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1 Introduction

Higher spin gravity in three dimensions provides interesting toy models for quantum gravity,

higher spin theories and aspects of holography, in the form of Anti-de Sitter/conformal field

theory (AdS/CFT) or more general gauge/gravity correspondences. Generalizing the sem-

inal Brown-Henneaux analysis [1], Henneaux and Rey [2], and independently Campoleoni,

Fredenhagen, Pfenninger and Theisen [3], showed that the asymptotic symmetry algebra

for spin-3 gravity with AdS boundary conditions consists of two copies of W3-algebras.

Shortly afterwards, Gaberdiel and Gopakumar proposed a duality between WN minimal

models in the large N limit and families of 3-dimensional higher spin theories [4, 5].

Most of the related early work remained focused on AdS holography, for instance in

the discussion of higher spin black holes [6, 7], but it became soon clear that higher spin

theories allow for more general holographic setups [8]. Explicit constructions so far include

Lobachevsky holography [9], Lifshitz holography [10, 11] and flat space holography [12, 13].

Typically, these more general holographic setups require to use non-principal embeddings

of sl(2) into sl(n), and the ensuing asymptotic symmetry algebras are more complicated

W
(m)
n algebras, like the Polyakov-Bershadsky algebra [14, 15] in the spin-3 Lobachevsky

case [9]. For large values of n the number of non-principal embeddings grows exponentially

with n, so that by sheer number these embeddings far outweigh the principal one.
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A universal property of all non-principal embeddings is the presence of at least one

singlet in the wedge algebra, which translates into a current algebra as part of the asymp-

totic symmetry algebra. This current algebra has interesting implications for unitarity.

Namely, Castro, Hijano and Lepage-Jutier argued [16] that at least semi-classically, i.e., in

the limit of infinite central charge, the asymptotic symmetry algebra does not allow any

unitary representations if there is a current algebra and a Virasoro algebra (as it is the

case for all non-principal embeddings). The core argument was the observation that the

level in the current algebra has opposite sign from the Virasoro central charge, so one of

these two quantities necessarily has negative sign, thus implying the presence of negative

norm states, at least for standard definitions of the vacuum and adjoint operators.

Exploiting properties of the Feigin-Semikhatov algebra W
(2)
n [17], in [18] it was shown

that the no-go result of [16] can be circumvented by allowing the central charge to be

arbitrarily large, but not infinite (the inequalities 0 ≤ c < n/4 must hold, where n can be

arbitrarily large), and by additionally restricting the allowed values of the central charge

to a specific discrete set that ensures non-negativity of the norm of all descendants of

the vacuum.

For our purposes it is important to understand the source of the discreteness of the

central charge, which is why we recall it now briefly. The Feigin-Semikhatov algebra

W
(2)
n is believed to be generated by a current J , a Virasoro field L, higher spin fields W l

[with l = 3 . . . (n − 1)] and two additional fields G± that resemble a bosonic version of

N = 2 supersymmetry generators. The commutator of the latter in general contains a

central term that depends algebraically on the Virasoro central charge. Using the standard

highest-weight definition of the vacuum and standard definitions of adjoint operators, it is

then a simple exercise to show that generically half of the G±-descendants of the vacuum

have positive norm and the other half negative norm. The only exception arises when

the aforementioned central term vanishes, which establishes a polynomial equation for the

Virasoro central charge. This mechanism then leads to a discrete set of solutions for the

Virasoro central charge compatible with unitarity.

However, the construction reviewed above does not exclude the possibility to find

a different vacuum or a different definition of adjoint operators where unitarity is less

constrictive, i.e., does not restrict the central charge beyond convexity conditions. It is the

main purpose of the present work to establish the existence of such a scenario for gravity

theories whose asymptotic symmetry algebras contain the Feigin-Semikhatov algebra W
(2)
n

for even n.

The main algebraic object of this work is the W
(2)
n -algebra introduced by Feigin and

Semikhatov [17]. They implicitly conjecture that this algebra is a quantum Hamiltonian

reduction of the affine vertex algebra of sl(n) for a next to principal embedding of sl(2)

in sl(n) (see e.g. [19] for a general treatment of such reductions). The precise form of

the conjecture has recently been formulated in [20]. Support for this conjecture has been

given in [21, 22], where the W
(2)
n -algebra at critical level has been constructed. At critical

level the quantum Hamiltonian reduction is guaranteed to have a large center, and indeed

also the W
(2)
n -algebra at critical level has such a large center. Our computations in the

semi-classical limit actually provide further support for the correctness of this conjecture.
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Let us recall what is known about the structure of the W
(2)
n -algebra. The algebra has

been defined by Feigin and Semikhatov as both a kernel of screening charges associated

to simple roots of sl(n|1) inside a free field theory and as a commutant or coset by the

affine vertex algebra of gl(n) of an extension of the affine vertex superalgebra of gl(n|1).
The algebra is generated as a vertex algebra by two fields of conformal dimension n/2.

These two fields together with the dimension one field behave somehow similar as the

affine vertex algebra of sl(2). The superscript (2) is due to this resemblance. Moreover,

the W
(2)
2 algebra is just the affine vertex algebra of sl(2), and W

(2)
3 is the algebra of

Polyakov and Bershadsky [14, 15]. Both are indeed the W-algebras corresponding to the

next to principal embedding of sl(2). We ask the question, whether there exist exceptional

levels for which the W
(2)
n -algebra defines a unitary algebra. Recall, that the Wn-algebra,

that is the quantum Hamiltonian reduction of affine sl(n) for the principal embedding,

defines a unitary rational CFT if the level is exceptional in the sense that it takes values

in a certain discrete set of rational numbers. Kac and Wakimoto conjectured [23], that for

every quantum Hamiltonian reduction there exist discrete sets of allowed exceptional values

of the level such that the corresponding W-algebra is a rational theory. This conjecture

has been proven by Tomoyuki Arakawa [24] in the case of W
(2)
3 .

Our idea is as follows. The second author gained some experience with the W
(2)
n -

algebra and observed that indeed this algebra behaves very much like affine sl(2). For

example, at critical level the classification of modules with finite-dimensional zero-grade

subspace was very analogous to the classification in the sl(2) case [21]. At a certain rational

admissible level, the modules of the algebra behave as those of affine sl(2) at fractional

level [20]. It is natural at least to us, to think about W
(2)
n as a generalization of the WZW

theory of SL(2). But recall, that the WZW models for positive integer level define unitary

conformal field theories. These are of course based on the unitary real forms, for example

the unitary form SU(2) of SL(2,C). Our idea is thus to try to find a unitary real form of

W
(2)
n proceeding as much as possible in analogy to su(2). Indeed, our main technical result

is that such a form exists, at least as far as the operator product algebra is known.

This work is organized as follows. In section 2 we state our main results, that sum-

marize the outcome of the technical computations of the following sections. In section 3

we review salient features of the Feigin-Semikhatov algebra W
(2)
n . In section 4 we provide

a unitary real form that differs from the one previously used and discuss implications for

unitarity. In section 5 we focus on a special value of the ’t Hooft coupling that lies at

the boundary of the interval permitted by the unitarity analysis of the previous section.

We find that at that value the simple W
(2)
n conformal field theory is nothing but a unitary

lattice CFT. In section 6 we discuss the higher spin gravity perspective. We then terminate

with a short outlook.

2 Results

Our main technical result is that the W
(2)
n -algebra of level k of Feigin and Semikhatov

seems to allow for a unitary real form if n is even. We can verify this statement only as far

as the operator product algebra of the Feigin-Semikhatov algebra is known. In section 3

– 3 –
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we recall the known operator product algebra. Especially we can provide the complete

algebra in the case n = 4. It turns out that our conjecture is compatible with the operator

product algebra, and especially it is true for n = 2 and n = 4. We provide the necessary

computations for this in section 4. There is also one special level k + n = (n+ 1)/(n− 1),

where we even find a unitary conformal field theory for all even n with symmetry algebra

looking like a simple quotient of W
(2)
n , see section 5. This means, the symmetry algebra is

a simple algebra, and its operator product algebra agrees with the known algebra of W
(2)
n

at that level modulo a vertex algebra ideal. Note that for odd n, there are bosonic fields

of half integral spin, so the spin statistic relations do not hold. In these cases it seems to

be impossible to find a positive definite inner product (except for the discrete set of levels

discussed in [18]).

Having this result, the next question is for which level k does this algebra admit

a positive definite inner product. We can check this question on the level of the inner

product of the generating fields of the W-algebra. Details of the computation are again

outlined in section 4. The case n = 2 is just the affine vertex algebra of su(2) and it is

well-known that a positive inner product can only exist for k ≥ 0. Note, that in this case it

is also well-known that one even obtains a unitary conformal field theory if k is a positive

integer. In the case n = 4, we find that a positive definite inner product can exist if k takes

values in a certain interval, namely

4

3
≤ k + 4 ≤ 15

8
. (2.1)

For general even n, the known operator product algebra restricts the possible values of the

level for a positive inner product to satisfy

n

n− 1
≤ k + n ≤ n2 − 1

n(n− 2)
. (2.2)

We are interested in an ’t Hooft limit. For this we define a coupling constant λ by

λ = (n− 1)(k + n− 1). (2.3)

Then the condition for a unitary W-algebra translates to

1 ≤ λ ≤ (2n− 1)(n− 1)

n(n− 2)
= 2 +

(n+ 1)

n(n− 2)
. (2.4)

For a higher spin duality, we require the central charge to scale with n. Indeed, we find that

c = (1− λ)
1− 2n+ λn (n−2)

(n−1)

1 + λ/(n− 1)
∼ (λ− 1)(2− λ)n . (2.5)

In the large n limit, the allowed range for λ is the interval [1, 2] and hence the coefficient

(λ− 1)(2− λ) is positive.

Let us comment on the level for the original higher spin W-algebra correspondence.

There λ = n/(k̃+ n) is related to the level k̃ of the coset construction. The relation to the

level k of the affine Lie algebra whose quantum Hamiltonian reduction it is, is

k + n =
n

λ+ n
≤ 1 .
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Especially we see that only for small levels we get a unitary rational CFT. Further, the

allowed λ that lead to a unitary CFT form a discrete subset Q of the interval [0, 1]. This

situation is similar to what we have above for W
(2)
n .

In section 6, we then first compute the asymptotic symmetry algebra of sl(4,R) Chern-

Simons theory with next to principal boundary conditions. We find nice agreement with the

unitary W
(2)
4 -algebra. We are also able to compute some operator product coefficients for

general n, and again find nice agreement. These computations both support the conjecture

that the W
(2)
n -algebra of Feigin and Semikhatov is a quantum Hamiltonian reduction as

well that it is the holographic dual of a higher spin algebra with spin one symmetry.

Let us summarize in formulating our main conjectures.

Conjectures.

1. For every λ ∈ [1, 2] there is a unitary simple real form of W
(2)
2n at level k. Furthermore,

there exists a dense subset Q ⊂ [1, 2], such that for every λ in Q there exists k, n

satisfying (2.3) and the vacuum representation of W
(2)
2n at level k has positive inner

product.

2. The semi-classical limit of the W
(2)
2n -algebra is realized by classical sl(2n,R) Chern-

Simons theory with next to principal boundary conditions.

3. The unitary W
(2)
2n -algebra is the holographic dual of a higher spin algebra with spin

one symmetry at the full quantum level.

While we will provide non-trivial evidence for the first two conjectures, we stress that

the third conjecture is more ambitious than the second one and could be false even if the

first two turn out to be correct. In fact, the status of the analogue of the third conjecture

remains unclear even for the more widely studied case of quantum higher spin algebras

emerging from the principal embedding of sl(2) into sl(N). In particular, so far it was

not possible to obtain the correct quantum shifts from quantization of a corresponding

Chern-Simons theory [25].

3 The W
(2)
n

algebra of Feigin and Semikhatov

We start our considerations with what is known about the Feigin-Semikhatov W
(2)
n algebra

of level k. This algebra is constructed in [17] as both a coset of supergroup type and

as the chiral algebra of a conformal field theory associated to a set of screening charges

of supergroup type inside a lattice super algebra. Both constructions allow, in principle,

for a computation of the operator algebra, though this is very tedious and Feigin and

Semikhatov provide the leading contributions of important operator products. Here, we

recall this data.

We use the same normal ordering convention and short-hand notation as Feigin and

Semikhatov in [17], that is for three fields A(w), B(w), C(w) we have

A(w)B(w)
def
= : A(w)B(w) : and A(w)B(w)C(w)

def
= : A(w)(: B(w)C(w) :) : . (3.1)

– 5 –
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The central charge is

cn(k) = −((k + n)(n− 1)− n)
(

(k + n)(n− 2)n− n2 + 1
)

(k + n)
. (3.2)

The algebra contains a Virasoro field T (z) with this central charge. As a vertex algebra it

is generated by two dimension n/2 fields, En and Fn. It also contains one u(1)-current Hn.

We list now the known non-regular operator products for general n

Hn(z)Hn(w) ∼
ℓn(k)

(z − w)2
, Hn(z)En(w) ∼

En(w)
(z − w)

, Hn(z)Fn(w) ∼ − Fn(w)

(z − w)
(3.3)

and

En(z)Fn(w) ∼
λn−1(n, k)

(z − w)n
+

nλn−2(n, k)Hn(w)

(z − w)n−1
+

λn−3(n, k)

(z − w)n−2
A(w)

+
λn−3(n, k)

(z − w)n−3
B(w) +

λn−2(n, k)

(z − w)n−3
C(w) + . . .

(3.4)

with coefficients

ℓn(k) =
(n− 1)(k + n)− n

n
, λm(n, k) =

m
∏

i=1

(i (k + n− 1)− 1) (3.5)

and normal ordered products

A(w) =
n(n− 1)

2
Hn(w)Hn(w) +

n ((n− 2) (k + n− 1)− 1)

2
∂Hn(w)− (k + n)T (w)

B(w) = Wn,3(w)− (k + n)

(

1

2
∂T⊥(w) +

1

ℓn(k)
Hn(w)T⊥(w)

)

C(w) =
n

6ℓn(k)2
Hn(w)Hn(w)Hn(w) +

n

2ℓn(k)
∂Hn(w)Hn(w) +

n

6
∂2Hn(w)

T⊥(w) = T (w)− 1

2ℓn(k)
Hn(w)Hn(w) .

Here Wn,3 is a dimension three primary field. In the analysis of [18] the quantity λn−1(n, k)

was required to vanish, which eliminates the anomalous term in the OPE of En(z) and

Fn(w) (3.4). In the present work we shall not find it necessary to impose such a restriction.

The W
(2)
4 algebra will be our main example. In this case, complete operator products

are known. We start with the one of E4 with F4,

1

(k + 2)
E4(z)F4(w) ∼

(2k + 5)(3k + 8)

(z − w)4
+

4(2k + 5)H4(w)

(z − w)3

+
−(k + 4)T (w) + 6H4(w)H4(w) + 2(2k + 5)∂H4(w)

(z − w)2

+
1

(z − w)

(

W4,3(w)−
k + 4

2
∂T (w)− 4(k + 4)

3k + 8
T (w)H4(w)

+
8(11k + 32)

3(3k + 8)2
H4(w)H4(w)H4(w)

+ 6∂H4(w)H4(w) +
4(26 + 17k + 3k2)

3(3k + 8)
∂2H4(w)

)

.

(3.6)
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Using the short-hand notation E4 = X+ and F4 = X−, the OPE of W4,3 with X± can be

compactly written as

W4,3(z)X±(w) ∼ ± 2(k + 4)(3k + 7)(5k + 16)

(3k + 8)2
X±(w)

(z − w)3
+

1

(z − w)2
×

×
(

±3
(k + 4)(5k + 16)

2(3k + 8)
∂X±(w)− 6

(k + 4)(5k + 16)

(3k + 8)2
H4(w)X±(w)

)

− k + 4

k + 2

1

(z − w)

(

8(k + 3)

3k + 8
H4(w)∂X±(w) +

4(3k2 + 15k + 16)

(3k + 8)2
×

×∂H4(w)X±(w)∓ (k + 3)∂2X±(w)± 2(k + 4)

3k + 8
T (w)X±(w)

∓4(5k + 16)

(3k + 8)2
H4(w)H4(w)X±(w)

)

.

(3.7)

Finally, the dimension three field has the following OPE with itself

W4,3(z)W4,3(w) ∼
2(k + 4)(2k + 5)(3k + 7)(5k + 16)

3k + 8

1

(z − w)6

− (k + 4)2(5k + 16)

3k + 8

3T⊥(w)

(z − w)4
− (k + 4)2(5k + 16)

2(3k + 8)

3∂T⊥(w)

(z − w)3

+
1

(z − w)2

(

−3(k + 4)2(5k + 16)(12k2 + 59k + 74)

4(3k + 8)(20k2 + 93k + 102)
∂2T⊥(w)

+
8(k + 4)3(5k + 16)

(3k + 8)(20k2 + 93k + 102)
T⊥(w)T⊥(w) + 4(k + 4)Λ(w)

)

1

(z − w)

(

−(k + 4)2(5k + 16)(12k2 + 59k + 74)

6(3k + 8)(20k2 + 93k + 102)
∂3T⊥(w)

+
8(k + 4)3(5k + 16)

(3k + 8)(20k2 + 93k + 102)
∂T⊥(w)T⊥(w) + 2(k + 4)∂Λ(w)

)

,

(3.8)

where

T⊥(w) = T (w)− 2

3k + 8
H4(w)H4(w) (3.9)

and Λ(w) is a dimension four Virasoro primary field, but a W-algebra descendant. It is

the following normally ordered product in the strong generators of the W-algebra

(k + 2)2Λ(w) = X+(w)X−(w)− k + 2

2
∂W4,3(w)−

4(k + 2)

3k + 8
W4,3(w)H4(w)

+
3(k + 2)2(k + 4)(6k2 + 33k + 46)

2(3k + 8)(20k2 + 93k + 102)
∂2T⊥(w)

− (k + 2)(k + 4)2(11k + 26)

2(3k + 8)(20k2 + 93k + 102)
T⊥(w)T⊥(w)

+
2(k + 2)(k + 4)

(3k + 8)
∂ (T⊥(w)H4(w)) +

8(k + 2)(k + 4)

(3k + 8)2
T⊥(w)H4(w)H4(w)
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− 8(k + 2)(2k + 5)

3(3k + 8)
∂2H4(w)H4(w)−

2(k + 2)(2k + 5)

(3k + 8)
∂H4(w)∂H4(w)

− 16(k + 2)(2k + 5)

(3k + 8)2
∂H4(w)H4(w)H4(w)

− 32(k + 2)(2k + 5)

3(3k + 8)3
H4(w)H4(w)H4(w)H4(w)−

(k+2)(2k + 5)

6
∂3H4(w).

(3.10)

4 A unitary real form of W (2)
n

for n even

In this section, we argue that the Feigin-Semikhatov algebra admits a unitary real form in

the case of even n. As the complete operator product algebra is only known for n = 1, 2, 3, 4,

we can only prove this statement in the cases n = 2, 4. But we strongly believe that it

holds in general. We start by a case by case analysis. First recall, that a real form of a

complex algebra is an algebra over the real numbers such that its complexification is the

complex algebra. Such real forms can be constructed as the subalgebra invariant under an

involutive semimorhism.

4.1 The unitary W
(2)
2 -algebra

The case of n = 2 is nothing but the affine vertex algebra of sl(2). The natural real form

of sl(2) has basis e, f and h with

[e, f ] = 2h , [h, e] = e and [h, f ] = −f . (4.1)

The involutive semimorphism is the identity concanated with complex conjugation.

The corresponding vertex algebra has generating fields e(z), f(z) and h(z) with

operator products

h(z)h(w) ∼ k/2

(z − w)2
, e(z)f(w) ∼ k

(z − w)2
+

2h(w)

(z − w)

h(z)e(w) ∼ e(w)

(z − w)
, h(z)f(w) ∼ − f(w)

(z − w)

(4.2)

and k is the level. The central charge is c = 3k/(k + 2). Especially the operator products

(e(z)± f(z)) (e(w)± f(w)) ∼ ±2k

(z − w)2
+ . . . (4.3)

imply that there can only be no states of negative norm if k = 0 and hence also c = 0. This

was the argument of [9, 18]. But there is a way out, namely consider the unitary real form

su(2) with generators X = i(e+ f)/2, Y = (e− f)/2 and J = ih. Then the commutation

relations are

[X,Y ] = −J , [J,X] = −Y , [J, Y ] = X . (4.4)

Operator products of corresponding currents are

X(z)X(w) ∼ Y (z)Y (w) ∼ J(z)J(w) ∼ −k/2

(z − w)2
,

X(z)Y (w) ∼ − J(w)

(z − w)
, J(z)X(w) ∼ − Y (w)

(z − w)
, J(z)Y (w) ∼ X(w)

(z − w)
.

(4.5)
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The natural bilinear form is the Killing form and this is negative definite hence for the

corresponding modes of currents we need to define the adjoint as

X†
m = −X−m , Y †

m = −Y−m , J†
m = −J−m , (4.6)

which directly follows from the Z2 anti-automorphism h†m = h−m, e†m = f−m. Thus the

unitarity requirement is that k ≥ 0. Indeed for positive integer k it is known that the

underlying conformal field theory, the WZW model, is a unitary rational theory. The

point of recalling this well-known fact is that it motivates a generalization.

4.2 The unitary W
(2)
4 -algebra

We will now show, that the W
(2)
4 -algebra admits a real form, that resembles very much the

unitary real form of affine su(2), hence we will call this real form the unitary W
(2)
4 -algebra.

Define in analogy to last section

Xn =
i(En + Fn)

2
√

λn−2(n, k)
, Yn =

(En −Fn)

2
√

λn−2(n, k)
, Jn = iHn , (4.7)

and also Zn = iWn,3. The normalization means that operator product expansion coeffi-

cients become rational functions in the level with possible poles at the zeros of λn−2(n, k).

Hence for these values of the level one should use a different normalization. However, the

cases where λn−2(n, k) vanishes are exactly the discrete levels investigated in [18]. They

lead to unitary real forms of the W
(2)
n algebra provided that the central charge is non-

negative. In general poles and zeroes of operator product coefficients indicate that the

universal W-algebra might not be simple and in such a situation one should study its

simple quotient.

Remark that there is the following order two map ω induced by

ω(E4(z)) = −F4(z), ω(F4(z)) = −E4(z), ω(H4(z)) = −H4(z),

ω(W4,3(z)) = −W4,3(z), ω(T (z)) = T (z).
(4.8)

The following OPEs in this section show that this map is an automorphism. It is such that

X4(z), Y4(z), J4(z), Z4(z) and T (z) are invariant under the involutive semimorphism given

by concanating ω with complex conjugation.

The non-regular opertator products involving the u(1)-current J4 are

J4(z)J4(w) ∼ −1

4

(3k + 8)

(z − w)2
, J4(z)X4(w) ∼ − Y4(w)

(z − w)
, J4(z)Y4(w) ∼

X4(w)

(z − w)
. (4.9)

Those of the fields X4, Y4 with each other are

X4(z)X4(w) ∼ Y4(z)Y4(w)

∼− (3k + 8)

2(z − w)4
+

(

(k + 4)T (w) + 6J4(w)J4(w)
)

2(2k + 5)(z − w)2
(4.10)

+

(

(k + 4)∂T (w) + 12∂J4(w)J4(w)
)

4(2k + 5)(z − w)
,
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X4(z)Y4(w) ∼− 2J4(w)

(z − w)3
− ∂J4(w)

(z − w)2
− 1

2(2k + 5)(z − w)

(

Z4(w)−
4(k + 4)T (w)J4(w)

(3k + 8)

−8(11k + 32)

3(3k + 8)2
J4(w)J4(w)J4(w) +

4(26 + 17k + 3k2)

3(3k + 8)
∂2J4(w)

)

.

The operator product of X4 with the dimension three primary Z4 is

Z4(z)X4(w) ∼− 2(k + 4)(3k + 7)(5k + 16)

(3k + 8)2
Y4(w)

(z − w)3
− 3(k + 4)(5k + 16)

2(3k + 8)2

× (3k + 8)∂Y4(w)− 4J4(w)X4(w)

(z − w)2
− (k + 4)

(k + 2)(3k + 8)2
1

(z − w)

(

8(k + 3)

× (3k + 8)J4(w)∂X4(w) + 4(3k2 + 15k + 16)∂J4(w)X4(w)

+ (k + 3)(3k + 8)2∂2Y4(w)− 2(k + 4)(3k + 8)T (w)Y4(w)

− 4(5k + 16)J4(w)J4(w)Y4(w)
)

and the one of Y4 with Z4 is

Z4(z)Y4(w) ∼
2(k + 4)(3k + 7)(5k + 16)

(3k + 8)2
X4(w)

(z − w)3
+

3(k + 4)(5k + 16)

2(3k + 8)2

× (3k + 8)∂X4(w) + 4J4(w)Y4(w)

(z − w)2
− (k + 4)

(k + 2)(3k + 8)2
1

(z − w)

(

8(k + 3)

× (3k + 8)J4(w)∂Y4(w) + 4(3k2 + 15k + 16)∂J4(w)Y4(w)

− (k + 3)(3k + 8)2∂2X4(w) + 2(k + 4)(3k + 8)T (w)X4(w)

+ 4(5k + 16)J4(w)J4(w)X4(w)
)

.

Finally the operator product of Z4 with itself is

Z4(z)Z4(w) ∼− 2(k + 4)(2k + 5)(3k + 7)(5k + 16)

(3k + 8)(z − w)6
+

(k + 4)2(5k + 16)

(3k + 8)

3T⊥(w)

(z − w)4

+
(k + 4)2(5k + 16)

2(3k + 8)

3∂T⊥(w)

(z − w)3

+
1

(z − w)2

(

3(k + 4)2(5k + 16)(12k2 + 59k + 74)

4(3k + 8)(20k2 + 93k + 102)
∂2T⊥(w)

− 8(k + 4)3(5k + 16)

(3k + 8)(20k2 + 93k + 102)
T⊥(w)T⊥(w)− 4(k + 4)Λ(w)

)

+
(k + 4)

(z − w)

(

−2∂Λ(w) +
(k + 4)(5k + 16)

6(3k + 8)(20k2 + 93k + 102)
×

×
(

(12k2 + 59k + 74)∂3T⊥(w)− 48(k + 4)∂T⊥(w)T⊥(w)
)

)

.

Where the fields T⊥(w) and Λ(w) are the following normal ordered polynomials in the

generating fields

T⊥(w) =T (w) +
2

(3k + 8)
J4(w)J4(w),
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(k + 2)Λ(w) = − (2k + 5)X4(w)X4(w)− (2k + 5)Y4(w)Y4(w) +
4

(3k + 8)
Z4(w)J4(w)

+
(k+4)

(

3(k+2)(6k2+33k+46)∂2T⊥(w)− (k+4)(11k+26)T⊥(w)T⊥(w)
)

2(3k + 8)(20k2 + 93k + 102)

− 8(k + 4)

(3k + 8)2
T⊥(w)J4(w)J4(w) +

8(2k + 5)

3(3k + 8)
∂2J4(w)J4(w)

+
2(2k + 5)

(3k + 8)
∂J4(w)∂J4(w)−

32(2k + 5)

3(3k + 8)3
J4(w)J4(w)J4(w)J4(w).

Note that it is a very non-trivial result that OPEs of these fields close with real coefficients.

For example, if we compare the expression for Λ with the one of the previous section, we

see that contributions of type ∂3J4(x) and J4(w)J4(w)∂J4(w) disappear. This is essential

for closure of our unitary form with real coefficients, and that these terms vanish is a

non-trivial computation.

Choosing the adjoint as in the su(2) case, we get no negative norm states for X4, Y4
and J4 if 3k + 8 ≥ 0. Imposing non-negativity of the central charge yields k + 4 ≤ 15/8.

Hence the possible values for k are

4

3
≤ k + 4 ≤ 15

8
. (4.11)

Some interesting values of the central charge (3.2) in the allowed interval (4.11) are c4(k =

−8/3) = c4(k = −17/8) = 0 and c4(k = −7/3) = c4(k = −5/2) = 1. The maximal value

c4 = 1.105 . . . is formally obtained for the irrational value k =
√

5/2− 4.

4.3 The unitary W
(2)
n

-algebra

We finally need to convince ourselves that as far as the operator product algebra of W
(2)
n

is known, it is consistent with allowing a real unitary form. Recall the ’t Hooft parameter

λ = (n− 1)(k + n− 1) (2.3). We then find that

Jn(z)Jn(w) ∼ − (λ− 1)

n(z − w)2
, Jn(z)Xn(w) ∼ − Yn(w)

(z − w)
, Jn(z)Yn(w) ∼

Xn(w)

(z − w)
(4.12)

and

Xn(z)Xn(w) ∼Yn(z)Yn(w)

∼− (λ− 1)

2(z − w)n
+

n(n− 1)Jn(w)Jn(w) + 2(k + n)T (w)

2(λ− (k + n))(z − w)n−2

+
n(n− 1)∂Jn(w)Jn(w) + (k + n)∂T (w)

2(λ− (k + n))(z − w)n−3
,

Xn(z)Yn(w) ∼− n

2

Jn(w)

(z − w)n−1
− n

4

∂Jn(w)

(z − w)n−2
+

1

(z − w)n−3

(

− n

12
∂2Jn(w)

− Zn(w)

2(λ− (k + n))
+

(k + n)n

2(λ− (k + n))λ
Jn(w)T⊥(w)

+
n3

12λ2
Jn(w)Jn(w)Jn(w)

)

,

(4.13)
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where T⊥(w) = T (w) + n
2λJn(w)Jn(w). We can, as before, search for values of the level

with no negative norm states. The answer in terms of the parameter λ is

1 ≤ λ ≤ (2n− 1)(n− 1)

n(n− 2)
= 2 +

(n+ 1)

n(n− 2)
. (4.14)

Note that the central charge scales with n for fixed λ

c = (1− λ)
1− 2n+ λn (n−2)

(n−1)

1 + λ/(n− 1)
∼ (λ− 1)(2− λ)n . (4.15)

5 Unitary conformal field theories at λ = 2

Let us consider the case of k + n = (n + 1)/(n − 1). Then we have λ = 2 and c = 1. In

this case the algebra compares nicely with the integer lattice CFT rescaled by
√
n, which

is strongly generated by three bosonic fields hn(z), en(z) and fn(z) of conformal dimension

1, n/2, n/2. Their operator products are

hn(z)hn(W ) ∼ 1

n

1

(z − w)2
, hn(z)en(w) ∼

en(w)

(z − w)
, hn(z)fn(w) ∼ − fn(w)

(z − w)
,

en(z)fn(w) ∼ λ

(

1

(z − w)n
+

nhn(w)

(z − w)n−1
+

n
2∂hn(w) + nT (w)

(z − w)n−2

+
n3

6 hn(w)hn(w)hn(w) +
n2

2 ∂hn(w)hn(w) +
n
6∂

2hn(w)

(z − w)n−3
+ . . .

)

.

(5.1)

Here we used an unusual scaling to make the relation to the W
(2)
n algebra clear. Indeed this

is the operator product algebra of the simple quotient of the level k + n = (n+ 1)/(n− 1)

W
(2)
n algebra under the identification

Hn = hn, En = en , Fn = fn , T =
n

2
hnhn , Wn,3 = 0 . (5.2)

For even n, these lattice theories describe a free compactified boson, where the compacti-

fication radius is R = n/2, see for instance [26].

6 The semi-classical limit and Chern-Simons theory

The aim of this section is to derive parts of the relations of the W
(2)
n -algebra from a gravity

point of view. These computations support the conjecture that the W
(2)
n -algebra is indeed

the symmetry algebra of some higher spin gauge theory including spin one.

6.1 W
(2)
4 example

We can conjecturally construct the W
(2)
n algebra by quantum Hamiltonian reduction of

the next-to-principal embedding of sl(2,R) into sl(n,R). There is a physical realization

of this procedure at the semi-classical level by studying the asymptotic symmetries of a
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three dimensional higher spin gauge theory [2, 3, 27]. The bulk action can be written as

the difference of two sl(n,R) Chern-Simons actions,

I =
kCS

4π

∫

M

〈

A ∧ dA+
2

3
A ∧A ∧A

〉

. (6.1)

The manifold M is assumed to be a smooth 3-dimensional manifold with Euclidean sig-

nature and cylindrical or torus boundary. Note however, what we propose is to actually

change the contour of the path integral of this Chern-Simons action from the real domain

into the complex domain. It reflects the choice of the real form taken in the boundary alge-

bra, but importantly it does not change the path integral for the gravitational sl(2,R) part.

We consider the Chern-Simons bulk theory action in three dimensions with sl(4,R)

gauge group. The hypothetical Hilbert space (of quantum gravity) will be a representation

of the W
(2)
4 algebra, if we impose certain boundary conditions. We will see this in more

details below. There are three non-trivial non-principal embeddings of sl(2,R) in sl(4,R),

15 ≃ 3⊕ 5⊕ 2 · 3⊕ 1 ≃ 3⊕ 3 · 3⊕ 3 · 1 ≃ 3⊕ 4 · 2⊕ 4 · 1 (6.2)

We are interested here in the first one. Let La be the three sl(2,R) generators with

a = ±1, 0. Further let Xa and Ya be six extra spin-2 generators carrying two copies of the

three-dimensional representation of sl(2,R), where a = ±1, 0, and denote by Za a basis of

the five dimensional representations, with a = ±2,±1, 0, while S is finally a singlet under

sl(2,R). In this basis, the commutation relations of sl(4,R) are

[La, Lb] = (a− b)La+b, [S,Xa] = −Ya,

[S, Ya] = Xa,

[La, Xb] = (a− b)Xa+b, [La, Yb] = (a− b)Ya+b,

[La, Zb] = (2a− b)Za+b,

[Xa, Xb] = [Ya, Yb] =
1

2
(a− b)La+b, [Xa, Yb] = −Za+b − 4

(

a2 − 1

3

)

S δa+b,

[Za, Xb] = −1

6
(a2 + 6b2 − 3ab− 4)Ya+b, [Za, Yb] =

1

6
(a2 + 6b2 − 3ab− 4)Xa+b,

[Za, Zb] =
1

12
(a− b)(2a2 + 2b2 − ab− 8)La+b .

(6.3)

We use the notation δp+q := δp+q, 0 = δp,−q for all integer values p and q. Let η be the

3× 3 matrix with non-zero entries η1,−1 = η−1,1 = 1 and η0,0 = −1
2 , and let K be the 5× 5

matrix with non-zero entries K2,−2 = K−2,2 = 6 and K1,−1 = K−1,1 = −3
2 and K0,0 = 1.

Then the bilinear form 〈 , 〉 is

〈La, Lb〉 = 2 〈Xa, Xb〉 = 2 〈Ya, Yb〉 = −ηab,

〈Za, Zb〉 = −1

6
Kab and 〈S, S〉 = − 3

16
.

(6.4)
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The connection A takes values in the Lie algebra sl(4,R), with the aforementioned sl(2,R)

embedding (6.2) and with the following constant-time boundary condition,

A(ϕ) = g−1a(ϕ) g dϕ+ g−1∂ρg dρ with g = eρL0 and

a(ϕ) = k̂−1 (L1 + J (ϕ)S + L(ϕ)L−1 + X (ϕ)X−1 + Y(ϕ)Y−1 + Z(ϕ)Z−2) (6.5)

where J (ϕ), L(ϕ), X (ϕ), Y(ϕ) and Z(ϕ) are some arbitrary state dependent functions and

k̂ = kCS/2π. The boundary conditions (6.5) are preserved by transformations A → A+DΓ

with Γ = g−1γ(ϕ)g and,

γ(ϕ) = γS(ϕ)S + γaL(ϕ)La + γaX(ϕ)Xa + γaY (ϕ)Ya + γaZ(ϕ)Za . (6.6)

One can solve all components of γ in terms of five free parameters γS , γ
1
L, γ

1
X , γ1Y , γ

2
Z

and the state dependent functions. The canonical boundary charges associated with the

asymptotic symmetries generated by γ are

Q(γ) = −kCS

2π

∫

dϕ 〈γ(ϕ) , a(ϕ)〉 (6.7)

=

∫

dϕ

[

3

16
J (ϕ)γS(ϕ) + L(ϕ)γ1L(ϕ) +

1

2
X (ϕ)γ1X(ϕ) +

1

2
Y(ϕ)γ1Y (ϕ) + Z(ϕ)γ2Z(ϕ)

]

.

Using the fact that {Q(γ), a(ϕ)} = δγa(ϕ) and substituting (6.7) into it, we find the Poisson

brackets between the state dependent functions,

{L(ϕ),L(ϕ′)} = L′δ − 2Lδ′ − k̂

2
δ(3),

{L(ϕ),Z(ϕ′)} = Z ′δ − 3Zδ′,

{L(ϕ),X (ϕ′)} = X ′δ − 2X δ′ +
1

k̂
JYδ,

{L(ϕ),Y(ϕ′)} = Y ′δ − 2Yδ′ − 1

k̂
JX δ,

{J (ϕ),J (ϕ′)} = −16k̂

3
δ′,

{J (ϕ),X (ϕ′)} = −16

3
Yδ,

{J (ϕ),Y(ϕ′)} =
16

3
X δ,

{X (ϕ),X (ϕ′)} = {Y(ϕ),Y(ϕ′)} = 2L′δ − 4Lδ′ + 3

k̂
J 2δ′ − 3

k̂
JJ ′δ − k̂δ(3),

{X (ϕ),Y(ϕ′)} = −4Zδ − J ′′δ − 3J δ′′ + 3J ′δ′ − 4

k̂
JLδ + 1

k̂2
J 3δ,

{Z(ϕ),X (ϕ′)} = −Y ′′δ − 5

3
Yδ′′ +

5

2
Y ′δ′ +

1

k̂
XJ ′δ +

2

k̂
X ′J δ − 5

2k̂
XJ δ′

− 8

3k̂
YLδ − 1

k̂2
YJ 2δ,

{Z(ϕ),Y(ϕ′)} = X ′′δ +
5

3
X δ′′ − 5

2
X ′δ′ +

1

k̂
YJ ′δ +

2

k̂
Y ′J δ − 5

2k̂
YJ δ′

+
8

3k̂
XLδ + 1

k̂2
XJ 2δ,
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{Z(ϕ),Z(ϕ′)} = −5

6
Lδ′′′ + 5

4
L′δ′′ − 3

4
L′′δ′ +

1

6
L′′′δ − 8

3k̂
L2δ′ +

8

3k̂
LL′δ − 1

k̂
(X 2 + Y2)′δ

+
2

k̂
(X 2 + Y2)δ′ − k̂

24
δ(5) (6.8)

where δ ≡ δ(ϕ− ϕ′) and δ′ ≡ ∂ϕδ(ϕ− ϕ′) (and similarly for higher derivatives). We shift,

L → L+
3

32k̂
J 2 (6.9)

such that all fields are quasi-primaries with respect to L. Using the appropriate represen-

tation of the delta function and expanding the state dependent functions,

L(ϕ) = − 1

2π

∑

p∈Z

Lpe
−ipϕ , X (ϕ) =

1

π

∑

p∈Z

Xpe
−ipϕ,

Y(ϕ) =
1

π

∑

p∈Z

Ype
−ipϕ , J (ϕ) =

i

2π

∑

p∈Z

Jpe
−ipϕ,

Z(ϕ) = − i

2π

∑

p∈Z

Zpe
−ipϕ , δ(ϕ) =

1

2π

∑

p∈Z

e−ipϕ .

(6.10)

we can rewrite the Poisson brackets in terms of the Fourier modes,

i{Lp, Lq} = (p− q)Lp+q +
kCS

2
p(p2 − 1)δp+q,

i{Lp, Zq} = (2p− q)Zp+q,

i{Lp, Xq} = (p− q)Xp+q,

i{Lp, Yq} = (p− q)Yp+q,

i{Lp, Jq} = −qJp+q,

i{Jp, Jq} =
3kCS

16
p δp+q ,

i{Jp, Xq} = −Yp+q ,

i{Jp, Yq} = Xp+q ,

i{Xp, Xq} = i{Yp, Yq} =
1

2
(p− q)Lp+q −

12

kCS

(p− q)J2
p+q +

kCS

4
p(p2 − 1)δp+q

i{Xp, Yq} = −Zp+q −
4

3
(p2 + q2 − pq − 1)Jp+q −

16

3kCS

(

(JL)p+q −
88

9kCS

J3
p+q

)

i{Zp, Xq} = −1

6
(p2 + 6q2 − 3pq − 4)Yp+q −

8

3kCS

(LY )p+q

+
16

3kCS

(

1

4
(∂JX)p+q −

3

4
(∂XJ)p+q +

5

4
(p− q)(JX)p+q +

20

3kCS

(J2Y )p+q

)

i{Zp, Yq} =
1

6
(p2 + 6q2 − 3pq − 4)Xp+q +

8

3kCS

(LX)p+q

+
16

3kCS

(

1

4
(∂JY )p+q −

3

4
(∂Y J)p+q +

5

4
(p− q)(JY )p+q −

20

3kCS

(J2X)p+q

)

– 15 –



J
H
E
P
0
6
(
2
0
1
4
)
0
6
3

i{Zp, Zq} =
1

12
(p− q)(2p2 − pq + 2q2 − 8)Lp+q +

8

6kCS

(p− q)L2
p+q

− 4

kCS

(p− q)(X2 + Y 2)p+q −
16

3kCS

(

1

24
(p− q)(2p2 − pq + 2q2 − 8)J2

p+q

+
4

3kCS

(p− q)(LJ2)p+q −
16

9k2CS

(p− q)J4
p+q

)

+
kCS

24
p(p2 − 1)(p2 − 4)δp+q

(6.11)

where,

(AB)p :=
∑

q

AqBp−q = (BA)p and (∂AB)p :=
∑

q

qAqBp−q .

Above, we have shifted Lp → Lp − kCS
4 δp and rescaled Jp properly. In order to find the

algebra at the full quantum level, one should replace i{ , } → [ , ] and introduce normal

ordering in nonlinear terms (since we are using natural units there are no factors of ~

involved). We may have a comparison with the OPEs in section 4.2 if we can identify

the bulk kCS with the boundary level k. Comparing the semiclassical commutator between

spin-1 generators and the large k limit of their corresponding OPE suggests that,

kCS = −4k for large k . (6.12)

The CFT result in section 4.2 should match this result for large k. Specifically the kCS-

independent terms in (6.11) should survive after taking this limit in section 4.2. This

suggests the following (large k)-rescaling of the spin-3 field in the OPE’s,

Z4(z) → Z4(z)k . (6.13)

After doing this rescaling we can show that the semi-classical limit of the unitary real

form of the W
(2)
4 -algebra in section 4.2 compares nicely to this algebra when Xp → 2Xp

and Yp → 2Yp.

6.2 Operator products from the bulk Chern-Simons theory

We want to derive parts of the general, classical En, Fn OPE from the bulk sl(n) Chern-

Simons theory, in particular the leading terms. We use the next-to-principal embedding

n = (n− 1) + 1 (eg. from [28])

V
(2)
−1 =−

n−2
∑

l=1

El,l+1, V
(2)
0 =

n−1
∑

l=1

(
n

2
− l)El,l, V

(2)
1 =

n−2
∑

l=1

l(n− 1− l)El+1,l, (6.14)

where (Eab)ij = δaiδbj . The Lie algebra splits into generators V
(s)
m , m = −s+ 1, . . . , s− 1

with spin s = 2, . . . , n − 1 spanning sl(n − 1) with principal embedding of sl(2), the u(1)

generator V
(1)
0 and the two spin n/2-generators G±

m. We take

V
(1)
0 =

1

n

(

n−1
∑

l=1

El,l − (n− 1)En,n

)

. (6.15)
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Demanding1

[V (2)
m , V (s)

p ] = (−p+m(s− 1))V
(s)
p+m (6.16)

we find

G+
m = C+

(

m+
n− 2

2

)

!En/2+m,n, G−
m = C−(−1)m+(n−2)/2

(

m+
n− 2

2

)

!En,n/2−m.

(6.17)

It is natural to introduce a conjugate and demand

(

G+
m

)†
= G−

−m ,
(

V (s)
m

)†

= V
(s)
−m , (6.18)

which will relate C+ and C−. Since the form of the sl(2) algebra is asymmetric, we suggest

to use the following non-standard Z2 operator

(

A†
)

ij
= (−1)i−j (i− 1)!(n− 1− j)!

(j − 1)!(n− 1− i)!
Aji (6.19)

which is indeed an anti-automorphism of the algebra. Note here that whenever i or j

is equal to n we replace the corresponding factor (−1)! by −1 as part of the definition

of (6.19). We could also have chosen to take (−1)! to 1 since an overall sign change of G±
m

is an automorphism. We now obtain the desired conjugation of G±
m by taking

C+ =
(C−)∗

(n− 1)!
. (6.20)

Finally we choose a normalization such that for s ≥ 2

V
(s)
−s+1 =−

n−s
∑

l=1

El,l+(s−1) (6.21)

and we can find V
(s)
s−1 by conjugation

V
(s)
s−1 =(−1)s

n−s
∑

l=1

(s+ l − 2)!(n− 1− l)!

(n− s− l)!(l − 1)!
El+(s−1),l . (6.22)

Indeed, for V
(2)
±1 this matches with our embedding.

We now want to derive the boundary OPEs. We will expand around an AdS metric,

but only consider one chiral half, so the results should also apply for the Lobachevsky

boundary conditions. We will use two methods for the calculation. The first method will

only capture the terms proportional to kCS and the terms independent of kCS, but the

calculation is easy, whereas the second method will also capture the non-linear terms, but

will be harder.

1As a shorthand, we will sometimes denote G±
m by V

(n/2)
m to include it in general formulas like this, even

though there are actually three fields of spin n/2. We will write them out explicitly when needed.
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The first method was used in [29, 30] (see also [31] for related methods), and we follow

the notation from there. We consider the gauge field A of the Chern-Simons theory as a

small deformation of the AdS part

A = AAdS +Ω , (6.23)

where

AAdS = eρV 2
1 dz + V 2

0 dρ , (6.24)

and Ω solves the linearized equation of motion

dΩ+AAdS ∧ Ω+ Ω ∧AAdS = 0 . (6.25)

Gauge transformations of A are of the form

δA = dΛ + [A,Λ] , (6.26)

and the coupling between the bulk theory operators, V (s), and the boundary fields, which

we denote J (s), is defined as

exp

(

− 1

2π

∫

d2z[(Ωz̄)
(s)
s−1]|bdryJ (s)

)

, (6.27)

where

Ω =
∑

s,m

(Ωz̄)
(s)
m V (s)

m . (6.28)

Here we denote J (2) = T̃ . Also for G± we have chosen a special notation and we denote

the dual boundary fields En,Fn. The coupling in this case then takes the form

exp

(

− 1

2π

∫

d2z

[

tr([Ωz̄]|bdryG−
−n/2+1)En

tr(G+
n/2−1G

−
−n/2+1)

+
tr([Ωz̄]|bdryG+

−n/2+1)Fn

tr(G−
n/2−1G

+
−n/2+1)

])

. (6.29)

Following [29] we claim that the gauge transformation

Λ(s) = ǫs

2s−1
∑

n=1

1

(n− 1)!
(−∂)n−1Λ(s)(z)e(s−n)ρV

(s)
s−n (6.30)

of some operator O is dual to the transformation

1

2πi

∮

dzΛ(s)(z)J (s)±(z)O(0) (6.31)

on the CFT side (where the contour encircles 0), when we only consider linear order of

operators, i.e. the part of the OPEs which are independent of kCS. This is simply the

analytic continuation of the case where Λ(s)(z) = zs−1−m, m = −s + 1, . . . , s − 1, which

generate the global transformations, see [29].
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To calculate the En(z)Fn(0) OPE, we first create an insertion Fn at z = 0 by us-

ing (6.30) with Λ(s) = 1/z and V
(s)
s−n = G−

n/2−1 on the AdS solution (the vacuum on the

boundary side). That is, by (6.26) we find Ω = dΛ+ [AAdS,Λ]−AAdS and we get (here for

a general spin field)

Ωz = ǫ
1

(2s− 2)!
∂2s−1Λ(s)(z)e−(s−1)ρV

(s)
−(s−1),

Ωz̄ = ǫ
2s−1
∑

n=1

1

(n− 1)!
(−∂)n−1∂̄Λ(s)(z)e(s−n)ρV

(s)
s−n ∼ ǫ2πδ(2)(z − w)e(s−1)ρV

(s)
s−1 + . . . ,

Ωρ = 0. (6.32)

We note that the leading term in Ω
(s)
z̄ is a delta function, and thus gives the wanted

insertion with our bulk/boundary coupling.

We can now find the OPE with En by performing the transformation (6.30) with

Λ(s) = 1, z, . . . , zn−1. For zn−1 this is not a global symmetry and thus AAdS is not invariant.

This gives an extra term (after varying both the bulk and the necessary extra boundary

term, see [32])

δS = −kCS

2π

∫

d2ze2ρtr(Ωz̄δΩz) . (6.33)

This term gives rise to a change in the boundary operator via the bulk-boundary cou-

pling (6.27) and this is the central term on the CFT side which is proportional to kCS.

Note that for the OPE of two spin s generators A
(s)
m , B

(s)
m with dual fields A(s) and B(s),

we find that the central term is

A(s)(z)B(s)(0) ∼ −(2s− 1)kCStr
(

A
(s)
−s+1B

(s)
s−1

)

/z2s + . . . , (6.34)

which directly shows the need for choosing operators such that the inner product is positive.

Notice that the inner product used here simply is the matrix trace. The normalization of

the coupling kCS thus differs from the one used in last subsection.

The procedure can first be done for the generators V
(2)
m which we find gives rise to

the Virasoro tensor OPE on the boundary side. Let us call the corresponding operator for

T̃ . However, T̃ has a non-singular OPE with the spin-one field. There is a unique way to

add a normal-ordered product of the spin-one field to T̃ such that we again get a Virasoro

tensor and the spin-one field is primary, see eq. (6.48) below. This gives us the full Virasoro

tensor T which has a central charge one higher than T̃ . This fixes the relation to kCS:

kCS =
c− 1

n(n− 1)(n− 2)
, (6.35)

where we have used tr
(

V
(2)
−1 V

(2)
1

)

= −n(n− 1)(n− 2)/6.

Continuing we can examine the OPE of Hn = J (1) with itself and En,Fn. Here we find

Hn(z)Hn(0) ∼ −kCS

n− 1

n

1

z2
(6.36)

Hn(z)En(0) ∼
En
z

, Hn(z)Fn(0) ∼ −Fn

z
. (6.37)
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Since Hn is of spin one, this OPEs will not get 1/kCS-corrections. In the classical limit

k → ∞ where kCS ≃ −k this fits with the bulk side.

For the En(z)Fn(0) OPE we find that for Λ(n/2)(z) = zp−1 with p = 1, . . . , n−1 we have

δΛΩz̄ = (−1)s+1|C−|2 (p− 1)!

(n− 1)!

n−p
∑

s=1

1

(n− s− p)!

n−1−(s−1)
∑

t=n−p−(s−1)

(t+ s− 2)!(n− t− 1)!

(t− n+ s− 1 + p)!(n− t− s)!

×
(

Et+(s−1),t − δs,1En,n

)

e(s−1)ρ(−∂)n−s−p2πδ(2)(z)

∼− |C−|2 (p− 1)!

(n− 1)!
V

(s)
s−1e

(n−p−1)ρ2πδ(2)(z) + · · · , (6.38)

where we have displayed the highest spin term explicitly. In order to get this result one

has to remember to keep only terms that are not vanishing at the boundary and we have

already made sure to only keep terms that have no zaδ(2)(z) behaviour with a positive

after partial differentiation in the bulk-boundary coupling.

It is hard to derive the non-leading spin terms, so we simply show the result for the

leading spin

En(z)Fn(0) ∼
−kCS|C−|2

zn
−

|C−|2 n
n−1Hn

zn−1
−

n−2
∑

p=1

(p−1)!
(n−1)! |C−|2J (n−p) + · · ·

zp
. (6.39)

This fixes the normalization C− in the classical limit

|C−|2 = λn−1

k
. (6.40)

Had we chosen the opposite sign on the conjugation of G+
m in (6.19), then we would have

a minus sign on the right hand side of this equation. However this is the natural choice

for the classical limit where λn−1/k ∼ (n − 1)!kn−2 is positive. We also note that this

normalization is unnatural from the bulk perspective since it contains the level. It seems

more sensible to take a simple normalization like e.g. |C−|2 = n − 1 (which is always

positive). When we then define X
(bulk)
m = i(G+

m + G−
m)/2 and Y

(bulk)
m = (G+

m − G−
m)/2, we

have the simple relation that X
(bulk)
m and Y

(bulk)
m are the generators dual to the boundary

fields Xn and Yn. This shows that the normalization in (4.7) is quite natural from the

bulk viewpoint.

Let us now discuss how to obtain the non-linear terms in the classical OPEs. We use the

method from [6, 30, 33]. Let a be the gauge field with the ρ-dependence adjointly removed

A = b−1ab+ b−1db , b = eρV
(2)
0 . (6.41)

As before, we first turn on a background with some current −
∫

d2zµ(z, z̄)J (t). Here µ =

ǫ2πδ(2)(z −w) compared to (6.32). With this gauge field turned on, the the lowest weight

gauge takes the following form

az = V
(2)+
1 − 1

kCS

(

〈J (s)〉0 + 〈J (s)〉µ
)

g
V

(s′)

−s′+1
V

(s)
s−1V

(s′)
−s′+1 ,

az̄ =
t−1
∑

m=−t+1

µmV (t)
m . (6.42)
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In general az̄ can also contain contributions from other spin fields V
(s)
m with m < s − 1,

but for the calculation at hand these term will not contribute. In the equation 〈J (s)〉0 is

independent of µ and thus holomorphic, and 〈J (s)〉µ is first order in µ. The inverse of

the trace metric is denoted g
V

(s′)

−s′+1
V

(s)
s−1 . Finally µ ≡ µt−1. The idea is now to solve the

equations of motion

∂az̄ − ∂̄az + [az, az̄] = 0 (6.43)

to linear order in µ for ∂̄〈J (s)〉µ. The result will be a sum of products of (different) 〈J (s′)〉0
values times µ, all dressed with derivatives. We can now relate this to the CFT side as

follows (going to linear order in µ)

∂̄〈J (s)(z)〉µ = ∂̄〈J (s)(z)e−
1
2π

∫
d2wµ(w)J(t)(w)〉

= − 1

2π
∂z̄

∫

d2wµ(w)J (s)(z)J (t)(w) =
∑

n

(−1)n

(n− 1)!
∂n−1

(

µ[J (s)J (t)]n

)

(6.44)

where

J (s)(z)J (t)(w) ∼
∑

n

[J (s)J (t)]n(w)

(z − w)n
. (6.45)

This will give us an expression for [J (s)J (t)]n in terms of products and derivatives of 〈J (s′)〉0
which is identified with J (s′). We can now use this to get the En(z)Fn(0) OPE. In general

this is a hard problem, however, if we focus on the terms that only depend on the spin one

field, we get the simpler equation

∂̄〈En〉µ = − kCS

(n− 2)!
tr
(

G−
−(n−2)/2G

+
(n−2)/2

)

(

∂ +
1

kCS

〈J (0)〉gV
(1)
0 V

(1)
0

)n−1

µ . (6.46)

Using this we obtain the most singular terms in the OPE

En(z)Fn(0) ∼− kCS|C−|2
zn

−
|C−|2 n

n−1Hn

zn−1

+ |C−|2
− 1

(n−1)(n−2) T̃ + n
2(n−1)∂Hn − 1

kCS

n2

2(n−1)2
H2

n

zn−2
+ · · · . (6.47)

If we remember that the total Virasoro tensor is

T = T̃ − n

2(n− 1)kCS

H2
n (6.48)

this matches perfectly with the first three terms in the classical limit of (3.4).

7 Conclusion and outlook

The main result of this work is that we conjectured that theW
(2)
n algebra for even n allows a

unitary real form, and that for a certain range of levels it even can have a positive definite
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inner product. We verified that the conjecture is consistent with the known operator

product algebra. For the special value λ = 2 of the ’t Hooft parameter, we then indeed

found a unitary lattice CFT corresponding to the simple quotient of the W
(2)
n algebra at

level k + n = (n+ 1)(n− 1) (for even n).

We then proposed an ’t Hooft limit, and we verified for some leading terms that Chern-

Simons theory on SL(n;R) with next to principal boundary conditions indeed reproduces

the known operator product.

As mentioned in the introduction, there is a zoo of quantum Hamiltonian reductions,

and there are also many more which only have one current of dimension one. It is an obvious

question whether these algebras also allow a unitary real form, whether they also allow for

certain levels with a positive inner product and whether some of these levels even allow for

a unitary CFT. However, since almost nothing is known about these algebras it will not

be easy to address these questions. A more realistic problem is to study a supersymmetric

analog. In [34–36] superalgebras containing the W
(2)
n -algebra have been found and studied.

Supersymmetric algebras containing the algebra of Feigin and Semikhatov with N = 2

superconformal structure appear as the quantum Hamiltonian reductions of the affine Lie

super algebra of psl(n|n) for a next to principal embedding of sl(2). By this, we mean an

embedding where sl(2) is principal in one of the two sl(n) subalgebras and next to principal

in the other one. Such reductions fall into the framework of [19]. The resulting algebra

is expected to contain the extended N = 2 superconformal algebra of Kazama-Suzuki

cosets [37] as subalgebra. Thus, this algebra might add another supersymmetric higher

spin/CFT holography to the existing ones [30, 38–42]. We consider it to be probable that

this supersymmetric version behaves even better from the unitarity point of view than the

algebra presented in this work.

In this paper, we have focused on the symmetry algebra and its unitary representations.

In order to construct a unitary theory, we may need to set singular vectors to zero. However,

typically these singular vectors cannot be seen from the classical limit of the gravity theory.

Therefore, the analysis on the unitarity should give some insights on quantum effects of

higher spin gravity theory, and it is worthwhile to investigate this further from the gravity

viewpoint. For the analysis of symmetry algebra, it does not matter whether the gravity

theory includes massive matter fields or not since they are irrelevant near the boundary.

It is indeed a nice point that higher spin gravity can be defined only by Chern-Simons

gauge theories. However, for the known case by [4], the gravity theory includes massive

scalars along with the Chern-Simons gauge fields, and the existence of the massive scalars

is essential for the duality to hold. This implies that massive matter fields could also be

important even in the present case.
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[35] T. Creutzig and D. Ridout, Relating the archetypes of logarithmic conformal field theory,

Nucl. Phys. B 872 (2013) 348 [arXiv:1107.2135] [INSPIRE].

[36] C. Alfes and T. Creutzig, The Mock modular data of a family of superalgebras,

Proc. Am. Math. Soc. (2012) [arXiv:1205.1518] [INSPIRE].

– 24 –

http://dx.doi.org/10.1007/JHEP06(2012)001
http://arxiv.org/abs/1202.4467
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4467
http://dx.doi.org/10.1016/j.nuclphysb.2004.06.056
http://arxiv.org/abs/math/0401164
http://inspirehep.net/search?p=find+EPRINT+MATH/0401164
http://dx.doi.org/10.1088/0264-9381/30/10/104004
http://arxiv.org/abs/1211.4454
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.4454
http://dx.doi.org/10.1007/s11005-014-0680-7
http://arxiv.org/abs/1305.2665
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.2665
http://arxiv.org/abs/1109.4065
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4065
http://dx.doi.org/10.1007/JHEP04(2012)031
http://arxiv.org/abs/1111.6603
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6603
http://arxiv.org/abs/1005.0185
http://www.solvayinstitutes.be/events/HigherSpin2013/HigherSpin2013.html
http://dx.doi.org/10.1007/JHEP09(2011)113
http://arxiv.org/abs/1107.0290
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.0290
http://dx.doi.org/10.1007/BF02103279
http://arxiv.org/abs/hep-th/9302006
http://inspirehep.net/search?p=find+EPRINT+hep-th/9302006
http://dx.doi.org/10.1007/JHEP01(2013)171
http://arxiv.org/abs/1211.2237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2237
http://dx.doi.org/10.1007/JHEP11(2013)038
http://arxiv.org/abs/1306.0466
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0466
http://dx.doi.org/10.1007/JHEP07(2012)113
http://arxiv.org/abs/1111.3926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.3926
http://dx.doi.org/10.1007/JHEP10(2012)024
http://arxiv.org/abs/1106.2580
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2580
http://dx.doi.org/10.1007/JHEP04(2013)018
http://arxiv.org/abs/1211.2239
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2239
http://arxiv.org/abs/1111.5049
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.5049
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.007
http://arxiv.org/abs/1107.2135
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2135
http://dx.doi.org/10.1090/S0002-9939-2014-11959-9
http://arxiv.org/abs/1205.1518
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1518


J
H
E
P
0
6
(
2
0
1
4
)
0
6
3

[37] Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring

compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].

[38] T. Creutzig, Y. Hikida and P.B. Rønne, Higher spin AdS3 supergravity and its dual CFT,

JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].

[39] C. Candu and M.R. Gaberdiel, Supersymmetric holography on AdS3, JHEP 09 (2013) 071

[arXiv:1203.1939] [INSPIRE].

[40] T. Creutzig, Y. Hikida and P.B. Rønne, N = 1 supersymmetric higher spin holography on

AdS3, JHEP 02 (2013) 019 [arXiv:1209.5404] [INSPIRE].

[41] M. Beccaria, C. Candu, M.R. Gaberdiel and M. Groher, N = 1 extension of minimal model

holography, arXiv:1305.1048 [INSPIRE].

[42] M.R. Gaberdiel and R. Gopakumar, Large-N = 4 holography, JHEP 09 (2013) 036

[arXiv:1305.4181] [INSPIRE].

– 25 –

http://dx.doi.org/10.1016/0550-3213(89)90250-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B321,232
http://dx.doi.org/10.1007/JHEP02(2012)109
http://arxiv.org/abs/1111.2139
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.2139
http://dx.doi.org/10.1007/JHEP09(2013)071
http://arxiv.org/abs/1203.1939
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1939
http://dx.doi.org/10.1007/JHEP02(2013)019
http://arxiv.org/abs/1209.5404
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.5404
http://arxiv.org/abs/1305.1048
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1048
http://dx.doi.org/10.1007/JHEP09(2013)036
http://arxiv.org/abs/1305.4181
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4181

	Introduction
	Results
	The W**(2)n algebra of Feigin and Semikhatov
	A unitary real form of W**(2)n for n even
	The unitary W**(2)2-algebra
	The unitary W**(2)4-algebra
	The unitary W**(2)n-algebra

	Unitary conformal field theories at lambda=2
	The semi-classical limit and Chern-Simons theory
	W**(2)4 example
	Operator products from the bulk Chern-Simons theory

	Conclusion and outlook

