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Abstract: In many extensions of the Standard Model (SM) flavour changing neutral cur-

rent (FCNC) processes can be mediated by tree-level heavy neutral scalars and/or pseudo-

scalars H0(A0). This generally introduces new sources of flavour violation and CP violation

as well as left-handed (LH) and right-handed (RH) scalar (1 ∓ γ5) currents. These new

physics (NP) contributions imply a pattern of deviations from SM expectations for FCNC

processes that depends only on the couplings of H0(A0) to fermions and on their masses.

In situations in which a single H0 or A0 dominates NP contributions stringent correlations

between ∆F = 2 and ∆F = 1 observables exist. Anticipating the Flavour Precision Era

(FPE) ahead of us we illustrate this by searching for allowed oases in the landscape of a

given model assuming significantly smaller uncertainties in CKM and hadronic parameters

than presently available. To this end we analyze ∆F = 2 observables in B0
s,d − B̄0

s,d and

K0 − K̄0 systems and rare B and K decays with charged leptons in the final state includ-

ing both left-handed and right-handed scalar couplings of H0 and A0 to quarks in various

combinations. We identify a number of correlations between various flavour observables

that could test and distinguish these different scenarios. The prominent role of the decays

Bs,d → µ+µ− in these studies is emphasized. Imposing the existing flavour constraints, a

rich pattern of deviations from the SM expectations in rare Bs,d decays emerges provided

MH ≤ 1 TeV. NP effects in rare K decays, except for KL → µ+µ−, turn out to be very

small. In KL → µ+µ− they can be as large as the SM contributions but due to hadronic

uncertainties this is still insufficient to learn much about new scalars from this decay in

the context of models considered here. Flavour violating SM Higgs contributions to rare

Bd and K decays turn out to be negligible once the constraints from ∆F = 2 processes

are taken into account. But B(Bs → µ+µ−) can still be enhanced up to 8%. Finally, we

point out striking differences between the correlations found here and in scenarios in which

tree-level FCNCs are mediated by a new neutral gauge boson Z ′.
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1 Introduction

The recent discovery of a scalar particle with a mass of 126 GeV opened the gate to the

unexplored world of scalar particles which could be elementary or composite. While we will

surely learn a lot about the properties of these new objects through collider experiments

like ATLAS and CMS, also low energy processes, in particular flavour violating transitions,

will teach us about their nature. In the Standard Model (SM) and in many of its extensions

there are no fundamental flavour-violating couplings of scalars1 to quarks and leptons but

such couplings can be generated through loop corrections leading in the case of ∆F = 1

transitions to Higgs-Penguins (HP) and in ∆F = 2 transitions to double Higgs-Penguins

(DHP). However, when the masses of the scalar particles are significantly lower than the

heavy new particles exchanged in the loops, the HP and DHP look at the electroweak scale

as flavour violating tree diagrams. Beyond the SM such diagrams can also be present at

the fundamental level, an important example being the left-right symmetric models. From

the point of view of low energy theory there is no distinction between these possibilities as

long as the vertices involving heavy particles in a Higgs-Penguin cannot be resolved and to

first approximation what really matters is the mass of the exchanged scalar and its flavour

violating couplings, either fundamental or generated at one-loop level. While all this can

be formulated with the help of effective field theories and spurion technology, we find it

more transparent to study directly tree diagrams with heavy particle exchanges.

In a recent paper [1] an anatomy of neutral gauge boson (Z ′ and Z) couplings to quark

flavour changing neutral currents (FCNC) has been presented. Anticipating the Flavour

Precision Era (FPE) ahead of us and consequently assuming significantly smaller uncer-

tainties in CKM and hadronic parameters than presently available, it was possible to find

allowed oases in the landscape of new parameters in these models and to uncover stringent

correlations between ∆F = 2 and ∆F = 1 observables characteristic for such NP scenarios.

1Unless otherwise specified we will use the name scalar for both scalars and pseudo-scalars.

– 1 –



J
H
E
P
0
6
(
2
0
1
3
)
1
1
1

The goal of the present paper is to perform a similar analysis for scalar neutral particles

and to investigate whether the patterns of flavour violation in these two different NP

scenarios (gauge bosons and scalars) can be distinguished through correlations between

quark flavour observables. Already at this stage it is useful to note the following differences

in NP contributions to quark flavour observables in these two scenarios:

• While the lower bounds on masses of Z ′ gauge bosons from collider experiments are

at least 1− 2 TeV, new neutral scalars with masses as low as a few hundred GeV are

not excluded.

• While in the Z ′ scenarios in addition to new operators also SM operators with mod-

ified Wilson coefficients can be present, in the case of tree-level scalar exchanges all

effective low energy operators are new.

• While there is some overlap between operators contributing to ∆F = 2 processes in

Z ′ and scalar cases after the inclusion of QCD corrections, their Wilson coefficients

are very different. Moreover, in ∆F = 1 transitions there is no overlap with the

operators present in Z ′ models.

• Concerning flavour violating couplings of Z and the SM Higgs h, in the case of the

Z boson large NP effects, in particular in rare K decays, are still allowed but then

its effects in ∆F = 2 processes turn out to be very small [1]. In the Higgs case, the

smallness of the Higgs coupling to muons and electrons precludes any visible effects

from tree-level Higgs exchanges in rare K and Bd decays with a muon or electron

pair in the final state once constraints from ∆F = 2 processes are taken into account.

The corresponding effects in Bs → µ+µ− are small but can still be at the level of 8%.

Simultaneously tree-level Higgs contributions to ∆F = 2 transitions can in principle

still provide solutions to possible tensions within the SM.

• At first sight the couplings of scalars to neutrinos look totally negligible but if the

masses of neutrinos are generated by a different mechanism than the coupling to

scalars, like in the case of the see-saw mechanism, it is not a priori obvious that such

couplings in some NP scenarios could be measurable. Our working assumption in the

present paper will be that this is not the case. Consequently NP effects of scalars in

K+ → π+νν̄, KL → π0νν̄ and b→ sνν̄ transitions will be assumed to be negligible in

contrast to Z ′ models, where NP effects in these decays could be very important [1].

As we will see, scalar contributions to KL → π0`+`− although in principle larger

than for K+ → π+νν̄, KL → π0νν̄ and b → sνν̄ transitions, are found to be small.

In KL → µ+µ− they can be as large as the SM contribution but due to hadronic

uncertainties this is still insufficient to learn much about scalars from this decay, at

least in the context of models considered by us.

In order to have an easy comparison with the anatomy of FCNCs mediated by a neu-

tral gauge bosons presented in [1] the structure of the present work will be similar to the

structure of the latter paper but not identical, as rare K decays play in this paper a sub-

leading role so that emphasis will be put on Bs and Bd systems. In section 2 we describe

– 2 –
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our strategy by defining the relevant couplings and listing processes to be considered. Our

analysis will only involve processes which are theoretically clean and have simple struc-

ture. Here we will also introduce a number of different scenarios for the scalar couplings to

quarks thereby reducing the number of free parameters. In section 3 we will first present

a compendium of formulae relevant for the study of ∆F = 2 processes mediated by tree-

level neutral scalar exchanges including for the first time NLO QCD corrections to these

NP contributions. In section 4 we discuss rare B decays, in particular Bs,d → µ+µ−. In

section 5 rare K decays are considered. In section 6 we present a general qualitative view

on NP contributions to flavour observables stressing analytic correlations between ∆F = 2

and ∆F = 1 observables. In section 7 we present our strategy for the numerical analysis

and in section 8 we execute our strategy for the determination of scalar couplings in the Bs
and Bd systems. We discuss several scenarios for them and identify stringent correlations

between various observables. We also investigate what the imposition of the U(2)3 flavour

symmetry on scalar couplings would imply. In section 9 we present the results for rare K

decays, where NP effects are found to be small. In section 10 we demonstrate that the

contributions of the SM Higgs with induced flavour violating couplings, even if in principle

relevant for ∆F = 2 transitions, are irrelevant for rare K and Bd decays with small but

still visible effects in Bs → µ+µ−. A summary of our main results and a brief outlook for

the future are given in section 11.

2 Strategy

2.1 Basic model assumptions

Our paper is dominated by tree-level contributions to FCNC processes mediated by a heavy

neutral scalar or pseudoscalar. We use a common name, H0, for them unless otherwise

specified. When a distinction will have to be made, we will either use H0 and A0 for scalar

and pseudoscalar, respectively or in order to distinguish SM Higgs from additional spin 0

particles we will use the familiar 2HDM and MSSM notation: (H,A, h).

Our main goal is to consider the simplest extension of the SM in which the only new

particle in the low energy effective theory is a single neutral particle with spin 0 and the

question arises whether this is possible from the point of view of an underlying original

theory. If the scalar in question is not a SU(2) singlet, then it must be placed in a complete

SU(2) multiplet, e.g. a second doublet as is the case of 2HDM or the MSSM. However, this

implies the existence of its SU(2) partners in a given multiplet with masses close to the

masses of our scalar. In fact in the decoupling regime in 2HDM and MSSM the masses

of (H±, H0, A0) are approximately degenerate. While SU(2) breaking effects in the Higgs

potential allow for mass splittings, they must be of O(v) at most and consequently the case

of the dominance of a single scalar is rather unlikely.

It follows then that our scalar should be a SU(2) singlet. In this case, the scalar-quark

couplings of H come from the following low energy effective operator

L = λijL
H0

Λ
q̄iRq

j
LhSM + h.c. (2.1)

– 3 –
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with Λ denoting the cut-off scale of the low energy theory. After the spontaneous breakdown

of SU(2) the scalar left-handed coupling is given by

∆ij
L (H0) =

1√
2

v

Λ
λijL , (2.2)

with an analogous expression for the right-handed coupling.

Now, in the case of ∆F = 2 transitions the scalar contributions are governed only by

the couplings ∆ij
L,R(H0) to quarks and the corresponding Feynman rule has been shown in

figure 1. Here (i, j) denote quark flavours. Note the following important property

∆ij
L (H0) = [∆ji

R(H0)]∗ (2.3)

that distinguishes it from the corresponding gauge couplings in which there is no chirality

flip.

The couplings ∆ij
L,R(H0) are dimensionless quantities but as these are scalar and not

gauge couplings they can involve ratios of quark masses and the electroweak vacuum ex-

pectation value v or other mass scales. While from the SM, 2HDM and MSSM we are used

to having scalar couplings proportional to the masses of the participating quarks, it should

be emphasized that this is not a general property. It applies only if the scalar and the SM

Higgs, responsible for SU(2) breakdown, are in the same SU(2) multiplet or a multiplet of

a larger gauge group G. Then after the breakdown of G to SU(2), the scalar appears as

a singlet of SU(2) symmetry, with couplings to quarks involving their masses after SU(2)

breakdown. While this is the case in several models, in our simple extension of the SM, it

is more natural to think that the involved scalar couplings are unrelated to the generation

of quark masses.

In spite of the last statement it is useful to recall how the quark masses could enter

the scalar couplings. Which quark masses are involved depends on the model. Considering

for definiteness the Bs system let us just list a few cases encountered in the literature:

• In models with MFV in which the scalar couplings are just Yukawa couplings one has

∆bs
L (H0) ∝ mb

v
, ∆bs

R (H0) ∝ ms

v
(MFV) (2.4)

implying that ∆bs
L dominate in these scenarios. Note however that using (2.3) these

relations also give

∆sb
L (H0) ∝ ms

v
, ∆sb

R (H0) ∝ mb

v
(MFV) (2.5)

which implies some care when stating whether LH or RH scalar couplings are dom-

inant. Below we will use the ordering bq for ∆F = 2 operators in Bq (q = s, d)

systems while qb in the case of rare Bq decays. In the K system sd will be used for

both ∆F = 2 and ∆F = 1 couplings.

• In non-MFV scenarios the mass dependence in scalar couplings can be reversed

∆bs
L (H0) ∝ ms

v
, ∆bs

R (H0) ∝ mb

v
(non−MFV) (2.6)
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H0 iα

jβ

iδαβ

[
∆ij

L (H
0)PL +∆ij

R(H
0)PR

]

Figure 1. Feynman rules for a neutral colourless scalar particle H0 with mass MH , where i, j

denote different quark flavours and α, β the colours. PL,R = (1∓ γ5)/2.

implying that ∆bs
R dominate in these scenarios. Correspondingly (2.5) is changed to

∆sb
L (H0) ∝ mb

v
, ∆sb

R (H0) ∝ ms

v
(non−MFV) (2.7)

promoting the so-called primed operators in ∆F = 1 decays.

• There exist also models in which flavour violating neutral scalar couplings do not

involve the masses of external quarks. This is the case for the neutral heavy Higgs in

the left-right symmetric models analysed in [2] where the scalar down quark couplings

are proportional to up-quark masses, in particular mt/v. In the case of a manifest

left-right symmetry with the right-handed mixing matrix being equal to the CKM

matrix one finds

∆bs
L (H0) = ∆bs

R (H0). (2.8)

Even if in the concrete model analysed in [2] the right-handed mixing matrix equal to

the CKM matrix is ruled out by the data, there could be other model constructions

in which (2.8) could be satisfied. Also the LH and RH couplings differing by sign

could in principle be possible.

2.2 Scenarios for scalar couplings

In order to take these different possibilities into account and having also in mind that scalar

couplings could be independent of quark masses, we consider the following four scenarios

for their couplings to quarks keeping the pair (i, j) fixed:

1. Left-handed Scenario (LHS) with complex ∆bq
L 6= 0 and ∆bq

R = 0,

2. Right-handed Scenario (RHS) with complex ∆bq
R 6= 0 and ∆bq

L = 0,

3. Left-Right symmetric Scenario (LRS) with complex ∆bq
L = ∆bq

R 6= 0,

4. Left-Right asymmetric Scenario (ALRS) with complex ∆bq
L = −∆bq

R 6= 0,

with analogous scenarios for the pair (s, d). For rare Bq decays in which the ordering qb is

used, the rule (2.3) has to be applied to each scenario. For K physics this is not required.

In the course of our paper we will list specific examples of models that share the properties

of these different scenarios. We will see that these simple cases will give us a profound

insight into the flavour structure of models in which NP is dominated by left-handed scalar

currents or right-handed scalar currents or left-handed and right-handed scalar currents of

the same size. We will also consider a model in which both a scalar and a pseudoscalar

– 5 –
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with approximately the same mass couple equally to quarks and leptons. Moreover we

will study a scenario with underlying flavour U(2)3 symmetry which will imply relations

between ∆bd
L and ∆bs

L couplings and interesting phenomenological consequences.

The idea of looking at NP scenarios with the dominance of certain quark couplings

to neutral gauge bosons or neutral scalars is not new and has been motivated by detailed

studies in concrete models like supersymmetric flavour models [3], LHT model with T-

parity [4, 5] or Randall-Sundrum scenario with custodial protection (RSc) [6]. See also [7, 8].

Also our recent analysis of tree-level FCNCs mediated by Z ′ and Z in [1] demonstrates

this type of NP in a transparent manner.

2.3 Scalar vs pseudoscalar

It will turn out to be useful to exhibit the differences between the scalar and pseudoscalar

spin 0 particles, although one should emphasize that in the presence of CP violation,

the mass eigenstate H0 propagating in a tree-diagram is not necessarily a CP eigenstate.

Therefore, generally the coupling to µ+µ− appearing at many places in our paper can have

the general structure

L =
1

2
µ̄(∆µµ̄

S (H0) + γ5∆µµ̄
P (H0))Hµ (2.9)

where generalizing the Feynman rule in figure 1 to charged lepton couplings we have in-

troduced:

∆µµ̄
S (H) = ∆µµ̄

R (H) + ∆µµ̄
L (H),

∆µµ̄
P (H) = ∆µµ̄

R (H)−∆µµ̄
L (H).

(2.10)

∆µµ̄
S is real and ∆µµ̄

P purely imaginary as required by the hermiticity of the Hamiltonian

which can be verified by means of (2.3).

The expressions for various observables will be first given in terms of the couplings

∆ij
L,R(H) and ∆µµ̄

S,P (H) and can be directly used in the case of the scalar particle being a

CP-even eigenstate, like (H0, h) in the 2HDM or MSSM, setting ∆µµ̄
P (H) = 0. However,

when the mass eigenstate is a pseudoscalar A, implying ∆µµ̄
S = 0, it will be useful to exhibit

the i which we illustrate here for the B0
s system:

∆bs
L (A) = −i∆̃bs

L (A), ∆bs
R (A) = +i∆̃bs

R (A), ∆µµ̄
P (A) = i∆̃µµ̄

P (A). (2.11)

Here the flavour violating couplings ∆̃bs
L,R(A) are still complex, while ∆̃µµ̄

P (A) is real.

The following useful relations follow from (2.3) and (2.11):

∆sb
R (A) = i[∆̃bs

L (A)]∗, ∆sb
L (A) = −i[∆̃bs

R (A)]∗. (2.12)

As far as ∆F = 2 transitions are concerned this distinction between scalar and pseu-

doscalar mass eigenstate is only relevant in a concrete model in which the relevant couplings

are given in terms of fundamental parameters. However, because in our numerical analysis

we will treat the flavour violating quark-scalar couplings as arbitrary complex numbers

to be bounded by ∆F = 2 observables it will not be possible to distinguish a scalar and

pseudoscalar boson on the basis of ∆F = 2 transitions alone. On the other hand, when

– 6 –
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rare decays, in particular Bs,d → µ+µ−, are considered there is a difference between these

two cases as the pseudoscalar contributions interfere with SM contribution, while the scalar

ones do not. Consequently the allowed values for ∆̃µµ̄
P (A) and ∆µµ̄

S (A) will differ from each

other and we will find other differences. Finally, if both scalar and pseudoscalar contribute

to tree-level decays and have approximately the same mass as well as couplings related by

symmetries, also their contributions to ∆F = 2 processes differ. We will consider a simple

example in the course of our presentation.

2.4 Steps

Let us then outline our strategy for the determination of flavour violating H couplings to

quarks and for finding correlations between flavour observables in the context of the simple

scenarios listed above. Our strategy will only be fully effective in the second half of this

decade, when hadronic uncertainties will be reduced and the data on various observables

significantly improved. It involves ten steps including a number of working assumptions:

Step 1. Determination of CKM parameters by means of tree-level decays and of the nec-

essary non-perturbative parameters by means of lattice calculations. This step will provide

the results for all observables considered below within the SM as well as all non-perturbative

parameters entering the NP contributions. As |Vub| is presently poorly known, it will be

interesting in the spirit of our recent papers [1, 2, 9] to investigate how the outcome of

this step depends on the value of |Vub| with direct implications for the necessary size of NP

contributions which will be different in different observables.

Step 2. We will assume that the ratios

∆µµ̄
S,P (H)

MH
(2.13)

for scalar and pseudoscalar bosons have been determined in pure leptonic processes and

that the scalar couplings to neutrinos are negligible. The properties of these couplings

have been discussed above. In principle these ratios can be determined up to the sign

from quark flavour violating processes and in fact we will be able to bound them from

the present data on Bs → µ+µ− but their independent knowledge increases the predictive

power of our analysis. In particular the knowledge of their signs allows us to remove certain

discrete ambiguities and is crucial for the distinction between LHS and RHS scenarios in

Bs,d → µ+µ− decays. Of course, in concrete models like 2HDM or supersymmetric models

these couplings depend on the fundamental parameters of a given model.

Step 3. Here we will consider the B0
s system and the observables

∆Ms, Sψφ, B(Bs → µ+µ−), Aµ
+µ−

∆Γ , Ssµ+µ− , (2.14)

where Aµ
+µ−

∆Γ and Ssµ+µ− can be extracted from the time-dependent Bs → µ+µ− rate [10,

11]. Explicit expressions for these observables in terms of the relevant couplings can be

found in sections 3 and 4.

– 7 –
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Concentrating in this step on the LHS scenario, NP contributions to these three ob-

servables are fully described by

∆bs
L (H)

MH
= − s̃23

MH
e−iδ23 ,

∆µµ̄
S,P (H)

MH
, (2.15)

with the second ratio known from Step 2. Here s̃23 ≥ 0 and it is found to be below unity

but it does not represent any mixing parameter as in [12]. The minus sign is introduced to

cancel the minus sign in Vts in the phenomenological formulae listed in the next section.

Thus we have five observables to our disposal and two parameters in the quark sector

to determine. This allows us to remove certain discrete ambiguities, determine all param-

eters uniquely for a given MH and predict correlations between these five observables that

are characteristic for this scenario.

Step 4. Repeating this exercise in the B0
d system we have to our disposal

∆Md, SψKS , B(Bd → µ+µ−), Sdµ+µ− . (2.16)

Explicit expressions for these observables in terms of the relevant couplings can be found

in sections 3 and 4.

Now NP contributions to these three observables are fully described by

∆bd
L (H)

MH
=

s̃13

MH
e−iδ13 ,

∆µµ̄
S,P (H)

MH
, (2.17)

with the last one known from Step 2 and bounded in Step 3. Again we can determine all

the couplings uniquely for a given MH . Our notations and sign conventions are as in Step

3 with s̃13 ≥ 0 but no minus sign as Vtd has no such sign.

Step 5. Moving to the K system we have to our disposal

εK , KL → π0`+`−, KL → µ+µ−, (2.18)

where in view of hadronic uncertainties the last decay on this list will only be used to

make sure that the existing rough bound on its short distance branching ratio is satisfied.

Unfortunately tree-level neutral Higgs contributions to K+ → π+νν̄ and KL → π0νν̄ are

expected to be negligible, but this fact by itself offers an important test and distinction

from tree level neutral gauge boson exchanges where these decays could still be signifi-

cantly affected [1]. Also the decays KL → π0`+`− are subject to considerable hadronic

uncertainties and their measurements are not expected in this decade. Yet, as they are

known to be sensitive to NP effects it is of interest to consider them as well and compare

the scalar case with the case of Z ′ models [1].

In the present paper we do not study the ratio ε′/ε, which is rather accurately mea-

sured but presently subject to much larger hadronic uncertainties than observables listed

in (2.18). Yet, it should be emphasized that ε′/ε is important for the tests of H FCNC

scenarios as it is very sensitive to any NP contribution [13–15].

– 8 –
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Explicit expressions for the observables in the K system in terms of the relevant cou-

plings can be found in sections 3 and 5.

Now NP contributions to these observables are fully described by

∆sd
L (H)

MH
= − s̃12

MH
e−iδ12 ,

∆µµ̄
S,P (H)

MH
(2.19)

The ratios involving muon couplings are already constrained or determined in previous

steps. Consequently, we can bound quark couplings involved by using the data on the

observables in (2.18). Moreover we identify certain correlations characteristic for LHS

scenario. s̃12 ≥ 0 and the minus sign is chosen to cancel the one of Vts.

We can already announce at this stage that the results in K physics turned out to be

much less interesting than in the Bs and Bd systems and we summarize them separately

in section 9.

Step 6. As all parameters of LHS scenario have been fixed in the first five steps we are

in the position to make predictions for the following processes

B → Xs`
+`−, B → K`+`−, B → K∗`+`− (2.20)

and test whether they provide additional constraints on the couplings. Again as in the case

of K+ → π+νν̄ and KL → π0νν̄ also the b → sνν̄ transitions are expected to be SM-like

which provides a distinction from the gauge boson mediated tree-level transitions [1].

Step 7. We repeat Steps 3–6 for the case of RHS. We will see that in view of the change

of the sign of NP contributions to Bs,d → µ+µ− and KL → µ+µ− decays the structure

of the correlations between various observables will distinguish this scenario from the LHS

one. Yet, as we will find out, by going from LHS to RHS scenario we can keep results

of Steps 3–5 unchanged by interchanging simultaneously two big oases in the parameter

space that we encountered already in our study of the 331 model [12] and Z ′ models [1].

This LH-RH invariance present in Steps 3-5 can be broken by the b → s`+`− transition

in (2.20). They allow us to distinguish the physics of RH scalar currents from LH ones.

As only RH couplings are present in the NP contributions in this scenario, we can use the

parametrization of these couplings as in (2.15), (2.17) and (2.19) keeping in mind that now

RH couplings are involved.

Step 8. We repeat Steps 3–6 for the case of LRS. In the case of tree-level gauge boson

contributions the new features relative to the previous scenarios is enhanced NP contri-

butions due to the presence of LR operators in ∆F = 2 transitions. Yet, in the scalar

case, the matrix elements of SLL and SRR operators present in previous scenarios are also

significant larger than the SM ones and the addition of LR operators has a more modest

effect than in the gauge boson case. However, one of the important new feature is the

vanishing of NP contributions to Bs,d → µ+µ− and KL → µ+µ− decays. As the LH

and RH couplings are equal we can again use the parametrization of these couplings as

in (2.15), (2.17) and (2.19) but their values will change due to different constraints from

∆F = 2 transitions. Also in this step b→ s`+`− transitions can play an important role.
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Step 9. We repeat Steps 3–6 for the case of ALRS. Here the new feature relative to LRS

are non-vanishing NP contributions to Bs,d → µ+µ−, including Sd,s
µ+µ− CP asymmetries.

Again the b → s`+`− transitions will exhibit their strength in testing the theory in a

different environment: NP contributions to ∆F = 2 observables due to the presence of

LR operators. As the LH and RH couplings differ only by a sign we can again use the

parametrization of these couplings as in (2.15), (2.17) and (2.19) but their values will

change due to different constraints from ∆F = 2 transitions.

Step 10. One can consider next the case of simultaneous LH and RH couplings that are

unrelated to each other. This step is more challenging as one has more free parameters and

in order to reach clear cut conclusions one would need a concrete model for H couplings or

a very involved numerical analysis [7, 8, 16]. A simple model in which both a scalar and a

pseudoscalar with approximately the same mass couple equally to quarks and leptons has

been recently presented in [17] showing that the structure of correlations can be quite rich.

We refer to this paper for details.

Once this analysis of H contributions is completed it will be straightforward to apply

it to the case of the SM Higgs boson with flavour violating couplings. Yet, we will see that

this case is less interesting than the case of Z with flavour violating couplings.

3 ∆F = 2 processes

3.1 Preliminaries

In the SM the dominant top quark contributions to ∆F = 2 processes are described by

flavour universal real valued function given as follows (xt = m2
t /M

2
W ):

S0(xt) =
4xt − 11x2

t + x3
t

4(1− xt)2
− 3x2

t log xt
2(1− xt)3

. (3.1)

In other CMFV models S0(xt) is replaced by a different function which is still flavour uni-

versal and is real valued. This implies very stringent relations between various observables

in three meson system in question which have been reviewed in [18].

In the presence of H tree-level contributions the flavour universality is generally broken

and one needs three different functions

S(K), S(Bd), S(Bs), (3.2)

to describe K0 − K̄0 and B0
s,d − B̄0

s,d systems. Moreover, they all become complex quan-

tities. Therefore CMFV relations are generally broken. In introducing these functions we

will include in their definitions the contributions of operators with LL, RR and LR Dirac

structures.

The derivation of the formulae listed below is so simple that we will not present it here.

In any case, the compendium of relevant formulae given below and in the next sections is

self-contained as far as the numerical analysis is concerned.
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3.2 Master functions including H contributions

Calculating the contributions of H to ∆F = 2 transitions it is straightforward to write

down the expressions for the master functions S(M) in (3.2) in terms of the couplings

defined in figure 1.

We define first the relevant CKM factors

λ
(K)
i = V ∗isVid, λ

(d)
t = V ∗tbVtd, λ

(s)
t = V ∗tbVts, (3.3)

and introduce

g2
SM = 4

GF√
2

α

2π sin2 θW
= 1.78137× 10−7 GeV−2 . (3.4)

The ∆F = 2 master functions for M = K,Bq are then given as follows

S(M) = S0(xt) + ∆S(M) ≡ |S(M)|eiθMS (3.5)

with ∆S(M) receiving contributions from various operators so that it is useful to write

∆S(M) = [∆S(M)]SLL + [∆S(M)]SRR + [∆S(M)]LR. (3.6)

The contributing new operators are defined for the K system as follows [19, 20]

QLR
1 = (s̄γµPLd) (s̄γµPRd) , (3.7a)

QLR
2 = (s̄PLd) (s̄PRd) . (3.7b)

QSLL
1 = (s̄PLd) (s̄PLd) , (3.8a)

QSRR
1 = (s̄PRd) (s̄PRd) , (3.8b)

QSLL
2 = (s̄σµνPLd) (s̄σµνPLd) , (3.8c)

QSRR
2 = (s̄σµνPRd) (s̄σµνPRd) , (3.8d)

where PR,L = (1 ± γ5)/2 and we suppressed colour indices as they are summed up in

each factor. For instance s̄γµPLd stands for s̄αγµPLdα and similarly for other factors. For

B0
q − B̄0

q mixing our conventions for new operators are:

QLR
1 =

(
b̄γµPLq

) (
b̄γµPRq

)
, (3.9a)

QLR
2 =

(
b̄PLq

) (
b̄PRq

)
, (3.9b)

QSLL
1 =

(
b̄PLq

) (
b̄PLq

)
, (3.10a)

QSRR
1 =

(
b̄PRq

) (
b̄PRq

)
, (3.10b)

QSLL
2 =

(
b̄σµνPLq

) (
b̄σµνPLq

)
, (3.10c)

QSRR
2 =

(
b̄σµνPRq

) (
b̄σµνPRq

)
. (3.10d)
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In order to calculate the SLL, SRR and LR contributions to ∆S(M) we introduce

quantities familiar from SM expressions for mixing amplitudes

T (Bq) =
G2
F

12π2
F 2
BqB̂BqmBqM

2
W

(
λ

(q)
t

)2
ηB, (3.11)

T (K) =
G2
F

12π2
F 2
KB̂KmKM

2
W

(
λ

(K)
t

)2
η2, (3.12)

where ηi are QCD corrections and B̂i known SM non-perturbative factors.

Then

T (K)[∆S(K)]SLL = −
(∆sd

L (H))2

2M2
H

[
CSLL

1 (µH)〈QSLL
1 (µH ,K)〉+ CSLL

2 (µH)〈QSLL
2 (µH ,K)〉

]

(3.13)

with the SRR contribution obtained by replacing L by R. Note that this replacement only

affects the coupling ∆sd
L (H) as the hadronic matrix elements being evaluated in QCD

remain unchanged and the Wilson coefficients have been so defined that they also remain

unchanged. For LR contributions we find

T (K)[∆S(K)]LR =−
∆sd
L (H)∆sd

R (H)

M2
H

[
CLR

1 (µH)〈QLR
1 (µH ,K)〉+CLR

2 (µH)〈QLR
2 (µH ,K)〉

]
.

(3.14)

Including NLO QCD corrections [20] the Wilson coefficients of the involved operators

are given by

CSLL
1 (µ) = CSRR

1 (µ) = 1 +
αs
4π

(
−3 log

M2
H

µ2
+

9

2

)
, (3.15)

CSLL
2 (µ) = CSRR

2 (µ) =
αs
4π

(
− 1

12
log

M2
H

µ2
+

1

8

)
, (3.16)

CLR
1 (µ) = −3

2

αs
4π

, (3.17)

CLR
2 (µ) = 1− αs

4π

3

N
= 1− αs

4π
. (3.18)

Next

〈Qai (µH ,K)〉 ≡
mKF

2
K

3
P ai (µH ,K) (3.19)

are the matrix elements of operators evaluated at the matching scale µH = O(MH) and

P ai are the coefficients introduced in [19]. The µH dependence of P ai (µH) cancels the one

of ∆L,R(H) and of Cai (µH) so that S(K) does not depend on µH . It should be emphasized

at this point that in contrast to gauge boson couplings the couplings ∆L,R(H) are scale

dependent and consistently with the NLO calculation in [20] they are defined here at

µH = O(MH). In our numerical calculations we will simply set µH = MH .

Similarly for Bq systems we have

T (Bq)[∆S(Bq)]SLL =−
(∆bq

L (H))2

2M2
H

[
CSLL

1 (µH)〈QSLL
1 (µH , Bq)〉+CSLL

2 (µH)〈QSLL
2 (µH , Bq)〉

]

(3.20)
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〈QLR
1 (µH)〉 〈QLR

2 (µH)〉 〈QSLL
1 (µH)〉 〈QSLL

2 (µH)〉

K0-K̄0 −0.14 0.22 −0.074 −0.128

B0
d-B̄0

d −0.25 0.34 −0.11 −0.22

B0
s -B̄0

s −0.37 0.51 −0.17 −0.33

Table 1. Hadronic matrix elements 〈Qai (µH)〉 in units of GeV3 at µH = 1 TeV.

〈QLR
1 (mt)〉 〈QLR

2 (mt)〉 〈QSLL
1 (mt)〉 〈QSLL

2 (mt)〉

K0-K̄0 −0.11 0.18 −0.064 −0.107

B0
d-B̄0

d −0.21 0.27 −0.095 −0.191

B0
s -B̄0

s −0.30 0.40 −0.14 −0.29

Table 2. Hadronic matrix elements 〈Qai (µt)〉 in units of GeV3 at mt(mt).

T (Bq)[∆S(Bq)]LR =−
∆bq
L (H)∆bq

R (H)

M2
H

[
CLR

1 (µH)〈QLR
1 (µH , Bq)〉+CLR

2 (µH)〈QLR
2 (µH , Bq)〉

]
,

(3.21)

where the Wilson coefficients Cai (µH) are as in the K system and the matrix elements are

given by

〈Qai (µH , Bq)〉 ≡
mBqF

2
Bq

3
P ai (µH , Bq). (3.22)

For SRR contributions one proceeds as in the K system.

Finally, we collect in table 1 central values of 〈Qai (µH)〉. They are given in the MS-

NDR scheme and are based on lattice calculations in [21, 22] for K0 − K̄0 system and

in [23] for B0
d,s − B̄0

d,s systems. For the K0 − K̄0 system we have just used the average of

the results in [21, 22] that are consistent with each other. As the values of the relevant Bi
parameters in these papers have been evaluated at µ = 3 GeV and 4.2 GeV, respectively,

we have used the formulae in [19] to obtain the values of the matrix elements in question at

µH . For simplicity we choose this scale to be MH but any scale of this order would give the

same results for the physical quantities up to NNLO QCD corrections that are negligible

at these high scales. The renormalization scheme dependence of the matrix elements is

canceled by the one of the Wilson coefficients.

In the case of tree-level SM Higgs exchanges we evaluate the matrix elements at mt(mt)

as the inclusion of NLO QCD corrections allows us to choose any scale of O(MH) without

changing physical results. Then in the formulae above one should replace MH by the SM

Higgs mass and µH by mt(mt). This also means that the flavour violating couplings of

SM Higgs are defined here at mt(mt). The values of hadronic matrix elements at mt(mt)

in the MS-NDR scheme are given in table 2.
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3.3 Basic formulae for ∆F = 2 observables

The ∆B = 2 mass differences are given as follows:

∆Md =
G2
F

6π2
M2
WmBd |λ

(d)
t |2F 2

Bd
B̂BdηB|S(Bd)| , (3.23)

∆Ms =
G2
F

6π2
M2
WmBs |λ

(s)
t |2F 2

BsB̂BsηB|S(Bs)| . (3.24)

The corresponding mixing induced CP-asymmetries are then given by

SψKS = sin(2β + 2ϕBd) , Sψφ = sin(2|βs| − 2ϕBs) , (3.25)

where the phases β and βs are defined by

Vtd = |Vtd|e−iβ, Vts = −|Vts|e−iβs . (3.26)

βs ' −1◦ . The new phases ϕBq are directly related to the phases of the functions S(Bq):

2ϕBq = −θBqS . (3.27)

Our phase conventions are as in [1] and our previous papers quoted in this work. Con-

sequently SSM
ψφ ≈ 0.04. On the other hand the experimental results are usually given for

the phase

φs = 2βs + φNP (3.28)

so that

Sψφ = − sin(φs), 2ϕBs = φNP. (3.29)

Using this dictionary the most recent result for φs from the LHCb analysis of CP-violation

in Bs → ψφ decay implies [24]

2|βs| − 2ϕBs = 0.001± 0.104, (3.30)

that is close to its SM value. But the uncertainties are still sufficiently large so that it is

of interest to investigate correlations of Sψφ with other observables in the Bs system.

For the CP-violating parameter εK and ∆MK we have respectively

εK =
κεe

iϕε

√
2(∆MK)exp

[
=
(
MK

12

)]
, ∆MK = 2<

(
MK

12

)
, (3.31)

where

(
MK

12

)∗
=

G2
F

12π2
F 2
KB̂KmKM

2
W

[
λ2
cη1xc + λ2

t η2S(K) + 2λcλtη3S0(xc, xt)
]
. (3.32)

Here, S0(xc, xt) is a real valued one-loop box function for which explicit expression is given

e. g. in [25]. The factors ηi are QCD corrections evaluated at the NLO level in [26–30].

For η1 and η3 also NNLO corrections are known [31, 32]. Next ϕε = (43.51 ± 0.05)◦ and

κε = 0.94± 0.02 [33, 34] takes into account that ϕε 6= π
4 and includes long distance effects

in =(Γ12) and =(M12).

In the rest of the paper, unless otherwise stated, we will assume that all four pa-

rameters in the CKM matrix have been determined through tree-level decays without any

NP pollution and pollution from QCD-penguin diagrams so that their values can be used

universally in all NP models considered by us.
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4 Rare B decays

4.1 Preliminaries

These decays played already for many years a significant role in constraining NP models. In

particular Bs → µ+µ− was instrumental in bounding scalar contributions in the framework

of supersymmetric models and two Higgs doublet models (2HDM). Recently a very detailed

analysis of the decay Bs → µ+µ− including the observables involved in the time-dependent

rate has been presented [17]. Below, after recalling the relevant effective Hamiltonian that

can be used for other b→ s`+`− transitions, we will summarize the final formulae for the

most important observables in Bs → µ+µ− that have been derived and discussed in more

detail in [17] and in particular earlier in [11]. While our analysis of Bs → µ+µ− is less

detailed than the one in [17], our main goal here is to discuss the correlations of Bs → µ+µ−

observables with ∆F = 2 observables, in particular Sψφ, which were not presented there.

Moreover, we analyze here similar correlations involving Bd → µ+µ− observables and SψKS .

4.2 Effective Hamiltonian for b→ s`+`−

For our discussion of Bd,s → µ+µ− and for the imposition of the constraints from other

b→ s`+`− transitions, like B → K∗`+`−, B → K`+`− and B → Xs`
+`−, we will need the

corresponding effective Hamiltonian which is a generalization of the SM one:

H eff(b→ s`¯̀) = H eff(b→ sγ)− 4GF√
2

α

4π
V ∗tsVtb

∑

i=9,10,S,P

[Ci(µ)Qi(µ) + C ′i(µ)Q′i(µ)] (4.1)

where

Q9 = (s̄γµPLb)(¯̀γµ`), Q′9 = (s̄γµPRb)(¯̀γµ`), (4.2a)

Q10 = (s̄γµPLb)(¯̀γµγ5`), Q′10 = (s̄γµPRb)(¯̀γµγ5`), (4.2b)

QS = mb(s̄PRb)(¯̀̀ ), Q′S = mb(s̄PLb)(¯̀̀ ), (4.2c)

QP = mb(s̄PRb)(¯̀γ5`), Q′P = mb(s̄PLb)(¯̀γ5`). (4.2d)

Including the factors of mb into the definition of scalar operators makes their matrix ele-

ments and their Wilson coefficients scale independent. H eff(b→ sγ) stands for the effective

Hamiltonian for the b→ sγ transition that involves the dipole operators. We will not dis-

cuss b→ sγ in this paper as it appears first at one-loop level and a neutral scalar contribu-

tion would only be of relevance in the presence of flavor-conserving scalar couplings to down-

type quarks which would introduce new parameters without any impact on our results.

Note the difference of ordering of flavours relatively to ∆F = 2 as already stressed in

section 2. Therefore the unprimed operators QS and QP represent the LHS scenario and

the primed ones Q′S and Q′P the RHS scenario. We neglect effects proportional to ms in

each case but keep ms and md different from zero when they are shown explicitly.

The Wilson coefficients C9 and C10 do not receive any new contributions from scalar

exchanges and take SM values

sin2 θWC
SM
9 = [ηY Y0(xt)− 4 sin2 θWZ0(xt)], (4.3)

sin2 θWC
SM
10 = −ηY Y0(xt). (4.4)
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On the other hand with ms � mb we have C ′9 = C ′10 = 0. Here Y0(xt) and Z0(xt) are SM

one-loop functions given by

Y0(xt) =
xt
8

(
xt − 4

xt − 1
+

3xt log xt
(xt − 1)2

)
, (4.5)

Z0(x) = −1

9
log x+

18x4 − 163x3 + 259x2 − 108x

144(x− 1)3
+

32x4 − 38x3 − 15x2 + 18x

72(x− 1)4
log x .

(4.6)

The coefficient ηY is a QCD factor which for mt = mt(mt) is close to unity: ηY =

1.012 [35, 36].

For the coefficients of scalar operators we find

mb(µH) sin2 θWCS =
1

g2
SM

1

M2
H

∆sb
R (H)∆µµ̄

S (H)

V ∗tsVtb
, (4.7)

mb(µH) sin2 θWC
′
S =

1

g2
SM

1

M2
H

∆sb
L (H)∆µµ̄

S (H)

V ∗tsVtb
, (4.8)

mb(µH) sin2 θWCP =
1

g2
SM

1

M2
H

∆sb
R (H)∆µµ̄

P (H)

V ∗tsVtb
, (4.9)

mb(µH) sin2 θWC
′
P =

1

g2
SM

1

M2
H

∆sb
L (H)∆µµ̄

P (H)

V ∗tsVtb
, (4.10)

where ∆µµ̄
S,P (H) are defined in (2.10). It should be emphasized at this point that the cou-

plings ∆sb
L,R(H) extracted from ∆Ms and Sψφ are defined at µH = MH , therefore, as shown

explicitly, mb has to be evaluated also at this scale in order to keep these coefficients scale in-

dependent. In the case of the SM Higgs mb has to be evaluated at mt(mt) as at this scale the

flavour violating SM Higgs couplings in ∆F = 2 processes are defined. In what follows we

will not show this dependence explicitly. For mb at 1 TeV and at 125 GeV we use the values

mb(1 TeV) = 2.54 GeV , mb(163 GeV) = 2.81 GeV . (4.11)

Next we recall that in terms of the couplings used in the analysis of B0
s,d−B̄0

s,d mixings

we have

∆sb
R (H) = [∆bs

L (H)]∗, ∆sb
L (H) = [∆bs

R (H)]∗, (4.12)

which should be kept in mind when studying correlations between ∆F = 1 and ∆F = 2

transitions. These relations can be directly used in the case of CS and C ′S but in the case

of CP and C ′P , as discussed in section 2, it is useful to use in this context the following

relations:

∆sb
R∆µµ̄

P = −[∆̃bs
L ]∗∆̃µµ̄

P , ∆sb
L ∆µµ̄

P = [∆̃bs
R ]∗∆̃µµ̄

P (4.13)

with ∆µµ̄
P being imaginary but ∆̃µµ̄

P real.

4.3 Observables for Bs → µ+µ−

In the general analysis of Bs → µ+µ− in [17], which goes beyond the NP scenario considered

here, the basic four observables are

R, Aµµ∆Γ, Ssµµ, Sψφ. (4.14)

– 16 –



J
H
E
P
0
6
(
2
0
1
3
)
1
1
1

Here, the observable R, defined in (4.17), is just the ratio of the branching ratio that

includes ∆Γs effects and of the SM prediction for the branching ratio that also includes

them. The relation of R to R introduced in [11] is given below. Following [17] we will

denote branching ratios containing ∆Γs effects with a bar while those without these effects

without it.

The next two observables, Aµµ∆Γ and Sµµ can be extracted from flavour untagged and

tagged time-dependent measurements of Bs → µ+µ−, respectively. As these three observ-

ables depend also on the new phase ϕBs in the B0
s − B̄0

s mixing, also the mixing induced

CP-asymmetry Sψφ is involved here.

In order to calculate these observables one introduces

P ≡ C10 − C ′10

CSM
10

+
m2
Bs

2mµ

mb

mb +ms

CP − C ′P
CSM

10

≡ |P |eiϕP (4.15)

S ≡

√
1−

4m2
µ

m2
Bs

m2
Bs

2mµ

mb

mb +ms

CS − C ′S
CSM

10

≡ |S|eiϕS . (4.16)

One finds then three basic formulae [11, 17, 37]

R ≡ B(Bs → µ+µ−)

B(Bs → µ+µ−)SM

=

[
1 +Aµµ∆Γ ys

1 + ys

]
× (|P |2 + |S|2)

=

[
1 + ys cos(2ϕP − 2ϕBs)

1 + ys

]
|P |2 +

[
1− ys cos(2ϕS − 2ϕBs)

1 + ys

]
|S|2, (4.17)

Aµµ∆Γ =
|P |2 cos(2ϕP − 2ϕBs)− |S|2 cos(2ϕS − 2ϕBs)

|P |2 + |S|2
, (4.18)

Ssµµ =
|P |2 sin(2ϕP − 2ϕBs)− |S|2 sin(2ϕS − 2ϕBs)

|P |2 + |S|2
. (4.19)

Here [38]

ys ≡ τBs
∆Γs

2
= 0.088± 0.014. (4.20)

The ratio R of [11], which did not include ∆Γs effects in the SM result and R which

includes them are related by

R = (1− ys)R. (4.21)

The advantage of R over R is that in the SM it is equal to unity and its departure from

unity summarizes total NP effects present both in the decay and mixing.

Another useful variable encountered in this discussion is

r(ys) ≡
1− y2

s

1 +Aµ
+µ−

∆Γ ys
. (4.22)

It is the correction factor that one has to introduce in any model in order to compare the

branching ratio calculated in this model without ∆Γs effects and the branching ratio which

includes them [10, 11, 39]

B(Bs → µ+µ−) = r(ys) B(Bs → µ+µ−). (4.23)

– 17 –



J
H
E
P
0
6
(
2
0
1
3
)
1
1
1

It should be emphasized that presently only B(Bs → µ+µ−) is known experimentally

but once Aµµ∆Γ will be extracted from time-dependent measurements, we will be able to ob-

tain B(Bs → µ+µ−) directly from experiment as well. Evidently, in any model the branch-

ing ratios without ∆Γs effect are related to the corresponding SM branching ratio through

B(Bs → µ+µ−) = B(Bs → µ+µ−)SM(|P |2 + |S|2). (4.24)

As FBs cancels out in the evaluation of Aµµ∆Γ and Sµµ, these are theoretically clean

observables and offer new ways to test NP models. Indeed, as seen in (4.18) and (4.19),

both observables depend on NP contributions and this is also the case of the conversion

factor r(ys). In the SM and CMFV models S = 0 and ϕP = ϕBs = 0 so that

Aµµ∆Γ = 1, Ssµµ = 0, r(ys) = 0.912± 0.014 (SM, CMFV), (4.25)

independently of NP parameters present in the whole class of CMFV models.

As Aµµ∆Γ does not rely on flavour tagging, which is difficult for a rare decay, it will be

easier to determine than Ssµµ. Given limited statistics, experiments may first measure the

Bs → µ+µ− effective lifetime, a single exponential fit to the untagged rate, from which

Aµµ∆Γ can also be deduced [11]. See also [17] for discussion.

While ∆Γd is very small and yd can be set to zero, in the case of Bd → µ+µ− one

can still consider the CP asymmetry Sdµµ [37], for which one can use all expressions given

above with the flavour index “s” replaced by “d”.

4.4 Present data

The most recent results from LHCb read [40, 41]

B(Bs → µ+µ−) = (3.2+1.5
−1.2)× 10−9, B(Bs → µ+µ−)SM = (3.25± 0.17)× 10−9, (4.26)

B(Bd → µ+µ−) ≤ 9.4× 10−10, B(Bd → µ+µ−)SM = (1.05± 0.07)× 10−10. (4.27)

We have shown here SM predictions for these observables that do not include the correc-

tion r(ys). As r(yd) = 1 to an excellent approximation, the result for Bd → µ+µ− can be

directly compared with experiment. In order to obtain these results we have used the para-

metric formulae of [42] and updated the lattice QCD values of FBs,d [43] and the life-times

τBs,d [44]. Details can be found in [17].

If the correction factor r(ys) is taken into account the SM result in (4.26) changes to [17]

B(Bs → µ+µ−)SM = (3.56± 0.18) · 10−9. (4.28)

It is this branching that should be compared in such a case with the results of LHCb given

above. For the latest discussions of these issues see [10, 11, 37, 42]. As discussed in [42, 45]

complete NLO electroweak corrections are still missing in this estimate. This result should

be available in the near future.2

In our numerical results we will use B(Bs → µ+µ−) in (4.23) with B(Bs → µ+µ−)

given by (4.24) and r(ys) by (4.22) with Aµµ∆Γ also affected by NP effects.

2Martin Gorbahn, private communication.
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Combining the experimental and theoretical results quoted above gives

RLHCb = 0.90+0.42
−0.34 ∈ [0.30, 1.80] (95% C.L). (4.29)

This range should be compared with its SM value, corresponding to P = 1, S = 0 and

φNP
s = 0:

RSM = 1. (4.30)

4.5 Scenarios for S and P

Clearly, the outcome of the results for the observables in question depends on the values

of the muon couplings and whether a scalar or pseudoscalar boson is involved. Moreover,

as we stressed already in section 2 the exchanged mass eigenstate does not have to be a

CP eigenstate and can have both scalar and pseudoscalar couplings to leptons. In [17] a

detailed classification of various possibilities beyond the dynamical model considered here

has been made and the related purely phenomenological numerical analysis has been per-

formed. Here we will make a classification that is particularly suited for the dynamical

model considered by us.

Pseudoscalar scenario. In this scenario S = 0 and P can be arbitrary complex number.

We find then

Aµµ∆Γ = cos(2ϕP − 2ϕBs), Ssµµ = sin(2ϕP − 2ϕBs). (4.31)

The branching ratio observable is given by

R = |P |2
[

1 + ys cos(2ϕP − 2ϕBs)

1 + ys

]
. (4.32)

This scenario corresponds to scenario A in [17].

Scalar scenario. In this scenario P = 1 and S can be arbitrary complex number. We

find then

Aµµ∆Γ =
cos 2ϕBs − |S|2 cos(2ϕS − 2ϕBs)

1 + |S|2
,

Ssµµ =
− sin 2ϕBs − |S|2 sin(2ϕS − 2ϕBs)

1 + |S|2
,

R =
1 + ys cos 2ϕBs

1 + ys
+ |S|2

[
1− ys cos(2ϕS − 2ϕBs)

1 + ys

]
. (4.33)

This scenario corresponds to scenario B in [17].

Mixed scenario. We will consider a scenarios in which P is modified from its SM value

and S is non-zero. As we want to discuss the case of a single new particle with spin 0, this

means that this particle has both scalar and pseudoscalar couplings to muons.

A simple scenario with both a scalar (H0) and pseudoscalar (A0) with approximately

the same mass that couple equally to quarks and leptons up to the usual i factor in the

pseudoscalar coupling has been recently considered in [17]. This scenario can be realized

as a special limit in models like 2HDM and the MSSM with interesting consequences for

Aµµ∆Γ. We refer to [17] for details.
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5 Rare K decays

5.1 Effective Hamiltonian for d→ s`+`−

For the study of KL → µ+µ− and KL → π0`+`− decays we will need the relevant effective

Hamiltonian. It can be obtained from the formulae of subsection 4.2. For completeness we

list here explicit formulae for operators and Wilson coefficients:

Q9 = (s̄γµPLd)(¯̀γµ`), Q′9 = (s̄γµPRd)(¯̀γµ`), (5.1a)

Q10 = (s̄γµPLd)(¯̀γµγ5`), Q′10 = (s̄γµPRd)(¯̀γµγ5`), (5.1b)

QS = ms(s̄PLd)(¯̀̀ ), Q′S = ms(s̄PRd)(¯̀̀ ), (5.1c)

QP = ms(s̄PLd)(¯̀γ5`), Q′P = ms(s̄PRd)(¯̀γ5`). (5.1d)

Note that because of the sd ordering instead of qb scalar operators have L and R inter-

changed with respect to b→ s, d transitions.

The Wilson coefficients C9 and C10 do not receive any new contributions from scalar

exchange and take SM values as given in (4.3). However, in order to include charm com-

ponent in KL → µ+µ− we make replacement:

ηY Y0(xt) −→ ηY Y0(xt) +
V ∗csVcd
V ∗tsVtd

YNNL (5.2)

where at NNLO [46]

YNNL = λ4Pc(Y ), Pc(Y ) = 0.113± 0.017 . (5.3)

The coefficients of scalar operators are:

ms sin2 θWCS =
1

g2
SM

1

M2
H

∆sd
L (H)∆µµ̄

S (H)

V ∗tsVtd
, (5.4)

ms sin2 θWC
′
S =

1

g2
SM

1

M2
H

∆sd
R (H)∆µµ̄

S (H)

V ∗tsVtd
, (5.5)

ms sin2 θWCP =
1

g2
SM

1

M2
H

∆sd
L (H)∆µµ̄

P (H)

V ∗tsVtd
, (5.6)

ms sin2 θWC
′
P =

1

g2
SM

1

M2
H

∆sd
R (H)∆µµ̄

P (H)

V ∗tsVtd
. (5.7)

5.2 KL → µ+µ−

Only the so-called short distance (SD) part to a dispersive contribution to KL → µ+µ−

can be reliably calculated. Therefore in what follows this decay will be treated only as an

additional constraint to be sure that the rough upper bound given below is not violated.

The relevant branching ratio can be obtained by first introducing:

P̂ (K) ≡ C10 − C ′10 +
m2
K

2mµ

ms

md +ms
(CP − C ′P ) (5.8)
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Ŝ(K) ≡

√
1−

4m2
µ

m2
K

m2
K

2mµ

ms

md +ms
(CS − C ′S) (5.9)

We then find

B(KL → µ+µ−)SD =
G4
FM

4
W

4π5
F 2
KmKτKLm

2
µ

√
1−

4m2
µ

m2
K

sin4 θW (5.10)

×
{[
<
(
V ∗tsVtdP̂

)]2
+
[
=
(
V ∗tsVtdŜ

)]2
}

and < ↔ = for KS → µ+µ− decay. We recall that C10 does not receives any contribution

from scalar exchanges and includes also SM charm contribution as given in (5.2). C ′10 = 0

for scalar exchanges.

Equivalently we can write

B(KL → µ+µ−)SD = κµ

{[
<
(
V ∗tsVtdP̂

)]2
+
[
=
(
V ∗tsVtdŜ

)]2
}
, (5.11)

where

κµ =
α2B(K+ → µ+ν)

λ2π2

τ(KL)

τ(K+)
. (5.12)

The extraction of the short distance part from the data is subject to considerable

uncertainties. The most recent estimate gives [47]

B(KL → µ+µ−)SD ≤ 2.5 · 10−9 , (5.13)

to be compared with (0.8± 0.1) · 10−9 in the SM [46].

5.3 KL → π0`+`−

The rare decays KL → π0e+e− and KL → π0µ+µ− are dominated by CP-violating contri-

butions. The indirect CP-violating contributions are determined by the measured decays

KS → π0`+`− and the parameter εK in a model independent manner. It is the dominant

contribution within the SM where one finds [48]

B(KL → π0e+e−)SM = 3.54+0.98
−0.85

(
1.56+0.62

−0.49

)
· 10−11 , (5.14)

B(KL → π0µ+µ−)SM = 1.41+0.28
−0.26

(
0.95+0.22

−0.21

)
· 10−11 , (5.15)

with the values in parentheses corresponding to the destructive interference between di-

rectly and indirectly CP-violating contributions. The last discussion of the theoretical

status of this interference sign can be found in [49] where the results of [50–52] are criti-

cally analysed. From this discussion, constructive interference seems to be favoured though

more work is necessary. In spite of significant uncertainties in the SM prediction we will

investigate how large the scalar contributions to these decays are still allowed by present

constraints. To this end we will confine our analysis to the case of the constructive inter-

ference between the directly and indirectly CP-violating contributions.
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The present experimental bounds

B(KL → π0e+e−)exp < 28 · 10−11 [53] , B(KL → π0µ+µ−)exp < 38 · 10−11 [54] ,

(5.16)

are still by one order of magnitude larger than the SM predictions, leaving thereby large

room for NP contributions. While in the case of Z ′ models large enhancements of branching

ratios were not possible due to constraints from data on K+ → π+νν̄ [1], this constraint

is absent in the case of scalar contributions and it is of interest to see by how much the

branching ratios can be enhanced in the models considered here still being consistent with

all data, in particular with the bound in (5.13).

In the LHT model the branching ratios for both decays can be enhanced at most by

a factor of 1.5 [4, 5]. Slightly larger effects are still allowed in Randall-Sundrum models

with custodial protection (RSc) for left-handed couplings [6]. Even larger effects are found

if the custodial protection is absent [55].

Probably the most extensive model independent analysis of decays in question has been

performed in [48], where formulae for branching ratios for both decays in the presence of

new operators have been presented. These formulae have been already used in [4, 56]

for the LHT model and in [6] in the case of RSc. In the LHT model, where only SM

operators are present the effects of NP can be compactly summarized by generalization of

the real SM functions Y0(xt) and Z0(xt) to two complex functions YK and ZK , respectively.

As demonstrated in the context of the corresponding analysis within RSc [6], also in the

presence of RH currents two complex functions YK and ZK are sufficient to describe jointly

the SM and NP contributions. Consequently the LHT formulae (8.1)–(8.8) of [4] with YK
and ZK given in (88) and (89) of [1] can be used in the context of tree-level gauge boson

exchanges. The original papers behind these formulae can be found in [48, 50, 51, 57, 58].

The case of scalar contributions is more involved. In order to use the formulae of [48]

for scalar contributions we introduce the following quantities:

ω7A = − 1

2π

ηY Y0(xt)

sin2 θW

=(λ
(K)
t )

1.4 · 10−4
, (5.17)

ȳP =
yP + y′P

2
, ȳS =

yS + y′S
2

(5.18)

with yi related to the Wilson coefficients in the present paper as follows:

yP = −
M2
W sin2 θW
ml

V ∗tsVtdCP , yS = −
M2
W sin2 θW
ml

V ∗tsVtdCS (5.19)

with analogous formulae for primed coefficients. Here ml stands for me and mµ as the au-

thors of [48] anticipating helicity suppression included these masses already in the effective

Hamiltonian.

Using [48] we find then corrections from tree-level A0 and H0 exchanges to the branch-

ing ratios that should be added directly to SM results in (5.14) and (5.15):

∆Be+e−P =
(
1.9 ω7A=(ȳP ) + 0.038 (=(ȳP ))2

)
· 10−17, (5.20)
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∆Bµ
+µ−

P =
(
0.26 ω7A=(ȳP ) + 0.0085 (=(ȳP ))2

)
· 10−12, (5.21)

∆Be+e−S =
(
1.5 <(ȳS) + 0.0039 (<(ȳS))2

)
· 10−16, (5.22)

∆Bµ
+µ−

S =
(
0.04 <(ȳS) + 0.0041 (<(ȳS))2

)
· 10−12. (5.23)

Note that in the absence of helicity suppression the large suppression factors above are

canceled by the conversion factors in (5.19).

The numerical results for these new contributions are given in section 9.

6 General structure of new physics contributions

6.1 Preliminaries

We have seen in section 2 that the small number of free parameters in each of LHS, RHS,

LRS and ALRS scenarios allows to expect definite correlations between flavour observables

in each step of the strategy outlined there. These expectations will be confirmed through

the numerical analysis below but it is instructive to develop first a qualitative general view

on NP contributions in different scenarios before entering the details.

First, it should be realized that the confrontation of correlations in question with future

precise data will not only depend on the size of theoretical, parametric and experimental

uncertainties, but also in an important manner on the size of allowed deviations from SM

expectations. The latter deviations are presently constrained dominantly by ∆F = 2 ob-

servables and B → Xsγ decay. But as already demonstrated in [1, 7, 8, 12] with the the

new data from the LHCb, ATLAS and CMS at hand also the decays Bs,d → µ+µ− and

b → s`+`− begin to play important roles in this context. We will see their impact on our

analysis as well.

Now, in general NP scenarios in which there are many free parameters, it is possible

with the help of some amount of fine-tuning to satisfy constraints from ∆F = 2 processes

without a large impact on the size of NP contributions to ∆F = 1 processes. However, in

the case at hand in which NP in both ∆F = 2 and ∆F = 1 processes is governed by flavour

changing tree-diagrams, the situation is different. Indeed, due to the property of factoriza-

tion of decay amplitudes into vertices and the propagator at the tree-level, the same quark

flavour violating couplings and the same mass MH enter ∆F = 2 and ∆F = 1 processes

undisturbed by the presence of fermions entering the usual box and penguin diagrams. Let

us exhibit these correlations in explicit terms.

6.2 ∆F = 1 vs ∆F = 2 correlations

In order to obtain transparent expressions we rewrite various contributions [∆S(K)]AB and

[∆S(Bq)]AB with A,B = L,R to ∆F = 2 amplitudes as follows

[∆S(K)]AB =
rAB(K)

M2
H

∆sd
A (H)∆sd

B (H)

[λ
(K)
t ]2

(6.1)

[∆S(Bq)]AB =
rAB(Bq)

M2
H

∆bq
A (H)∆bq

B (H)

[λ
(q)
t ]2

(6.2)
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where the quantities rAB(M) can be found by comparing these expressions

with (3.13), (3.14), (3.20) and (3.21) and analogous expressions for the contributions of

operators QSRR
i . They depend on low energy parameters, in particular on the meson sys-

tem and logarithmically on MH . The latter dependence can be neglected for all practical

purposes as long as MH is above several hundreds of GeV and still in the reach of the LHC.

We collect the values of rAB(M) in table 3.

Defining (i = b, s)

C̃
(′)
S,P = mi sin2 θWC

(′)
S,P (6.3)

we can then derive the following relations between the Wilson coefficients C̃
(′)
S,P entering the

∆F = 1 processes and the shifts [∆S(M)]AB in ∆F = 2 processes which are independent

of any parameters like s̃ij but depend sensitively on MH and on the couplings ∆µµ̄
S,P (H).3

In particular they do not depend explicitly on whether S1 or S2 scenarios for |Vub| defined

below are considered. This dependence is hidden in the allowed shifts in [∆S(K)]AB and

[∆S(Bd)]AB both in magnitudes and phases. We have then4

C̃S,P (K)√
[∆S(K)]RR

=
∆µµ̄
S,P (H)

MHg2
SM

√
rRR(K)

= 0.18∆µµ̄
S,P (H), (6.4)

C̃ ′S,P (K)
√

[∆S(K)]LL
=

∆µµ̄
S,P (H)

MHg2
SM

√
rLL(K)

= 0.18∆µµ̄
S,P (H), (6.5)

C̃S,P (K)C̃ ′S,P (K)

[∆S(K)]LR
=

[∆µµ̄
S,P (H)]2

M2
Hg

4
SMr

LR(K)
= −0.005[∆µµ̄

S,P (H)]2. (6.6)

For Bq we have to make the following replacements in the formulae above:

[∆S(K)]AB −→ [∆S(Bq)]
∗
AB, rAB(K) −→ rAB(Bq) (6.7)

C̃S,P (Bq)√
[∆S(Bq)]?RR

=
∆µµ̄
S,P (H)

MHg2
SM

√
rRR(Bq)

= 0.78∆µµ̄
S,P (H), (6.8)

C̃ ′S,P (Bq)√
[∆S(Bq)]?LL

=
∆µµ̄
S,P (H)

MHg2
SM

√
rLL(Bq)

= 0.78∆µµ̄
S,P (H), (6.9)

C̃S,P (Bq)C̃
′
S,P (Bq)

[∆S(Bq)]?LR
=

[∆µµ̄
S,P (H)]2

M2
Hg

4
SMr

LR(Bq)
= −0.1[∆µµ̄

S,P (H)]2. (6.10)

6.3 Implications

Inspecting these formulae we observe that if the SM prediction for εK is very close to its

experimental value, ∆S(K) cannot be large and consequently at first sight the values of

the Wilson coefficients C
(′)
S,P (K) cannot be large implying suppressed NP contributions

to rare K decays unless H couplings to charged leptons in the final state are enhanced,

although this enhancement can be bounded by rare Bs,d decays. Further details depend on

the value of MH . While in Z ′ models the present theoretical and parametric uncertainties

3Similar relations have been derived in [1] in the context of Z′ models.
4The numerical values on the r.h.s. of these equations correspond to MH = 1 TeV.

– 24 –



J
H
E
P
0
6
(
2
0
1
3
)
1
1
1

rAB(M) LL/RR LR

K 960 −5700

Bd 51 −310

Bs 50 −300

Table 3. rAB(M) in units of TeV2 as defined in eqs. (6.1) and (6.2) for MH = 1 TeV.

in εK and ∆MK still allow for large effects in rare K decays both in S1 and S2 scenarios,

this turns out not to be the case in the models considered here.

Similarly in the Bd and Bs systems if the SM predictions for ∆Ms,d, SψKS and Sψφ are

very close to the data, it is unlikely that large NP contributions to rare Bd and Bs decays,

in particular the asymmetries Ss,d
µ+µ− , will be found, unless again H couplings to charged

leptons in the final state are enhanced. Here the situation concerning theoretical and para-

metric uncertainties is better than in the K system and the presence of several additional

constraints from b→ s transitions allows to reach in the Bs system clear cut conclusions.

In this context it is fortunate that within the SM there appears to be a tension between

the values of εK and SψKS [33, 59] so that some action from NP is required. Moreover,

parallel to this tension, the values of |Vub| extracted from inclusive and exclusive decays

differ significantly from each other. For a recent review see [60].

If one does not average the inclusive and exclusive values of |Vub| and takes into account

the tensions mentioned above, one is lead naturally to two scenarios for NP:

• Exclusive (small) |Vub| Scenario 1: |εK | is smaller than its experimental deter-

mination, while SψKS is rather close to the central experimental value.

• Inclusive (large) |Vub| Scenario 2: |εK | is consistent with its experimental deter-

mination, while SψKS is significantly higher than its experimental value.

Thus depending on which scenario is considered, we need either constructive NP

contributions to |εK | (Scenario 1) or destructive NP contributions to SψKS (Scenario 2).

However this NP should not spoil the agreement with the data for SψKS (Scenario 1) and

for |εK | (Scenario 2).

While introducing these two scenarios, we should emphasize the following difference

between them. In Scenario 1, the central value of |εK | is visibly smaller than the very

precise data but the still significant parametric uncertainty due to |Vcb|4 dependence in

|εK | and a large uncertainty in the charm contribution found at the NNLO level in [32]

does not make this problem as pronounced as this is the case of Scenario 2, where large

|Vub| implies definitely a value of SψKS that is by 3σ above the data.

Our previous discussion allows to expect larger NP effects in rare Bd decays in scenario

S2 than in S1. This will be indeed confirmed by our numerical analysis. In the K system

one would expect larger NP effects in scenario S1 than S2 but the present uncertainties

in εK and ∆MK do not allow to see this clearly. The Bs system is not affected by the

choice of these scenarios and in fact our results in S1 and S2 are basically indistinguishable
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from each other as long as there is no correlation with the Bd system. However, we will

demonstrate that the imposition of U(2)3 symmetry on H couplings will introduce such

correlation with interesting implications for the Bs system.

We do not include B+ → τ+ντ in this discussion as NP related to this decay has

nothing to do with neutral scalars, at least at the tree-level. Moreover, the disagreement

of the data with the SM in this case softened significantly with the new data from Belle

Collaboration [61]. The new world average provided by the UTfit collaboration of B(B+ →
τ+ν)exp = (0.99 ± 0.25) × 10−4 [62] is in perfect agreement with the SM in scenario S2

and only by 1.5σ above the SM value in scenario S1.

Evidently |Vub| could be some average between the inclusive and exclusive values,

in which significant NP effects will be in principle allowed simultaneously in K and

Bd decays. This is in fact necessary in NP scenarios in which NP effects to ∆F = 2

processes are negligible and some optimal value for |Vub|, like 0.0037 is chosen in order

to obtain rough agreement with the data. But then one should hope that future data,

while selecting this value of |Vub|, will also appropriately imply a higher experimental

value of SψKS and new lattice results will bring modified non-perturbative parameters in

the remaining ∆F = 2 observables so that everything works. This is the case of a recent

analysis of FCNC processes within a model for quark masses [63]. This discussion shows

importantance of the determination of the value of |Vub| and of the non-perturbative

parameters in question (see article by A. Buras in [64]).

As already remarked above, the case of Bs mesons is different as the B0
s − B̄0

s system

is not involved in the tensions discussed above. Here the visible deviation of the ∆Ms in

the SM from the data and the asymmetry Sψφ, still being not accurately measured, govern

the possible size of NP contributions in rare decays.

6.4 Dependence on MH

The correlations between ∆F = 1 and ∆F = 2 derived in subsection 6.2 imply that when

free NP parameters have been bounded by ∆F = 2 constraints, the Wilson coefficients

of scalar operators are inversely proportional to MH . This means that in the case of NP

contributions significantly smaller than the SM contributions in P , the modifications of

rare decay branching ratios due to NP will be governed by the interference of SM and NP

contributions. Consequently such contributions to branching ratios will also be inversely

proportional to MH . If NP contribution to P is of the size of the SM contributions than

this law will be modified and NP contributions will decrease faster with increasing MH .

On the other hand in the absence of interference between NP and SM contributions,

as is the case of S, the NP modifications of branching ratios will decrease as 1/M2
H .

Consequently, we expect that for sufficiently large MH only NP contributions in P , as

in Z ′ scenarios, will matter unless the scalar couplings are very much enhanced over

pseudoscalar ones. Evidently, for low values of MH the S contributions could be relevant.

Here in principle a SM Higgs, being a scalar, could play a prominent role, but as we will

demonstrate below this can only be the case for ∆F = 2 transitions.

While MH could still be as low as few hundreds of GeV, in order to cover a large set of

models, we will choose as our nominal value MH = 1 TeV. With the help of the formulae
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in subsection 6.2 it should be possible to estimate approximately, how our results would

change for other values of MH . In this context it should be noted that any change of MH

can be compensated by the change in couplings ∆µµ
S,P unless these couplings are predicted

in a given model or are known from other measurements.

With this general picture in mind we can now proceed to numerical analysis.

7 Strategy for numerical analysis

7.1 Preliminaries

Similarly to our analyses in [1, 12] it is not the goal of the next section to present a full-

fledged numerical analysis of all correlations including present theoretical, parametric and

experimental uncertainties as this would only wash out the effects we want to emphasize.

Yet, these uncertainties will be significantly reduced in the coming years [65, 66] and it is

of interest to ask how the H scenarios considered here would face precision flavour data

and the reduction of hadronic and CKM uncertainties. In this respect, as emphasized

above, correlations between various observables are very important and we would like to

exhibit these correlations by assuming reduced uncertainties in question.

Therefore, in our numerical analysis we will choose as nominal values for three out of

four CKM parameters:

|Vus| = 0.2252, |Vcb| = 0.0406, γ = 68◦, (7.1)

and instead of taking into account their uncertainties directly, we will take them effectively

at a reduced level by increasing the experimental uncertainties in ∆Ms,d and εK . Here

the values for |Vus| and |Vcb| have been measured in tree level decays. The value for γ

is consistent with CKM fits and as the ratio ∆Md/∆Ms in the SM agrees well with the

data, this choice is a legitimate one. Other inputs are collected in table 4. For |Vub| we

will use as two values

|Vub| = 3.1 · 10−3 |Vub| = 4.0 · 10−3 (7.2)

that are in the ballpark of exclusive and inclusive determinations of this CKM element

and representing thereby S1 and S2 scenarios, respectively.

Having fixed the three parameters of the CKM matrix to the values in (7.1), for a

given |Vub| the “true” values of the angle β and of the element |Vtd| are obtained from the

unitarity of the CKM matrix:

|Vtd| = |Vus||Vcb|Rt, Rt =
√

1 +R2
b − 2Rb cos γ , cotβ =

1−Rb cos γ

Rb sin γ
, (7.3)

where

Rb =

(
1− λ2

2

)
1

λ

|Vub|
|Vcb|

. (7.4)

In table 5 we summarize for completeness the SM results for |εK |, ∆Ms,d, (sin 2β)true

and B(B+ → τ+ντ ), obtained from (7.3), setting γ = 68◦ and choosing the two values for
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GF = 1.16637(1)× 10−5 GeV−2 [67] mBd = 5279.5(3) MeV [67]

MW = 80.385(15) GeV [67] mBs = 5366.3(6) MeV [67]

sin2 θW = 0.23116(13) [67] FBd = (188± 4) MeV [43]

α(MZ) = 1/127.9 [67] FBs = (225± 3) MeV [43]

αs(MZ) = 0.1184(7) [67] B̂Bd = 1.26(11) [68]

mu(2 GeV) = (2.1± 0.1) MeV [68] B̂Bs = 1.33(6) [68]

md(2 GeV) = (4.73± 0.12) MeV [68] B̂Bs/B̂Bd = 1.05(7) [68]

ms(2 GeV) = (93.4± 1.1) MeV [68] FBd

√
B̂Bd = 226(13) MeV [68]

mc(mc) = (1.279± 0.013) GeV [69] FBs

√
B̂Bs = 279(13) MeV [68]

mb(mb) = 4.19+0.18
−0.06 GeV [67] ξ = 1.237(32) [68]

mt(mt) = 163(1) GeV [68, 70] ηB = 0.55(1) [29, 30]

Mt = 173.2± 0.9 GeV [71] ∆Md = 0.507(4) ps−1 [44]

mK = 497.614(24) MeV [67] ∆Ms = 17.72(4) ps−1 [44]

FK = 156.1(11) MeV [68] SψKS = 0.679(20) [67]

B̂K = 0.767(10) [68] Sψφ = 0.001± 0.100 [24]

κε = 0.94(2) [33, 34] ∆Γs = 0.116± 0.019 [24]

η1 = 1.87(76) [32] τ(Bs) = 1.503(10) ps [44]

η2 = 0.5765(65) [29] τ(Bd) = 1.519(7) ps [44]

η3 = 0.496(47) [31]

∆MK = 0.5292(9)× 10−2 ps−1 [67] |Vus| = 0.2252(9) [67]

|εK | = 2.228(11)× 10−3 [67] |Vcb| = (40.9± 1.1)× 10−3 [72]

B(B → Xsγ) = (3.55± 0.24± 0.09)× 10−4 [67] |V incl.
ub | = (4.41± 0.31)× 10−3 [72]

B(B+ → τ+ν) = (0.99± 0.25)× 10−4 [62] |V excl.
ub | = (3.23± 0.31)× 10−3 [72]

τB± = (1641± 8)× 10−3 ps [44]

Table 4. Values of the experimental and theoretical quantities used as input parameters.

Scenario 1: Scenario 2: Experiment

|εK | 1.72(22) · 10−3 2.15(32) · 10−3 2.228(11)× 10−3

(sin 2β)true 0.623(25) 0.770(23) 0.679(20)

∆Ms [ps−1] 19.0(21) 19.0(21) 17.73(5)

∆Md [ps−1] 0.56(6) 0.56(6) 0.507(4)

B(B+ → τ+ντ ) 0.62(14) · 10−4 1.02(20) · 10−4 0.99(25)× 10−4

Table 5. SM prediction for various observables for |Vub| = 3.1 · 10−3 and |Vub| = 4.0 · 10−3 and

γ = 68◦ compared to experiment.
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|Vub| in (7.2). We observe that for both choices of |Vub| the data show significant deviations

from the SM predictions but the character of the NP which could cure these tensions de-

pends on the choice of |Vub| as already discussed in detail in [73] and in the previous section.

What is striking in this table is that the predicted central values of ∆Ms and ∆Md,

although slightly above the data, are both in good agreement with the latter when

hadronic uncertainties are taken into account. In particular the central value of the ratio

∆Ms/∆Md is very close to the data:

(
∆Ms

∆Md

)

SM

= 34.5± 3.0 exp : 35.0± 0.3 . (7.5)

These results depend on the lattice input and in the case of ∆Md on the value of γ.

Therefore to get a better insight both lattice input and the tree level determination of γ

have to improve.

Similarly to the anatomy of Z ′ models in [1] we will deal with two scenarios for |Vub|
and four scenarios LHS, RHS, LRS, ALRS for flavour violating couplings of H to quarks.

Thus for a given scalar or pseudoscalar we will deal with eight scenarios of flavour violating

H-physics to be denoted by

LHS1, LHS2, RHS1, RHS2, LRS1, LRS2, ALRS1, ALRS2 (7.6)

with S1 and S2 indicating the |Vub| scenarios. With the help of scalar, pseudoscalar and

mixed scenarios for leptonic couplings introduced in subsection 4.5 in each case, we will be

able to get the full picture of various possibilities.

We should emphasize that in each of the scenarios listed in (7.6), except for leptonic

couplings, we have only two free parameters describing the H-quark couplings in each

meson system except for the universal MH . Therefore, as in the case of Z ′ models it is

possible to determine these couplings from flavour observables (see section 2) provided

flavour conserving H couplings to muons and MH are known. While in the SM and

some specific models scalar couplings are known, in the present analysis we want to be

more model independent. While we will get some insight about them from Bs → µ+µ−,

determining them in purely leptonic processes increases the predictive power of the theory.

Following Step 2 of our general strategy of section 2, in what follows we will assume

that ∆µµ̄
P (H) and ∆µµ̄

S (H) have been determined in purely leptonic processes. For

definiteness we set the lepton couplings at the following values

∆̃µµ̄
P (H) = ±0.020

mb(MH)

mb(mb)
, ∆µµ̄

S (H) = 0.040
mb(MH)

mb(mb)
(7.7)

with the latter factor being 0.61 for MH = 1 TeV. We show this factor explicitly to indicate

how the correct scale for mb affects the allowed range for the lepton couplings. As we will

demonstrate in the course of our presentation these values are consistent with the allowed

range for B(Bs → µ+µ−) when the constraints on the quark couplings from B0
s − B̄0

s

are taken into account and MH = 1 TeV. The reason for choosing the scalar couplings

to be larger than the pseudoscalar ones is that they are weaker constrained than the

latter because the scalar contributions do not interfere with SM contributions. Note that
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because of the lack of this interference, the values of S are simply proportional to ∆µµ̄
S (H)

and it is straightforward to obtain S contributions for different values of this coupling.

These couplings should be compared with SM Higgs couplings

[∆̃µµ̄
P (H)]SM = 0, [∆µµ̄

S (H)]SM = 1.2× 10−3. (7.8)

As discussed in section 10 the smallness of these couplings precludes any visible SM

Higgs effects in rare Bd and K decays after the constraints from ∆F = 2 processes have

been taken into account. On the other hand SM Higgs effects in Bs → µ+µ−, although

significantly smaller than in the case of heavy scalars, could enhance the branching ratio

up to 8% over the SM value and could also be seen in the asymmetry Ssµ+µ− .

Concerning the signs in (7.7), the one of ∆µµ̄
S (H) is irrelevant as only the square of this

coupling enters various observables. The sign of ∆̃µµ̄
P (H) has an impact on the interference

of pseudoscalar and SM contributions and is thereby crucial for the identification of various

enhancements and suppressions with respect to SM branching ratios and CP asymmetries.

Consequently it plays a role of our search for successful oases in the space of parameters.

7.2 Simplified analysis

As in [1] we will perform a simplified analysis of εK , ∆Md,s, SψKS and Sψφ in order to

identify oases in the space of new parameters (see section 2) for which these five observables

are consistent with experiment. To this end we set all other input parameters at their

central values but in order to take partially hadronic and experimental uncertainties into

account we require the theory in each of the eight scenarios in (7.6) to reproduce the

data for εK within ±10%, ∆Ms,d within ±5% and the data on SψKS and Sψφ within

experimental 2σ. We choose larger uncertainty for εK than ∆Ms,d because of its strong

|Vcb|4 dependence. For ∆MK we will only require the agreement within ±25% because of

potential long distance uncertainties.

Specifically, our search is governed by the following allowed ranges:5

16.9/ps ≤ ∆Ms ≤ 18.7/ps, −0.20 ≤ Sψφ ≤ 0.20, (7.9)

0.48/ps ≤ ∆Md ≤ 0.53/ps, 0.64 ≤ SψKS ≤ 0.72. (7.10)

0.75 ≤ ∆MK

(∆MK)SM
≤ 1.25, 2.0× 10−3 ≤ |εK | ≤ 2.5× 10−3. (7.11)

The search for these oases in each of the scenarios in (7.6) is simplified by the fact that

for fixed MH each of the pairs (∆Ms, Sψφ), (∆Md, SψKS ) and (∆MK , |εK |) depend only

on two variables. The fact that in the K system we have only one powerful constraint at

present is rather unfortunate. Moreover, in the models considered the decays K+ → π+νν̄

and KL → π0νν̄ cannot help unless charged Higgs contributions are considered, which is

beyond the scope of the present paper. While the constraint (5.13) on KL → µ+µ− could

have in principle an impact on our search for oases, we have checked that this is not the case.

5When using the constraint from Sψφ we take into account that only Bs mixing phase close to its SM

value is allowed thereby removing some discrete ambiguities. The same is done for SψKS .
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Figure 2. Ranges for ∆Ms (red region) and Sψφ (blue region) for MH = 1 TeV in LHS1 satisfying

the bounds in eq. (7.9).

In what follows we will first for each scenario identify the allowed oases. As in the case

of Z ′ models there will be in principle four oases allowed by the constraints in (7.9)–(7.10).

However, when one takes into account that the data imply the phases in Sψφ and SψKS
to be close to the SM phases, only two big oases are left in each case. Similarly the sign

of εK selects two allowed oases. In order to identify the final oasis we will have to invoke

other observables, which are experimentally only weakly bounded at present. Yet, our

plots will show that once these observables will be measured precisely one day not only a

unique oasis in the parameter space will be identified but the specific correlations in this

oasis will provide a powerful test of the flavour violating H scenarios.

8 An excursion through H scenarios

8.1 The LHS1 and LHS2 scenarios

8.1.1 The Bs meson system

We begin the search for the oases with the Bs system as here the choice of |Vub| is immaterial

and the results for LHS1 and LHS2 scenarios are almost identical. Basically only the

asymmetry Sψφ within the SM and |Vts| are slightly modified because of the unitarity of

the CKM matrix. But this changes Sψφ in the SM from 0.032 to 0.042 and can be neglected.

The result of this search for MH = 1 TeV is shown in figure 2, where we show the

allowed ranges for (s̃23, δ23). The red regions correspond to the allowed ranges for ∆Ms,

while the blue ones to the corresponding ranges for Sψφ. The overlap between red and

blue regions identifies the oases we were looking for. We observe that the requirement of

suppression of ∆Ms implies s̃23 6= 0.
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Comparing figure 2 with the corresponding Z ′ result of figure 2 in [1] we observe

that the phase structure is identical to the one found in the case of Z ′ but the values

of s̃23 are smaller. This behaviour is easy to understand. While the tree diagram with

scalar exchange has the overall sign opposite to the one of a gauge boson exchange, this

difference is canceled by the opposite signs of the matrix element of the leading operator

QSLL
1 and QVLL

1 in the case of H and Z ′ exchange, respectively. But the absolute value of

〈QSLL
1 〉 is larger than of 〈QVLL

1 〉 and consequently s̃23 in the Higgs case has to be smaller

than in the Z ′ case in order to fit data. We find that this suppression of s̃23 that enters

quadratically in ∆Ms amounts roughly to a factor of 1.5.

In view of this simple change we do not show the table for the allowed ranges for δ23

and s̃23. They are obtained from table 5 in [1] by leaving δ23 unchanged and rescaling s̃23

down by a factor of 1.5.

Inspecting figure 2 we observe the following pattern:

• For each oasis with a given δ23 there is another oasis with δ23 shifted by 180◦ but

the range for s̃23 is unchanged. This discrete ambiguity results from the fact that

∆Ms and Sψφ are governed by 2δ23. However, as we will see below this ambiguity

can be resolved by other observables. Without the additional information on phases

mentioned in connection with constraints (7.9)–(7.11) one would find two additional

small oases corresponding roughly to NP contribution to M s
12 twice as large as the

SM one but carrying opposite sign. But taking these constraints on the phases into

account removes these oases from our analysis.

• The increase of MH by a given factor allows to increase s̃23 by the same factor. This

structure is evident from the formulae for ∆S(Bs). However, the inspection of the

formulae for ∆F = 1 transitions shows that this change will have impact on rare

decays, making the NP effects in them with increased MH smaller. This is evident

from the correlations derived in subsection 6.2.

We will next confine our numerical analysis to these oases, investigating whether some

of them can be excluded by other constraints and studying correlations between various

observables. To this end we consider in parallel pseudoscalar and scalar scenarios setting

the lepton couplings as given in (7.7). In addition to the general case corresponding to the

oases just discussed we will present in plots the results obtained when the U(2)3 symmetry

is imposed on Bs and Bd systems. This case will be discussed in detail at the end of this

subsection but to avoid too many plots and to show the impact of this symmetry we will

already include the results in discussing the results without this symmetry. Our colour

coding will be as follows:

• In the general case blue and purple allowed regions correspond to oases with small

and large δ23, respectively. However, one should keep in mind the next comment.

• In the U(2)3 symmetry case, the allowed region will be in magenta and and cyan

for LHS1 and LHS2, respectively, as in this case even in the Bs system there is

dependence on |Vub| scenario. These regions are subregions of the general blue or

purple regions so that they cover some parts of them.
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Figure 3. R as a function of ∆̃µµ̄
P and ∆µµ̄

S in LHS1. Left: A0 case; right: H0 case. Gray region:

95% CL of R.

In order to justify the values for the leptonic couplings in (7.7) we show in figure 3 R

as function of ∆̃µµ̄
P and ∆µµ̄

S in LHS1 for the pseudoscalar and scalar scenario, respectively.

In ALRS effects are smaller and in LRS R does not depend on ∆̃µµ̄
P and ∆µµ̄

S . We observe

that for equal scalar and pseudoscalar couplings, the effects are significantly larger in the

A0 case and this is the reason why we have chosen the scalar couplings to be larger.

There are two striking differences between A0 and H0 cases originating in the fact

that pseudoscalar contributions interfere with the SM contribution, while this is not the

case for a scalar:

• While in the H0 case R can only be enhanced, it can also be suppressed in the A0

case. This difference could play an important role one day.

• In the A0 case the result depends on the oasis considered and the sign of ∆̃P . However

changing simultaneously the sign of ∆̃P and the oasis leaves R invariant. In the H0

case R is independent of the oasis considered and of the sign of ∆̃S .

In figure 4 (left) we show Ssµ+µ− vs Sψφ in the A0 case. In the same figure (right)

we show the correlation between B(Bs → µ+µ−) and Sψφ.6 We observe that for largest

allowed values of Sψφ the asymmetry Ssµ+µ− can be as large as ±0.5. Also the effects in

B(Bs → µ+µ−) are expected to be sizable for the chosen value of muon coupling.

Comparing the plots in figure 4 with the corresponding results for Z ′ in figure 3

of [1] we observe striking differences which allow to distinguish the case of tree-level

pseudoscalar exchange from the heavy gauge boson exchange:

• In the A0 case the asymmetry Ssµ+µ− can be zero while this was not the case in the Z ′

case where the requirement of suppression of ∆Ms directly translated in Ssµ+µ− being

non-zero. Consequently in the Z ′ case the sign of Ssµ+µ− could be used to identify

the right oasis. The left plot in figure 4 clearly shows that this is not possible in the

6The central values for B(Bd → µ+µ−)SM = 1.0 × 10−10 and B(Bs → µ+µ−)SM = 3.45 × 10−9 shown

in the plots correspond to fixed CKM parameters chosen by us and differ from the ones listed in (4.27)

and (4.28) but are fully consistent with them.
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Figure 4. Ssµ+µ− versus Sψφ (left) and Sψφ versus B(Bs → µ+µ−) (right) for MH = 1 TeV in LHS

for two oases as explained in the text and A0 case. The blue and purple regions are almost identical

for LHS1 and LHS2. The magenta region corresponds to the U(2)3 limit for LHS1 and the cyan

region for LHS2 (see section 8.1.3). Gray region: exp 1σ range B(Bs → µ+µ−) = (3.2+1.5
−1.2) · 10−9.

Red point: SM central value.

A0 case. We also find that while in the Z ′ case the asymmetry Ssµ+µ− could reach

values as high as ±0.9, in the A0 case |Ssµ+µ− | can hardly be larger than 0.5.

• On the other hand we observe that in the A0 case the measurement of B(Bs → µ+µ−)

uniquely chooses the right oasis. The enhancement of this branching ratio relatively

to the SM chooses the blue oasis while the suppression the purple one. This was not

possible in the Z ′ case. The maximal enhancements and suppressions are comparable

in both cases but finding B(Bs → µ+µ−) close to SM value would require in the A0

case either larger MH or smaller muon coupling.

We observe that the roles of Ssµ+µ− and B(Bs → µ+µ−) in searching for optimal oasis

have been interchanged when going from the Z ′ case to the A0 case. While B(Bs → µ+µ−)

identifies the oasis the correlation of Ssµ+µ− vs. Sψφ constitutes an important test of

the model. While in the blue oasis Sψφ increases (decreases) uniquely with increasing

(decreasing) Ssµ+µ− , in the purple oasis, the increase of Sψφ implies uniquely a decrease

of Ssµ+µ− . Therefore, while Ssµ+µ− alone cannot uniquely determine the optimal oasis, it

can do in collaboration with Sψφ.

If the favoured oasis will be found to differ from the one found by means of

B(Bs → µ+µ−) one day the model in question will be in trouble. Indeed, let us assume

that B(Bs → µ+µ−) will be found above its SM value selecting thereby blue oasis. Then

the measurement of Sψφ will uniquely predict the sign of Ssµ+µ− . Moreover, in the case

of Ssψφ sufficiently different from zero, we will be able to determine not only the sign but

also the magnitude of Ssµ+µ− .

These striking differences between the A0-scenario and Z ′-scenario can be traced back

to the difference between the phase of the NP correction to P in these two NP scenarios.

As the oasis structure as far as the phase δ23 is concerned is the same in both scenarios

the difference enters through the muon couplings which are imaginary in the case of

A0-scenario but real in the case of Z ′. This is in fact the main reason why the structure
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Oasis δZ′ δA0

Bs (blue) 50◦ − 130◦ −40◦ − (+40◦)

Bs (purple) 230◦ − 310◦ 140◦ − 220◦

Bd (S1) (yellow) 57◦ − 86◦ −33◦ − (+4◦)

Bd (S1) (green) 237◦ − 266◦ 147◦ − 176◦

Bd (S2) (yellow) 103◦ − 125◦ 13◦ − 35◦

Bd (S2) (green) 283◦ − 305◦ 193◦ − 215◦

U(2)3 (S1) (blue, magenta) 55◦ − 84◦ −35◦ − (−6◦)

U(2)3 (S1) (purple, magenta) 235◦ − 264◦ 145◦ − 174◦

U(2)3 (S2) (blue, cyan) 101◦ − 121◦ 11◦ − 31◦

U(2)3 (S2) (purple, cyan) 291◦ − 301◦ 201◦ − 211◦

Table 6. Ranges for the values of δZ′ and δA0 as defined in (8.1) for the Bs and Bd systems and

various cases discussed in the text. Also the result for U(2)3 models is shown.

of correlations in both scenarios is so different. Taking in addition into account the sign

difference between Z ′ and pseudoscalar propagator in the the b → sµ+µ− amplitude,

which is now not compensated by a hadronic matrix element, we find that

P (Z ′) = 1 + rZ′e
iδZ′ , P (A0) = 1 + rA0eiδA0 (8.1)

with

rZ′ ≈ rA0 , δZ′ = δ23 − βs, δA0 = δZ′ −
π

2
. (8.2)

Therefore with δ23 of figure 2 the phase δZ′ is around 90◦ and 270◦ for the blue and

purple oasis, respectively. Correspondingly δA0 is around 0◦ and 1800. This difference in

the phases is at the origin of the differences listed above. In particular, we understand

now why the CP asymmetry Ssµ+µ− can vanish in the A0 case, while it was always different

from zero in the Z ′-case. What is interesting is that this difference is just related to the

different particle exchanged: gauge boson and pseudoscalar. We summarize the ranges of

δZ′ and δA0 in table 6.

The power of the correlations in question in distinguishing between various scenarios

is further demonstrated when we consider the case of a scalar in which there is no

interference with the SM contribution. In figure 5 we show the corresponding results in

the H0 case. We observe the following differences with respect to figure 4:

• B(Bs → µ+µ−) can only be enhanced in this scenario and this result is independent

of the oasis considered. Thus finding this branching ratio below its SM value would

favour the pseudoscalar scenario over scalar one. But the enhancement is not as

pronounced as in the pseudoscalar case because the correction to the branching ratio

is governed here by the square of the muon coupling while in the pseudoscalar case

the correction was proportional to this coupling due to the interference with the SM

contribution which is absent here.
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Figure 5. Ssµ+µ− versus Sψφ (left) and Sψφ versus B(Bs → µ+µ−) (right) for MH = 1 TeV in

LHS1 for two oases as explained in the text and H0 case (the two oases overlap here).The magenta

region corresponds to the U(2)3 limit for LHS1 and the cyan region for LHS2. Gray region: exp 1σ

range B(Bs → µ+µ−) = (3.2+1.5
−1.2) · 10−9. Red point: SM central value.

• Concerning CP-asymmetries similarly to the branching ratio there is no dependence

on the oasis considered but more importantly Ssµ+µ− can only increase with increasing

Sψφ.

It is instructive to understand better the results in the scalar scenario. Inspecting the

formulae for the Wilson coefficients we arrive at an important relation:

ϕS = δZ′ − π, (8.3)

where the shift is related to the minus sign difference in the Z ′ and scalar propagators.

But as seen in (4.33) the three observables given there, all depend on 2ϕS , implying

that from the point of view of these quantities this shift is irrelevant. As different oases

correspond to phases shifted by π this also explains why in the scalar case the results in

different oases are the same. That the branching ratio can only be enhanced follows just

from the absence of the interference with the SM contributions. In order to understand

the signs in Ssµµ one should note the minus sign in front of sine in the corresponding

formula. Rest follows from (8.3) and table 6.

In figure 6 we plot Aλ∆Γ vs Sψφ for A0 and H0 cases. We observe that for MH = 1 TeV,

even for Sψφ significantly different from zero, Aλ∆Γ does not defer significantly from unity

in both scenarios. Larger effects have been found in the Z ′ case as seen figure 4 of [1].

In figure 7 we show how the plots in figures 4 and 5 change when the exchanged particle

has both scalar and pseudoscalar couplings to muons with

∆µµ̄
S = 2∆̃µµ̄

P = 0.4
mb(MH)

mb(mb)
. (8.4)

We observe that while the correlation between Ssµ+µ− and Sψφ is relative to A0 case prac-

tically unmodified, the correlation between Sψφ and B(Bs → µ+µ−) is visibly modified for

B(Bs → µ+µ−) below the SM value while less if an enhancement is present.

Clearly for a fixed MH the results presented so far depend on the choice on muon

couplings made by us. In figures 8 and 9 we show the corresponding plots when the lepton
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Figure 6. Aλ∆Γ versus Sψφ for MH = 1 TeV in LHS1, blue and purple oases and A0 case (left) and

H0 case (right). In H0 case the two oases overlap. The magenta region corresponds to the U(2)3

limit for LHS1 and the cyan region for LHS2. Red point: SM central value.

Figure 7. Ssµ+µ− versus Sψφ (left) and Sψφ versus B(Bs → µ+µ−) (right) for MH = 1 TeV

in LHS1 for two oases and the mixed H0 and A0 case with ∆µµ̄
S = 2∆̃µµ̄

P . The magenta region

corresponds to the U(2)3 limit for LHS1 and the cyan region for LHS2. Gray region: exp 1σ range

B(Bs → µ+µ−) = (3.2+1.5
−1.2) · 10−9. Red point: SM central value.

couplings ∆̃P and ∆S are varied independently in the range 0.02 − 0.04. Evidently, the

allowed regions are now larger but the general pattern of correlations remains. These

results are presented here only for illustration and we will not discuss this mixed scenario

for other meson systems.

8.1.2 The Bd meson system

We begin by searching for the allowed oases in this case. The result is shown in figure 10.

The general structure of the discrete ambiguities is as in the Bs case but now as expected

the selected oases in S1 and S2 differ significantly from each other. In fact this figure

has the same phase structure as figure 6 in [1] except that the allowed values of s̃13 are

reduced with respect to the Z ′ case for the same reason as in the Bs system: the relevant

hadronic matrix elements are larger.
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Figure 8. Correlation plots as in figure 4, 5, and 6 but now with lepton coupling ∆̃P ∈ [0.012, 0.024],

∆S = 0 (left) and ∆S ∈ [0.012, 0.024], ∆̃P = 0 (right) in LHS1. Gray region: exp 1σ range

B(Bs → µ+µ−) = (3.2+1.5
−1.2) · 10−9. Red point: SM central value.

Let us first concentrate on S2 scenario and the A0 case. Our colour coding is such that

• In the general case yellow and green allowed regions correspond to oases with small

and large δ13, respectively.

• In principle in the U(2)3 symmetry case we could again show the reduced regions

with magenta and cyan for LHS1 and LHS2, respectively but this reduction amounts

typically to 5 − 10% at most and it is more transparent not to show it. This small

impact of U(2)3 symmetry in the Bd system is evident from table 6.

In the right panel of figure 11 we show SψKS vs B(Bd → µ+µ−). This result should

be compared with the one for Z ′ case shown in the right panel of figure 7 in [1].
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Figure 9. Correlation plots as in figure 7 but now with ∆̃P ∈ [0.012, 0.024] and ∆S ∈ [0.012, 0.024].

Gray region: exp 1σ range B(Bs → µ+µ−) = (3.2+1.5
−1.2) · 10−9. Red point: SM central value.

Figure 10. Ranges for ∆Md (red region) and SψKS
(blue region) for MH = 1 TeV in LHS1 (left)

and LHS2 (right) satisfying the bounds in eq. (7.10).

In order to understand the differences between these two scenarios of NP we again

look at the phase of the correction to P which now is given as follows:

rZ′ ≈ rA0 , δZ′ = δ13 − β, δA0 = δZ′ −
π

2
. (8.5)

Note that this time the phase of Vtd enters the analysis with β ≈ 19◦ and β ≈ 25◦ for

S1 and S2 scenario of |Vub|, respectively. We find then that in scenario S2 the phase δZ′

is around 115◦ and 295◦ for yellow and green oases, respectively. Correspondingly δA0 is

around 25◦ and 205◦. We summarize the ranges of δZ′ and δA0 in table 6.

With this insight at hand we can easily understand the plots in question noting that

the enhancements and suppressions of B(Bd → µ+µ−) are governed by the cosine of the

phase of the correction:
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Figure 11. SψKS
versus B(Bd → µ+µ−) in A0 scenario for MH = 1 TeV in LHS1 (left) and LHS2

(right) in the yellow and green oases as discussed in the text. Red point: SM central value.

Figure 12. B(Bd → µµ̄) versus Sdµ+µ− in A0 case for MZ′ = 1 TeV in LHS1 (left) and LHS2 (right)

for the green and yellow oases as discussed in the text. Red point: SM central value.

• In the A0 case B(Bd → µ+µ−) is enhanced in the yellow oasis but suppressed in the

green oasis.

• In the Z ′-case the behaviour is opposite: B(Bd → µ+µ−) is suppressed in the yellow

oasis but enhanced in the green oasis.

• For the choice of parameters NP effects are a bit larger in the A0 case.

Note that in both cases the requirement on SψKS and ∆Md forces B(Bd → µ+µ−) to

differ from the SM value. In the A0 case these enhancements and suppressions amount up

to ±70% for MH = 1 TeV. They increase with decreasing SψKS .

Note that because of the correlation between B(Bd → µ+µ−) and SψKS and the

fact that the latter is already well determined, the range of δ13 cannot be large and

consequently also the ranges for the phases δZ′ and δA0 are small allowing thereby the

identification of the right oasis by B(Bd → µ+µ−) only.

While the correlation between B(Bd → µ+µ−) and SψKS offers a distinction between

Z ′ and pseudoscalar scenario even more interesting in this respect is the correlation
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between B(Bd → µ+µ−) and Sdµ+µ− . We show this correlation in figure 12 (right panel).

Comparing this result with right panel of figure 8 in [1] we observe that in LHS2 these

two observables are correlated within A0 case but anticorrelated in the Z ′ scenario. Also

this behaviour follows directly from the phase structure of NP contributions in these two

cases. Measuring only the signs of shifts in these two observables relative to the SM values

will uniquely tell us which of these two NP scenarios could be at work and which not.

We next turn to LHS1 scenario for |Vub|. We observe that the phase δ13 is lower than

in the case of scenario S2 but s̃13 is basically the same. Using (8.5) we can again calculate

the phases of NP physics contributions to P . We find that now δZ′ is around 70◦ and 250◦

for yellow and green oases, respectively. Correspondingly δA0 is around −20◦ and 160◦.

We summarize the ranges of δZ′ and δA0 in table 6.

With this insight at hand we can easily understand the plots in the left panels in

figures 11 and 12 and analogous plots in the left panels of figures 7 and 8 in [1]. In

particular as seen in figure 12 there is a flip in sign of Sdµ+µ− when moving from LHS1 to

LHS2 while there is no qualitative change in the case of B(Bd → µ+µ−). The opposite

behaviour is found in the Z ′ case.

Therefore what distinguishes LHS1 from LHS2 in both NP scenarios is the sign of the

correlation between Sdµ+µ− and B(Bd → µ+µ−). In the A0 case a positive Sdµ+µ− implies

suppression of B(Bd → µ+µ−) in LHS1 but enhancement in LHS2. Note that this pattern

is independent of the sign of ∆̃µµ̄
P coupling as this coupling enters both observables. On

the other hand the flip of this sign would interchange colours in figures 11 and 12. As

seen in figures 7 and 8 in [1] in the Z ′-case the behaviour is opposite to the one found

in the A0 case: anti-correlation in LHS1 and correlation in LHS2 between Sdµ+µ− and

B(Bd → µ+µ−) in the A0 case is changed respectively to correlation and anti-correlation

in the Z ′-case. This means again that once we will know whether LHS1 or LHS2 is chosen

by nature the measurements of Sdµ+µ− and B(Bd → µ+µ−) will tell us which of the two

NP scenarios are favoured. However, we are aware of the fact that while the measurement

of Ssµ+µ− is extremely difficult, the measurement of Sdµ+µ− will require heroic efforts and

it may take decades to realize such a measurement.

We next move to consider the H0 case and show the results in this case in figures 13

and 14 that correspond to figures 11 and 12 in the A0 case, respectively. We observe the

following differences between A0 and H0 cases:

• As in the case of Bs → µ+µ− there is no dependence on the oasis considered and in

all plots in figures 13 and 14 B(Bd → µ+µ−) is always enhanced as opposed to the

A0 case where it could also be suppressed.

• The asymmetry Sdµ+µ− is negative and positive in LHS1 and LHS2, respectively, while

in the A0 case both signs were possible in LHS1 and LHS2.

In order to understand the signs of Sdµ+µ− in this case one should just use table 6 and

the relation (8.3) in the Bd system. Effectively these signs in figures 13 and 14 can be

obtained from the corresponding plots in figures 11 and 12 by simply removing the regions
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Figure 13. SψKS
versus B(Bd → µ+µ−) in H0 scenario for MH = 1 TeV in LHS1 (left) and LHS2

(right) in the yellow and green oases that overlap here. Red point: SM central value.

Figure 14. B(Bd → µµ̄) versus Sdµ+µ− in H0 case for MH = 1 TeV in LHS1 (left) and LHS2

(right) for the green and yellow oases (they overlap here) as discussed in the text. Red point: SM

central value.

with suppression of B(Bd → µ+µ−). Therefore the distinction between S and P will only

be easy if this branching ratio will turn out to be suppressed with respect to its SM value.

8.1.3 The U(2)3 limit

We have investigated how the results presented until now are modified when the flavour

U(2)3 symmetry [74–80] is imposed on the H couplings. As pointed out in [9] in this case

ϕBd = ϕBs which in turn implies not only the correlation between CP asymmetries SψKS
and Sψφ but also a triple SψKS − Sψφ − |Vub| correlation.

Usually, when considering the case of U(2)3 broken by the minimal set of spurions,

the MU(2)3 case, only SM operators are involved. Yet, as mentioned in [9] in the case

of 2HDMMFV [81] with flavour blind phases dominantly in the Higgs potential and the

dominance of scalar left-handed currents also the U(2)3 structure of scalar contributions

to FCNC transitions is obtained. Thus only the LHS1 and LHS2 scenarios are involved

in this case. In what follows we will confine our discussion to Bs and Bd systems as NP
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Figure 15. Ranges for ∆Ms (red region), Sψφ (blue region), ∆Md (green region) and SψKS

(yellow region)for MH = 1 TeV in LHS1 (left) and LHS2 (right) in the U(2)3 limit satisfying the

bounds in eq. (7.9) and (7.10). The overlap region of all four regions is shown in magenta in LHS1

and in cyan in LHS2.

effects in the K system are much less interesting in the NP scenarios considered in this

paper. General discussion can be found in [9].

Until now NP effects in the observables in Bd and Bs systems where uncorrelated but

now they are correlated with each other due to the relations:

s̃13

|Vtd|
=

s̃23

|Vts|
, δ13 − δ23 = β − βs. (8.6)

Thus, once the allowed oases in the Bd system are fixed, the oases in Bs system are

determined. Moreover, all observables in both systems are described by only one real

positive parameter and one phase, e.g. (s̃23, δ23).

We also have in this case [9]

Ssµ+µ− = Sdµ+µ− (8.7)

for which formulae in the H0 and A0 case can be found in subsection 4.5.

In figure 15 we combine figures 2 and 10 using the U(2)3 symmetry relations in (8.6).

In the U(2)3 limit the allowed oases get smaller. This decrease turns out to be not very

pronounced in the case of (s̃13, δ13) oases as they were already small as seen in figure 10

but has a significant impact on (s̃23, δ23) oases which where much larger as seen in figure 2.

Moreover the fact that the results in the Bd system depend on whether LHS1 or LHS2

is considered is now transfered through the relations in (8.6) into the Bs system. This is

clearly seen in figure 15, in particular the final oases in cyan in LHS2 are visibly smaller

than the magenta oases in LHS1 due to the required shift of SψKS .

Inspecting the ranges for the phases in the last four rows of table 6, which now apply

to both Bs and Bd systems and comparing them with the remaining rows of these tables
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Figure 16. B(Bd → µ+µ−) versus B(Bs → µ+µ−) for MH = 1 TeV in A0 case (left) and H0 case

(right) in the U(2)3 limit satisfying the bounds in eq. (7.9) and (7.10).

we can predict the impact of the imposition of U(2)3 symmetry on the results in both

systems presented so far:

• In the case of Bs system in which previously there was no distinction between LHS1

and LHS2 the changes are as follows. The plots in figures 4 and 5 still apply but

the allowed regions get smaller and some of them are valid only for LHS1 (magenta)

and other for LHS2 (cyan). We also note that the imposition of U(2)3 symmetry

favours regions away from the SM point.

• In the Bd system the plots in figures 11–14 have the same structure as previously

and as stated previously the effect of the imposition of U(2)3 symmetry is so small

that we do not show magenta and cyan areas in this case. They would cover almost

completely the yellow and green areas, respectively.

These expectations could be already made by comparing the right panel of figure 3

and figure 25 in [1] in the case of Z ′ scenario. Indeed also there the imposition of U(2)3

symmetry reduces the allowed ranges significantly in the Bs system and make a clear

distinction between LHS1 and LHS2 scenario which was absent previously. We see again

how important the determination of |Vub| is. Knowing future precise values of |Vub| as

well as Sψφ and B(Bs,d → µ+µ−) will confirm or rule out this scenario of NP. These

correlations are particular examples of the correlations in MU(2)3 models pointed out

in [9]. What is new here is that in a specific model considered by us the |Vub| − Sψφ
correlation has now also implications for B(Bs → µ+µ−) and Ssµµ.

In figure 16 we show B(Bd → µ+µ−) versus B(Bs → µ+µ−) for the A0 andH0 cases. As

expected on the basis of a general discussion in [9] there is a very strong correlation between

these two branching ratios. Again, while in the A0 case both branching ratios can be

enhanced or suppressed with respect to the SM, they can be only enhanced in the H0 case.
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8.2 The RHS1 and RHS2 scenarios

8.2.1 First observations

We will now investigate H scenario with exclusively RH couplings to quarks. Now in the

RHS1 and RHS2 scenarios only RH couplings to quarks are present in H contributions. As

QCD is parity conserving, the hadronic matrix elements for operators with RH currents

as well as QCD corrections remain unchanged. The expressions for ∆F = 2 observables in

RHS1 and RHS2 scenarios as well as the corresponding constraints have precisely the same

structure as in the LHS1 and LHS2 cases just discussed. Therefore the oases in the space of

parameters related to RH currents are precisely the same as in LHS1 and LHS2 scenarios,

except that the parameters s̃ij and δij parametrize now RH and not LH currents. Antici-

pating this result we have not introduced separate description of LH and RH oases. Yet, in

the case of ∆F = 1 observables several changes are present which allow in principle to dis-

tinguish the RHS1 and RHS2 scenarios from the corresponding LHS1 and LHS2 scenarios.

8.2.2 The Bs meson system

On the left in figures 4 and 5 we have shown Ssµ+µ− vs Sψφ in the LHS1 scenario for A0

and H0 cases, respectively. Analogous plots for the correlation of Sψφ vs B(Bs → µ+µ−)

in the LHS1 scenario are shown in figures 4 and 5. Inspecting the related formulae for

RHS scenario we conclude similarly to the Z ′ case that in the case of A0 these plots are

also valid for RHS1 scenario except that the colours should be interchanged. Therefore

on the basis of observables considered here it is not possible to distinguish between LHS1

and RHS1 scenarios because in the RHS1 scenario one can simply interchange the two

oases to obtain the same physical results as in LHS1 scenario. We also note that reversing

simultaneously the sign of ∆̃P would keep also the oases unchanged.

The situation is even simpler in the case of H0 case. As the plots in question did not

depend on oasis considered, the correlations in this case are identical in RHS1 and LHS1

independently of oasis considered.

Clearly as in the LHS1 scenario this result represents a test of the RHS1 scenario but

if one day we will have precise measurements of Ssµ+µ− , Sψφ and B(Bs → µ+µ−) we will

still not be able to distinguish for instance whether we deal with LHS1 scenario in the

blue oasis or RHS1 scenario in purple oasis.

In principle, one could make a distinction between LHS and RHS scenarios by

considering model independent bounds from B → Kµ+µ− and B → K∗µ+µ− on the

Wilson coefficients of the scalar operators. However, as discussed in subsection 8.5, this

is presently not the case. This should be contrasted with Z ′ analysis in [1] where in fact

such a distinction could be made.

8.2.3 The Bd meson system

Similarly to the Bs case the structure of oases is as in figure 10. Moreover, the results in

in figures 11–14 are valid for RHS1 and RHS2 scenarios except that in the A0 case the

colours should be interchanged, while there is no modification in the H0 case. Thus we

cannot distinguish between LHS and RHS scenarios on the basis of considered observables.
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Clearly the study of b → dµ+µ̄− transitions could help in this context but they are more

challenging both theoretically and experimentally.

8.3 The LRS1 and LRS2 scenarios

8.3.1 First observations

If both LH and RH currents are present in NP contributions, the pattern of flavour violation

can differ from the scenarios considered until now in a profound manner. If the LH and

RH couplings differ from each other, the number of parameters increases and it is harder to

get clear cut conclusions without some underlying fundamental theory. On the other hand

some of the “symmetries” between LHS and RHS scenarios identified above are broken and

the effect of RH currents in certain cases could in principle be better visible.

Here in order to keep the same number of parameters as in previous scenarios we will

assume a left-right symmetry in the H-couplings to quarks. That is the LH couplings ∆L

are equal in magnitudes and phases to the corresponding RH couplings ∆R. In this manner

we can also keep the same parametrization of couplings as in previous scenarios.

Before entering the details let us emphasize two new features relative to the cases in

which either LH or RH couplings in NP contributions were present:

• NP contributions to ∆F = 2 observables receive now new LR operators, whose

contributions are enhanced through renormalization group effects relative to SM

operators, however as scalar LL and RR operators are also enhanced by such effects

the difference between LL (RR) scenarios and LR scenario in the scalar case is much

smaller than in the Z ′ case.

• NP contributions to Bd,s → µ+µ− and KL → µ+µ− vanish eliminating in this

manner Ss,d
µ+µ− and B(Bs,d → µ+µ−) as basic observables in the identification of

acceptable oases. On the other hand B → K∗µ+µ− and B → Kµ+µ− receive still

NP contributions and can help in this context.

While Ss,d
µ+µ− cannot help in the identification of the optimal oasis in the LR scenarios

they are non-vanishing:

Sq
µ+µ− = − sin(2ϕBq). (8.8)

While rather small they offer a clean test of the LR scenarios.

8.3.2 The Bs meson system

We begin the search for the oases with the Bs system proceeding with input parameters as

in the previous scenarios. The result of this search for MH = 1 TeV is shown in figure 17,

where we show the allowed ranges for (s̃23, δ23). The red regions correspond to the allowed

ranges for ∆Ms, while the blue ones to the corresponding ranges for Sψφ. The overlap

between red and blue regions identifies the oases we were looking for.

The notations are as in previous cases but it should be kept in mind that the

parameters (s̃23, δ23) describe both LH and RH couplings.

In order to understand the structure of oases in figure 17, that differs from the ones

found so far, we note that the matrix element of the dominant QLR
2 operator has the sign
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Figure 17. Ranges for ∆Ms (red region) and Sψφ (blue region) for MH = 1 TeV in LRS1 satisfying

the bounds in eq. (7.9).

opposite to the dominant QSLL
1 operator. Therefore, this operator naturally suppresses

∆Ms with the phase δ23 centered in the ballpark of 0◦ and 180◦, that is shifted down by

roughly 90◦ relatively to the LHS scenarios. As the matrix element of QLR
2 is larger than

that of QSLL
1 operator in LHS and RHS scenarios, s̃23 has to be sufficiently smaller to

agree with data.

The crucial role in the Bs meson system in this scenario, in the absence of NP

contributions to Bs,d → µ+µ− decays, is now played by B → K∗µ+µ− and B → Kµ+µ−.

We will discuss the latter decays at the end of this section.

8.3.3 The Bd meson system

The structure of oases in this case is given in figure 18. As we do not have B(Bd → µ+µ−)

to our disposal and b → d`+`− decays are challenging this system is not very useful to

provide tests of LRS scenarios without some fundamental theory.

Due to the sign of the matrix element of the dominant QLR
2 operator in both LRS1

and LRS2 the mass difference ∆Md is naturally suppressed. The requested size of this

suppression together with significant suppression of SψKS in LRS2 and slight enhancement

of it in LRS1 governs the structure of the phases.

8.4 The ALRS1 and ALRS2 scenarios

We include this case as well because it has not been discussed in the literature but it is an

interesting NP scenario for the following reasons:

• NP contributions to ∆F = 2 observables are dominated as in LRS scenarios by new

LR operators but as the sign of LR interference is flipped some differences arise.
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Figure 18. Ranges for ∆Md (red region) and SψKS
(blue region) for MH = 1 TeV in LRS1 (left)

and LRS2 (right) satisfying the bounds in eq. (7.10).

• NP contributions to Bd,s → µ+µ− enter again with full power. Therefore these

decays together with Sq
µ+µ− offer as in the LHS and RHS scenarios some help

in the identification of acceptable oases and to study differences between scalars,

pseudoscalars and Z ′ bosons.

• The phase structure of the oases is as in LHS scenario but due to enhanced hadronic

matrix elements of LR operators the mixing parameters s̃ij are decreased.

• NP contributions to KL → π0`+`− vanish in this scenario.

In view of this simple structure of modifications with respect to LHS scenario, all

plots have the same structure as LH scenarios but NP effects are smaller. Therefore we

will not show these plots.

8.5 Implications of b→ s`+`− constraints

Presently the NP effects found by us are consistent with the experimental data on

Bs,d → µ+µ−. However, also the data on B → Xs`
+`−, B → K∗`+`− and B → K`+`−

recently improved a lot and it is of interest to see whether this has an impact on our results.

It should be emphasized that B → Xs`
+`−, B → K∗`+`− are not as theoretically clean as

Bs → µ+µ− because of the presence of form factors. However in the case of B → K`+`−

progress in lattice calculations of the relevant form factors is expected soon and as stressed

in particular in [16] a simultaneous consideration of this decay together with Bs → µ+µ−

provides useful tests of extensions of the SM. Indeed, while Bs → µ+µ− is sensitive only

to the differences CP −C ′P and CS −C ′S , the decay B → K`+`− is sensitive to their sums

CP +C ′P and CS+C ′S . A very extensive model independent analysis of CP (C ′P ) and CS(C ′S)
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in the context of the data on Bs → µ+µ− and B → K`+`− has been performed in [16]. Ad-

justing their normalization of Wilson coefficients to ours the final result of this paper reads:

mb|C
(′)
S | ≤ 0.7, mb|C

(′)
P | ≤ 1.0, (8.9)

which implies

∣∣∣∣∣
1

g2
SM sin2 θW

1

M2
H

∆sb
L,R(H)∆µµ̄

S (H)

V ∗tsVtb

∣∣∣∣∣ ≤ 0.70 (8.10)

∣∣∣∣∣
1

g2
SM sin2 θW

1

M2
H

∆sb
L,R(H)∆µµ̄

P (H)

V ∗tsVtb

∣∣∣∣∣ ≤ 1.0 (8.11)

or equivalently for MH = 1 TeV

|s̃23∆µµ̄
S (H)| ≤ 0.00115, (8.12)

|s̃23∆µµ̄
P (H)| ≤ 0.00164. (8.13)

The largest values of s̃23 used in our analysis are 0.0041 in LHS and RHS scenarios

with smaller values for LR and ALR scenarios. We find then 0.0001 and 0.00005 for the

two products respectively. Therefore, these bounds do not have any impact on our results.

9 The K meson system

As we already stated previously we do not expect any visible effects in K+ → π+νν̄ and

KL → π0νν̄ and our discussion will concentrate on εK , KL → µ+µ− and KL → π0`+`−.

As seen in (7.11) the constraints from ∆F = 2 observables are weaker than in previous

cases. Yet as seen in figure 19, obtained within LHS1 and LHS2 scenarios, it is possible

to identify the allowed oases. These plots have the same phase structure as the plot in

figure 9 of [1] for Z ′ scenario except that s̃12 is by a factor of five smaller because of the

enhanced matrix element of the relevant scalar operator.

Due to weaker constraints in the K system the oases are rather large. We have two

oases in S1:

C1(S1) : 0◦ ≤ δ12 ≤ 90◦, C2(S1) : 180◦ ≤ δ12 ≤ 270◦ (9.1)

and only one oasis in S2:

C1(S2) : 0◦ ≤ δ12 ≤ 360◦. (9.2)

With these constraints at hand we have calculated the branching ratios for KL → µ+µ−

and KL → π0`+`− decays. We can summarize our results as follows:

• NP effects in KL → π0e+e− are totally negligible both for H0 and A0 cases.

• NP effects in KL → π0µ+µ− are larger but amount to at most ±5% at the level of the

branching ratio which is also negligibly small in view of large theoretical uncertainties.
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Figure 19. Ranges for ∆MK (red region) and εK (blue region) (LHS1: left, LHS2: right) for

MH = 1 TeV satisfying the bounds in eq. (7.11).

Figure 20. B(KL → π0µ+µ−) versus B(KL → µ+µ−) for P scenario and LHS1 (left), LHS2

(right). Red point: SM central value.

• The short distance branching ratio for KL → µ+µ− can a be modified up to ±50%

in the A0 case. Still such effects are fully consistent with the upper bound on this

branching ratio. NP effects in the H0 case are much smaller.

These results are rather disappointing but allow to distinguish scenarios discussed here

from Z ′ scenario, where effects have been found to be larger. As an example we show in fig-

ure 20 the correlation between B(KL → π0µ+µ−) and B(KL → µ+µ−) in LHS1 and LHS2.

The effects in other scenarios are rather uninteresting as well and we will not present

any results for rare K decays in them.

However, it is of interest to see how the oases change in the presence of LR operators.

This we show in figure 21. Due to the presence of LR operators the structure of oases

is different than in LHS1 and LHS2 scenarios. While the shape of the single oasis in the
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Figure 21. Ranges for ∆MK (red region) and εK (LRS1: left, LRS2: right) for MH = 1 TeV

satisfying the bounds in eq. (7.11).

LRS2 case is similar to the LHS2, for LRS1 the oases are shifted by 90◦:

C1(S1) : 90◦ ≤ δ12 ≤ 180◦, C2(S1) : 270◦ ≤ δ12 ≤ 360◦. (9.3)

NP effects in KL → µ+µ− vanish in these scenarios and in KL → π0`+`− they are

negligible. Therefore we do not show any plots.

Concerning NP contributions to K → πνν̄ decays all scalar scenarios could turn out

one day to be interesting if the data on observables in Bs and Bd systems will show the

presence of NP but negligible NP effects in K → πνν̄.

10 Flavour violating SM H boson

We will next turn our attention to flavour violating couplings of the SM Higgs (h) that can

be generated in the presence of other scalar particles and or new heavy vectorial fermions

with +2/3 and −1/3 electric charges. In the case considered by us, new quarks with

−1/3 charges are essential for generating flavour violating couplings to SM down-quarks

but the presence of heavy quarks with +2/3 charges could be relevant for charm physics.

Moreover, such heavy fermions could contribute to rare K and B decays through loop

diagrams. In what follows we will not consider these loop contributions as they would

lead us beyond the scope of our paper.

The strategy and formalism developed in the previous sections can be used in a

straightforward manner for the case of h flavour-violating couplings to quarks. Using the

general relations of section 6 one then finds that these couplings have to be significantly

smaller, by roughly an order of magnitude relatively to the corresponding couplings of a

heavy scalar with a mass in the ballpark of 1 TeV. Still the presence of such contributions

can remove all possible tensions within the SM in ∆F = 2 transitions without being in
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Figure 22. Sψφ versus B(Bs → µ+µ−), Ssµ+µ− versus Sψφ and Aλ∆Γ versus Sψφ for scalar h0 case

with Mh = 125 GeV in LHS1. The two oases (blue and purple) overlap. Red point: SM central

value.

conflict with constraints from rare decays, where the SM Higgs contributions, in spite of

a low Higgs mass, turn out to be small.

The reason for the smallness of SM Higgs contributions to rare decays originates

from the smallness of scalar Higgs coupling to µ+µ− with ∆µµ
S (h) = 1.2 × 10−3. It is

roughly a factor of 25 smaller than the largest scalar coupling allowed by Bs → µ+µ− for

a scalar with MH = 1 TeV. As the correlations between ∆F = 2 and ∆F = 1 transitions

in section 6 show, this smallness of the muon couplings of SM Higgs can be compensated

partly by the smallness of its mass. But it turns out that this compensation is insufficient

to make the SM Higgs contributions to rare Bd and K decays relevant. We recall that

these contributions do not interfere with the SM contribution from Z-penguins and box

diagrams and are suppressed by the square of ∆µµ
S (h).

On the other hand small but visible effects in Bs → µ+µ− decay are still possible. We

illustrate this in figures 22 which have been obtained using the technology developed for

heavy scalars. We note that B(Bs → µ+µ−) can be enhanced up to 8% and |Ssµ+µ− | can

be as large as 0.3 but only for the maximal allowed values of Sψφ.

11 Summary and conclusions

In this paper we exhibited the pattern of flavour violation in models in which NP effects

are dominated by tree-level heavy pseudoscalar (A) or scalar (H) exchanges under the
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assumption that the theoretical and experimental errors on various input parameters will

decrease with time. In particular we have identified a number of correlations between

∆F = 2 and ∆F = 1 processes that will enable in due time to test this NP scenario. Our

detailed analysis of these correlations in section 8 shows that in the Bs and Bd systems a

very rich pattern of NP effects is present while this is not the case in K decays. This is

partly opposite to Z ′ and Z scenarios considered in [1] where the largest effects have been

found in the K system, even for masses of MZ′ outside the LHC reach.

Our results are summarized in a number of plots that have been obtained in various

scenarios for the H couplings and for inclusive and exclusive values of |Vub|. We list here

only few highlights:

• For each scenario we have identified allowed oases in the parameter space of the

model. In each oasis particular structure of correlations between various observables

will in the future either favour or exclude a given oasis.

• For the near future the correlations involving SψKS , Sψφ and B(Bd → µ+µ−) and

B(Bs → µ+µ−) will be the most interesting as the data on these four observables

will be improved in the coming years, sharpening the outcome of our analysis and

possibly ruling out some oases and scenarios of the couplings.

• Most importantly we have found that various correlations involving Sψφ, B(Bs →
µ+µ−) and the CP asymmetry Ssµ+µ− show profound differences between the sce-

nario with a pseudoscalar tree-level exchange and Z ′ exchange. As we explained

in detail, these differences are directly related to the difference in the fundamental

properties of the particles involved: their spin and CP-parity. As far as the last

property is concerned also differences between the implications of the pseudoscalar

and scalar exchanges have been identified. In particular the scalar contributions can

only enhance B(Bs → µ+µ−) and are invariant under the interchange of two oases

in parameter space involved, which is not the case of pseudoscalar exchanges where

the branching ratio can also be suppressed. The symphony of plots in subsection 8.1,

where the most important results of our paper are shown will be helpful in monitoring

further developments in the measurements of the observables in question.

• Analogous comments apply to the correlations involving SψKS , B(Bd → µ+µ−) and

the CP asymmetry Sdµ+µ− for which the symphony of plots, also presented in subsec-

tion 8.1, is doubled in view of the dependence on the value of |Vub|.

• We have demonstrated that the imposition of U(2)3 symmetry on pseudoscalar and

scalar quark couplings has a profound impact on the correlations in the Bs system

with much smaller effects in the Bd system.

• We have also pointed out additional differences between Z ′ and pseudoscalar or

scalar tree-level contributions related to channels with neutrinos in the final state,

where in the Z ′ case these contributions could be very large but are expected to be

negligible in NP scenarios considered here.
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Figure 23. Overlay of the correlations for Ssµµ versus Sψφ (top left), Aµµ∆Γ versus Sψφ (top right)

and Sψφ versus B(Bs → µ+µ−) (bottom) for tree level scalar (cyan), pseudoscalar (red) and Z ′

(blue) exchange (both oases in same colour respectively) in LHS. The lepton couplings are varied

in the ranges |∆µµ
S,P (H)| ∈ [0.012, 0.024] and ∆µµ

A (Z ′) ∈ [0.3, 0.7].

• Our short analysis of flavour-violating SM Higgs-couplings shows that in the case

of rare Bd and K decays, the SM Higgs contributions are irrelevant due to the

smallness of the Higgs coupling to muons after corresponding constraints from

∆F = 2 transitions have been taken into account. However, small but visible effects

in Bs → µ+µ− are still allowed. On the other hand such contributions could in

principle remove all tensions within ∆F = 2 observables observed within the SM.

We close our paper by figure 23 in which we show the correlations involving Ssµµ,

Sψφ and B(Bs → µ+µ−) combining information of figure 8 for the tree-level scalar and

pseudoscalar exchange and include also tree-level Z ′ exchange. The lepton couplings are not

fixed but varied in the following ranges: |∆µµ
S,P (H)| ∈ [0.012, 0.024] and ∆µµ

A (Z ′) ∈ [0.3, 0.7].

Further we do not distinguish between the two different oases here. In the Z ′ case we also

take into account the bounds from b → s`+`− transitions from [8]. The patterns already

identified previously and summarized above are clearly visible in these plots.

We are aware of the fact that some of the correlations presented by us would be washed

out if we included all existing uncertainties. Yet, our simplified numerical analysis had as

the main goal to illustrate how the decrease of theoretical, parametric and experimental
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uncertainties in the coming years might allow to exhibit certain features of NP, even if de-

viations from the SM will be only moderate. In this manner we have uncovered a world of

correlations present in NP scenarios, where new effects are dominated by flavour-violating

couplings of a heavy neutral pseudoscalar and scalar. In fact, within the coming years the

size of the assumed uncertainties in our analysis could likely become reality not only because

of improved experimental data but also improvements in theory, in particular lattice calcu-

lations of hadronic matrix elements, Bi parameters, form factors and weak decay constants.

We are looking forward to improved experimental data and improved lattice calcu-

lations. The correlations identified in this paper will allow to monitor how simple NP

scenarios discussed by us face the future precision flavour data.
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