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1 Introduction

The absence of supersymmetry(SUSY) signatures at the LHC pushes us into the regime of

O(100 − 1000)GeV inos1 and heavy-decoupled scalar superparticles. Such heavy inos are

typically well-separated in mass leading to minimal ino mixings and degenerate charginos

and neutralinos of the same kind. Hereafter, such parameter space is called “the split limit”.

The split limit is not only phenomenologically supported, but can also be theoretically

motivated as charged SUSY breaking — SUSY breaking without singlets — generically

leads to it [1–4].

In the split limit, the LHC inverse problem [5] arises and is difficult to resolve. The

problem can be described as: (1) first of all, the discovery of gauginos and Higgsinos is

difficult, and (2) the extraction of model paramters, foremost importantly the identities

and the masses of inos, is often subject to multiple interpretations.

The inverse problem has been addressed in more general SUSY parameter space in-

cluding light sfermions and gluinos by carrying out a scan over a huge parameter space and

a dedicated collider simulation and by considering a huge set of collider and astrophysical

1We write “inos” for any neutralinos and charginos in the introduction but will refer only to electroweak-

gauginos, Higgsinos and possibly gravitinos and axinos afterwards.
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Figure 1. Illustrating the LHC inverse problem in the split limit. Differential cross-sections of

MET(left), pT (W )(mid) and pT (Z)(right) from the decays of NLSP pairs, χ+χ0 as an example, are

compared between the Wino-NLSP(red) and the Higgsino-NLSP(black) models with the Bino-LSP.

Actually, not only the identities of the NLSP, but also many parameters in the models are different;

however, these easiest observables may not distinguish the models. Models are defined in table 1

and more discussions are in text.

observables [6–15], or by adapting a sophisticated statistical analysis [16–18]. These works

have provided an unprecedented amount of useful information on the multi-dimensional

parameter space of SUSY. The split limit, however, has much fewer parameters and parti-

cles relevant to collider analysis allowing us to more analytically approach the problem. It

is a well-motivated and meaningful subset which deserves the detailed study on its own.

Before we get into the analysis, we would like to illustrate how the problem arises in

the split limit. In the general parameter space that has been studied widely, a change in

the ino sector can be accompanied by suitable changes of other sectors such as slepton

masses and mixing angles so as to yield the same observables [5]. Does the split limit also

have enough parameters to induce degeneracies in the data interpretation?

We create two degenerate models in the split limit for illustration in table 1. They are

degenerate at least in the early stage of the LHC14 running because they produce same

counting and differential observables accessible in the early stage. The easiest channels

to search for the electroweakino sector will be di-vector-boson channels leading to multi-

lepton and missing transverse energy(MET) signatures. Three diboson channels, WW,WZ

and ZZ, lead to mutually different multi-lepton signals, so the rate of each category is an

observable in the inverse map; see table 1. In addition to these lepton countings, the differ-

ential distributions of the pT of W,Z bosons and MET are most important ones affecting

many other observables. We compare these representative distributions for illustration in

figure 1. As shown in table 1 and figure 1, not only total rates of each diboson category, but

also the shapes of those distributions are almost identical in the two models. Here we note

that contributions from all possible pair productions of nearly degenerate indistinguishable

next-to-lightest inos(NLSP) are added — these are what we will observe at collider.

The problem is that two models are quite different. Most importantly, the identities

and the masses of the NLSPs are different. For any given identity of the NLSP, we were

able to tune the NLSP mass for production rates, tβ for branching ratios and the mass

gap between the LSP and the NLSP for the shapes of spectra. This kind of degeneracy

generally exists in the split limit.

In this paper, we consider the split limit and study an observable relation of the

NLSP decay that can confidently tell us the existence of Higgsinos as either LSPs or
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Model parameters (M1,M2, µ, tβ) σ(W+W−) σ(W±Z) σ(ZZ)

Wino-NLSP 0.5 TeV, 1.0 TeV,−2.0 TeV, 4.3 0.60 fb 1.1 fb 0 fb

Higgsino-NLSP 0.2 TeV, 2.0 TeV, 0.8 TeV, 2.0 0.61 fb 1.1 fb 0.02 fb

Table 1. Definitions of the models used in the illustration in figure 1. Also shown are diboson

production cross-sections from all possible NLSP pair productions and their subsequent decays. All

other superparticles are heavier. LHC14. See text for how we create these models.

NLSPs. We have already made one of our main observations that all indistinguishable

decay processes should be added up to produce an observable. We will see that this makes

the Higgsino unique.

Our basic study model consists of electroweakinos and Higgsinos (with heavy-decoupled

gluinos). But we also consider axinos or gravitinos additionally. Additional considerations

will further support our claim and help to generalize our arguments. Exceptions to the

claim will also be found in such cases with weakly interacting LSPs.

We will call all nearly degenerate (next-to-)lightest states by the (N)LSP — we do not

use the terminology such as co-NLSP. For example, NLSP Higgsinos refer to all nearly de-

generate two neturalinos and one chargino stemming from H̃u and H̃d which are all heavier

than lightest group of states; likewise, LSP Winos, e.g., refer to nearly degenerate charged

and neutral Winos which are lightest states. We will consider only NLSP pair productions

and subsequent decays since the inos are well-separated in mass and the production of

NNLSP will be rarer. Otherwise, many more useful observables maybe constructable.

In section 2, we introduce the usefulness and caveats related to the Goldstone equiva-

lence theorem. We then present a formal discussions of our signal in section 3. In section 4

it is argued that Higgsino productions satisfy the necessary condition for the signal. We

then define the signal collider observable and carry out a numerical study without any

approximations, in order to demonstrate the validity of the formal discussion in section 5.

Then we conclude.

2 Preliminaries on the Goldstone equivalence theorem

The Goldstone equivalence theorem [19, 20] says that the amplitude for the production of

longitudinally-polarized energetic Z bosons is equivalent to that of the Goldstone boson.

The theorem is useful in our study because neturalinos are heavy and well-separated

in mass so that decays between them produce energetic Z bosons. It is especially powerful

when discussing Higgsino’s interactions because Higgsinos directly couple to both Z and

h bosons and necessarily to the Goldstone; thus, the processes of Z and h bosons are

inherently related in general — we will be relating partial widths into Z and h in this paper.

Let us consider two generic processes χ0
i → χ0

j + h, Z with i 6= j. One may compare

two rates based on the first two diagrams in figure 2. If χ0
i is Higgsino-like and χ0

j is Zino-

like,2 one may conclude that the decay into h is more rapid because it does not need any

2The Zino is a Bino-neutral Wino mixture whose mixing angle is precisely the weak mixing angle. Zinos

– 3 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
1

χ0
i H̃0 H̃0 χ0

j

Z
(a)

χ0
i H̃0 Z̃0 χ0

j

h
(b)

χ0
i H̃0 Z̃0 χ0

j

G0

(c)

Figure 2. Diagrams for generic processes χ0
i → χ0

j +Z, h,G0. Interactions of mass eigenstates can

be approximately understood from their interaction-eigenstate mixtures and original interactions.

In these diagrams, intermediate Higgsinos and Zinos are interaction eigenstates and crosses imply

their mixtures in external mass eigenstates. These diagrams can provide useful estimations of the

processes but should be used with some care as discussed in text.

small mixing insertions while the decay into Z needs one small mixing insertion. However,

this kind of arguments should be made with some care. When mi −mj � mZ , the third

diagram of decays into the Goldstone boson (hence, the longitudinal Z) becomes a good

approximation of the first diagram. Indeed, the Goldstone diagram does not need any

mixing insertion and can be expected to be comparable to the h diagram.

Technically, this happens as the growing longitudinal polarization vector of the Z

boson in energetic processes overcomes the small mixing insertion. A popular example

of such Goldstone enhancement is the top decay; the decay rate into the longitudinal W

is enhanced by m2
t /m

2
W compared to the decay rate into the transverse components. In

our ino study, we find the same Goldstone enhancements from 1/rZ , 1/rW � 1 factors in

eq. (A.4)-eq. (A.9). Indeed, the enhanced terms play a major role in approximating the

full decay width into the Z boson by the corresponding width into the Goldstone. We refer

to appendix B for more discussions.

Throughout this paper, we will derive relations between partial widths into the Z

and h using the Goldstone equivalence theorem. We will eventually obtain an interesting

observable that can tell us the existence of the (light) Higgsinos.

3 Partial width ratios into Z vs. h

3.1 In the presence of Higgsinos

In the split limit characterized by mi − mj � mZ and small neutralino mixings (and

decoupled scalar superparticles), the NLSP neutralino decay width ratio is given by a ratio

of scalar coupling squares (times a mild mass ratio factor)

Γ(χ0
i → χ0

jZ)

Γ(χ0
i → χ0

jh)
'
|D′LGij |2 (1− 2

√
rj)

|D′Lhij |2 (1 + 2
√
rj)

, (3.1)

where rj = m2
j/m

2
i . The form of the simple ratio of scalar-gaugino couplings is implied

by the Goldstone equivalence theorem. We refer to appendix B for the derivation, and we

introduce notations and collect partial widths in appendix A.

inherit the coupling structure of Z bosons, thus it is used to understand possible decay modes in figure 2.

Zinos can even be mass eigenstates for some cases that we will discuss later. Photinos are orthogonal

mixtures similarly defined in regard of photons.
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For the electroweakino-Higgsino case,3 the ratio is more usefully expressed as

Γ(χ0
i → χ0

jZ)

Γ(χ0
i → χ0

jh)
'
|cβNHk3 + sβNHk4|2 (1− 2

√
rj)

|cβNHk3 − sβNHk4|2 (1 + 2
√
rj)

, (3.2)

where the index Hk = i or j indicates lighter(k = 1) or heavier(k = 2) Higgsino neutralinos.

Hk can be either decaying NLSP i or LSP j; thus, this formula is valid for both cases of

NLSP and LSP Higgsinos. We keep the terms ±2
√
rj that can be O(10%) even if NLSP is

10 times heavier than LSP. Up to this size of correction, our formal discussion is valid; in

section 5, we will numerically demonstrate our formal discussions here.

In the split limit, the neutralino mass matrix becomes block-diagonal form; the Hig-

gsino eigensystem is obtained from the following 2× 2 sub-matrix

(
0 −µ
−µ 0

)
. (3.3)

The eigenvectors are χ0
H1,2
' 1√

2

(
H̃0
d ± H̃0

u

)
, and neutralino mixing matrix elements satisfy

NH13

NH14
= −NH23

NH24
for both µ > 0 and µ < 0. (3.4)

This implies interesting relations of partial widths of two neutral Higgsinos. If the Higgsino

is LSP (although exactly same arguments apply to the Higgsino NLSP case, we take the

LSP example here for specific discussion and notational simplicity),

Γ(χ0
i → χ0

H1
Z) ' Γ(χ0

i → χ0
H2
h), (3.5)

Γ(χ0
i → χ0

H1
h) ' Γ(χ0

i → χ0
H2
Z), (3.6)

Γ(χ0
i → χ0

H1
Z)

Γ(χ0
i → χ0

H1
h)
'

Γ(χ0
i → χ0

H2
h)

Γ(χ0
i → χ0

H2
Z)
. (3.7)

Since decay products into lighter and heavier Higgsinos are not distinguishable, what we

observe is actually the sum of all decay products. The observable relation is then

Γ(χ0
i → χ0

H1
Z) + Γ(χ0

i → χ0
H2
Z) ' Γ(χ0

i → χ0
H1
h) + Γ(χ0

i → χ0
H2
h). (3.8)

This means that we will observe the same numbers of Z and h bosons produced from NLSP

decays. We express this statement as RZ/h ' 1; the observable will be defined in section 5.

Related results are also discussed in ref. [21].

It is straightforward to repeat the same calculation for the NLSP Higgsino case and

obtain the similar observable relation

Γ(χ0
H1
→ χ0

jZ) + Γ(χ0
H2
→ χ0

jZ) ' Γ(χ0
H1
→ χ0

jh) + Γ(χ0
H2
→ χ0

jh). (3.9)

3The terminology means that either electroweak-gauginos are LSPs and Higgsinos are NLSPs or vice

versa. The results we will obtain are independent on which one is LSP. We use similar terminology for

other cases too.
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This relation also means that we will observe the same numbers of Z and h bosons produced

from NLSP decays; RZ/h ' 1. In all, the same conclusion holds regardless of whether

Higgsinos are LSPs or NLSPs.

Likewise, chargino decays are related by the Goldstone equivalence theorem

Γ(χ+
i → χ+

j Z)

Γ(χ+
i → χ+

j h)
'
|DL

Gij |2 + |DL
Gji|2 + 4Re[DL

GijD
L
Gji]
√
rj

|DL
hij |2 + |DL

hji|2 + 4Re[DL
hijD

L
hji]
√
rj
. (3.10)

We again refer to appendix B for the derivation and to appendix A for notations. The

decays between charginos can happen only for the Wino-Higgsino case. For the Wino-

Higgsino case,

|DL
ij |2 + |DL

ji|2 + 4Re[DL
ijD

L
ji]
√
rj '

1

2

(
|kd|2 + |ku|2 + 4Re[k∗dk

∗
u]
√
rj

)
(3.11)

giving

Γ(χ+
i → χ+

j Z)

Γ(χ+
i → χ+

j h)
'

c2
β + s2

β + 4cβsβ
√
rj

c2
β + s2

β + 4cβsβ
√
rj

= 1. (3.12)

Thus, fortunately, each chargino decays equally to Z and h in the split limit — it does not

ruin the previously discussed neutral NLSP decay relation RZ/h ' 1. The relation holds

again regardless of whether Higgsinos are LSPs or NLSPs.

So far, we have considered the split limit. But the split limit is not strictly needed for

the Goldstone equivalence theorem. One particularly relevant example is when Binos and

Winos are nearly degenerate, i.e., M1 'M2. This is not the split limit because Binos and

Winos maximally mix. Nevertheless, since the Bino-Wino system is still well-separated

in mass from the Higgsino system, decays between two systems still produce energetic Z

bosons. Thus, the Goldstone equivalence theorem again relates the partial widths of the

heavier system’s decay.

The mass eigenstates of the Bino-Wino system are photinos and Zinos — they are

indistinguishable. Photinos do not couple to Z nor h as photons do not (at tree-level).

Thus the situation is similar to previous cases as if photinos were absent and Zinos were

the only gauginos in the system. Indeed, the Zino’s partial width ratio is just given by the

same formula in eq. (3.2). Decays of charginos also produce Z and h, but their contributions

are not different from those of the Wino-Higgsino case. Therefore, the same observable

relations in eq. (3.8) and eq. (3.9) follow; RZ/h ' 1.

We now extend the discussion by considering non-MSSM neutralinos: DFSZ axinos [22,

23] and gravitinos. They are weakly interacting, so they are relevant at collider only if they

are LSPs. But in our formal discussion here, we do not stick to LSP cases. They have

slightly different coupling structures to Higgsino sectors than those of electroweakinos, so

we can enlighten how our conclusion is still drawn independently on these structures.

For the axino-Higgsino case, we have

Γ(χ0
i → χ0

jZ)

Γ(χ0
i → χ0

jh)
'
|sβNHk3 − cβNHk4|2 (1− 2

√
rj)

|sβNHk3 + cβNHk4|2 (1 + 2
√
rj)

. (3.13)
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This is obtained from eq. (3.1) by using couplings in eq. (B.2). The Goldstone equivalence

theorem and the eq. (3.1) are not modified by the existence of DFSZ axinos as discussed in

appendix B. By using eq. (3.4), we again obtain the same observable relation in eq. (3.8)

and eq. (3.9); RZ/h ' 1.

One might expect that dominant axino-Higssino-h couplings at tree-level would make

Higgsinos dominantly decay into h. As discussed in section 2, it is not always true. As

energetic longitudinally-polarized Z bosons are produced, the equivalence theorem applies

and the Goldstone enhancement overcomes the small axino-Higgsino-Z couplings.

For the gravitino-Higgsino case, we have

Γ(χ0
i → χ0

jZ)

Γ(χ0
i → χ0

jh)
'
|cβNHk3 − sβNHk4|2

|cβNHk3 + sβNHk4|2
. (3.14)

The gravitino results are present in, e.g., refs. [24–26]. By using eq. (3.4), we again obtain

the same observable relation in eq. (3.8) and eq. (3.9); RZ/h ' 1.

One can note different relative signs and tβ dependences among eq. (3.2), eq. (3.13)

and eq. (3.14). The differences are inherited from different Higgsino couplings to elec-

troweakinos, axinos and gravitinos. H̃u and H̃d couple to Winos and Binos with opposite

sign due to opposite charges while both Higgsinos couple to gravitinos with the same sign.

This explains the relative sign difference between eq. (3.2) and eq. (3.14). On the other

hand, the axino couples to different types of Higgsinos, i.e. H̃uHd and H̃dHu, while other

inos couple to the same type of Higgsinos. This introduces different tβ dependence for the

axino case in eq. (3.13).

In spite of these differences, the mixing angles still satisfy the relation eq. (3.4) and

our conclusions expressed in eq. (3.8) and eq. (3.9) apply to all these cases.

3.2 In the absence of Higgsinos

It has been discussed [27] that, in the absence of Higgsinos, decays between well-separated

Binos and Winos are dominantly through h rather than Z. This is often true even for other

cases of LSPs and NLSPs but not always true. In this subsection, we derive and generalize

the result again using the Goldstone equivalence theorem, and we will argue that RZ/h ' 1

is not a generic prediction of the absence of Higgsinos.

For the Bino-Wino case, the Goldstone equivalence theorem still plays an important

role in determining the branching ratios(BR) of the NLSP because gauginos couple to Z

bosons via Higgsino mixtures. The width ratio is given by (specifically for the Wino-LSP

case, for instance)

Γ(χ0
i → χ0

jZ)

Γ(χ0
i → χ0

jh)
'
|(sβNi4 + cβNi3)− tW (sβNj4 + cβNj3)|2 (1− 2

√
rj)

|(sβNi4 − cβNi3)− tW (sβNj4 − cβNj3)|2 (1 + 2
√
rj)

. (3.15)

To proceed further, we look at the detailed forms of the Nij . Mixing angles are

approximated in the split limit as [27]



mZsW (M1cβ+µsβ)

(µ2−M2
1 )

−mZsW (M1sβ+µcβ)

(µ2−M2
1 )

−mZcW (M2cβ+µsβ)

(µ2−M2
2 )

mZcW (M2sβ+µcβ)

(µ2−M2
2 )


 , (3.16)
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where the rows correspond to Bino-like and Wino-like neturalino mass eigenstates, respec-

tively, and the columns correspond to H̃0
d and H̃0

u interaction eigenstates, respectively. We

assume that gaugino masses M1,2 are positive while we allow µ can be both positive and

negative.4 For a positive µ > 0, the signs of each elements are fixed independently on tβ
and the size of µ (as long as µ > M1,2): Ni4/Ni3 < 0 and Ni4/Nj4 < 0. These relative signs

imply that, in eq. (3.15), the coupling square factor in the denominator is always greater

than that in the numerator. This explains why decays into h is always dominant.

But, for a negative µ < 0, the signs of mixing angles are not fixed when

min(M1,M2)/tβ . µ . max(M1,M2) tβ. We will numerically analyze the behavior of

eq. (3.15) with a negative µ in section 5, and we will see that RZ/h � 1 is possible when

the accidental cancellation between various terms in eq. (3.15) occurs. But RZ/h ' 1 is

not a generic prediction of this case, anyway.

The axino-gaugino case is similar to the Bino-Wino case in the sense that axinos

and gauginos couple only via Higgsino mixtures. In this case, however, the ratio is not

approximated by a simple formula as a very small number ∼ µ/vPQ is involved and even a

small mixing angle can give some non-negligible contributions. Instead, we carry out full

numerical study in section 5. We will also see that RZ/h ' 1 is not a generic prediction of

this case.

The gravitino-gaugino case is different, but RZ/h ' 1 is still not a prediction of the

case. Gravitinos differ from neutralinos in the sense that they can couple to gauginos

without Higgsino mixtures; gauginos couple to gravitinos with transverse gauge bosons

while Higgsinos couple with the longitudinal components, so they do not interfere [25]. As

a result, pure gaugino’s decay into gravitinos at high-energy is not approximated by the

equivalence theorem. The BRs into Z and γ are rather fixed by the weak mixing angle cW
as [24–26]

Γ(χ0
1 → γG̃)

Γ(χ0
1 → ZG̃)

=
|cWN11 + sWN12|2

|sWN11 − cWN12|2
. (3.17)

Thus, s2
W ∼ 23% of a Wino-NLSP decays to γ and the remaining decays to Z. A Bino-

NLSP has the opposite BRs. If we observe such specific BRs, it would be a useful indication

of the gravitino-gaugino case and the Higgsinos’ absence.

4 NLSP Higgsino productions

It is necessary that two neutral Higgsino NLSPs (if Higgsinos are NLSPs) should be pro-

duced by equal numbers. Otherwise, total NLSP decays would produce different numbers

of h and Z.

There are three production channels of NLSP Higgsino pairs in the split limit: (1)

pp → Z∗ → H̃0
i H̃

0
j , (2) pp → Z∗/γ∗ → H̃+H̃− and (3) pp → W ∗ → H̃0

i H̃
±. For the

process (1), the process is non-vanishing only for i 6= j, so always two different neutral

Higgsinos are produced together, hence the same number. This can be easily seen from

4Only relative phases, arg(µMi), are physical.

– 8 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
1

that σ(pp→ H̃0
i H̃

0
j ) ∝ (O′′Lij )2 (if no CP-phases) and that the couplings become

O′′Lii ∝ Ni3Ni3 −Ni4Ni4 ∝
1

2
− 1

2
= 0 (4.1)

O′′Lij ∝ Ni3Nj3 −Ni4Nj4 ∝
1

2
+

1

2
= 1 (4.2)

where we have used the relation eq. (3.4) in the second equation. For the process (2),

charginos are not a problem because it decays equally to h and Z. The process (3) is equal

for i = 1 and 2, hence again the same number of two neutral Higgsinos. To see this, we

first note that the production rate contains three pieces

σ(pp→ H̃0
i H̃

+
j ) ∝ mχ0

i
Re[OLijOR∗ij ], |OLij |2, |ORij |2. (4.3)

Each piece is the same for i = 1 and 2 because

OLij
OR∗ij

' −Ni4

Ni3
, and

m
H̃0

1

m
H̃0

2

' −1 (4.4)

and because of the relation eq. (3.4). The opposite sign of the Higgsino mass eigenvalues

can also be easily understood from the 2× 2 sub-matrix in eq. (3.3).

In all, the same numbers of two neutral Higgsinos are directly produced. This completes

our formal derivation of the observable signal at LHC pp collider. The discussion is also

valid at e+e− colliders although the measurability of RZ/h ' 1 is a different question.

NLSP-gaugino pair productions are not concerning. There will only be one NLSP

neutralino, and its decays into two neutral Higgsinos automatically satisfy the desired

relations eq. (3.8) and eq. (3.9). Even for the nearly degenerate Bino-Wino case, weakly

interacting photinos are not produced much and essentially the decay of Zinos generate

the signal.

5 RZ/h

We define the collider observable

RZ/h ≡
∑

i,j σ(χi)× BR(χi → χj + Z)∑
i,j σ(χi)× BR(χi → χj + h)

(5.1)

which, if a luminosity is multiplied, really counts (and takes the ratio) the numbers of Z and

h bosons produced from all possible indistinguishable NLSP productions and subsequent

decays. The notations i ∈ {NLSP} and j ∈ {LSP} sum over all indistinguishable NLSP

i and all indistinguishable LSP j. In the numerical study, we conveniently define all ino

states within 20GeV-mass gap to be indistinguishable inos. A factor 2 has to be properly

multiplied if the same particles are pair produced such as in χ+
i χ
−
i .

In this section, we numerically calculate the observable without any formal approxi-

mation at the LHC14 and demonstrate the formal discussions in previous sections.

We are envisaging ideal measurements. We do not carry out full collider simulation

nor do we take into account backgrounds. But we briefly discuss measurement prospects

at the end of this section.
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Figure 3. RZ/h in AMSB. The gaugino mass ratio, M2 : M1 = 1 : 3, is assumed.

M2 =1000GeV(left) and 300GeV(right). The thick(thin) blue line is RZ/h for ∆m <10(20) GeV

among two neutral Higgsinos. tβ = 5 and µ > 0. Gray regions are not considered because two-body

decays of NLSPs into h are not allowed. Horizontal dashed lines are for reference at RZ/h = 1.0±0.1.

Vertical dashed lines are at M1,2. When the Higgsino is the LSP or NLSP, RZ/h is close to 1 while

heavy Higgsinos imply dominant NLSP decays into h.

Figure 4. RZ/h in mSUGRA(left) and compressed spectrum(right). The mSUGRA gaugino mass

ratio, M1 : M2 = 1 : 2, is assumed with M1 = 1000 GeV in the left panel. In the right panel, we

consider a compressed spectrum with M1 = M2 = 1000 GeV. tβ = 5 and µ > 0. All other plot

details are as in figure 3. When the Higgsino is the LSP or NLSP, RZ/h is close to 1 while heavy

Higgsinos imply dominant NLSP decays into h.

5.1 Electroweakinos

We study three scenarios of the electroweakino-Higgsino case depending on the relative

mass orderings of electroweakinos. In the Anomaly-mediated(AMSB) [1, 2] scenario, the

Wino is the lightest and the Bino is about three times heavier. In the minimal supergrav-

ity(mSUGRA) scenario, the Bino is the lightest and the Wino is about twice heavier; the

mass hierarchy is smaller than the AMSB case. We also consider the compressed spectrum

where the Wino and the Bino are nearly degenerate forming an indistinguishable set of

states, i.e. M1 'M2. In all cases, we assume that gluinos are heavier.

The observable RZ/h is plotted for each three scenarios in figure 3 and figure 4. When

the Higgsino is the LSP or the NLSP, the advocated signal RZ/h ' 1 is obtained in all

scenarios. The signal is independent on the ordering of gaugino masses. When the gauginos

are relatively light and the mass-gap is correspondingly small (compare two panels in
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Figure 5. RZ/h for heavy Higgsinos with positive (blue) and negative (black) µ. In the left panel,

the AMSB is asusmed with M2 = 300GeV and |µ| =1.5, 4.5, 20TeV (from left to right lines). In the

right panel, mSUGRA is assumed with M1 = 500GeV and |µ| =2, 6, 20TeV. RZ/h is always small

for positive µ. On the other hand, RZ/h can be much larger than 1 for some regions of negative µ

and tβ due to the accidental cancellation discussed in text. In any case, RZ/h ' 1 is not a generic

prediction of the heavy Higgsinos.

figure 3), the Goldstone equivalence theorem is less accurate and the deviation of RZ/h
from the unity becomes larger. But it is still close to the unity and can be distinguishable

from heavy Higgsino cases. We mention again that, for the compressed spectrum in figure 4,

we add all indistinguishable productions and decays between the Higgsino system and the

Bino-Wino system, and RZ/h ' 1 is obtained.

We also see that, as long as two-body decays of the NLSP to on-shell h bosons are

allowed, the mass splittings among Higgsino states are small, ∆ . 20GeV, and all Higgsino

states are virtually indistinguishable. The signal is then valid and the equivalence theorem

is a good approximation.

When the Higgsino is heavy (NNLSP or higher), RZ/h � 1 is obtained in all cases

with µ > 0; see figure 3 and figure 4 and also figure 5. Such small RZ/h will be easily

distinguishable from RZ/h ' 1. The result is also independent on the relative mass ordering

of gauginos.

It is also possible to have a negative µ. The sign of µ does not change the conclusion

of obtaining RZ/h ' 1 for light Higgsinos. We, however, expected that the heavy Higgsino

(NNLSP or higher) case is sensitive to the sign of µ. figure 5 demonstrates that, for an

intermediate negative µ < 0, the RZ/h can be sizably larger than 1. RZ/h becomes small

again for very heavy Higgsinos or small or large tβ. The behavior (compare two panels in

figure 5) is also independent on the ordering of gaugino masses. In any case, RZ/h ' 1 is

not a generic prediction of the heavy Higgsino with a negative µ.

The behavior of RZ/h in figure 5 can be understood from eq. (3.15) and eq. (3.16). The

relative signs of mixing angles in eq. (3.16) largely determine whether the ratio eq. (3.15)

is larger than or smaller than 1. When tβ → 1 or negative |µ| → max(M1,M2)tβ becomes

large enough, signs of all four mixing angles flip compared to those with positive µ, hence

small RZ/h as with positive µ. When tβ → ∞, only Ni4 and Nj4 terms are important in

eq. (3.15) while they have opposite signs Ni4/Nj4 < 0. Thus, those terms add up to a

larger value in the denominator. These explain the sharping behavior of RZ/h.

We finally comment that the signal may not be observable in the Bino NLSP case due
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Figure 6. RZ/h in the case of axino LSP. The axino mass is 200GeV and M2 = 1TeV in both

panels. Binos are heavy and decoupled for simplicity. All other details of the left panel are same

as in figure 3. In the right panel, |µ| = 1.4, 3 TeV from top to bottom lines. All other details of the

right panel are same as in figure 5.

to Bino’s small productions. Then the NNLSP production and decay can be important.

As long as the NNLSP is abundantly produced and dominantly decays directly to the LSP,

our results will apply as if the NNLSP were the NLSP — but in this case, we may miss

the existence of Binos.

In all cases, if we observe RZ/h ' 1, it strongly indicates the existence of Higgsinos as

the LSPs or NLSPs.

5.2 Competing decay modes and weakly interacting LSPs

Our argument relies on the fact that the heavier neutral Higgsino does not dominantly

decay into the lighter neutral Higgsino (when Higgsinos are NLSPs). In the split limit, the

mass splitting between two neutral Higgsinos, ∆, is much smaller than mZ , so the decays

between Higgsinos are suppressed by small three-body phase space. However, when the

LSP is a weakly interacting particle, this phase space suppression may not be enough.

Taking the DFSZ axino as a weakly interacting example, we checked that the Winos

and Binos should be somewhat heavier than Higgsinos so that the mass splitting, ∆, be-

tween Higgsinos is small enough to sufficiently suppress the three-body decay width which

scales with ∆5. Which decay mode dominates actually depends on various model param-

eters and even on other particle masses if one considers the loop-induced two-body decay

into photons. Due to these model dependencies and given the possibility for the desired

decay modes to dominate, we will not further consider this issue; we assume that all decays

between NLSPs and LSPs are prompt and dominant. We refer to appendix A for more

discussions, and a related detailed study will be presented in our future publication [28].

RZ/h for the axino LSP is calculated in figure 6. Again, the Higgsino NLSP predicts

RZ/h ' 1 while heavy Higgsinos predict small RZ/h � 1. Unlike previous cases, a negative

µ with heavy Higgsinos also predicts small RZ/h. For the gravitino-Higgsino case, we

also obtain RZ/h ' 1 for light Higgsinos although we do not present numerical results for

this case.
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These results also imply that it will not be easy to know whether the LSP is axinos or

gravitinos or other neutralinos if Higgsinos are NLSPs. This may add new degeneracies to

the LHC inverse problem.

5.3 Measurement prospects

Finally, we briefly discuss which part of parameter space depicted in figure 3, 4 and 6 is

practically relevant to future LHC experiments.

The discovery of NLSP inos will first likely be made by utilizing chargino-neutralino

NLSP pair production with their subsequent decays to the LSP via WZ or Wh [29–34]. We

conveniently use these two channels for the discussion in this subsection. The 5σ discovery

prospect has been estimated in ref. [21]. For the case of Bino-LSP and either Higgsino- or

Wino-NLSP, for example, the discovery is expected to be possible up to 350GeV at LHC14

with 300fb−1 by taking into account proper branching ratios of NLSPs and combining WZ

and Wh channels. By naively scaling this discovery reach,5 we obtain a discovery reach

extended to 1200GeV at LHC100 with 1ab−1. Thus any parameter space with NLSPs

heavier than about 1200GeV, or equivalently µ & 1200GeV in figure 3, 4 and 6, may not

be that practically relevant.

We then compare the measurement prospects of Z and h bosons from the results of WZ

and Wh channels. The WZ channel is expected to be better; the current LHC exclusion

limit from the WZ channel is stronger than that from the Wh channel [29–34]. Thus, Z

bosons will be first and better measured than h bosons (if branching ratios are similar).

After the discovery in the Wh channel, one will then be able to measure RZ/h. The

distinction of WZ and Wh channels, hence the distinction of Z and h allowing the mea-

surement of RZ/h, will be possible when both channels are efficiently measured with three

leptons plus MET. The resonance peak of the Z boson is formed from same-flavor-opposite-

sign lepton pairs (among three leptons) while the h resonance is not formed due to neutrinos

from Higgs decays. If the WZ channel is not discovered by the discovery of Wh, it would

already strongly suggest that the Higgs boson is much more produced than the Z boson,

i.e., RZ/h � 1.

Future linear collider can be another place to efficiently measure the RZ/h signal.

Although the discovery reach would not extend much beyond that of LHC100, a higher

precision of the measurement maybe obtained.

6 Conclusions and discussions

We have studied the distinctive signature of the NLSP decay that can be a confident

evidence of the existence of light Higgsinos in the split limit. When Higgsinos are the

LSPs or NLPSs, the equal numbers of Z bosons and h bosons will always be present in the

NLSP production and decay; RZ/h ' 1. On the other hand, heavier Higgsinos (NNLSPs

5The scaling of the reach from one measurement to another (different collision energy and luminosity

applied to different parameter space of new physics) is approximately possible especially in the split limit

because searches rely on the high-energy regions of Meff or MET or similar kinds, and NLSPs are essentially

massless in this phase space [35]. We use Collider Reach (β) tool for numerical scaling [36].
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or higher) typically predict the ratio, RZ/h, much smaller than or larger than 1. As an

illustration, two models introduced as degenerate models in the introduction, table 1, now

predict very different RZ/h = 1.03, 5.35 for Higgsino- and Wino-NLSP models; they will be

easily distinguishable.

The BRs of a single neutralino, of course, depend on the identity of the neutralino.

But they also depend on other parameters of a theory such as neturalino mixing angles and

tβ. Thus, a mere BR is not an efficient tagger of the identity. In the split limit, however,

two neutral Higgsinos (and a charged one) are nearly degenerate and indistinguishable at

collider. Thus, all indistinguishable production and decay processes involving Higgsinos

add up to generate the observable signal RZ/h ' 1 independently from other parameters of

a theory. We analytically derived the observable using the Goldstone equivalence theorem

and numerically demonstrated the relation without any approximations.

Exceptions to the discussion, however, may arise when the LSP is weakly interact-

ing such as axinos or gravitinos and the heavier neutral Higgsino dominantly decays to

the lighter neutral Higgsino. When this does not happen, the same signal RZ/h ' 1 is

observable for these cases too. Although the existence of Higgsinos can be established in

this way, the existence of such non-MSSM neutralinos may add other degeneracies to the

inverse problem.

Our method still leaves the two-fold degeneracy in the ino spectrum; Higgsinos can be

either the LSPs or NLSPs. So once the existence of Higgsinos is estbailshed, a dedicated

χ2 analysis or other strategies will further be needed to lift the degeneracy.

All our discussions are made in the split limit. It is perhaps the most difficult scenario

for the discovery. It could still well be that inos sizably mix and there are many particles

separated only by reasonable mass gaps in the accessible spectrum. Then the discovery and

precision measurements will be easier although there could still be some residual inverse

problems [16–18]. In any case, we believe that our formal discussions based on the Gold-

stone equivalence theorem will be useful in obtaining insights on various possible decay

modes and in resolving the (residual) inverse problem.
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A Interactions and decay widths

Here we collect analytic expressions used throughout this paper.

The interaction Lagrangian of inos in terms of mass eigenstates is

L = gχ0
i γ
µ
(
OLijPL +ORijPR

)
χ+
j W

+
µ + h.c.

+
g

cW
χ+
i γ

µ
(
O′Lij PL +O′Rij PR

)
χ+
j Zµ +

g

cW
χ0
i γ
µ(O′′Lij PL +O′′Rij PR)χ0

jZµ

+g χ+
i

(
DL
hijPL +DR

hijPR
)
χ+
j h + gχ0

i

(
D′LhijPL +D′RhijPR

)
χ0
jh (A.1)

– 14 –



J
H
E
P
0
6
(
2
0
1
4
)
1
1
1

where h is the 125GeV Higgs boson. Couplings are give by

OLij = Ni2V
∗
j1 −

1√
2
Ni4V

∗
j2, ORij = N∗i2Uj1+

1√
2
N∗i3Uj2

O′Lij = −δijc2
W +

1

2
Vi2V

∗
j2, O′Rij = −δijc2

W +
1

2
U∗i2Uj2

O′′Lij = −1

2
(N∗i3Nj3 −N∗i4Nj4), O′′Rij = −(O′′Lij )∗ = −O′′Lji

DL
hij =

1√
2

(
−sβU∗i1V ∗j2 − cβU∗i2V ∗j1

)
, DR

hij = (DL
hji)
∗

D′Lhij =
1

2

(
N∗j2−tWN∗j1

)
(N∗i4sβ−N∗i3cβ)+∆D′hij+(i↔ j), D′Rhij = (D′Lhji)

∗ = (D′Lhij)
∗

∆D′hij =
cHµ√
2gvPQ

Ni5 (−Nj3sβ −Nj4cβ) . (A.2)

Here, we use the following basis of neutralinos

{ B̃, W̃ 0, H̃0
d , H̃

0
u, ã }. (A.3)

For Higgs couplings, we have already assumed a decoupling limit relevant to split SUSY:

cα(sα) → −sβ(cβ). cH = 0 recovers the MSSM results with only gauginos and higgsi-

nos. Our notation without axinos conforms with that of ref. [37]. Details of DFSZ axino

interactions can be found in, e.g., ref. [38].

The two-body decay partial widths of an ino into other inos via Z and h are [27, 39]

Γ(χ+
i → χ+

j Z) =
g2mχ+

i

32πc2
W

λ1/2(1, rj , rZ)

·
[ (∣∣O′Lij

∣∣2 +
∣∣O′Rij

∣∣2
)((1− rj)2

rZ
+ (1+rj−2rZ)

)

−12Re[O′LijO′R∗ij ]
√
rj

]
(A.4)

Γ(χ0
i → χ0

jZ) =
g2mχ0

i

16πc2
W

λ1/2(1, rj , rZ)

·
[ ∣∣O′′Lij

∣∣2
(

(1− rj)2

rZ
+ (1 + rj − 2rZ)

)
+ 6Re[(O′′Lij )2]

√
rj

]
(A.5)

Γ(χ+
i → χ+

j h) =
g2mχ+

i

32π
λ1/2(1, rj , rh) ·

[ (∣∣DL
hij

∣∣2 +
∣∣DL

hji

∣∣2
)

(1 + rj − rh)

+4Re[DL
hijD

L
hji]
√
rj

]
(A.6)

Γ(χ0
i → χ0

jh) =
g2mχ0

i

16π
λ1/2(1, rj , rh) ·

(∣∣D′Lhij
∣∣2 (1 + rj − rh) + 2Re[(D′Lhij)

2]
√
rj

)
(A.7)

where Re terms in scalar modes produce an extra minus sign for A0, G0. The two-body
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decay partial widths via W bosons are [27]

Γ(χ+
i → χ0

jW
+) =

g2mχ+
i

32π
λ1/2(1, rj , rW )

·
[ (∣∣OLji

∣∣2 +
∣∣ORji

∣∣2
)((1− rj)2

rW
+ (1 + rj − 2rW )

)

−12Re[OLjiOR∗ji ]
√
rj

]
(A.8)

Γ(χ0
i → χ+

j W
−) =

g2mχ0
i

32π
λ1/2(1, rj , rW )

·
[ (∣∣OLij

∣∣2 +
∣∣ORij

∣∣2
)((1− rj)2

rW
+ (1 + rj − 2rW )

)

−12Re[OLijOR∗ij ]
√
rj

]
(A.9)

where rx ≡ m2
x/m

2
χi and λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx. Note

√
rj has the

same sign as mj/mi, not always positive. No index summation of coupling factors.

The three-body decay widths via off-shell W,Z gauge bosons are

Γ(χ0
i → χ0

jZ
∗) =

mi

192π3

g4

c4
W

∫ rmax
X

0
drX λ

1/2(1, rX , rj)


∑

f

(v2
Z,f + a2

Z,f )Nc(f)




·
[
|O′′Lij |2

(
(1− rj)2 + (1 + rj − 2rX)rX

)
+ 6Re[

(
O′′Lij

)2
] rX
√
rj

]

· 1

((rX − rZ)2 + rZrΓZ )
, (A.10)

Γ(χ+
i → χ0

jW
∗) =

mi

384π3

g4

4

∫ rmax
X

0
drX λ

1/2(1, rX , rj)


∑

f

(v2
W,f + a2

W,f )Nc(f)




·
[ (
|OLji|2 + |ORji|2

) (
(1− rj)2 + (1 + rj − 2rX)rX

)

−12Re[OLjiOR∗ji ] rX
√
rj

]

· 1

((rX − rW )2 + rW rΓW )
, (A.11)

where the maximum range of the integration is

rmax
X = (1− |√rj |)2. (A.12)

We sum over all final states into which off-shell gauge bosons can decay. The relevant

coupling factors are
(∑

f

(v2
Z,f + a2

Z,f )Nc(f)

)
= 1.562,

(∑

f

(v2
W,f + a2

W,f )Nc(f)

)
= 4.5. (A.13)

These are present in previous literatures [39, 40], but here we express them in a form

closest to the two-body decay widths into on-shell W,Z in the limit of vanishing SM
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fermion masses. Our numerical results agree with previous ones. In the limit of small

mass-splitting ∆ ≡ (1−mj/mi)� 1, the three-body width is approximated as

Γ(χ0
i → χ0

jZ
∗) ∼ g4

100π3

m5
i

m4
Z

∆5 (A.14)

where the ∆5-dependence is notable. The three-body decay widths via h is smaller as h is

narrower and heavier than W,Z.

Two-body decays of heavier Higgsinos into pions and lighter Higgsinos are important

when the mass splitting is smaller than about 1 GeV [41]. In most of parameter space

we consider, tree-level mass splitting is greater than a few GeV, thus we assume that

three-body decays are more important.

The three-body decays between neutralinos may compete with the loop-induced two-

body decays into photons [42, 43]. As a rough estimate, the loop-induced magnetic moment

operator mediated via a charged Higgsino and a W boson is ∼ g2e/16π2. With an extra

momentum factor from the magnetic operator, the loop-induced width scales with ∆3.

After all, this decay mode is typically smaller than three-body modes in our parameter

space. But more dedicated comparison will be interesting beyond our work.

B The derivation of the width ratio in the equivalence limit

When mχi−mχj � mh,mZ , the couplings of the Z boson are understood as being inherited

from Goldstone’s. We first generalize neutral scalar couplings

DL
φ0ij =

1√
2

(
k∗uφ0U

∗
i1V
∗
j2 + k∗dφ0U

∗
i2V
∗
j1

)
, (B.1)

D′Lφ0ij =
1

2
(N∗j2 − tWN∗j1)(−k∗uφ0Ni4 + k∗dφ0N

∗
i3) + ∆D′φ0ij + (i↔ j) (B.2)

∆D′φ0ij =
cHµ√
2gvPQ

N∗i5
(
kuφ0Nj3 + kdφ0Nj4

)
(B.3)

where

kuφ0 = (cα, sα, icβ, isβ), kdφ0 = (−sα, cα, isβ,−icβ)

= (−sβ, cβ, icβ, isβ), = (−cβ,−sβ, isβ,−icβ) (B.4)

for h0, H0, A0, G0 in order. The Goldstone coupling can be re-expressed in terms of Z

boson couplings [44]

D′LGij =
i

2
(N∗j2 − tWN∗j1)(cβN

∗
i3 + sβNi4) +

icHµ√
2gvPQ

Nia(cβNj4 − sβNj3) + (i↔ j)

= −i
√

2

vg

(
mχ0

i
O′′Lij −mχ0

j
O′′Rij

)
=

−i
mZcW

O′′Lij (mχ0
i

+mχ0
j
) (B.5)

where we have used O′′Rij = −O′′Lji = −O′′Lij . Note that the relation is exact and is not

modified by the existence of axino contributions, ∆D′. Furthermore, the Goldstone cou-

plings are enhanced by mi/mZ compared to Z couplings which is analogous to the yt/g

enhancement of the Goldstone couplings to top quarks.
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The decay width into G0 obtained from eq. (A.7) can now be expressed in the equiva-

lence limit (as mentioned, the sign is −2
√
rj for G0 compared to +2

√
rj for h)

Γ(χ0
i → χ0

jG
0) =

g2mχ0
i

16π
λ1/2 ·

∣∣D′LGij
∣∣2 (1 + rj − rh − 2

√
rj
)

'
g2mχ0

i

16πc2
W

λ1/2 ·
∣∣O′′Lij

∣∣2 m
2
i

m2
Z

(1 +O(r)) . (B.6)

The same limiting formula is obtained from the partial width decay into Z, eq. (A.5),

Γ(χ0
i → χ0

jZ) '
g2mχ0

i

16πc2
W

λ1/2 ·
∣∣O′′Lij

∣∣2 1

rZ
'

g2mχ0
i

16π
λ1/2 ·

∣∣D′LGij
∣∣2 (1− 2

√
rj
)

(B.7)

Meanwhile, the decay into the h boson, eq. (A.7), is approximated as

Γ(χ0
i → χ0

jh) '
g2mχ0

i

16π
λ1/2 ·

∣∣D′Lhij
∣∣2 (1 + 2

√
rj
)

(B.8)

Now we usefully express partial width ratio in terms of the scalar coupling ratio

Γ(χ0
i → χ0

jZ)

Γ(χ0
i → χ0

jh)
'
|D′LGij |2 (1− 2

√
rj)

|D′Lhij |2 (1 + 2
√
rj)

. (B.9)

This relation is true regardless of the existence of axinos.

Likewise, we derive the width ratio for chargino decays in the equivalence limit. In

this limit,

Γ(χ+
i → χ+

j G) ' g2mi

32π
λ1/2

(
|DL

Gij |2 + |DL
Gji|2 + 4Re[DL

GijD
L
Gji]
√
rj

)
(B.10)

To approximate the full decay width into the Z in terms of Goldstone couplings, we again

use the identity [44]

DL
Gij =

−i
mZcW

(
miO′Lij −mjO′Rij

)
(B.11)

Using the simplifying relation O′Lij = O′L∗ji holding for i 6= j (and similarly for O′R),

we obtain

|DL
Gij |+|DL

Gji|2 =
1

m2
Zc

2
W

(
(m2

i +m2
j )(|O′Lij |2 + |O′Rij |2)− 4mimjRe[O′LijO′R∗ij ]

)

Re[DL
GijD

L
Gji] =

−1

m2
Zc

2
W

(
− (m2

i +m2
j )Re[O′LijO′R∗ij ] +mimj(|O′Lij |2 + |O′Rij |2)

)
. (B.12)

By solving these for |O′Lij |2 + |O′Rij |2 and Re[O′LijO′R∗ij ], one can rewrite the partial width

into the Z boson as

Γ(χ+
i → χ+

j Z) ' g2mi

32π
λ1/2

(
|DL

Gij |2 + |DL
Gji|2 + 4

√
rjRe[D

L
GijD

L
Gji]
)

(B.13)

which agrees with the Goldstone partial width above. Now we express partial width ratio

in terms of scalar couplings

Γ(χ+
i → χ+

j Z)

Γ(χ+
i → χ+

j h)
'
|DL

Gij |2 + |DL
Gji|2 + 4Re[DL

GijD
L
Gji]
√
rj

|DL
hij |2 + |DL

hji|2 + 4Re[DL
hijD

L
hji]
√
rj
. (B.14)
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