (3.38)

Using the Jacobi property (A.2) of the ϑ function, we get:

ZΦ(τ, z, u) = e2πiQzw
ϑ1(τ, (R/2− 1)z +Qu)

ϑ1(τ, Rz/2 +Qu)
. (3.39)

The above argument is equivalent to explicitly considering the anomalous transformation

behavior of charged fermions in a gauge field background as mentioned in [13]. The phase

factor that depends on w is also consistent with the elliptic symmetry of u, i.e. the symmetry

of large gauge transformations of the linear sigma model.

Putting all this into the integral (3.34), we can perform the D integral as before to

pick up the residue at D = 0, which gives us:

χN (τ, z) = k lim
ε→0

∫

Eε

d2u

τ2

N∏

i=1

ϑ1(τ, (Ri/2− 1)z +Qiu)

ϑ1(τ, Riz/2 +Qiu)
×

∑

m,w∈Z

e
2πi(

∑
iQi)zw−

πk
τ2

(m+wτ+u+ z
k
)(m+wτ+u+ z

k
)
.(3.40)

Note that the above integrand is also invariant under the elliptic transformations u →
u+λτ +µ, λ, µ ∈ Z, so that the integral is well-defined on the coset E = C/(Zτ +Z). De-

manding this invariance is another way to determine the modified chiral determinant (3.39).

This fact was already emphasized in [13] for the cigar coset theory. It was also shown in

that paper that χ(τ, z) is modular invariant. When all the Ri = 21−N
k and Qi = 1, we get

the expression in [17]. For generic N > 1, the expression (3.40) has potential singularities

that we briefly discuss in § 4.

When we have only one field Φ = Φ1 with R = 0, Q = 1, we get:

χcig(τ, z) = k lim
ε→0

∫

Eε

d2u

τ2

ϑ1(τ,−z + u)

ϑ1(τ, u)

∑

m,w∈Z

e
2πizw−πk

τ2
(m+wτ+u+ z

k
)(m+wτ+u+ z

k
)
.

(3.41)

In the next section we show that the above expression for χcig(τ, z) obeys the modular,

elliptic, and holomorphicity properties expected from the cigar elliptic genus13 for an ar-

bitrary complex parameter z. For now we note that, by the periodicity of the integrand

13We thank the referee for pointing out an error in the above formula in a previous version of this paper.
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under u → u + λτ + µ, the expression (3.41) is equivalent to the expression (2.20) for

real values of z as expected. The shift of variables u → u + z/k to go between the ex-

pression (3.41) and (2.20) is a reflection of the fact that the free-fermions of the IR coset

theory are not the same as those of the UV theory. The fermions of the cigar coset have

R-charge 1+1/k while those of the UV free theory have the R-charge 1. The correct iden-

tification of the UV and IR theories goes via the identification of the R-symmetry which

is conserved throughout the RG flow.

In the expression (3.40), the factors coming from the non-zero modes of the P -multiplet

cancel those coming from the vector multiplet. We are left with the holomorphic contri-

bution of the chiral multiplets Φi, (i = 1, · · · , N), along with the non-holomorphic contri-

bution of the compact compensator boson ϕP through its winding and momentum modes.

The observation that the non-holomorphicity of the elliptic genus of the cigar comes from

the winding and momenta of a free boson has been made in [12, 13, 45, 46]. The concep-

tual addition we make to this is the identification of this boson as the compensator (or

equivalently, as the Stückelberg field) for the anomalous chiral rotations of fermions in the

class of theories studied in this paper.

One can give a simple interpretation of (3.40) in the IR theory as well. If we integrate

out the gauge field in a naive way, we are left with the fields Φi that are the coordinates of a

target space which is not Ricci-flat. The oscillator modes of these coordinates make up the

holomorphic theta functions in the partition function. The non-trivial curvature induces a

chiral anomaly as in (2.18). The compensator that is needed to cancel the anomaly makes

up the remaining contribution.

4 Modularity and the holomorphic anomaly

In the last section, we have derived the elliptic genus of a class of GLSMs labelled by N .

This took the form of a two-dimensional integral over u ∈ E(τ) = Zτ + Z of a non-

holomorphic function of u. The theory with N = 1 is the cigar coset where the integral

has been explicitly calculated in terms of Appell-Lerch sums.

For the higher N cases, we note that the expressions that we obtained (3.40) are

formal, and in particular the expression develops a singularity when two of the poles in

the u-coordinate coincide. One can resolve this by introducing more chemical potentials

(fugacities) and forcing them to take non-coinciding values as done in [17]. Even so, the

Fourier expansion for the holomorphic part of these expressions is not well-defined and

experiences a wall-crossing phenomenon. This is unlike the case of the cigar, and is more

reminiscent of the indexed partition functions of the black holes that have been discussed

in [16]. It will be interesting to understand the physics of these singularities, and develop

the mathematical formalism, perhaps along the lines of the formalism developed in [16].

In this section, we first briefly present a proof of the modularity and elliptic properties

of our expression for the cigar elliptic genus. We then compute the holomorphic anomaly

in the elliptic genera of all the models considered in the previous section, and show that

this reduces to the known answer for the case of the cigar. We hope that this analysis is

also useful to understand the higher N case.
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4.1 Modular and elliptic properties

The expression (3.41) can be rewritten as follows:

χcig(τ, z) = k lim
ε→0

∫

Eε

d2u

τ2

ϑ1(τ,−z + u)

ϑ1(τ, u)

∑

m,w∈Z

e
2πizw−πk

τ2
(m+wτ+u+ z

k
)(m+wτ+u+ z

k
)

= k lim
ε→0

∫

Eε

d2u

τ2

∑

m,w∈Z

ϑ1(τ,−z + u+m+ wτ)

ϑ1(τ, u+m+ wτ)
e
−πk

τ2
(m+wτ+u+ z

k
)(m+wτ+u+ z

k
)

= k

∫

C

d2u

τ2

ϑ1(τ,−z + u)

ϑ1(τ, u)
e
−πk

τ2
(u+ z

k
)(u+ z

k
)
. (4.1)

Here we have used the elliptic property (A.2) of the ϑ function, as in Equa-

tions (3.38), (3.39), to obtain the second line. To obtain the third line, we note that

the integrand above is invariant under the shifts u → u + Zτ + Z, and we can therefore

exchange the sum over (m,w) ∈ Z
2 in the integrand with a sum over the different coset rep-

resentatives, thus effectively unfolding the integration region to the whole complex plane.

We now perform the transformation τ → − 1
τ , z → z

τ on the last line of (4.1), and

accompany it with a change of variable u = u′

τ . Using the modular transformation property

of the theta functions, we obtain:

ϑ1(τ,−z + u)

ϑ1(τ, u)
→ ϑ1(− 1

τ ,
−z+u′

τ )

ϑ1(− 1
τ ,

u′

τ )
= e

πi
τ
(z2−2u′z)ϑ1(τ,−z + u′)

ϑ1(τ, u′)
. (4.2)

The exponential factor transforms as:

e
−πk

τ2
(u+ z

k
)(u+ z

k
) → e

2πiz2

kτ
+ 2πiu′z

τ e
−πk

τ2
(u′+ z

k
)(u

′
+ z

k
)
. (4.3)

The measure of the integral (4.1) transforms as d2u
τ2

→ d2u′

τ2
, and the range of integration

of u′ is also the complex plane. Putting these facts together, we obtain:

χcig(−1

τ
,
z

τ
) = e

πi
τ
z2(1+ 2

k
) χcig(τ, z) , (4.4)

which is the modular transformation of a Jacobi form of weight 0 and index 1
2 + 1

k , as

expected.

To demonstrate the elliptic property, it is convenient to make a change of variables z =

kz′, so that the index of ϕcig(τ, z′) ≡ χcig(τ, kz′) is expected to be k2

2 + k. To show that

this is indeed the case, we perform the transformation z′ → z′ + λτ + µ with λ, µ ∈ Z, and

accompany it with the change of variable u = u′ − λτ − µ in the last line of (4.1). The

transformations of the theta functions gives:

ϑ1(τ,−kz′ + u)

ϑ1(τ, u)
→ e−πiλ

2(k2+2k)τ e2πikλu
′−2πik(k+1)λz′ ϑ1(τ,−kz′ + u′)

ϑ1(τ, u′)
, (4.5)

while the exponential factor transforms as:

e
−πk

τ2
(u+ z′

k
)(u+ z′

k
) → e−2πikλu′−2πikλz′ e

−πk
τ2

(u′+ z′

k
)(u

′
+ z′

k
)
. (4.6)
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The form of the measure and the integration region for u′ also do not change. Putting

these facts together, we obtain:

ϕcig(τ, z′ + λτ + µ) = e−πi(k
2+2k)λ2τ e−2πi(k2+2k)λz′ ϕcig(τ, z′) , (4.7)

which is the elliptic transformation of a Jacobi form of index k2

2 + k, as expected. The

analysis of this subsection can be repeated for the elliptic genera of the models (3.40).

4.2 The holomorphic anomaly

Starting from the expression (3.40), we would like to compute ∂τχN (τ, z). Since the

measure d2u/τ2 is independent of τ, τ , we can pull the τ -derivative inside the integral.

We have already seen that the integrand is invariant under the large gauge transforma-

tions u→ u+ λτ + µ, and consequently, it is annihilated by the heat operator ∂τ − i
4π∂

2
u,

as can be verified explicitly. Thus we obtain:

∂τχN (τ, z) =
ik

4π
lim
ε→0

∫

Eε

d2u

τ2
∂2u

( N∏

i=1

ϑ1(τ, (Ri/2− 1)z +Qiu)

ϑ1(τ, Riz/2 +Qiu)

×
∑

m,w∈Z

e
2πi(

∑
iQi)zw−

πk
τ2

|m+wτ+u+ z
k
|2
)

(4.8)

The integrand is a total derivative, so we are left with a boundary integral. The

boundary is the union of the boundary of the fundamental parallelogram of the Zτ + Z

lattice and the small circles surrounding the singular points Riz/2 + Qiu = 0. Since the

integrand is periodic in u, the contribution of the first component vanishes, and one is left

with a contour integral around the points u ∈Msing which can be evaluated using Cauchy’s

residue theorem. We obtain:

∂τχN (τ, z) =
ik

4π

∮

Msing

du ∂u

( n∏

i=1

ϑ1(τ, (Ri/2− 1)z +Qiu)

ϑ1(τ, Riz/2 +Qiu)

∑

m,w

e
2πi(

∑
iQi)zw−

πk
τ2

|m+wτ+u+ z
k
|2
)

= − k

4πτ2

n∑

i=1

ϑ1(τ, z)

η(τ)3

∏

j 6=i

ϑ1
(
τ, (

Rj

2 − Ri
2
Qj

Qi
− 1)z

)

ϑ1
(
τ, (

Rj

2 − Ri
2
Qj

Qi
)z
) ×

× ∂u
∑

m,w∈Z

e
2πi(

∑
iQi)zw−

πk
τ2

|m+wτ+u+z( 1
k
−

Ri
2Qi

)|2

∣∣∣∣∣∣
u=−

Riz

2Qi

. (4.9)

Here we have assumed that the points of Msing are all distinct.

For the case of the cigar, we have only one field Φ with R = 0, Q = 1, so we get:

∂τχ
cig(τ, z) = − k

4πτ2

ϑ1(τ, z)

η(τ)3
∂u

∑

m,w∈Z

e
2πizw−πk

τ2
|m+wτ+u+ z

k
|2

∣∣∣∣∣∣
u=0

. (4.10)

After a Poisson resummation of (4.10), we obtain:

∂τχ
cig(τ, z) =

i
√
k

2
√
τ2

ϑ1(τ, z)

η(τ)3

∑

n,w∈Z

(n− wk) q
(n+wk)2

4k q
(n−wk)2

4k ζ−
n
k
+w . (4.11)
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We identity the holomorphic prefactor consisting of a quotient of a theta and eta functions

as the partition function of the field Φ. The sum over (n,w) can now be interpreted as a

sum over the momenta and winding of the compact boson ϕP with momenta and winding

around a circle of radius R =
√
2k.

With a little more work, one can also re-express the above holomorphic anomaly equa-

tion in the form as written in [16] using the standard ϑm,ℓ functions:

− 2i√
k
τ
1/2
2 ∂τχ

cig(τ, z) =
1

k

ϑ1(τ, z)

η(τ)3

∑

α,β∈Z/2kZ

e2πi
αβ
k q

α2

k ζ
2α
k

∑

ℓ (mod 2k)

ϑ
(1)
k,ℓ(τ)ϑk,ℓ

(
τ,
z + ατ + β

k

)
.

(4.12)

Using (A.12), we see that the right-hand side of the above equation is the shadow of the

Appell-Lerch sum appearing in the cigar elliptic genus (2.21). It would be nice to work out

all the details of a similar interpretation for the case (4.9) of many fields.

5 Discussion

The fact that the holomorphic anomaly in the elliptic genus of non-compact theories can

be localized to the contribution of the compensator multiplet for the chiral anomaly gives

us a simple method to pinpoint if a given theory has a holomorphic anomaly or not.

This is most-easily illustrated by considering the mirror dual of the supersymmetric cigar

theory, i.e. the N = 2 supersymmetric Liouville theory [10], which has a condensate of

winding modes. This interacting SCFT has the same field content as the asymptotic cigar

theory, i.e. a complex boson ρ+iθ and its superpartners ψρ, ψθ along with their left-moving

counterparts. The theory is defined by a superpotential of the type:

LSLint = ψψ̃ e
− 1

Q
(ρ+ρ̃+i(θ−θ̃))

+ c.c , (5.1)

where ψ = ψρ+iψθ is the superpartner of ρ+iθ and ψ̃ is its rightmoving counterpart. From

this superpotential, one can immediately read off the various special features — firstly, that

a naive rotation of the fermions is not a symmetry; secondly, when the chiral rotation of

fermions is accompanied by a shift of the chiral boson, it is a conserved symmetry; and

finally, that momentum is conserved, but winding is not. It is also clear that these three

features are related to each other.

In the mirror cigar picture, the lack of winding is clear geometrically (a winding mode

can slide off the tip), while the anomaly of the chiral rotation is a one-loop quantum effect

due to the non-zero Ricci tensor of the cigar. Based on these observations, we can say that

if the target space for an interacting SCFT has a non-compact direction accompanied by

a U(1) isometry along which winding is not conserved, the elliptic genus of the theory will

suffer from a holomorphic anomaly, and will have mock modular behaviour.

There are many other GLSMs that flow to non-compact theories that can be studied

with our methods, and are interesting for diverse reasons. Among them are orbifolds of

the theories studied here and squashed toric models that correspond to massive theories

like the “supersymmetric sausage” [47, 48]. The cigar-like models also have conjectured

relations to matrix models [49, 50]. Other models correspond to the worldsheet theory of
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strings in the background of NS5-branes in string theory wrapped on various surfaces [19].

These intrinsically interesting from the string theory point of view, and have found recent

applications in the moonshine program [42]. Another interesting direction would be to

extend our analysis to non-abelian theories as has been done for compact models [51].

Appell-Lerch sums and related mock modular forms make another interesting appear-

ance in physics in the context of the wall-crossing phenomenon for supersymmetric black

holes in N = 4 string theory in four dimensions [16]. In that situation, the result for the

supersymmetric index is known, but it is not known if the SCFT describing the moduli

space of black holes/strings arises as the IR fixed point of any gauged linear sigma model.

It would be very interesting if we can identify these putative UV theories. As remarked

in § 4, it would be interesting if any of the models with higher N discussed in this paper

is related to black hole partition functions.

We believe that our analysis makes some progress to answer the three questions raised

in the introduction. Finally, a very interesting fourth question is to understand the geo-

metric interpretation of the non-holomorphic elliptic genera that we find.14 In the compact

case, when one considers a (2, 2) superconformal field theory with a target space that is in

the moduli space of a compact Calabi-Yau manifold, the function χ(τ, z) coincides with the

geometric definition of the elliptic genus of the manifold (see e.g. Equation (1.1) of [52]).

It would be very interesting if we can find a geometric formula that extends this to include

the case of the non-compact models discussed here. In this regard, we note that the cigar

SCFT is supposed to be the stringy description of the region near the singularity of singular

Calabi-Yau manifolds in a double scaling limit [53–55]. Gauged linear sigma models may

provide the missing link between non-rational conformal field theories and the geometry

and topology of non-compact manifolds.
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A Jacobi forms and Appell-Lerch sums

In this appendix, we briefly review the basic facts about Jacobi forms and Appell-Lerch

sums that we used in the main text. The elliptic genus of a compact Calabi-Yau manifold

of complex dimension d is a Jacobi form of weight 0 and index d/2. For superconformal

field theories, we should replace d by c/3, and so the index is c/6, where c is the central

charge of the SCFT.

14Indeed, this was partly the origin of this investigation. We thank J. Harvey, S. Katz, and A. Klemm

for discussions on this topic.
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A Jacobi form of weight k and index m is a holomorphic function ϕ(τ, u) from H× C

to C which is “modular in τ and elliptic in u” in the sense that it transforms under the

modular group as

ϕ
(aτ + b

cτ + d
,

u

cτ + d

)
= (cτ + d)k e

2πimcu2

cτ+d ϕ(τ, u) ∀
( a b
c d

)
∈ SL(2;Z) (A.1)

and under the translations of u by Zτ + Z as

ϕ(τ, u+ λτ + µ) = e−2πim(λ2τ+2λu)ϕ(τ, u) ∀ λ, µ ∈ Z . (A.2)

We consider k,m ∈ 1
2Z. In addition there are some growth properties that we have not

mentioned here. We refer the reader to [8] for a nice exposition of the theory of Jacobi

forms.

There is an unfortunate clash of notation between the conventions of the Jacobi form

literature [8] where k is used for the weight of the Jacobi form, and in the literature on the

super Kazama-Suzuki cosets like SL(2,R)k/U(1), for which k is related to the index of the

elliptic genus. In the text we have followed the latter convention.

The transformation laws (A.1), (A.2) include the periodicities ϕ(τ + 1, z) = ϕ(τ, z)

and ϕ(τ, z + 1) = ϕ(τ, z), so ϕ has a Fourier expansion

ϕ(τ, z) =
∑

n,r

c(n, r) qn ζr , (q := e2πiτ , ζ := e2πiz) . (A.3)

Some interesting functions that appear repeatedly in the main text are the Dedekind

eta function, a modular form of weight 1/2:

η(τ) := q1/24
∞∏

n=1

(1− qn) , (A.4)

and the odd Jacobi theta function which is a Jacobi form of weight 1/2 and index 1/2:

ϑ1(τ, z) = −iq1/8ζ1/2
∞∏

n=1

(1− qn)(1− ζqn)(1− ζ−1qn−1) = i
∑

m∈Z

eπi(m+ 1
2
) q(m+1/2)2/2 ζm+ 1

2 .

(A.5)

We have the relation:
1

2πi

d

dz
ϑ1(τ, z)

∣∣∣∣
z=0

= −i η(τ)3 . (A.6)

The Appell-Lerch sum that appears in the main text in § 2.2 is:

A1,m(τ, z) = −1

2

∑

s∈Z

qms
2
ζ2ms

1 + qsζ

1− qsζ
. (A.7)

This function obeys the elliptic transformation property (A.2) with index m, but is not

modular. However, it can be completed to a non-holomorphic function Â1,k defined as [16]:

Â1,m(τ, z) = A1,m(τ, z) + 2m
∑

ℓ (mod 2m)

ϑ
(1)∗
m,ℓ (τ)ϑm,ℓ(τ, z) (A.8)
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that does transform like a holomorphic Jacobi form of weight 1 and index m. Here, we

have used, for ℓ ∈ Z/2mZ, the standard theta function

ϑm,ℓ(τ, z) =
∑

λ∈ Z

λ=ℓ (mod 2m)

qλ
2/4m ζλ, (A.9)

its first Taylor coefficient

ϑ
(1)
m,ℓ(τ) =

1

2πi

d

dz
ϑm,ℓ(τ, z)

∣∣∣∣
z=0

=
∑

λ∈ Z

λ=ℓ (mod 2m)

λ qλ
2/4m , (A.10)

and its Eichler integral

ϑ
(1)∗
m,ℓ (τ) =

∑

λ∈ Z

λ=ℓ (mod 2m)

sgn(λ) erfc
(
2|λ|√πmτ2

)
q−λ

2/4m . (A.11)

The function Â1,m obeys the equation [16]

− 2i√
k
τ
1/2
2 ∂τ Â1,m(τ, z) =

∑

ℓ (mod 2m)

ϑ
(1)
m,ℓ(τ)ϑm,ℓ(τ, z) . (A.12)

The above facts are summarized by saying that the functions A1,m(τ, z) can be completed

to Jacobi forms Â1,km of weight 1 and index m, with shadow
∑

ℓ (mod 2m) ϑ
(1)
m,ℓ(τ)ϑm,ℓ(τ, z).
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