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1 Introduction

The question of the vacuum states of string theory has been an outstanding problem in the

field since its founding days. Those vacua which could describe our world are of particular

interest. Apart from a standard model sector including the corresponding gauge groups

and matter in the right representations of these gauge groups, such vacua should have a

positive vacuum energy that is extremely small in terms of the natural scale of gravity, the

Planck/string scale [1–3]. In addition, one may wish for 4D N = 1 supersymmetry for its

power to keep control over quantum corrections to the theory above the supersymmetry

breaking/electroweak scale. There has been remarkable progress in the construction of

such de Sitter (dS) vacua with stabilized geometric moduli in the past years [4–6]. The

moduli are 4D massless scalar fields parameterizing the geometric deformation modes of

the compact six-dimensional spaces all viable Kaluza-Klein type vacua of string theory

need to describe our effectively four-dimensional reality.

A corner of the string theory landscape where moduli stabilization can be addressed

very explicitly is type IIB compactified on orientifolded Calabi-Yau threefolds. The four-

dimensional effective action of the geometric moduli is given by an N = 1 theory of a set

of chiral multiplets consisting of the axio-dilaton, h1,1 Kähler moduli, and h2,1 complex

structure moduli [7]. Recent years saw a progress for the stabilization of the dilaton and

the complex structure moduli from the use of quantized fluxes of three form field strength
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of the Ramond-Ramond and Neveu-Schwarz sector of type IIB string theory [5]. The flux

stabilization procedure operates supersymmetrically at a high scale. The Kähler moduli

are flat directions at tree level, i.e. they do not obtain a scalar potential due to the no-scale

structure of type IIB compactified on Calabi-Yau [8, 9]. We can use the breaking of this

no-scale structure by non-perturbative [6] and perturbative [10, 11] effects to stabilize the

Kähler moduli at a parametrically lower scale than the complex structure moduli. This

stabilization produces an AdS vacuum with unbroken supersymmetry [6], an AdS vacuum

with spontaneously broken supersymmetry with an exponentially large volume [12, 13] or

directly in a dS vacuum with spontaneously broken supersymmetry [14, 15].

If the stabilization of the geometric moduli does not directly lead to a dS vacuum, an

additional uplifting sector has to be added. The uplifting may arise for instance by anti

D3 branes [6], D-terms [16–18], F-terms from matter fields [19], metastable vacua in gauge

theories [20] or dilaton dependent non-perturbative effects [21]. Concerning the smallness

of the cosmological constant, statistical arguments show that due to the enormous amount

of possible flux configurations there is an exponential abundance of isolated potential dS

vacua [22–24]. For a sufficiently large number of complex structure moduli h2,1 (typi-

cally O(100)) the number of flux vacua and, in turn, also the number of dS vacua scaling

like eO(1)h2,1
is large enough to produce vacuum energies with average spacing . 10−120.

This enables the flux vacuum landscape in string theory in principle to accommodate the

observed vacuum energy of our Universe.

In this paper, we study the flux vacua of a particular Calabi-Yau: the degree 18 hy-

persurface in a 4 complex dimensional projective space, i.e. X3 ≡ CP4
11169[18] in the large

complex structure limit. This manifold is the standard working example of both the large

volume scenario (LVS) [12, 13] and the Kähler uplifting scenario [14, 15] and its geometric

properties have been worked out in great detail in [25]. It has h1,1 = 2 Kähler moduli

and h2,1 = 272 complex structure moduli. We switch on flux along six three-cycles that

correspond to two complex structure moduli that are invariant under a certain discrete sym-

metry that can be used to construct the mirror manifold [26]. For this purpose we review

a known argument that a supersymmetric vacuum in these two complex structure moduli

corresponds to a supersymmetric vacuum of all 272 complex structure moduli [27, 28].

For an explicit construction of the flux vacua we use the fact that the prepotential G of

the two complex structure moduli space has been worked out in [25] in the large complex

structure limit. We apply two computational methods to find flux vacua on this manifold:

• The polynomial homotopy continuation method [29] allows us to find all stationary

points of the polynomial equations that characterize the supersymmetric vacuum so-

lutions. The fluxes fi ∈ Z appear as parameters in these equations and are restricted

by the D3 tadpole L which depends on the chosen brane and gauge flux configuration

imposed on the manifold. Since the restriction is of the form
∑
f2
i ≤ L this method

allows us to explicitly construct for the first time all flux vacua in the large complex

structure limit that are consistent with a given D3 tadpole L by applying the poly-

nomial homotopy continuation method at each point in flux parameter space. This

method has the attractive feature to be highly parallelizable.
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• The minimal flux method [28] finds flux parameters that are consistent with a given

D3 tadpole L for a given set of vacuum expectation values (VEVs) of the complex

structure moduli. Hence it is in a sense complementary to the polynomial homotopy

continuation method where the role of parameters and solutions is exchanged with

respect to this method. However, it is not possible to find all flux vacua for a given

tadpole L with this method.

The obtained solution space of flux vacua is analyzed for several physically interest-

ing properties. For the polynomial homotopy continuation method, we find that for the

∼ 50, 000 flux choices contained in our maximum D3-brane tadpole L = 34 of our scan

there are ∼ 20, 000 solutions in the large complex structure limit. We find a preference

of strongly coupled vacua gs & 1 and preference for values of O(101 − 103) for the flux

superpotential W0. The number of vacua is

Nvac ' (0.50± 0.04)L2.94±0.03 , (1.1)

compared to ∼ 0.03L3 expected form statistical analysis [24, 30]. The gravitino mass is

typically m2
3/2 = O(10−3) · (100

V )2M2
P and the masses of the complex structure moduli and

the dilaton scale like O(10−3−102) ·(100
V )2M2

P, where V is the Volume of X3 in string units.

The average spacing of the flux superpotential in our solution set can be used to

estimate the available fine-tuning ∆Λ/Λ of the cosmological constant Λ as

∆Λ

Λ
' (6.0± 0.3)L−(0.95±0.005) (h2,1

eff +1) , (1.2)

where h2,1
eff is the number of complex structure moduli with non-zero flux on the corre-

sponding three-cycles. Eq. (1.2) is obtained as a fit for L ≤ 34 and h2,1
eff = 2. It can

be used to estimate the available fine-tuning of the cosmological constant to for instance

∆Λ/Λ ∼ 10−102 for L = 500 and h2,1
eff = 40. These are typical values for Calabi-Yau mani-

folds that are hypersurfaces in toric varieties with D7 branes and O7 planes introduced to

stabilize the Kähler moduli and break supersymmetry. The explicit brane and gauge flux

construction in [15] allows us to answer the question how many of theses supersymmetric

flux vacua allow an uplift to dS via Kähler uplifting. Depending on the available values for

the one-loop determinant from gaugino condensation used to stabilize the Kähler moduli

in this setup, we find that for a fraction of about 10−4 of all flux vacua up to a given

D3-brane tadpole this mechanism can be applied to obtain a dS vacuum.

For the minimal flux method, we find ∼ 1000 flux vacua with L < 500 out of ∼ 107 pa-

rameter points of our scan. This method allows us to control the region in W0 and moduli

space where we are intending to find flux vacua. Hence, we more easily access the regions

of weak string coupling and the large complex structure limit compared to the polynomial

homotopy continuation method. For this much smaller set of flux vacua constructed with

the minimal flux method, the fraction of Kähler uplifted dS minima is about 10%. This is a

considerably higher fraction of vacua compared to the polynomial homotopy continuation

method which is due to the fact that the minimal flux method naturally finds values for

W0 in a region where Kähler uplifting is applicable.
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Our results are complementary to statistical analysis by [24, 30].1 The uniform dis-

tribution of physical quantities as for instance the gravitino mass and the vacuum energy

density in the landscape has recently been questioned in general [34–36] and in the context

of Kähler uplifting [37–39]. Hence, our results present an important check of the general

results found in [24, 30] on a very realistic examples X3, especially since we are able to

construct the complete solution space of flux vacua for a given tadpole L.

In section 2, we review the effective 4d, N = 1 description of the complex structure

moduli and the dilaton as well as the reduction of the full moduli space to two complex

structure moduli. The scans for flux vacua with the polynomial homotopy continuation

method and the minimal flux method are presented in section 3 respectively section 4. We

conclude in section 5.

2 The complex structure of CP4
11169[18]

The effective 4d, N = 1 description of the moduli space of the h2,1 = 272 complex structure

moduli of X3 is given by the Kähler potential K and superpotential W0 of the theory.2 We

choose a symplectic basis {Aa, Bb} for the b3 = 2h2,1 + 2 three-cycles∫
Aa

αb =

∫
X3

αb ∧ βa = δba ,

∫
Bb
βa =

∫
X3

βa ∧ αb = −δba , (2.1)

where {αb, βa} are the Poincaré dual cohomology elements to the three-cycles and a, b =

0, . . . , h2,1.

Having chosen a symplectic basis for the three-cycles, this defines a choice of coordi-

nates ωa on complex structure moduli space via the period integrals over the holomorphic

three-form Ω via

ωa =

∫
Aa

Ω , Gb =

∫
Bb

Ω . (2.2)

Note, that there are h2,1 + 1 coordinates ω0, . . . , ωh2,1 even though there are only h2,1 com-

plex structure moduli. This is because ω0 refers to the normalization of the holomorphic

three-form Ω. The complex structure moduli can be defined via Ua ≡ νa + i ua = ωa/ω0

for a = 1, . . . , h2,1. The period vector Π(ωa) = (Gb, ωa) is inherited from a holomorphic

function G(ωa) of degree two in the ωa known as the prepotential via Gb = ∂bG of the

underlying N = 2 Calabi-Yau compactification.

The Kähler potential of the complex structure moduli Ua and the dilaton τ = σ + i s

can then be written as

Kcs = − log

(
−i
∫
X3

Ω(Ua) ∧ Ω̄(Ūa)

)
− log (−i(τ − τ̄)) ,

= − log
(
i(ω̄aGa − ωaḠa)

)
− log (−i(τ − τ̄)) ,

= − log
(
−iΠ† · Σ ·Π

)
− log (−i(τ − τ̄)) ,

(2.3)

1For explicitly constructed vacua on two different two parameter models in the vicinity of the Landau-

Ginzburg respectively conifold point see [31]. For a study of flux vacua of X3 in the context of accidental

inflation [32] see [33].
2For recent reviews see [40–42].
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where in the third line of eq. (2.3) we have introduced the symplectic matrix

Σ =

(
0 1

−1 0

)
, (2.4)

and used the intersection formula∫
X3

X ∧ Y =
h2,1∑
a=0

(∫
Aa

X

∫
Ba
Y −

∫
Aa

Y

∫
Ba
X

)
, (2.5)

for general three-forms X and Y .

The Gukov-Vafa-Witten flux superpotential is determined by the RR and NS flux F3

and H3 via [43]

W0 =
1

2π

∫
X3

(F3 − τH3) ∧ Ω(Ua) . (2.6)

Due to the quantization of the three-form flux

1

(2π)2α′

∫
Aa

F3 = f1a ∈ Z ,
1

(2π)2α′

∫
Ba
F3 = f2a ∈ Z ,

1

(2π)2α′

∫
Aa

H3 = h1a ∈ Z ,
1

(2π)2α′

∫
Ba
H3 = h2a ∈ Z ,

(2.7)

eq. (2.6) can be written as

W0 = 2π [(f1a − τ h1a)Ga − (f2a − τ h2a)Ua] , (2.8)

where we have set α′ = 1 and used again eq. (2.5) and the definition of the periods eq. (2.2).

The D3-tadpole induced by turning on RR and NS flux is given by

L =
1

(2π)4(α′)2

∫
X3

H3 ∧ F3 = h · Σ · f = h1f2 − h2f1 . (2.9)

The N = 1 supergravity scalar potential is given as

V = eK
(
Kαβ̄DαWDβW − 3|W |2

)
, (2.10)

where K = Kcs +Kk and

Kk = −2 logV , (2.11)

is the Kähler potential of the Kähler moduli up to corrections in α′ and gs with V the

volume of the Calabi-Yau X3. The indices α and β in eq. (2.10) run over the dilaton, the

h2,1 complex structure moduli and the h1,1 Kähler moduli. At tree-level, eq. (2.10) obeys

a no-scale structure [8, 9] in the Kähler sector:

Ki̄DiWDjW = 3|W |2 , for i, j = 1, . . . , h1,1 , (2.12)

such that

V = eKKcd̄DcWDdW , (2.13)
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where the indices c and d run over the moduli τ and Ua. The no-scale structure eq. (2.12)

is broken by α′ corrections [10] and string loop corrections [11] in K, as well as non-

perturbative corrections to the superpotential and K. However, these corrections are para-

metrically small in every moduli stabilization scenario where the overall volume of X3 is

large. Hence, the scalar potential for the dilaton and complex structure moduli eq. (2.13)

is positive semi-definite in this limit and a supersymmetric extremum given by a solution

to the system of equations

DτW = 0 and DUaW = 0 , for a = 1, . . . , h2,1 , (2.14)

will always be a minimum, i.e. all eigenvalues of the second derivative matrix Vab are

positive [13].

Note that due to the appearance of the symplectic matrix, the tadpole eq. (2.9) is at

first not positive definite. However, as has been discussed in [5, 24], imposing the super-

symmetry conditions DaW = 0 results in G3 = F3− τ H3 being imaginary self-dual (ISD).

Since the ISD component of G3 always results in positive semi-definite contributions to

the tadpole while the anti-ISD component of G3 always yields negative semi-definite con-

tributions, a supersymmetric point always has L ≥ 0. This can be seen nicely if the ISD

condition is displayed as [44]

∗6 sH3 = −(F3 − σH3) , (2.15)

i.e. only h2,1 + 1 of the original 2h2,1 + 2 fluxes are independent once the ISD condition is

invoked and

L ∼
∫
X3

H3 ∧ F3 ∼
∫
X3

H3 ∧ ∗6H3 ∼
∫
X3

√
g̃|H3|2 > 0 , (2.16)

where we have used eq. (2.15).

The type IIB ten dimensional effective supergravity Lagrangian is invariant under

SL(2,Z) transformations

τ → aτ + b

cτ + d
with a, b, c, d ∈ Z and ad− bc = 1 ,(

H3

F3

)
→

(
d c

b a

)
·

(
H3

F3

)
,

(2.17)

which implies

G3 →
G3

cτ + d
. (2.18)

As is easily verified, these transformations also leave the D3 tadpole eq. (2.9) invariant.

When determining the solution space of flux vacua of X3 we have to make sure to consider

only inequivalent vacua under the transformations eq. (2.17).

2.1 Effective reduction of the moduli space

Consider the two parameter ψ, φ-family of threefolds CP4
11169[18] given by the vanishing of

the polynomials

x18
1 + x18

2 + x18
3 + x3

4 + x2
5 − 18ψx1x2x3x4x5 − 3φx6

1x
6
2x

6
3 , (2.19)

– 6 –



J
H
E
P
0
6
(
2
0
1
3
)
1
1
0

i.e. all except two of the 272 complex structure moduli which correspond to monomials in

the general degree 18 Calabi-Yau hypersurface equation have been set to zero. As was dis-

cussed in [25], eq. (2.19) is invariant under a global Γ = Z6×Z18 symmetry. This symmetry

is used in the Greene-Plesser construction [26] to construct the mirror Calabi-Yau which

in this case has h1,1 = 272 and h2,1 = 2. Furthermore, the moduli ψ and φ in eq. (2.19)

describe the two complex structure moduli of this mirror manifold. As was pointed out

in [45], the periods of the mirror agree with those of CP4
11169[18] at the Γ symmetric point.

Also, [45] shows that the complete set of h2,1 complex structure moduli can be divided into

a Γ-invariant subspace and its complement. The moduli with trivial transformation are

exactly those that do not vanish at the Γ symmetric point, in this case ψ and φ.

To make use of the agreement of the prepotential for the complex structure sector of

CP4
11169[18] and its mirror in the large complex structure limit, it is useful to introduce the

complex coordinates U1 and U2 that are related to ψ and φ as [25]

X1 = − 1

q1

(
1 + 312q1 + 2q2 + 10260q2

1 − 540q1q2 − q2
2

− 901120q3
1 + 120420q2

1q2 + 20q3
2 + . . .

)
,

X2 = − 1

q2

(
1 + 180q1 − 6q2 + 11610q2

1 + 180q1q2 + 27q2
2

+ 514680q3
1 − 150120q2

1q2 − 5040q1q
2
2 − 164q3

2 + . . .
)
,

(2.20)

up to third order in the qj ≡ e2π iUj with the large complex structure coordinates

X1 =
(18ψ)6

3φ
and X2 = (3φ)3 . (2.21)

The large complex structure limit corresponds to Xj →∞ which is equivalent to Im(Uj)→
∞ as can be seen from eq. (2.20).

There are two conifold singularities given by the equations [25]

CF1 : (26244ψ6 + φ)3 = 1 ⇔ X2

27

(
X1

432
+ 1

)3

= 1 ,

CF2 : φ3 = 1 ⇔ X2

27
= 1 .

(2.22)

Let us come back to the problem of finding supersymmetric extrema by solving

eq. (2.14). As was noted in [28, 46], to find an extremum it is sufficient to turn on fluxes

only along the six Γ-invariant three-cycles, i.e.

f = (f11 , f12 , f13 , f21 , f22 , f23 , 0, . . . , 0) and h = (h11 , h12 , h13 , h21 , h22 , h23 , 0, . . . , 0) ,

(2.23)

having set to zero all the components along the b3 − 6 non-invariant three-cycles. It is

then possible to achieve DaW = 0 for all 272 complex structure moduli,3 and hence to

3Note that orientifolding will project out some of the 272 complex structure moduli. Since the exact

number of projected out directions depends on the position of the O-plane we stick to the upper bound of

272 for a general treatment.
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find a minimum of the positive definite tree-level no-scale scalar potential eq. (2.13). This

is due to the fact that, for this Γ invariant flux, the symmetry Γ is realized at the level of

the four-dimensional effective action. Note that the restriction to flux on the Γ invariant

cycles is purely for simplicity, as the analysis of the complete 272 dimensional complex

structure moduli space is practically extremely challenging.

Let us explain in more detail why the flux vector in eq. (2.23) generically provides

a stable minimum of all 272 complex structure moduli [28, 46]. We first consider

DŨa
W0 = 0, where Ũa for a = 3, . . . , 272 denote the non-trivially transforming moduli

under Γ = Z6 × Z18. In the large complex structure limit, the prepotential G is a

polynomial function of all h2,1 complex structure moduli that has to transform trivially

under Γ, since if it would not, Γ could be used to fix the non-trivially transforming

moduli.4 Hence, the non-trivially transforming Ũa have to appear at least quadratic in

G in order to represent a Γ invariant contribution to G. This information, together with

having switched on flux only along the Γ invariant directions, is sufficient to show

W0,Ũa
= KŨa

= 0 at Ũa = 0 for a = 3, . . . , 272 , (2.24)

since W0,Ũa
is a polynomial function which is at least linear in the Ũa, see eq. (2.8) and

KŨa
is a rational function which is at least linear in the numerator in the Ũa, see eq. (2.3).

Hence, DŨa
W0 = W0,Ũa

+ KŨa
W0 = 0 at Ũa = 0 for a = 3, . . . , 272. This reduces the full

set of conditions DaW = 0 ∀a to the three equations

DIW |Ũa=0 = 0 for I = τ, U1, U2 . (2.25)

This is equivalent to set Ũa = 0 from the beginning and study the stabilization problem

for the reduced case with two complex structure moduli, as we do in the following.

In [25], the prepotential G for the two complex structure moduli U1 = ω1/ω0 and

U2 = ω2/ω0 was derived via mirror symmetry in the large complex structure limit to be

G(ω0, ω1, ω2) = ξω2
0 +

17ω0ω1

4
+

3ω0ω2

2
+

9ω2
1

4
+

3ω1ω2

2
− 9ω3

1 + 9ω2
1ω2 + 3ω1ω

2
2

6ω0
, (2.26)

with ξ = ζ(3)χ
2(2π i)3 ' −1.30843 i determined by the Euler number χ of the Calabi-Yau.

Eq. (2.26) receives instanton corrections which are given as

Ginst.(q1, q2) =
1

(2π i)3

(
540q1 +

1215q2
1

2
+ 560q3

1 + 3q2 − 1080q1q2 + 143370q2
1q2

−45q2
2

2
+ 2700q1q

2
2 +

244q3
2

9
+ . . .

)
, (2.27)

with qa = exp (2π iUa) and we have set ω0 = 1. The dots in eq. (2.27) denote higher powers

in the qa which are suppressed in the large complex structure limit ua = Im(Ua) & 1. We

define the large complex structure limit via

|Ginst.|
|G|

≤ εLCS ,
540e−2πu1

(2π)3|G|
≤ εLCS and

3e−2πu2

(2π)3|G|
≤ εLCS , (2.28)

4G completely determines the moduli space of the (before orientifolding) N = 2 moduli space. If it would

not be invariant the complex structure moduli space would have been reduced, i.e. some flat directions lifted

but this does not happen just because there exists a Γ symmetric point.
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for small εLCS. The two last conditions in eq. (2.28) are imposed to ensure that there are

no cancellations between the terms in Ginst., i.e. the leading correction in e−2πua is actually

small. Furthermore, to have a valid description of the complex structure moduli by G we

have to ensure that we are not in the vicinity of the conifold points eq. (2.22), i.e.∣∣∣∣∣X2

27

(
X1

432
+ 1

)3

− 1

∣∣∣∣∣ ≥ εCF and

∣∣∣∣X2

27
− 1

∣∣∣∣ ≥ εCF , (2.29)

with small εCF .

3 The polynomial homotopy continuation method

We want to solve the non-linear eqs. (2.25) derived from the prepotential eq. (2.26) for the

6 real variables xi = u1, u2, s, ν1, ν2 and σ. The parameters of these equations are the 12

fluxes f1, f2, h1 and h2 in eq. (2.23). Though systems of non-linear equations are extremely

difficult to solve in general, if the non-linearity in the system is polynomial-like, then the

recently developed algebraic geometry methods can rescue the situation. In particular, we

use the so-called numerical polynomial homotopy continuation (NPHC) method [29] which

finds all the solutions of the given system of polynomial equations. This method has been

used in various problems in particle theory and statistical mechanics in refs. [47–57].

3.1 The algorithm

Here we briefly explain the NPHC method: for a system of polynomial equations,

P (x) = 0, where P (x) = (p1(x), . . . , pm(x))T and x = (x1, . . . , xm)T , which is known to

have isolated solutions, the Classical Bézout Theorem asserts that for generic values of

coefficients, the maximum number of solutions in Cm is
∏m
i=1 di. Here, di is the degree

of the ith polynomial. This bound, the classical Bézout bound (CBB), is exact for generic

values (see [29, 58] for details).

Based on the CBB, a homotopy can be constructed as

H(x, t) = γ(1− t)Q(x) + t P (x), (3.1)

where γ is a generic complex number and t ∈ [0, 1). Q(x) = (q1(x), . . . , qm(x))T is a system

of polynomial equations with the following properties:

1. the solutions of Q(x) = H(x, 0) = 0 are known or can be easily obtained. Q(x) is

called the start system and the solutions are called the start solutions,

2. the number of solutions of Q(x) = H(x, 0) = 0 is equal to the CBB for P (x) = 0,

3. the solution set of H(x, t) = 0 for 0 ≤ t ≤ 1 consists of a finite number of smooth

paths, called homotopy paths, each parameterized by t ∈ [0, 1), and

4. every isolated solution of H(x, 1) = P (x) = 0 can be reached by some path

originating at a solution of H(x, 0) = Q(x) = 0.
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The start system Q(x) = 0 can for example be taken to be

Q(x) =


xd1

1 − 1
...

xdmm − 1

 = 0, (3.2)

where di is the degree of the ith polynomial of the original system P (x) = 0. Eq. (3.2)

is easy to solve and guarantees that the total number of start solutions is
∏m
i=1 di, all of

which are non-singular.

We can then track all the paths corresponding to each solution of Q(x) = 0 from

t = 0 to t = 1. The paths which reach P (x) = 0 = H(x, 1) are the solutions of P (x) = 0.

By implementing an efficient path tracker algorithm, all isolated solutions of a system

of multivariate polynomials system can be obtained because it is shown [29] that for a

generic γ, there are no singularities (i.e. paths do not cross each other) for t ∈ [0, 1). In

this respect, the NPHC method has a great advantage over all other known methods for

finding stationary points.

There are several sophisticated numerical packages well-equipped with path trackers

such as Bertini [59], PHCpack [60], PHoM [61] and HOM4PS2 [58, 62]. We mainly use

Bertini to get the results in this paper.

We mean by a solution a set of values of variables which satisfies the eqs. (2.25) with

tolerance 10−10. All the solutions come with real and imaginary parts. A solution is a real

solution if the imaginary part of each of the variables is less than or equal to the tolerance

10−6 (below which the number of real solutions does not change, i.e. it is robust for the

problem at hand). All these solutions can be further refined to an arbitrary precision.

The advantages of the homotopy based on the CBB are (1) the CBB is easy to

compute, and (2) the start system based on the CBB can be solved quickly. The drawback

of it is that the CBB does not take the sparsity of the system into account: systems arising

in practice have far fewer solutions than the CBB, so a large portion of the computational

effort is wasted.

Hence, one can also use homotopies based on tighter upper bounds. For example,

one can compute the so-called 2-Homogeneous Bézout Bound or the Bernstein-Khovanskii-

Kushnirenko bound [63–65] which are tighter upper bounds. These two bounds were ex-

plained in ref. [47, 54]. We note that, as with the CBB, the 2HomBB and BKK bound are

also generically sharp with respect to the family of polynomial systems under consideration.

There is yet another, rather more practical, way of solving a parametric system which

is called Cheater’s homotopy [66, 67]: let us say we want to solve a parametric system,
~f(~q; ~x) = ~0 where ~x are variables and ~q are parameters, in our case the fluxes. Now, it can be

shown [66, 67] that the maximum number of complex solutions at any parameter point is the

number of solutions at a generic parametric point. So our strategy is first to solve the system

at a generic parameter point and then using the solutions at this point as the start solutions

for the systems at all other parameter-points. This homotopy is called cheater’s homotopy.

A recently developed software, based on Bertini, called Paramotopy [68], precisely uses

cheater’s homotopy and goes over a huge number of parameter points in parallel. The
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package is publicly not available yet though the respective research group has kindly given

access to the code for the purpose of the computation in this paper. We will publish the

details on the cheater’s homotopy and the package Paramotopy elsewhere [69].

3.2 The scan

We define a set of flux parameters on which we apply the algorithm described in the

previous section 3.1. Since we are only interested in supersymmetric flux vacua, we can

make use of the ISD condition eq. (2.15) and define a flux configuration via

H3 =

(
h1

h2

)
and F3 =

(
−h2

h1

)
, (3.3)

with h1, h2 ∈ Z3. Note that since we have two complex structure moduli we have initially

2 · 2 + 2 = 6 flux parameters for both H3 and F3 but the ISD condition eq. (2.15) reduces

this to the six parameters given in eq. (3.3). Furthermore, the D3 tadpole eq. (2.9)

becomes manifestly positive semi-definite, i.e.

L = h2
1 + h2

2 . (3.4)

To scan efficiently, we apply the paramotopy algorithm only to SL(2,Z) inequivalent

flux configurations. Note that a configuration of the form eq. (3.3) transforms as

H ′3 =

(
h′1

h′2

)
=

(
d h1 − c h2

d h2 + c h1

)
and F ′3 =

(
f ′1

f ′2

)
=

(
b h1 − a h2

b h2 + a h1

)
, (3.5)

under SL(2,Z) transformations, eq. (2.17). For general a, b, c and d, F ′3 in eq. (3.5) will not

be of the form in eq. (3.3) but only for the 4 cases

a = ±1, b = 0, c = 0, d = ±1 and a = 0, b = ±1, c = ∓1, d = 0 . (3.6)

This corresponds to the SL(2,Z) equivalent flux configurations(
h1

h2

)
∼=

(
−h1

−h2

)
∼=

(
−h2

h1

)
∼=

(
h2

−h1

)
. (3.7)

Note that the two transformations on the l.h.s. of eq. (3.6) do not transform the dilaton

τ ′ = τ while the two transformations on the r.h.s. act as τ ′ = −1/τ .

The number of SL(2,Z) inequivalent flux configurations in a spherical region defined

by a spherical constraint eq. (3.4) can be estimated as π3/(4 Γ[4])(
√
L)6, using the formula

for the volume of the n-sphere Vn(r) = πn/2/Γ(n/2 + 1) rn. The factor 1/4 accounts for

the 4 equivalent configurations in eq. (3.7). If we had switched on more flux n > 6 the

number of lattice points grows very rapidly ∼ Ln/2.

For our scan, we choose L = 34 such that we scan over 52,329 parameter points (the

above estimate yields 55,391). On the FermiLab cluster using 100 nodes each with 32

cores (each core with 2.0 GHz cloak speed), the calculation time in total is around 75, 000

hours, with 60− 100 minutes per parameter point.
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3.3 Distribution of parameters

In this section, we want to discuss the distribution of the following parameters as results

of the scan defined in the previous section 3.2:

• u1 and u2, to see how many points reach the large complex structure limit as defined

in eq. (2.28).

• τ , to identify regions of weak respectively strong coupling.

• The number of solutions for a given D3 tadpole L.

• W0, the flux superpotential.

• The masses of the moduli m2 and the gravitino mass m2
3/2.

• The available fine-tuning ∆Λ of the cosmological constant Λ.

• The amount of flux vacua for which a dS vacuum can be constructed via Kähler

uplifting in 3.4.

For the 52,329 parameter points, we find a total of 531,370 solutions to the eqs. (2.25).

This corresponds to an average of 10.2 solutions per parameter point. For 1,360 parameter

points we do not find a solution. Many of the solutions are unphysical and hence have

to be sorted out: a subset of 288,160 fulfill the criterion of a physical string coupling

gs > 0 and only a subset of 26,297 respective 16,235 is in accordance with the large

complex structure criterion eq. (2.28) for εLCS = 10−1 respective εLCS = 10−2. Of these

none have to be sorted out because they are in the vicinity of the conifold singularities

eq. (2.29) having chosen εCF = 10−2. Due to the strong suppression of the large complex

structure limit in the general solution space of eq. (2.25), the minimal flux method has

the advantage of directly searching for solutions in this region.

For the distribution of the dilaton, we can use SL(2,Z), to transform each solution to

the fundamental domain

− 1

2
≤ Re(τ) ≤ 1

2
and |τ | > 1 , (3.8)

via the successive transformations

τ ′ = τ + b , G′3 = G3 , (3.9)

i.e. a = 1, b ∈ Z, c = 0, d = 1 and

τ ′ = −1/τ , G′3 = G3/τ , (3.10)

i.e. a = 0, b = −1, c = 1, d = 0.

We show the distribution of the obtained values for τ = σ + i s in figure 2. We see

that the strongly coupled region s = 1/gs ∼ 1 is preferred and large values of s > 10 are

obtained for a fraction of 5%.
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Figure 1. Distribution of u1 and u2 for the complete set of solutions to eqs. (2.25) (gray) and

for the physical solutions fulfilling the criterion for the validity of the large complex structure limit

(blue for εLCS = 10−1 and black for εLCS = 10−2), eq. (2.28).

The number of vacua of X3 in the large complex structure limit for a given D3 tadpole

L was estimated in [28] as5

Nvac =
(2πL)3

3!

∫
det(−R− 1 · ω) , (3.11)

with Kähler form ω and the curvature two-form R of the moduli space. The integral in

eq. (3.11) was estimated in [28] to be 1/1296, using the Γ symmetry of the moduli space

such that

Nvac ' 0.03L3 . (3.12)

Since paramotopy allows us to find all solutions for a given flux configuration we can not

only check the L dependence of eq. (3.11) but also the normalization. This depends on the

value chosen for εLCS, i.e. a greater εLCS will yield a larger normalization factor. Fitting

the number of solutions with h2 ≤ L in the large complex structure limit to the tadpole

L we find

Nvac ' (0.50± 0.04)L2.94±0.03 for εLCS = 10−2 , (3.13)

Nvac ' (0.85± 0.06)L2.93±0.03 for εLCS = 10−1 . (3.14)

5Note that Nvac ∼ L6 in [28] which is due to the fact that 12 independent fluxes have been switched on

while we effectively switch on 6 independent fluxes, see eq. (3.3).
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Figure 2. Distribution of τ for the paramotopy scan with εLCS = 10−2.

The dependence of Nvac on L and the fit in eq. (3.13) are shown in figure 3. Considering

the very general arguments that are used to derive the estimate eq. (3.11), the agreement

within an order of magnitude with the factual number of vacua strongly confirms the

statistical analysis of [24, 30]. In the following, we set εLCS = 10−2.

The distribution of the flux superpotential is shown in figure 3. We find that for most

vacua O(101− 103) values are preferred. To calculate the masses of the moduli we have to

know the value of the volume V of X3 which enters via the Kähler potential of the Kähler

moduli given in eq. (2.11). Note that we have not specified the stabilization mechanism

for the Kähler moduli and hence have no information about the value of V. For the KKLT

and Kähler uplifting scenarios the volume is typically stabilized at O(102 − 104) while for

the LVS it is O(106 − 1015). Hence, we can only calculate the physical masses m up to

factors of V−1, i.e.

m =
mcs

V
, (3.15)

where mcs is the mass calculated from the effective theory of the complex structure moduli

only, i.e. K = Kcs and W = W0.

The distribution of the physical moduli masses m2 in terms of m2
cs, i.e. the eigenvalues

of the Hessian ∂a∂bV of the no-scale potential eq. (2.13) for a, b = u1, u2, s, ν1, ν2, σ is shown
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Figure 3. The number of vacua Nvac with h2 < L (left) and the logarithmic distribution of the

flux superpotential W0 (right) in the large complex structure limit with εLCS = 10−2.

in figure 4 as well as the gravitino mass m2
3/2 in terms of the quantity

m2
cs, 3/2 ≡ m

2
3/2 V

2 = eKcs |W0|2 . (3.16)

This quantity m2
cs, 3/2 governs the scale of the typical AdS cosmological constant induced

by the flux superpotential ignoring the contributions from the Kähler moduli sector.

The distribution of m2
3/2 is peaking at 〈m2

3/2〉 = 3.5× 10−2 · (100
V )2 with standard de-

viation 3 × 10−2 · (100
V )2. The complex structure moduli and the dilaton are stabilized at

m2 ∼ O(10−3−102)(100
V )2. These ranges for the moduli and gravitino masses are compati-

ble with the values obtained for a single explicit flux choice in the same construction [14, 15].

The AdS respective dS cosmological constant before tuning is up to O(1) factors

estimated to be

Λ ∼
m2

3/2

V
=
m2

cs, 3/2

V3
, (3.17)

in the LVS respective Kähler uplifting scenarios. In particular, the tunability of mcs, 3/2

by three-form flux directly translates into the tunability of the cosmological constant via

∆Λ

Λ
∼ 2

∆mcs, 3/2

mcs, 3/2
. (3.18)

Note that the r.h.s. of eq. (3.18) is independent of the volume V, i.e. fine tuning of mcs, 3/2

only has a tiny effect on the VEVs of the Kähler moduli.

Since the polynomial homotopy continuation method allows us to calculate all solutions

for a given tadpole L we can estimate ∆Λ/Λ by determining the average spacing ∆mcs, 3/2

for all values of mcs, 3/2 that are to be found in a σ-interval around 〈mcs, 3/2〉. Since the

number of vacua is given as a power-law in L, with the exponent linear in the number of

flux carrying complex structure moduli h2,1
eff , we expect ∆mcs, 3/2/mcs, 3/2 to be of the form

∆mcs, 3/2

mcs, 3/2
∼ C

La (h2,1
eff +1)

, (3.19)
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Figure 4. Masses m2

M2
P

∣∣∣
V=100

of the moduli, and the gravitino mass
m2

3/2

M2
P

∣∣∣∣
V=100

, for a Calabi-Yau

volume V = 100. For different Calabi-Yau volumes the masses scale as m2

M2
P

∣∣∣
V=100

(
100
V
)2

for the

moduli u1, u2, s, ν1, ν2, σ (left) and for the gravitino mass as
m2

3/2

M2
P

∣∣∣∣
V=100

(
100
V
)2

(right). The left

plot includes all eigenvalues of the Hessian, i.e. 6 values per parameter point.

with C, a > 0. We can determine these parameters by fitting the l.h.s. of eq. (3.19) as a

function of L for h2,1
eff = 2. Choosing a 3-σ interval6 around 〈mcs, 3/2〉 we find the available

tuning for the cosmological constant to be

∆Λ

Λ
' (6.0± 0.3)L−(0.95±0.005) (h2,1

eff +1) , (3.20)

where we have included the statistical errors of the fit parameters C and a.

Let us assume that eq. (3.20) is valid and 〈mcs, 3/2〉 ∼ O(10) also for larger values of L ∼
O(103) and larger values of h2,1

eff ∼ O(101−102).7 Then, we can extrapolate the values of the

cosmological constant eq. (3.17) and its tunability to more realistic scenarios, see table 1.

To tune the cosmological constant to the accuracy given in table 1, one has to make

the assumption that every supersymmetric and hence tachyon-free flux vacuum, remains

tachyon-free after stabilizing the Kähler moduli and uplifting which breaks supersymmetry.

For generic N = 1 supergravity scalar potentials there could be strong suppressions of

tachyonic free configurations [34–36] for large values of h1,1. On the other hand, the no-

scale property eq. (2.12) of the models under consideration in this paper yields a positive

6There is only a weak dependence on the width of the interval. For 5-σ the difference in ∆mcs, 3/2/mcs, 3/2

compared to 3-σ is less than 1%.
7This assumption is reasonable when the prepotential G is of the same structure as eq. (2.26), i.e. we are

considering the large complex structure limit away from e.g. conifold singularities via a mirror construction.

It may be interesting to consider such examples with h2,1
eff = h1,1 > 2, e.g. by choosing random pre-factors

in a general polynomial prepotential of degree 2 in the ωi.
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h2,1
eff L ∆Λ/Λ

2 34 7 · 10−3 ± 5 · 10−4

2 500 5 · 10−5 ± 4 · 10−6

40 34 3 · 10−58 ± 2 · 10−58

40 500 10−102 ± 10−102

Table 1. The tunability ∆Λ/Λ of the cosmological constant for different values of h2,1
eff and L with

statistical errors propagated from eq. (3.20). The untuned values of the cosmological constant are

estimated via eq. (3.17) to be O(10−4 − 10−22) in units of M4
P for V of O(102 − 108). The first

row of this table is directly calculated from our dataset while the last three rows are obtained as

an extrapolation via eq. (3.20).

semi-definite scalar potential for the dilaton and the complex structure moduli eq. (2.13).

This is modified by corrections that break the no-scale property, i.e. most importantly

non-perturbative corrections to the superpotential and gs and/or α′ corrections to the

Kähler potential. These corrections are suppressed by an additional power of the volume

V of the compactification relative to the terms in eq. (2.13) [13]. Hence, the eigenvalues

of the Hessian matrix with respect to the dilaton and complex structure moduli fields will

be positive in the large volume limit such that one only has to make sure that the moduli

to be stabilized at a lower scale do not induce any tachyonic directions.

In the following section, we will determine how many de Sitter vacua can be

constructed from our dataset on X3 via the method of Kähler uplifting.

3.4 De Sitter vacua via Kähler uplifting

The two Kähler moduli T1 and T2 of X3 can be stabilized in a dS minimum by Kähler

uplifting. A globally consistent D7 brane and gauge flux setup that realizes such a dS

vacuum has been presented in [15]. The Kähler potential of T1 and T2 is given as

K = −2 log

[
1√
12

(
(T1 + T̄1) +

1

3
(T2 + T̄2)

)3/2

− 1

18
(T2 + T̄2)3/2 +

1

2
ξ̂(τ, τ̄)

]
, (3.21)

with the leading order α′ correction [10]

ξ̂(τ, τ̄) = − ζ(3)χ

4
√

2 (2π)3
(−i (τ − τ̄))3/2 , (3.22)

with Euler number χ = 2(2−272) = −540. To apply the method of Kähler uplifting we need

to balance the leading order α′ correction to the Kähler potential with non-perturbative

contributions to the superpotential. These originate from gaugino condensation of an

SU(24) and SO(24) pure super Yang Mills from respectively 24 D7 branes wrapping the

divisors corresponding to T1 and T2. The induced superpotential is

W = W0 +A1 e
− 2π

24
T1 +A2 e

− 2π
22
T2 . (3.23)
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By switching on suitable gauge flux it can be shown [15] that A1, A2 6= 0. The induced

D3 tadpole by this gauge flux and the geometric contributions from the D7 branes and

O7 planes is L = 96 or L = 104 [15].8 The one-loop determinants A1 and A2 depend

on the complex structure moduli, the dilaton and also potentially D7 brane moduli.

The explicit dependence on these moduli is unknown, however for the purpose of Kähler

moduli stabilization the values of A1 and A2 can be assumed to be constant since complex

structure moduli are stabilized at a higher scale. Choosing A1 = A2 = 1, it was found

numerically in [15], that the pairs of W0 and s that are suitable to realize a dS vacuum

with small positive tree level vacuum energy9 lie on the curve

W dS
0 (s) = 70.2 s−2.35 with s ≥ 4 . (3.24)

To parametrize our missing knowledge of the values of A1 and A2 we introduce the

parameter ∆A and the scaling relations

W0 →W0 ·∆A , A1 → A1 ·∆A , A2 → A2 ·∆A , (3.25)

under which the position of a minimum of the potential eq. (2.10) is invariant since V →
V ·∆A2. For a given uncertainty in the one-loop determinants ∆A−1 ≤ Ai ≤ ∆A around

A1 = A2 = 1 we can then define the criterion

W dS
0 (s)

∆A
≤ |W0| ≤W dS

0 (s) ·∆A and s ≥ 4 , (3.26)

for a given data point (s, |W0|) to allow a dS vacuum via Kähler uplifting.

We show the number of Kähler uplifted dS vacua depending on ∆A in figure 5. Due

to the suppression of weakly coupled vacua s � 1 and O(1) values of the superpotential,

the number of vacua that can be uplifted to dS via Kähler uplifting is strongly suppressed.

For ∆A = 10, only 7, i.e. a fraction of ∼ 10−4 of the total number of flux vacua allow such

an uplifting.

The available tuning of the cosmological constant via fluxes can be estimated again

via eq. (3.18). The Kähler moduli stabilization yields a volume of V ' 50 [15] such that

the untuned cosmological constant is Λ ∼ 6 · 10−6 and

∆Λ

Λ
' 0.38± 0.27 , (3.27)

for ∆A = 10. We remind the reader, that this is calculated for L = 34 which is the

maximal value we reach in our paramotopy scan and hence less than L = 104 which is

maximally allowed by the gauge flux and D7 brane construction realized for a Kähler

uplifted dS vacuum in our explicit CP4
11169[18] example.

To summarize this section, the polynomial homotopy continuation method allows

us to find all flux vacua for a given D3 tadpole L. The number of these vacua is well

8The two different values of L originate from two different gauge fluxes that can be switched on in

order to cancel the Freed-Witten anomaly of the Whitney-brane that cancels the D7-tadpole induced by

the O7-planes. For details, see [15].
9In this case, small refers to how small we can tune 〈V 〉 by choosing numerical values for W0 and s to a

certain decimal place and is not related to the tuning of the cosmological constant.
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Figure 5. The number of Kähler uplifted dS vacua as a function of ∆A (left) and data points

(s, |W0|) (right). Kähler uplifting can be applied in the shaded region (∆A = 4).

estimated by the statistical analysis of [24, 30]. We find that strongly coupled vacua s & 1

are preferred as well as O(101 − 103) values of W0. Our results can be used to estimate

the tunability of the cosmological constant by fluxes and the number of flux vacua that

can be Kähler uplifted to a dS vacuum.

4 The minimal flux method

In this section we describe the method to find flux vacua that has been first used by Denef,

Douglas and Florea [28]. In contrast to the polynomial homotopy continuation method

described in section 3, we fix starting values for the VEVs 〈U1〉fix, 〈U2〉fix and 〈τ〉fix and

solve for the flux values f and h.

4.1 The algorithm

Due to the linear dependence of W0 on f and h, see eq. (2.8), the quantities

DIW0 = W0I + KIW0 for I = τ, U1, U2 are linear in these flux vectors. Hence, if

we want to solve the system of equations

(W0, DτW0, DU1W0, DU2W0) = 0 , (4.1)

this can be written as

M · (f, h) = 0 , (4.2)

with M ∈ R8×12 for general VEVs 〈U1〉, 〈U2〉, 〈τ〉 ∈ C. The dimensions of M are due to

the fact that we have 8 real equations in eq. (4.1), and there are 12 flux integers in total

in f and h. Note that we have also included the condition W0 = 0 in eq. (4.1). In fact,

we are not interested in flux vacua where W0 is strictly zero since none of the well studied

moduli stabilization mechanisms KKLT [6], LVS [13] and Kähler uplifting [12, 14, 15, 70]

– 19 –



J
H
E
P
0
6
(
2
0
1
3
)
1
1
0

apply in this situation. However, eq. (4.1) will only serve as a starting point and we will

eventually end up with vacua where W0 6= 0 and O(1).

For M ∈ R8×12 there is no hope to find a solution of eq. (4.2) since the flux parameters

have to be integers. However, if we neglect instanton corrections induced by eq. (2.27)

and choose rational starting values 〈U1〉, 〈U2〉, 〈τ〉 ∈ Q+ iQ in the superpotential, the only

transcendental number in eq. (4.2) is ξ = ζ(3)χ
2(2π i)3 = −1.30843 . . . i. If we approximate ξ by

a rational number ξrat, for instance ξrat = −13/10 i, we have accomplished M ∈ Q8×12.

Now, we can hope to find a solution of eq. (4.2) although the entries of f and h

will be generically be quite large for generic M , since one generally expects them to

be at least of the order of the lowest common denominator of the entries of M . This

puts tension on the D3 tadpole constraint eq. (2.9) since generally the geometry of the

compactification manifold and D7 brane configuration generates L ∼ 102 − 104. We use

the same algorithms [71] as the authors of [28], to generate as small as possible values for

the entries of f and h in order to generate a not too large D3 tadpole L < Lmax where we

choose Lmax = 500 to be the maximal value for the D3 tadpole that we consider.

Since the system of equations eq. (4.2) is under determined, the solution space is given

by all linear combinations of linearly independent vectors (f, h)i for i = 1, . . . , 4, where

each (f, h)i is a solution to eq. (4.2), i.e.

(f, h)sol =
4∑
i=1

ai (f, h)i with ai ∈ Z . (4.3)

For obvious practical reasons, we cannot consider all possible values of the ai. We find

that basis vectors of solutions with L((f, h)i) < 10 are extremely rare in our scan. Hence,

since L(ai(f, h)i) = a2
iL((f, h)i), we can safely restrict ourselves to all values of the ai

with −3 ≤ ai ≤ 3 in order to fulfill L((f, h)sol) < Lmax.

In the next step, we are looking for solutions to eq. (2.25), including instanton correc-

tions eq. (2.27) to the prepotential and also setting ξ to its transcendental value. We insert

the flux solution (f, h)sol into the equations

(DτW0, DU1W0, DU2W0) = 0 (with instanton corrections) , (4.4)

leaving the VEVs 〈U1〉, 〈U2〉 and 〈τ〉 unfixed. These are six real equations for six real

variables and we can numerically search for a solution in the vicinity of 〈U1〉fix, 〈U2〉fix
and 〈τ〉fix. It has to be checked case by case if the complex structure limit is still valid for

these perturbed solutions. The shift of the VEVs from their fixed values may also induce

a shift in the superpotential, i.e. W0 is not zero anymore. However, note that the value

that W0 will take in the end is not in any way under our control and it has to be checked

if one obtains useful values for the purpose of moduli stabilization.

The above outlined algorithm can be iterated by sampling over a set of VEVs 〈U1〉fix,

〈U2〉fix and 〈τ〉fix and approximate ξ values ξrat.

4.2 The scan

First of all, we need to define a set of rational starting values (〈U1〉, 〈U2〉, 〈τ〉, ξrat)fix
over which the algorithm explained in section 4.1 can be iterated. We set the axionic
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xmin xmax q #

ξrat 0.9ξ 1.1ξ 20 34

u1 1 4 5 31

u2 1/6 4 5 40

s 1 10 10 289

Table 2. Starting values for ξrat and the imaginary parts of the moduli. The last column counts

the number of elements yielding from the choice of xmin, xmax and q.

components of the fixed VEV’s to zero, i.e.

Re〈U1〉fix = Re〈U2〉fix = Re〈τ〉fix = 0 . (4.5)

Let x ∈ [xmin, xmax] represent ξrat and the imaginary parts of the moduli. We use a set

of rational numbers that lie in the interval [xmin, xmax], with the parameter q determining

how ‘dense’ the interval is filled with rational numbers. For example, one has{
1,

5

4
,
4

3
,
3

2
,
5

3
,
7

4
, 2

}
(4.6)

for x ∈ [1, 2] and q = 4.

The set of starting values given in table 2 is chosen such that the starting values for

the complex structure moduli are in the large complex structure limit eq. (2.28) and the

string coupling gs = 1/s is always smaller than one. The total number of points in the grid

of starting values defined in table 2 has 12,184,240 points. Using 80 cores with 2.4 GHz of

the DESY Theory Cluster this yields a total calculation time of approximately four weeks.

4.3 Results

We find 1,698 solutions fulfilling the constraint L < Lmax = 500 which is only 0.01% of

the total number of points of the scan. Hence, most of the time one can not find a flux

vector whose entries are small enough to fulfill the D3 tadpole constraint.

As in section 3.3, we can make use of the SL(2,Z) transformations eq. (3.9) and

eq. (3.10) to transform every solution to the fundamental domain eq. (3.8). Identifying

equivalent solutions in this domain, 1,374 elements of the original solution set are not

related via SL(2,Z) symmetry and hence physically inequivalent. The distribution of τ is

shown in figure 6. Compared to the paramotopy scan we more easily find weakly coupled

vacua with s � 1 which is due to the fact that we have chosen the starting values for s

accordingly, see table 2.

The distribution of u1 and u2 as well as the distribution of the superpotential are

shown in figure 7. We find that there are no flux vacua in the vicinity of the conifold sin-

gularities eq. (2.29) for εCF = 10−2. Also, all flux vacua fulfill the constraint of the validity

of the large complex structure limit description, eq. (2.28) for εLCS = 10−2 which is again

due to the chosen starting values deep in the large complex structure limit, table 2. Since

we solve for vanishing W0 in the first step of the algorithm eq. (4.1), we obtain a clustering
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Figure 6. Distribution of τ for the minimal flux scan.

Figure 7. Distribution of u1 and u2 (left) and superpotential W0 for the minimal flux scan.

around W0 = 0, see figure 7. This is however not a general property of the complete

solution space as we noted in section 3.3 but rather O(101 − 103) values are preferred.
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Figure 8. The number of Kähler uplifted dS vacua as a function of ∆A (left) and data points

(s, |W0|) (right). Kähler uplifting can be applied in the shaded region (∆A = 2) for the vacua of

the minimal flux scan with L ≤ 104.

We fit the number of vacua as a function of the D3 tadpole L, finding Nvac ' 0.02L1.83

which strongly deviates from the estimate eq. (3.11). However, our dataset of 1,374 is

in no way representative for the total number of flux vacua with L = 500 such that this

deviation can be easily explained by insufficient statistics.

Finally, we can calculate how many flux vacua allow a dS vacuum via Kähler uplifting

along the lines of section 3.4. Since the minimal flux scan is setup such that the values of s

and |W0| naturally lie in the region where Kähler uplifting can be applied we find a much

milder suppression of these vacua compared to section 3.3, see figure 8. For ∆A = 10, three

of the 75 flux vacua with L = 104 allow a dS vacuum via Kähler uplifting. Repeating the

estimate of eq. (3.27) for the results of the minimal flux scan, the cosmological constant

Λ ∼ 10−6 can be tuned to an accuracy

∆Λ

Λ
∼ 1.9± 2.2 , (4.7)

To conclude this section, the minimal flux method has the advantage that one can

specify the region in parameter space where physically interesting flux vacua should be

constructed. In our case this region is defined by the large complex structure limit, weak

string coupling and O(1) values of W0. However, it is not possible to construct all flux

vacua for a given D3 tadpole L which can be done using paramotopy and the method is

rather inefficient in the sense that only 0.01% of the starting values yield a flux vacuum.

5 Conclusions

In this paper we have studied the flux vacua of type IIB string theory compactified on

the Calabi-Yau hypersurface CP4
11169[18], i.e. the standard working example of both the
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LVS and the Kähler uplifting scenario. We switch on flux along six three-cycles that

correspond to two complex structure moduli that are invariant under a certain discrete

symmetry that can be used to construct the mirror manifold. As explained in the main

text, such a supersymmetric vacuum in these two complex structure moduli extends to a

supersymmetric vacuum of all 272 complex structure moduli.

To explicitly construct flux vacua, we make use of the fact that the prepotential G
of the two complex structure moduli space has been worked out in the large complex

structure limit. We apply two computational methods to find flux vacua on this manifold:

the polynomial homotopy continuation method allows us to explicitly construct for the

first time all flux vacua in the large complex structure limit that are consistent with a

given D3 tadpole L by applying the polynomial homotopy continuation method at each

point in flux parameter space. The minimal flux method finds flux parameters that are

consistent with a given D3 tadpole L for a given set of vacuum expectation values (VEVs)

of the complex structure moduli.

We analyze the resulting solution space of flux vacua for several physically interesting

properties. For the polynomial homotopy continuation method, we find that for the ∼
50, 000 parameter points of our scan there are ∼ 20, 000 solutions in the large complex

structure limit. We find a preference of strongly coupled vacua gs & 1 and preference for

values of O(101 − 103) for the flux superpotential W0. The number of vacua is

Nvac ' (0.50± 0.04)L2.94±0.03 , (5.1)

compared to ∼ 0.03L3 expected form statistical analysis [24, 30]. The gravitino mass is

typically m2
3/2 = O(10−3) · (100

V )2M2
P and the masses of the complex structure moduli and

the dilaton scale like O(10−3− 102) · (100
V )2M2

P. These ranges for the moduli and gravitino

masses are compatible with the values obtained for a single explicit flux choice in the same

construction [14, 15].

The average spacing of the flux superpotential in our solution set can be used to

estimate the available fine-tuning ∆Λ/Λ of the cosmological constant Λ as

∆Λ

Λ
' (6.0± 0.3)L−(0.95±0.005) (h2,1

eff +1) , (5.2)

which corresponds to for instance ∆Λ/Λ ∼ 10−102 for L = 500 and h2,1
eff = 40. The explicit

brane and gauge flux construction in [15] allows us to answer the question how many of

theses supersymmetric flux vacua allow an uplift to dS via Kähler uplifting. Depending

on the available values for the one-loop determinant from gaugino condensation used to

stabilize the Kähler moduli in this setup, we find that for a fraction of about 10−4 of all flux

vacua up to a given D3-brane tadpole this mechanism can be applied to obtain a dS vacuum.

For the minimal flux method, we find ∼ 1000 flux vacua with L < 500 out of ∼ 107

parameter points of our scan. This method allows us to control the region in W0 and moduli

space where we are intending to find flux vacua. Hence, we more easily access the regions

of weak string coupling and the large complex structure limit compared to the polynomial

homotopy continuation method. For the much smaller set of flux vacua constructed with

the minimal flux method, the fraction of Kähler uplifted dS minima is about 10%.
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[17] M. Haack, D. Krefl, D. Lüst, A. Van Proeyen and M. Zagermann, Gaugino condensates and

D-terms from D7-branes, JHEP 01 (2007) 078 [hep-th/0609211] [INSPIRE].

[18] M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-branes at del Pezzo

singularities: global embedding and moduli stabilisation, JHEP 09 (2012) 019

[arXiv:1206.5237] [INSPIRE].

[19] O. Lebedev, H.P. Nilles and M. Ratz, De Sitter vacua from matter superpotentials, Phys.

Lett. B 636 (2006) 126 [hep-th/0603047] [INSPIRE].

[20] K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua,

JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

[21] M. Cicoli, A. Maharana, F. Quevedo and C. Burgess, De Sitter string vacua from

dilaton-dependent non-perturbative effects, JHEP 06 (2012) 011 [arXiv:1203.1750]

[INSPIRE].

[22] R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization

of the cosmological constant, JHEP 06 (2000) 006 [hep-th/0004134] [INSPIRE].

[23] J.L. Feng, J. March-Russell, S. Sethi and F. Wilczek, Saltatory relaxation of the cosmological

constant, Nucl. Phys. B 602 (2001) 307 [hep-th/0005276] [INSPIRE].

[24] F. Denef and M.R. Douglas, Distributions of flux vacua, JHEP 05 (2004) 072

[hep-th/0404116] [INSPIRE].

[25] P. Candelas, A. Font, S.H. Katz and D.R. Morrison, Mirror symmetry for two parameter

models. 2, Nucl. Phys. B 429 (1994) 626 [hep-th/9403187] [INSPIRE].

[26] B.R. Greene and M. Plesser, Duality in Calabi-Yau moduli space, Nucl. Phys. B 338 (1990)

15 [INSPIRE].

[27] O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, Type IIA moduli stabilization, JHEP

07 (2005) 066 [hep-th/0505160] [INSPIRE].

[28] F. Denef, M.R. Douglas and B. Florea, Building a better racetrack, JHEP 06 (2004) 034

[hep-th/0404257] [INSPIRE].

[29] A.J. Sommese and C.W. Wampler, The numerical solution of systems of polynomials arising

in engineering and science, World Scientific Publishing Company, Singapore (2005).

– 26 –

http://dx.doi.org/10.1088/1126-6708/2005/11/030
http://arxiv.org/abs/hep-th/0508043
http://inspirehep.net/search?p=find+EPRINT+hep-th/0508043
http://dx.doi.org/10.1088/1126-6708/2004/11/085
http://arxiv.org/abs/hep-th/0408054
http://inspirehep.net/search?p=find+EPRINT+hep-th/0408054
http://dx.doi.org/10.1088/1126-6708/2005/03/007
http://arxiv.org/abs/hep-th/0502058
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502058
http://dx.doi.org/10.1007/JHEP01(2012)020
http://arxiv.org/abs/1107.2115
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2115
http://dx.doi.org/10.1007/JHEP10(2012)163
http://dx.doi.org/10.1007/JHEP10(2012)163
http://arxiv.org/abs/1208.3208
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.3208
http://dx.doi.org/10.1088/1126-6708/2003/10/056
http://arxiv.org/abs/hep-th/0309187
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309187
http://dx.doi.org/10.1088/1126-6708/2007/01/078
http://arxiv.org/abs/hep-th/0609211
http://inspirehep.net/search?p=find+EPRINT+hep-th/0609211
http://dx.doi.org/10.1007/JHEP09(2012)019
http://arxiv.org/abs/1206.5237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5237
http://dx.doi.org/10.1016/j.physletb.2006.03.046
http://dx.doi.org/10.1016/j.physletb.2006.03.046
http://arxiv.org/abs/hep-th/0603047
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603047
http://dx.doi.org/10.1088/1126-6708/2006/04/021
http://arxiv.org/abs/hep-th/0602239
http://inspirehep.net/search?p=find+EPRINT+hep-th/0602239
http://dx.doi.org/10.1007/JHEP06(2012)011
http://arxiv.org/abs/1203.1750
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1750
http://dx.doi.org/10.1088/1126-6708/2000/06/006
http://arxiv.org/abs/hep-th/0004134
http://inspirehep.net/search?p=find+EPRINT+hep-th/0004134
http://dx.doi.org/10.1016/S0550-3213(01)00097-9
http://arxiv.org/abs/hep-th/0005276
http://inspirehep.net/search?p=find+EPRINT+hep-th/0005276
http://dx.doi.org/10.1088/1126-6708/2004/05/072
http://arxiv.org/abs/hep-th/0404116
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404116
http://dx.doi.org/10.1016/0550-3213(94)90155-4
http://arxiv.org/abs/hep-th/9403187
http://inspirehep.net/search?p=find+EPRINT+hep-th/9403187
http://dx.doi.org/10.1016/0550-3213(90)90622-K
http://dx.doi.org/10.1016/0550-3213(90)90622-K
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B338,15
http://dx.doi.org/10.1088/1126-6708/2005/07/066
http://dx.doi.org/10.1088/1126-6708/2005/07/066
http://arxiv.org/abs/hep-th/0505160
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505160
http://dx.doi.org/10.1088/1126-6708/2004/06/034
http://arxiv.org/abs/hep-th/0404257
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404257


J
H
E
P
0
6
(
2
0
1
3
)
1
1
0

[30] S. Ashok and M.R. Douglas, Counting flux vacua, JHEP 01 (2004) 060 [hep-th/0307049]

[INSPIRE].

[31] J.P. Conlon and F. Quevedo, On the explicit construction and statistics of Calabi-Yau flux

vacua, JHEP 10 (2004) 039 [hep-th/0409215] [INSPIRE].

[32] A.D. Linde and A. Westphal, Accidental inflation in string theory, JCAP 03 (2008) 005

[arXiv:0712.1610] [INSPIRE].

[33] J.J. Blanco-Pillado, M. Gomez-Reino and K. Metallinos, Accidental inflation in the

landscape, JCAP 02 (2013) 034 [arXiv:1209.0796] [INSPIRE].

[34] D. Marsh, L. McAllister and T. Wrase, The wasteland of random supergravities, JHEP 03

(2012) 102 [arXiv:1112.3034] [INSPIRE].

[35] X. Chen, G. Shiu, Y. Sumitomo and S.-H. Henry Tye, A global view on the search for de

Sitter vacua in (type IIA) string theory, JHEP 04 (2012) 026 [arXiv:1112.3338] [INSPIRE].

[36] T.C. Bachlechner, D. Marsh, L. McAllister and T. Wrase, Supersymmetric vacua in random

supergravity, JHEP 01 (2013) 136 [arXiv:1207.2763] [INSPIRE].

[37] Y. Sumitomo and S.-H. Henry Tye, A stringy mechanism for a small cosmological constant,

JCAP 08 (2012) 032 [arXiv:1204.5177] [INSPIRE].

[38] Y. Sumitomo and S.-H. Henry Tye, A stringy mechanism for a small cosmological constant

— multi-moduli cases, JCAP 02 (2013) 006 [arXiv:1209.5086] [INSPIRE].

[39] Y. Sumitomo and S.-H. Henry Tye, Preference for a vanishingly small cosmological constant

in supersymmetric vacua in a type IIB string theory model, Phys. Lett. B 723 (2013) 406

[arXiv:1211.6858] [INSPIRE].

[40] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102] [INSPIRE].

[41] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423

(2006) 91 [hep-th/0509003] [INSPIRE].
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