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1 Introduction

Over the last decade, it has become clear that gauge/gravity duality [1–3] is a very use-

ful tool for studying the hydrodynamics of strongly-coupled field theories (see [4–6] for

some reviews of this field). The theory of hydrodynamics [7] is formulated as a derivative

expansion in which the macroscopic quantities describing the state of a system close to

equilibrium are assumed to be slowly-varying with respect to a length scale lmfp, often
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taken to be the mean free path between thermal collisions. Typically, increasing the tem-

perature T will reduce lmfp and thus increase the accuracy of hydrodynamics. A recent

introduction to this topic can be found in [8].

The theory of hydrodynamics predicts that for a conformal theory in D spacetime

dimensions deformed to non-zero T and with a chemical potential µ for a conserved U(1)

charge, the two-point functions of the energy-momentum tensor Tµν and of the U(1) current

Jµ exhibit three kinds of gapless excitation: a transverse diffusion mode with dispersion

relation (where ω is the frequency of the excitation and q its momentum)

ω = −i
η

ǫ+ P
q2 +O

(

q4
)

, (1.1)

a longitudinal charge diffusion mode, and a longitudinal sound mode with dispersion rela-

tion

ω = ±
√

dP

dǫ
q − i

(D − 2)

(D − 1)

η

(ǫ+ P )
q2 +O

(

q3
)

, (1.2)

where ǫ is the energy density and P the pressure of the field theory (as the underlying

theory is conformal, these are related via ǫ = (D − 1)P ). The shear viscosity η of the

theory, which controls the attenuation of the sound and transverse diffusion modes, can be

independently determined via the Kubo formula

η ≡ − lim
ω→0

1

ω
ImGR

TxyTxy (ω, q = 0) , (1.3)

where GR
OiOj

denotes the retarded Greens function of a pair of operators.

Starting with [9–12], the existence of these modes has been established in a wide

variety of holographic theories in the limit ω, q ≪ T , which is analogous to the limit

described above where the thermal collision length is much shorter than the wavelength of

the perturbation. Remarkably, it has been shown that for a very large class of holographic

theories the viscosity is given by [13–16]

η =
s

4π
, (1.4)

where s is the entropy density of the field theory. This result is significant as the ratio η/s

is similar to that measured for the quark-gluon plasma, and significantly smaller from that

predicted by, for example, perturbative QCD. One obvious lesson from this work is that the

transport properties of strongly-coupled theories can be significantly different from those of

theories based on the existence of long-lived quasiparticles. The applicability of hydrody-

namics to holographic theories can be checked to higher orders in the derivative expansion

and in the amplitude of fluctuations using the fluid/gravity correspondence [17–19].

A question which has had comparatively little study in the gauge/gravity duality

literature is what happens when the mean free path between thermal collisions becomes

very long — when ω, q ≫ T , or in the extreme limit when T = 0. One could argue that

hydrodynamics — a derivative expansion valid on length scales much longer than lmfp —

should be valid even at T = 0 provided that we consider perturbations with ω, q ≪ µ. In

other words, that at T = 0 hydrodynamics will continue to be valid since a large µ will
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result in a small mean free path lmfp ∼ 1/µ and thus a well-controlled derivative expansion.

This viewpoint was emphasised in [20]: assuming that η/s = 1/4π at T = 0, one can define

lmfp to be equal to the diffusion constant in (1.1) and show that it is finite at T = 0 for a

certain class of large, charged black holes in global AdS spaces.

However, this is at odds with our intuition that turning on a large T or a large µ

are qualitatively different deformations of a field theory. Moreover, in the best-understood

quasparticle-based theory of this kind — Fermi liquid theory — the hydrodynamics outlined

above is not valid at sufficiently low temperatures.1 For example, the speed of sound at zero

temperature is not equal to its hydrodynamic value
√

dP/dǫ and the decay rate of sound

−Im (ω) ∝ q2 + T 2 has an important, q-independent contribution [21–24]. Furthermore,

it has been shown in various holographic probe D-brane theories that hydrodynamics is

not an accurate description at sufficiently low temperatures, as the longitudinal charge

diffusion mode expected from the hydrodynamics of a conserved U(1) current is replaced

by propagating sound modes [25–36].

There have been a few studies of the low-energy bosonic excitations outside of the

usual hydrodynamic limit ω, q ≪ T for non-probe holographic theories with a non-zero

µ, including [37–41]. The main technical difference of these calculations, compared to

those in the usual hydrodynamic limit, is that as T → 0 the location of the black hole

horizon becomes an irregular singular point of the equations of motion for the excitations

of the bulk fields.

Additionally, it has been shown that if one defines the ‘viscosity’ at T = 0 formally

using the Kubo formula (1.3), then for a small subset of holographic theories (which all

have s 6= 0 at T = 0) the relation η = s/4π continues to hold even at T = 0 [42–46].

This subset includes the planar AdS-Reissner-Nordström black hole. We stress here that

these examples are not covered by the general proof of [16] because of the different horizon

structure in the T = 0 limit mentioned above. Physically, the two situations are completely

distinct as the ω → 0 limit in the definition of η corresponds to ω ≪ T, µ at any non-zero

T , and T ≪ ω ≪ µ when T = 0. Henceforth we will abuse notation and denote both the

usual viscosity, and its zero temperature analogue, by the name ‘viscosity’ and the symbol

η since they are both equal to s/4π for the field theory that we investigate.

In this paper, we study the retarded Greens functions of the transverse components of

Tµν and Jµ in the field theory dual to the planar AdS-Reissner-Nordström black hole in

(3+1)-dimensions (RN-AdS4). We analytically compute these Greens functions at leading

order in small ω, q under the assumption that these quantities are small compared to either

T or µ (or both). When ω, q ≪ T , we recover the expected hydrodynamic diffusion mode

with a dispersion relation given by (1.1) and (1.4), in agreement with the results of [47, 48].

More interestingly, we show that this diffusion mode exists with a dispersion relation given

by (1.1) and (1.4) even when ω & T . In fact, even in the extremal limit T = 0, we find

that there exists a diffusive mode described by the hydrodynamic results (1.1) and (1.4).

To our knowledge, this is the first analytic calculation of the bosonic excitations outside

of the usual hydrodynamic limit ω ≪ T in a holographic theory at non-zero density with

a dynamical metric.

1It breaks down when ω & l−1
mfp ∼ T 2/µ.
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Outside of the usual hydrodynamic range ω ≪ T , our analytic calculation of the

dispersion relation of the diffusion mode relies on the existence of a (Schwarzschild-)AdS2
near-horizon geometry. In the spirit of the semi-holographic work of [16, 49–51], we find

that whereas the existence of low-energy modes (in our case diffusion) is a property of

the full spacetime geometry, the decay rate of these modes is controlled by the near-

horizon geometry. In our case, the leading power of the momentum in the dispersion

relation ω ∼ −iqα is controlled by the dimension of the operator dual to the gauge-invariant

combination of the metric fluctuations in the CFT1 dual to the near-horizon AdS2 geometry.

Formally, we find that the dispersion relation of the diffusion mode at T = 0 can be written

ω2

GIR
1 (ω)

∼ −q2, (1.5)

where GIR
1 (ω) is the retarded Greens function of a scalar operator of conformal dimension

1 in the CFT1 dual to the near-horizon AdS2 region of the geometry. As this CFT1

correlator is proportional to iω, we obtain ω ∼ −iq2. Note that unlike in the fermionic

case of [49], the dimension of this operator is fixed. At non-zero temperatures T . ω ≪ µ,

GIR
1 (ω) is replaced by GIR

1,T (ω), the thermal Greens function of the CFT1 operator, in the

above equation. This ensures that the dispersion relation ω (q) retains the same ω ∼ −iq2

form (but with a T -dependent diffusion constant). In particular, it does not receive any

corrections which are dependent upon T but independent of q (at lowest order).

The T = 0 Greens functions of the transverse operators of this theory were analytically

studied previously in [37, 42], and our results are complementary to theirs. We use different

gauge-invariant fields than in their approach, which allow us to determine the leading-

order momentum dependence of these fields far from the horizon. As just indicated, it

is the knowledge of this far-from-horizon solution which allows us to demonstrate the

existence of a diffusion mode. On the other hand, the fields used in [37, 42] allow one to

determine the dependence of these fields near the horizon to a higher order in ω and q

than in our approach. This means that the scaling of the spectral functions in the limit

ω → 0 is captured more accurately by the results of [37, 42] (although at leading order,

our results agree).

The remainder of this paper is structured as follows. In section 2 we review the

thermodynamic properties of the planar RN-AdS4 solution, and manipulate the equations

of motion (and on-shell action) of the fluctuations of the transverse fields into a form in

which we can solve them in the appropriate limits. In section 3 we calculate the Greens

functions of the dual operators of these transverse fields in the limit ω ≪ T . This is

an instructive warmup for sections 4 and 5, in which the same general procedure is used

to calculate the Greens functions in the T = 0 (with ω ≪ µ) and T . ω ≪ µ limits

respectively. In section 6 we present results of the numerical computation of the poles of

the Greens functions, and the spectral functions, at both zero and non-zero temperatures.

These confirm the accuracy of our analytic results. Finally in section 7 we conclude with

a discussion of some possible future research directions.
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2 The planar RN-AdS4 solution and its linearised excitations

2.1 The equilibrium solution

The planar AdS4 Reissner-Nordström spacetime that we study is a solution to the Einstein-

Maxwell theory with a cosmological constant. The action of this theory is

S =
1

2κ24

∫

M

d4x
√−g

(

R+
6

L2
−L2FµνF

µν

)

+
1

κ24

∫

∂M

d3x
√

|h| K+counterterms, (2.1)

and the planar RN-AdS4 solution can be written

ds2 = −r2f(r)

L2
dt2 +

r2

L2

(

dx2 + dy2
)

+
L2

r2f(r)
dr2, At (r) =

Qr0
L2

(

1− r0
r

)

,

f(r) = 1− (1 +Q2)
r30
r3

+Q2 r
4
0

r4
,

(2.2)

where the boundary of the spacetime is at r → ∞, the planar outer horizon is at r = r0 and

the U(1) field strength is given by F = dA. The term involving the extrinsic curvature K is

the Gibbons-Hawking term, and we have not written explicitly the counterterms required

to remove the divergences from the on-shell action. These counterterms, which can be

found for example in [37], contribute only contact terms to the dual Greens functions and

so will not be required for our purposes.

This solution can be consistently embedded into 11-dimensional supergravity, where

the Einstein-Maxwell theory given by equation (2.1) arises as a universal sector in the

gravitational dual of any (2+1)-dimensional SCFT with N = 2 supersymmetry [52]. In the

simplest embedding, this solution is dual to the state of the low-energy (2+1)-dimensional

field theory on a stack of M2-branes in flat space with a non-zero density of diagonal U(1)

R-charge [53, 54].

The RN-AdS4 solution is the thermodynamically-preferred solution to the theory de-

fined by the action (2.1) at all temperatures. However, by studying more general trun-

cations of the supergravity action (i.e. by including the effects of more operators in the

dual CFT), it is found that this solution is highly susceptible to instabilities due to the

condensation of both charged and neutral scalar fields [55–58]. For this reason, we find it

unlikely that the uplifts of the solution (2.1) are thermodynamically-preferred phases of the

full 11-dimensional supergravity action (and hence of the CFTs dual to this) when T = 0.

The solution has one dimensionless parameter Q, which determines the ratio of the

temperature of the field theory state T to the chemical potential (with respect to the

diagonal U(1) R-charge) µ

T =

(

3−Q2
)

r0

4πL2
, µ =

Qr0
L2

,
T

µ
=

3−Q2

4πQ
. (2.3)

This can be inverted to give Q in terms of T/µ

Q =

√

3 + 4π2
T 2

µ2
− 2π

T

µ
. (2.4)

Q can take values between 0 (corresponding to µ = 0) and
√
3 (corresponding to T = 0).
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The thermodynamic properties of the dual field theory state are controlled by the

dimensionless parameter Q (or equivalently by T/µ). The energy density ǫ, pressure P ,

entropy density s and charge density ρ are given by [53]

ǫ =

(

1 +Q2
)

r30
κ24L

4
, P =

ǫ

2
, s =

2πr20
κ24L

2
, ρ =

2Qr20
κ24L

2
. (2.5)

When T = 0, this state has the unusual property that its entropy density is non-zero.

2.2 Linearised fluctuations around equilibrium

The two-point functions of field theory operators can be computed by studying the lin-

earised fluctuations of their dual fields in the gravitational theory. Without loss of general-

ity, we choose the momentum of these fluctuations to flow along the x-direction and excite

the metric — which is dual to the energy-momentum tensor Tµν of the field theory — and

the gauge field — which is dual to the diagonal U(1) R-current Jµ — around their values

on the planar RN-AdS4 solution as follows

gµν (r) → gµν (r) +

∫

dωdq

(2π)2
e−iωt+iqxhµν (r, ω, q) ,

Aµ (r) → Aµ (r) +

∫

dωdq

(2π)2
e−iωt+iqxaµ (r, ω, q) .

(2.6)

At linear order, the fluctuations of fields transverse to the momentum flow —

hyt, hxy, hry and ay — decouple from the rest, due to the y → −y symmetry of the theory

and of the planar RN-AdS4 solution. In this paper we are interested only in the fluctua-

tions of these ‘transverse fields’. By varying the action (2.1) with respect to hyt, hxy, hry
and ay respectively, we obtain the following set of coupled equations of motion

d

dr

[

r4hyt
′
+

iωL4

f
hry + 4L4r2A′

tay

]

− L4q

f

(

qhyt + ωhxy
)

= 0, (2.7a)

d

dr

[

r4fhxy
′ − iqL4hry

]

+
L4ω

f

(

qhyt + ωhxy
)

= 0, (2.7b)

iqhxy
′ +

iω

f
hyt

′ − L4

r4f2

(

ω2 − q2f
)

hry +
4iωL4A′

t

r2f
ay = 0, (2.7c)

d

dr

[

r2fa′y + r2A′
th

y
t

]

+
iωL4A′

t

r2f
hry +

L4

r2f

(

ω2 − q2f
)

ay = 0, (2.7d)

where we raise and lower indices of hµν using the background metric (2.2) and where a

prime denotes a derivative with respect to r. The metric fluctuations with mixed indices

are more convenient for numerical calculations, as their leading term near the boundary of

the spacetime is a constant.

Not all of these equations of motion are linearly independent — equations (2.7a)

and (2.7c) together imply equation (2.7b) and similarly equations (2.7b) and (2.7c) to-

gether imply equation (2.7a). This is a manifestation of the underlying gauge symmetries

of the linear fluctuations which fix the relationship between hyt and hxy as we will shortly

demonstrate. For our purposes, it is convenient to choose ωr2A′
t× (2.7b)+qr4f ′× (2.7d)+

– 6 –
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qr2fA′
t × (2.7a), along with equations (2.7b) and (2.7c), as the three linearly-independent

equations of motion. This first combination can be written

d

dr

[

r6fA′
t

(

hyt
′
+

ω

q
hxy

′

)

+ r6ff ′a′y

]

+
L4r2A′

t

f

(

ω2 − q2f
)

(

hyt +
ω

q
hxy

)

+
L4r2f ′

f

(

ω2 − q2f
)

ay = 0,

(2.8)

where we have used the fact that r2A′
t (r) is independent of r and that

4L4A′
t =

d

dr

[

r2f ′

A′
t

]

, (2.9)

for our background. This is a convenient choice because the terms outside the derivative

bracket (which are gauge-invariant) are suppressed at sufficiently low ω and q with respect

to the terms inside the derivative bracket (which are also gauge-invariant). Thus at suffi-

ciently low ω and q, this equation (along with equation (2.7b)) can be trivially integrated

to produce gauge-invariant first-order differential equations for the fields.

As alluded to above, the linearised fluctuations possess a diffeomorphism gauge sym-

metry, under which the fields transform as [59]

hµν → hµν −∇µξν −∇νξµ, aµ → aµ − ξα∇αAµ −Aα∇µξ
α, (2.10)

where the covariant derivatives are taken with respect to the planar RN-AdS4 metric (2.2).

The gauge field fluctuations also transform as aµ → aµ − ∂µΛ under the bulk U(1) gauge

symmetry, which means that the transverse gauge field ay is invariant under this transfor-

mation, as are all of the metric fluctuations hµν . It will be convenient to write our theory

in terms of gauge-invariant combinations of the fluctuations of the fundamental fields hµν
and aµ. One can construct various different gauge-invariant combinations from the funda-

mental fields and their derivatives, and the choice we will make is to consider combinations

of fields which do not have an r index. It is these fields whose boundary values have a clear

interpretation as the sources of the dual field theory operators. With this restriction, the

gauge-invariant fields are

ϕ1 (r, ω, q) = hyt (r, ω, q) +
ω

q
hxy (r, ω, q) , ϕ2 (r, ω, q) =

L2

r0
ay (r, ω, q) , (2.11)

or any linear combination of them. When written in terms of these variables, the grav-

itational theory explicitly encodes the Ward identities of the operators in the dual field

theory [60]

GR
TxyT ty = GR

T tyTxy =
ω

q
GR

T tyT ty , GR
TxyTxy =

ω2

q2
GR

T tyT ty , GR
TxyJy =

ω

q
GR

T tyJy ,

(2.12)

where these expressions should be understood to hold up to contact terms. This will be

seen clearly in the following sections.

– 7 –
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To obtain the equations of motion in terms of these variables, one simply solves equa-

tion (2.7c) algebraically for hry and then substitutes this solution into the dynamical equa-

tions (2.8) and (2.7b). This yields the following coupled equations of motion

d

dr

[

r6f

(

A′
tϕ

′
1 +

r0f
′

L2
ϕ′
2

)]

+
L4r2

f

(

ω2 − q2f
)

[

A′
tϕ1 +

r0f
′

L2
ϕ2

]

= 0, (2.13a)

d

dr

[

r2f

ω2 − q2f

(

r2ϕ′
1 + 4r0L

2A′
tϕ2

)

]

+
L4

f
ϕ1 = 0, (2.13b)

which will be the subject of the remainder of this paper.

To compute the Greens functions of the dual field theory, we also need to know the

on-shell gravitational action. This can easily be computed in terms of hµν and aµ, and

after substituting in the solution for hry from equation (2.7c), it becomes

S =
1

2κ24

∫

r→∞

dωdq

(2π)2

[

− r4fq2

2L4 (ω2 − q2f)
ϕ1 (r,−ω,−q)ϕ′

1 (r, ω, q)

− 2r20r
2f

L4
ϕ2 (r,−ω,−q)ϕ′

2 (r, ω, q)+non-derivative terms

]

,

(2.14)

where a prime denotes a derivative with respect to r. The non-derivative terms in this action

produce contact terms in the Greens functions. These non-derivative terms cannot be

written purely in terms of the gauge-invariant variables above, which is simply a reflection

of the fact that the Ward identities (2.12) hold up to contact terms. In the gravitational

theory, it is not a signal of broken diffeomorphism invariance but rather that the linearised

transformations (2.10) should be modified at quadratic order.

3 Greens functions in the usual hydrodynamic limit ω ≪ T

As a warmup for our low temperature calculations, in this section we will determine the

Greens functions in the usual hydrodynamic limit ω ≪ T . As expected, we find a diffusion

pole with a dispersion relation given by equations (1.1) and (1.4). Our results are consistent

with those of [48], although our method is different. Our method can easily be generalised to

compute the Greens functions outside of this limit, as we will show in the following sections.

To find the Greens functions, we divide the bulk spacetime into an inner region (a

suitably-defined region near the horizon) and an outer region (a suitably-defined region

near the boundary). These two regions overlap over a range of r called the matching re-

gion. Firstly, we solve the equations of motion in both the inner region and outer region to

determine ϕ1 and ϕ2 in the respective regions up to integration constants. After substitut-

ing in the solutions ϕouter
1 and ϕouter

2 , the boundary on-shell action (from which the Greens

functions are computed) is determined in terms of the integration constants of the outer

solutions. These integration constants should be fixed by demanding that the fields are

ingoing at the horizon. This is implemented by imposing ingoing boundary conditions on

the solutions in the inner region, and then demanding that the solutions ϕinner
1,2 and ϕouter

1,2

are consistent in the matching region. Having fixed the integration constants of the outer

solutions, we can read off the Green’s functions from the on-shell action.

– 8 –
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3.1 The inner region

We begin by solving the equations of motion (2.13a) and (2.13b) in the inner region. After

diagonalising the two-derivative terms, we expand these equations around the horizon

r = r0 (assuming that ϕ1 ∼ ϕ2) to obtain

ϕ′′
1 + ϕ′

1

[

1

r − r0
+. . .

]

+ϕ′
2 [. . .]+ϕ1

[

L4ω2

(3−Q2)2 r20 (r − r0)
2
+. . .

]

+ϕ2 [. . .] = 0,

ϕ′′
2 + ϕ′

1 [. . .] + ϕ′
2

[

1

r − r0
+ . . .

]

+ ϕ2

[

L4ω2

(3−Q2)2 r20 (r − r0)
2
+ . . .

]

= 0,

(3.1)

where the ellipses denote higher-order terms in this near-horizon expansion. In this region,

the fields decouple and their equations of motion can easily be solved to give the usual

result for fields near a horizon of non-zero temperature

ϕinner
1,2 = a+1,2

(

r

r0
− 1

)
iωL2

r0(3−Q2)
+ a−1,2

(

r

r0
− 1

)− iωL2

r0(3−Q2)

= a+1,2 exp

[

iω

4πT
log

(

r

r0
− 1

)]

+ a−1,2 exp

[

− iω

4πT
log

(

r

r0
− 1

)]

,

(3.2)

where a±1,2 are integration constants. Ingoing boundary conditions correspond to the

choice a+1,2 = 0.

Note that in the zero temperature limit (Q →
√
3), the expansion (3.1) breaks down, as

terms which naively appear to be of a higher order contain factors of the form
(

3−Q2
)−1

.

This is simply a consequence of the horizon structure changing in the T → 0 limit as f(r0)

becomes a double zero.

3.2 The outer region

We will now solve the equations of motion (2.13a) and (2.13b) in the outer region. We

define this region by
ω2L4

r2f2
≪ 1,

q2L4

r2f
≪ 1. (3.3)

After taking these limits, the non-derivative terms in the equations of motion drop out and

we can trivially integrate them to give

r6f

(

A′
tϕ

outer
1

′
+

r0f
′

L2
ϕouter
2

′
)

=
c1ω

2r0
L2

, (3.4a)

r2f

ω2 − q2f

(

r2ϕouter
1

′
+ 4r0L

2A′
tϕ

outer
2

)

=
c2r0

L2r2A′
t

, (3.4b)

where c1 and c2 are integration constants and we have used the fact that r2A′
t is a constant

for the planar RN-AdS4 background. It is then simple to decouple ϕouter
2 , which obeys the

following linear, first-order differential equation

ϕouter
2

′ − 4L4A′
t
2

r2f ′
ϕouter
2 =

ω2 (c1 − c2) + c2q
2f

r6ff ′
. (3.5)
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This equation can be formally solved by means of an integrating factor to give

ϕouter
2 (r) = exp

(

∫ r

dr̂
4L4A′

t
2

r̂2f ′

)[

b1+

∫ r

dr̂ exp

(

−
∫ r̂

dr̃
4L4A′

t
2

r̃2f ′

)

ω2 (c1−c2)+c2q
2f

r̂6ff ′

]

,

(3.6)

where b1 is an integration constant. Substituting this solution for ϕouter
2 into equa-

tion (3.4b), we can easily integrate to obtain ϕouter
1

ϕouter
1 (r) = b2 +

∫ r

dr̂

(

r0c2
(

ω2 − q2f
)

L2r̂6fA′
t

− 4r0L
2A′

t

r̂2
ϕouter
2 (r̂)

)

, (3.7)

where b2 is an integration constant. Doing the integral

∫ r

dr̂
4L4A′

t
2

r̂2f ′
= log

[

3
(

1 +Q2
)

− 4Q2 r0
r

]

, (3.8)

we find that

ϕouter
1 (r) = ϕ

(0)
1 +

∫ r

dr̂
r0c2

(

ω2−q2f
)

L2r̂6fA′
t

−
∫ r

dr̂
4r0L

2A′
tϕ

(0)
2

r̂2

(

1− 4Q2

3 (1+Q2)

r0
r̂

)

−
∫ r

dr̂
4r0L

2A′
t

r̂2

(

1− 4Q2

3 (1+Q2)

r0
r̂

)
∫ r̂ dr̃

1− 4Q2

3(1+Q2)
r0
r̃

ω2 (c1 − c2)+c2q
2f

r̃6ff ′
,

(3.9)

and

ϕouter
2 (r) =

(

1− 4Q2

3 (1 +Q2)

r0
r

)



ϕ
(0)
2 +

∫ r dr̂

1− 4Q2

3(1+Q2)
r0
r̂

ω2 (c1 − c2) + c2q
2f

r̂6ff ′



 , (3.10)

where ϕ
(0)
1,2 are the values of ϕ1,2 at the boundary of the planar RN-AdS4 spacetime.

Doing the integrals for the terms proportional to q2, these become

ϕouter
1 (r) = ϕ

(0)
1 +

1

3r3

(

1− Q2r0
(1 +Q2) r

)(

4Qr30ϕ
(0)
2 +

c2q
2

Qr0

)

+

∫ r

dr̂
r0ω

2c2
L2r̂6fA′

t

−
∫ r

dr̂
4r0L

2A′
t

r̂2

(

1− 4Q2

3 (1 +Q2)

r0
r̂

)
∫ r̂

dr̃
ω2 (c1 − c2)

r̃6ff ′
(

1− 4Q2

3(1+Q2)
r0
r̃

) ,
(3.11)

and

ϕouter
2 (r) =

(

1− 4Q2

3 (1 +Q2)

r0
r

)

[

ϕ
(0)
2 − c2q

2

3r30r (1 +Q2)
(

1− 4Q2

3(1+Q2)
r0
r

)

+

∫ r

dr̂
ω2 (c1 − c2)

r̂6ff ′
(

1− 4Q2

3(1+Q2)
r0
r̂

)

]

.

(3.12)

We could not do the integrals exactly for the terms proportional to ω2 (except in the T = 0

or µ = 0 limits), but this will not be important for determining the Greens function at

lowest order in ω and q, as will become clear shortly.
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3.3 Matching

To completely determine the outer solutions and hence the Greens functions, we must fix

the integration constants c1 and c2 such that the fields are ingoing at the horizon. As

previously mentioned, this can be done by finding a matching region — a range of r over

which both the inner solutions and outer solutions are valid — and comparing the solutions

in that region. As the inner region solutions are valid near the horizon, we expand the

outer region solutions near r = r0. For the terms proportional to ω2, it is sufficient to

expand the integrands in this limit and keep the leading terms to give

ϕouter
1 =

c2ω
2

Qr40 (3−Q2)
log

(

r

r0
− 1

)

+

[

ϕ
(0)
1 +

4Qϕ
(0)
2

3 (1 +Q2)
+

c2q
2

3Qr40 (1 +Q2)

+O
(

ω2c1, ω
2c2
)

]

+O (r − r0) ,

(3.13)

and

ϕouter
2 =

(

1− 4Q2

3 (1+Q2)

)

3
(

1+Q2
)

ω2 (c1−c2)

(3−Q2)3 r40
log

(

r

r0
−1

)

+

[

ϕ
(0)
2

(

1− 4Q2

3 (1+Q2)

)

− c2q
2

3r40 (1+Q2)
+O

(

ω2c1, ω
2c2
)

]

+O (r − r0) ,

(3.14)

where we have neglected terms of order c1ω
2 and c2ω

2 in the coefficients of the (r − r0)
0

terms. This is because we are searching for a diffusive mode with ω ∼ q2 and thus the ω2c1
and ω2c2 terms are subleading in an expansion at low q. When r − r0 ≪ r0, as in these

solutions, our constraint on the validity of the outer region solutions (3.3) becomes

ωL2

r20f
′(r0)

≪ r − r0
r0

≪ 1. (3.15)

This requires that ω ≪ T , which is the hydrodynamic limit commonly used in holographic

computations of Greens functions.

The form of the inner solutions (3.2) in the matching region are found by expanding

them in the limit
iω

4πT
log

(

r

r0
− 1

)

≪ 1, (3.16)

to give

ϕinner
1,2 (r) =

(

a+1,2 + a−1,2

)

+
(

a+1,2 − a−1,2

) iω

4πT
log

(

r

r0
− 1

)

+ . . . . (3.17)

Demanding ingoing boundary conditions at the horizon (a+1,2 = 0) fixes the relative coeffi-

cient of the constant and logarithmic terms in this expansion

ϕinner
1,2 (r) = a−1,2

[

1− iω

4πT
log

(

r

r0
− 1

)

+ . . .

]

. (3.18)
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To determine c1 and c2 for a solution which is ingoing near the horizon, we equate the

coefficients of the constant and logarithmic terms in the outer solutions (3.13), (3.14) with

those in the inner solutions (3.18). The resulting two equations are

iωc2
Qr30L

2
= ϕ

(0)
1 +

4Qϕ
(0)
2

3 (1 +Q2)
+

c2q
2

3Qr40 (1 +Q2)
+O

(

c1ω
2, c2ω

2
)

,

iω (c1 − c2)

L2r30 (3−Q2)
= ϕ

(0)
2

(

1− 4Q2

3 (1 +Q2)

)

− c2q
2

3r40 (1 +Q2)
+O

(

c1ω
2, c2ω

2
)

.

(3.19)

Neglecting terms of O
(

ω2c1, ω
2c2
)

, one can solve these to give

c1 =
L2r30

iω
(

iω− L2q2

3r0(1+Q2)

)

[

Qϕ
(0)
1

(

iω− L2
(

3−Q2
)

3r0 (1+Q2)
q2

)

+
ϕ
(0)
2

3 (1+Q2)

(

iω
(

Q4 − 2Q2 + 9
)

−L2q2

r0

(

3−Q2
)

)

]

, (3.20a)

c2 =
L2r30Q

(

ϕ
(0)
1 + 4Q

3(1+Q2)
ϕ
(0)
2

)

iω − L2q2

3r0(1+Q2)

. (3.20b)

These constants, along with the solutions (3.11) and (3.12), determine the behaviour of ϕ1

and ϕ2 near the boundary of the spacetime, assuming that the fields are ingoing at the

horizon and that we are in the usual hydrodynamic limit ω ≪ T .

3.4 Green’s functions

To determine the retarded Green’s functions, we require the on-shell action for fields that

are ingoing near the horizon. Substituting the outer solutions (3.11) and (3.12) into the

on-shell action (2.14), we find (where the argument (ω) is shorthand for (ω, q))

S =
1

2κ24

∫

r→∞

dωdq

(2π)2
−r20q

2

2L2
(

iω− L2q2

3r0(1+Q2)

)

[

ϕ
(0)
1 (−ω)ϕ(0)

1 (ω)+
16Q2

9 (1+Q2)2
ϕ
(0)
2 (−ω)ϕ(0)

2 (ω)

+
4Q

3 (1 +Q2)

(

ϕ
(0)
1 (−ω)ϕ

(0)
2 (ω) + ϕ

(0)
2 (−ω)ϕ

(0)
1 (ω)

)

]

, (3.21)

where we have imposed the values of c1 and c2 for ingoing modes (3.20a) and (3.20b) and

neglected contact terms. Using the relations

ϕ
(0)
1 (ω, q) = hyt

(0)
(ω, q) +

ω

q
hxy

(0) (ω, q) , ϕ
(0)
2 (ω, q) =

L2

r0
a(0)y (ω, q) , (3.22)

where the superscript (0) denotes the boundary value of a field, and the usual prescription

for calculating Greens functions from holography [61, 62], we find that the retarded Greens
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functions are (up to contact terms)

GR
T tyT ty =

r20q
2

2κ24L
2
(

iω − L2q2

3r0(1+Q2)

) , GR
JyJy =

8L2q2Q2

9κ24 (1 +Q2)2
(

iω − L2q2

3r0(1+Q2)

) ,

GR
T tyJy = GR

JyT ty =
2r0q

2Q

3κ24 (1+Q2)
(

iω− L2q2

3r0(1+Q2)

) , (3.23)

with the Greens functions of the other operators obeying the Ward identities (2.12) due

to our gauge-invariant bulk formulation. These results are valid only at lowest order in ω

and q (assuming that ω ∼ q2), and are valid only up to contact terms. They agree with

the results of [48] up to such corrections.2 They accurately capture the behaviour of the

spectral function in the neighbourhood of the diffusion peak, as we will show numerically

in section 6.

The Greens functions share a common diffusive pole with dispersion relation

ω = −i
L2

3r0 (1 +Q2)
q2 + . . . = −i

s

4π (ǫ+ P )
q2 + . . . , (3.24)

where the ellipses denote higher order terms in q, as one expects from the hydrodynamic

equations (1.1) and (1.4). This value of the viscosity can be checked by applying the Kubo

formula (1.3) to our results for the Greens functions.

4 Zero temperature Greens functions

As we emphasised, the above calculation of the Greens functions is not valid when T = 0.

This is because the horizon structure is qualitatively different in this limit — f(r) has a

double zero when T = 0, rather than the single zero it has when T 6= 0. However, at

T = 0 one can use a similar procedure to that just outlined provided that the inner region

is suitably defined. For the extremal background there is a natural candidate for such an

inner region — the AdS2 × R
2 near-horizon geometry.

4.1 The inner AdS2 region

Following similar calculations in [37, 38, 41, 42, 49], the near-horizon AdS2 ×R
2 geometry

is most easily seen by changing co-ordinates to

ζ =
r − r0
ωL2

, (4.1)

and then expanding linear combinations of the equations of motion (2.13a) and (2.13b) as

power series at small ω and q (assuming that ϕ1 ∼ ϕ2) to give

ϕ′′
1 (ζ) + ϕ′

1 (ζ)

[

2

ζ
+ . . .

]

+ ϕ′
2 (ζ) [. . .] + ϕ1 (ζ)

[

1

36ζ4
+ . . .

]

+ ϕ2 (ζ) [. . .] = 0,

ϕ′′
2 (ζ) + ϕ′

1 (ζ) [. . .] + ϕ′
2 (ζ)

[

2

ζ
+ . . .

]

+ ϕ2 (ζ)

[

1

36ζ4
− 2

ζ2
+ . . .

]

= 0,

(4.2)

2Although the correlators involving Jy appear superficially different from those in [48], these differences

are just due to contact terms. Both our calculation and the calculation in [48] neglect certain contact terms,

but not the same set of contact terms (since they are done by different methods).
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where the ellipses denote terms with positive powers of ω, q. In these limits, the equations

of motion decouple and after redefining the radial variable ζ → ζ̂/
(

ωL2
)

to remove the

frequency dependence, the equations for ϕinner
1 (ζ̂) and ϕinner

2 (ζ̂) are simply the equations of

motion for scalar fields in AdS2 with (mL2)
2 = 0, 2 respectively. The radius of curvature of

this effective AdS2 spacetime is related to the radius of curvature of the RN-AdS4 spacetime

via L2 = L/
√
6.

It is simple to solve these inner region equations to give

ϕinner
1 (ζ) = a+1 exp

(

i

6ζ

)

+ a−1 exp

(

− i

6ζ

)

,

ϕinner
2 (ζ) = a+2

(

ζ − i

6

)

exp

(

i

6ζ

)

+ a−2

(

ζ +
i

6

)

exp

(

− i

6ζ

)

,

(4.3)

where a±1,2 are integration constants. The equations (4.2) are valid in the limit of small

frequency and momentum (with respect to r0/L
2) with ζ, defined in (4.1), fixed. These

requirements imply that r − r0 ≪ r0 i.e. that these are near-horizon solutions. Ingoing

boundary conditions at the horizon (ζ → 0) correspond to the choice a−1,2 = 0. At T = 0,

r0/L
2 is essentially the chemical potential µ of the field theory and so the following results

are valid only for ω, q ≪ µ.

4.2 The outer region

As in the T 6= 0 case, we define the outer region by (3.3). Just as at T 6= 0, the equations of

motion in the outer region can then be solved to give the integral solutions (3.11) and (3.12),

with Q =
√
3 for the T = 0 case. In the limit T = 0, the fact that f(r) has a double pole

means that these integrals can be done exactly but the results are lengthy and will not be

presented here. To compute the Greens functions, we only require to know the behaviour

of the outer solutions in the matching region and near the boundary of the spacetime, and

this will be presented in the following subsections.

4.3 Matching

To fix the integration constants c1 and c2 in the outer region solutions, we need to know

the inner and outer solutions in the matching region where the inner and outer regions

overlap. The solutions overlap if we expand the inner solutions (4.3) in the limit ζ → ∞
(‘far from the horizon’) to obtain

ϕinner
1 =

(

a+1 + a−1
) [

1 +O
(

ζ−2
)]

+
i

6ζ

(

a+1 − a−1
) [

1 +O
(

ζ−2
)]

,

ϕinner
2 = ζ

(

a+2 + a−2
) [

1 +O
(

ζ−2
)]

+
i

648ζ2
(

a+2 − a−2
) [

1 +O
(

ζ−2
)]

,

(4.4)

and the outer solutions (3.11) and (3.12) in the limit r → r0 (‘near the horizon’)

ϕouter
1 = − (c1+2c2)ω

2

18
√
3r30 (r − r0)

+. . .+

[

ϕ
(0)
1 +

1√
3
ϕ
(0)
2 +

√
3c2q

2

36r40
+O

(

ω2c1, ω
2c2
)

]

+. . . ,

ϕouter
2 = − ω2 (c1−c2)

216r20 (r−r0)
2+. . .+

[

1

r0
ϕ
(0)
2 +

c2q
2

12r50
+O

(

ω2c1, ω
2c2
)

]

(r−r0)+. . . ,

(4.5)
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where we have only explicitly written the terms required for the matching. As was the case

for ω ≪ T , we are searching for a diffusion mode with ω ∼ q2 and thus we can discard the

O
(

ω2c1, ω
2c2
)

terms as they are subleading at low q.

After changing co-ordinates back from ζ to r in (4.4), imposing ingoing boundary

conditions fixes the ratio of the coefficients of the (r − r0)
−1 and the (r − r0)

0 terms of

ϕinner
1 in the matching region, and the ratio of the coefficients of the (r − r0)

−2 and the

(r − r0)
1 terms of ϕinner

2 in the matching region as follows

ϕinner
1 = a+1

[

1 + GIR
1 (ω)

1

r − r0
+ . . .

]

,

ϕinner
2 = a+2

[

(r − r0) + . . .+ GIR
2 (ω)

1

(r − r0)
2 + . . .

]

,

(4.6)

where we have absorbed a factor of ωL2 into a+2 and where

GIR
1 (ω) =

iωL2

6
, GIR

2 (ω) =
iω3L6

648
, (4.7)

are (proportional to) the retarded Greens functions of scalar operators with conformal

dimensions ∆ = 1, 2 in the CFT1 dual to the near-horizon AdS2 geometry respectively.

The relative coefficients of the terms in each series are determined by these CFT1 Greens

functions simply because ϕinner
1 and ϕinner

2 behave like scalar fields in AdS2 with masses

(mL2)
2 = 0, 2 respectively. It is instructive for now to work with GIR

1 (ω) and GIR
2 (ω),

rather than using their explicit values (4.7).

To determine c1 and c2 for solutions which are ingoing at the horizon, we fix the

coefficients of the power series in the outer solutions (4.5) so that they agree with those

of the inner solutions in the matching region (4.6). Neglecting the O
(

ω2c1, ω
2c2
)

terms,

which are subleading at low q as previously explained, this fixes

c1 =
4
√
3r30

[

24
√
3r0ω

2ϕ
(0)
2 GIR

2 + GIR
1

(

−54GIR
2 q2ϕ

(0)
1 + r30ω

2
[√

3ϕ
(0)
2 + 3ϕ

(0)
1

])]

ω2
[

12GIR
2 q2 − r20

(

GIR
1 q2 + 2r0ω2

)] ,

c2 =
12r40

[

−12GIR
2 ϕ

(0)
2 + r20GIR

1

(√
3ϕ

(0)
1 + ϕ

(0)
2

)]

12GIR
2 q2 − r20

(

GIR
1 q2 + 2r0ω2

) .

(4.8)

Due to our previous approximations, these results are only valid to lowest order in ω ∼ q2.

Recall that GIR
2 (ω) is suppressed with respect to GIR

1 (ω) by a factor of ω2 and therefore

if we keep only the lowest order terms in these expressions (as we should for consistency),

all dependence upon GIR
2 (ω) drops out to give

c1 = c2 = −
6r30GIR

1 (ω)
(√

3ϕ
(0)
1 + ϕ

(0)
2

)

ω2 + q2

2r0
GIR
1 (ω)

. (4.9)

With these values for c1 and c2, the outer solutions correspond to fields which are ingoing

at the horizon.
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4.4 Greens functions

To determine the retarded Greens functions at T = 0, we substitute the outer solu-

tions (3.11) and (3.12) (with Q =
√
3 and c1 and c2 given by (4.9)) into the on-shell

boundary action (2.14). This yields (where the argument (ω) is shorthand for (ω, q))

S =
1

2κ24

∫

r→∞

dωdq

(2π)2
3r20q

2GIR
1 (ω)

L4
(

ω2+ q2

2r0
GIR
1 (ω)

)

[

ϕ
(0)
1 (−ω)ϕ(0)

1 (ω)+
1

3
ϕ
(0)
2 (−ω)ϕ(0)

2 (ω)

+
1√
3

(

ϕ
(0)
1 (−ω)ϕ(0)

2 (ω)+ϕ
(0)
2 (−ω)ϕ(0)

1 (ω)
)

]

,

(4.10)

up to contact terms. By using the relations (3.22) and then applying the usual holographic

prescriptions [61, 62], we find that the retarded Greens functions are

GR
T tyT ty = − 3r20q

2GIR
1 (ω)

L4κ24

(

ω2 + q2

2r0
GIR
1 (ω)

) =
r20q

2

2L2κ24

(

iω − q2L2

12r0

) ,

GR
JyJy = − q2GIR

1 (ω)

κ24

(

ω2 + q2

2r0
GIR
1 (ω)

) =
L2q2

6κ24

(

iω − q2L2

12r0

) ,

GR
T tyJy = GR

JyT ty = −
√
3r0q

2GIR
1 (ω)

L2κ24

(

ω2 + q2

2r0
GIR
1 (ω)

) =

√
3r0q

2

6κ24

(

iω − q2L2

12r0

) ,

(4.11)

and the Ward identities (2.12) are again trivially satisfied due to our gauge-invariant for-

mulation. These results are valid to leading order at low ω and q (with ω ∼ q2), and are

valid only up to contact terms.

The expressions (4.11) are precisely those obtained by taking the naive T = 0 limit of

the hydrodynamic results (3.23)! In particular, they support a diffusion pole with dispersion

relation given by (where the ellipses denote higher order terms in a small ω, q expansion)

ω2 +
q2

2r0
GIR
1 (ω) + . . . = 0 −→ ω = −i

L2

12r0
q2 + . . . , (4.12)

which is simply the T = 0 limit of the hydrodynamic relations (1.1) and (1.4). As men-

tioned in the introduction, the main features of this dispersion relation are consistent with

the principles apparent from previous studies of the low-energy physics of holographic the-

ories [16, 49–51]. That is, the low-energy physics will be dominated by any gapless modes

present in the theory in addition to the near-horizon geometry. The existence of such gap-

less modes is not apparent from the near-horizon geometry only but requires knowledge

of the full bulk spacetime, although the decay rate of these modes is controlled by the

near-horizon geometry. This is seen in the dispersion relation (4.12) above — the existence

of the diffusive mode required knowledge of the outer region of the geometry, but the power

of momentum in the dispersion relation is controlled by the conformal dimension of the

operator dual to the field ϕ1 in the CFT1 dual to the near-horizon AdS2 geometry. Unlike

in the case of probe Dirac fermions studied in [49], this dimension is fixed.
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It is instructive to compare our results to those of [37, 42], which analytically computed

the leading behaviour of the retarded Greens functions in the limit ω → 0. Their calculation

involves a matching procedure similar to that used here, but is formulated in terms of the

gauge-invariant Kodama-Ishibashi fields — for which the equations of motion decouple [63]

— rather than the fields ϕ1 and ϕ2 used here. With these decoupled fields, one can

determine the solutions in the near-horizon region more accurately than we have done here

— in particular, the conformal dimensions of the CFT1 operators dual to these fields in

the near-horizon region are given by

δ± =
1

2
+

1

2

√

√

√

√5 + 2
q2

µ2
± 4

√

1 +
q2

µ2
. (4.13)

These dimensions include q/µ-dependent corrections to the values 1 and 2 which we used

in our calculation. The authors of [37] can therefore compute the ω → 0 scaling behaviour

of the imaginary parts of the retarded Greens functions to find, for example,

ImGR
T tyT ty ∝

(

ω

µ

)2δ
−
−1

=
ω

µ
+

ωq4

4µ5
log

ω

µ
+ . . . , (4.14)

where we have expanded in the limit q ≪ µ, compared to our result ImGR
T tyT ty ∝ ω/µ.

Using the Kodama-Ishibashi variables also allows allows one to consistently include

higher-order frequency corrections to the Greens functions which are analogous to the

GIR
2 (ω) terms we neglected in our derivation. It is this contribution which gives a low-

frequency dissipative conductivity (ignoring the delta function peak) of σ (ω → 0) ∼ ω2 [42].

Our results (4.11) yield σ (ω) = 0 since GR
JyJy (ω, q = 0) vanishes due to our neglection of

these higher-order terms. Despite these drawbacks of our approach as compared to using

the Kodama-Ishibashi variables, the advantage is that we can solve the equations of motion

in the outer region more precisely than has been previously done. As we have seen, it is

this detailed knowledge of the fields far from the horizon which allows us to determine

the existence of the diffusion mode. Of course, our results (4.11) give a ‘zero temperature

viscosity’ equivalent to that found in [42]

η ≡ − lim
ω→0

1

ω
ImGR

TxyTxy (ω, q = 0) =
3r20
L4κ24

lim
ω→0

1

ω
ImGIR

1 (ω) =
s

4π
. (4.15)

5 Greens functions at low, non-zero temperatures T . ω ≪ µ

In this section, we will calculate the Greens functions (at leading order in small ω and

q) at small (with respect to µ), non-zero temperatures which are outside of the usual

hydrodynamic limit. In other words, in the range 0 < T . ω ≪ µ. Heuristically, one

would expect the calculation to proceed in a similar vein to the T = 0 calculation but

to now include small T/µ and T/ω corrections. We will see that this is the case — for

example the near-horizon AdS2 geometry is replaced by a near-horizon Schwarzschild-AdS2
geometry — and that the leading order Greens functions derived in this way are, in fact,

equivalent to those obtained from the hydrodynamic calculation (3.23).
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5.1 The inner Schwarzschild-AdS2 region

To define the inner region when T = 0, we wrote the equations in terms of the new radial

co-ordinate ζ (defined in equation (4.1)) and then kept only the lowest order terms in ω

and q in these equations. This corresponded to a near-horizon limit at small ω and q. To

determine the leading T -dependent corrections to this result, we must keep T ∼ ω in this

limit also. To this end, we can replace Q (which determines T/µ via equation (2.4)) with

ζ0 ≡
r0
(

3−Q2
)

ωL2
=

4πT

ω
, (5.1)

and keep this fixed in the low ω and q limit. Expanding linear combinations of the equations

of motion (2.13a) and (2.13b) at low ω and q, we find

ϕ′′
1 (ζ)+ϕ′

1 (ζ)

[

12ζ + ζ0
ζ (6ζ+ζ0)

+. . .

]

+ϕ′
2 (ζ) [. . .]+ϕ2 (ζ) [. . .]+ϕ1 (ζ)

[

1

ζ2 (6ζ+ζ0)
2+. . .

]

= 0,

ϕ′′
2 (ζ) + ϕ′

1 (ζ) [. . .] + ϕ′
2 (ζ)

[

12ζ + ζ0
ζ (6ζ + ζ0)

+ . . .

]

+ ϕ2 (ζ)

[

1− 72ζ2 − 12ζζ0

ζ2 (6ζ + ζ0)
2 + . . .

]

= 0,

(5.2)

where the ellipses denote terms with positive powers of ω, q. As one might expect, in these

limits the equations of motion decouple and are simply the equations of motion of scalars

of masses (mL2)
2 = 0, 2 in a Schwarzschild-AdS2 geometry respectively. This is most easily

seen by changing co-ordinates to ζ = (ρ− ρ0) /ωL
2 with ρ0 = ωL2ζ0/12, which yields the

relevant Schwarzschild-AdS2 scalar equations of motion in a co-ordinate system in which

the emblackening factor has the form f (ρ) = 1− ρ20/ρ
2.

Solving these equations of motion, we find

ϕinner
1 (ζ) = a+1 exp

[

i

ζ0
log

(

1 +
ζ0
6ζ

)]

+ a−1 exp

[

− i

ζ0
log

(

1 +
ζ0
6ζ

)]

, (5.3)

ϕinner
2 (ζ) = a+2

(

ζ+
ζ0
12

− i

6

)

exp

[

i

ζ0
log

(

1+
ζ0
6ζ

)]

+a−2

(

ζ+
ζ0
12

+
i

6

)

exp

[

− i

ζ0
log

(

1+
ζ0
6ζ

)]

.

By an analogous argument to that at T = 0, these solutions are valid in the near-horizon

region for small T ∼ ω ∼ q ≪ r0/L
2 ∼ µ. Note that in the zero temperature limit ζ0 → 0,

one can expand the logarithms and reproduce the T = 0 results (4.3) found previously.

To impose ingoing boundary conditions, we can expand these inner solutions near the

Schwarzschild-AdS2 horizon ζ → 0 to give

ϕinner
1,2 ∼ a+1,2

(

r

r0
− 1

)− iωL2

r0(3−Q2)
+ a−1,2

(

r

r0
− 1

)
iωL2

r0(3−Q2)
, (5.4)

where the ∼ indicates that we have absorbed various r-independent factors into the coeffi-

cients a±1,2. This is the expected result for fields at a horizon at non-zero temperature (recall

for example equation (3.2)). Ingoing boundary conditions correspond to the choice a−1,2 = 0.

5.2 The outer region

As in the previous cases, we define the outer region by the inequalities (3.3). We have

already derived the solutions for ϕouter
1,2 in this region — they are given by equations (3.11)

and (3.12).
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5.3 Matching

Finding an overlapping region to match the inner and outer solutions is more involved in

this case than in the previous cases and so we proceed carefully. Firstly, we expand the inner

solutions (5.3) near the boundary of the Schwarzschild-AdS2 spacetime (ζ → ∞) to give

ϕinner
1 (ζ) =

(

a+1 + a−1
)

+
i

6ζ

(

a+1 − a−1
)

[1 + . . .] + . . . , (5.5)

ϕinner
2 (ζ) = ζ

(

a+2 + a−2
)

+ . . .+
i

2592ζ2
[

a+2
(

4 + 3iζ0 + ζ20
)

− a−2
(

4− 3iζ0 + ζ20
)]

+ . . . ,

where we have explicitly written only the leading terms whose ratio of coefficients is fixed

by imposing ingoing boundary conditions at the horizon. After imposing ingoing boundary

conditions at the horizon (a−1,2 = 0), absorbing constants into a+1,2 and changing back to

the usual radial co-ordinate, we find that near the Schwarzschild-AdS2 boundary,

ϕinner
1 = a+1

[

1 + GIR
1,T (ω)

1

r − r0
+ . . .

]

,

ϕinner
2 = a+2

[

(r − r0) + . . .+ GIR
2,T (ω)

1

(r − r0)
2 + . . .

]

,

(5.6)

where

GIR
1,T (ω) =

iωL2

6
, GIR

2,T (ω) =
iω3L6

648

(

1 +
3iπT

ω
+

4π2T 2

ω2

)

, (5.7)

are (proportional to) the retarded Greens functions of scalar operators with conformal

dimensions ∆ = 1, 2 in the thermal CFT1 dual to the near-horizon Schwarzschild-AdS2
geometry respectively. As in the T = 0 case, the relative coefficients of the terms in each

series are determined by these Greens functions simply because ϕinner
1 and ϕinner

2 behave

like scalar fields in Schwarzschild-AdS2 with masses (mL2)
2 = 0, 2 respectively.

Note that for a dimension 1 operator the Greens function is unchanged when one

turns on the temperature T , whereas the Greens function of the dimension 2 operator

receives non-zero T/ω corrections. These T/ω corrections have the potential to introduce q-

independent (but T -dependent) terms into the dispersion relation ω (q) at low temperatures

as we will shortly show.3 However, as in the T = 0 case, the GIR
2,T term is suppressed by

a factor of ω2 with respect to the GIR
1,T contribution (recall that we assume ω & T in this

section) and thus makes only a subleading contribution to the dispersion relation. It is for

this reason that the dispersion relation does not acquire any significant q-independent (but

T -dependent) contributions.

To show this, we must match these inner solutions to the outer solutions over a range

of r where both solutions are valid. Simply expanding the outer solutions around r = r0
yields the results (3.13) and (3.14) which do not overlap with the inner solutions (5.6). This

is because, as discussed in section 3.3, these solutions are valid in the usual hydrodynamic

limit ω ≪ T whereas the inner solutions (5.6) are valid for ω & T . The correct procedure

3For a toy model of probe D-brane systems similar to those of [25, 33], it is similar T/ω corrections

to the inner region solution which result in the Fermi liquid-like zero sound dispersion relation −Im (ω) ∼

k2 + T 2 [64].
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is to expand the outer solutions in the limits r − r0 ≪ r0 and 3 − Q2 ≪ 1, where this

second limit is equivalent to T/µ ≪ 1, which is also the range of validity of the inner

solutions (5.6). In these limits,

f(r) −→ 1

r4
(r − r0)

2 (r2 + 2rr0 + 3r20
)

= f0 (r) , (5.8)

where the subscript 0 indicates that f(r) takes on its T = 0 form, and

1− 4Q2r0
3 (1 +Q2) r

→ 4Q2

3 (1 +Q2)

(

1− r0
r

)

. (5.9)

Note that in these limits, the outer region inequality (3.3) no longer implies that ω ≪ T .

With these substitutions, the outer solutions (3.11) and (3.12) can be expanded near

the horizon r = r0, where they overlap with the inner matching solutions (5.6) just derived.

In this matching region, the outer solutions take the form

ϕouter
1 = −ω2

[

c1Q
2+c2

(

9−Q2
)]

54Qr30 (r−r0)
+. . .+

(

ϕ
(0)
1 +

c2q
2+4Q2r40ϕ

(0)
2

3r40Q (1+Q2)
+O

(

ω2c1, ω
2c2
)

)

+. . . ,

ϕouter
2 = − ω2 (c1−c2)

216r20 (r−r0)
2+. . .

+

[

c2q
2

3r50 (1+Q2)
+

4Q2

3r0 (1+Q2)
ϕ
(0)
2 +O

(

ω2c1, ω
2c2
)

]

(r−r0)+. . . , (5.10)

where, as before, we have only written explicitly the terms which are required for matching,

and have neglected the O
(

ω2c1, ω
2c2
)

terms as they are subleading in a low q expansion

with ω ∼ q2.

To impose incoming boundary conditions at the horizon on the outer solutions (3.11)

and (3.12), we simply compare the expansions above to those of the ingoing inner solutions

in the matching region (5.6). This fixes c1 and c2 to be (at lowest order in an expansion in

ω and q)

c1 = c2 = −
6Qr30GIR

1,T (ω)
[

ϕ
(0)
1 + 4Q

3(1+Q2)
ϕ
(0)
2

]

ω2 + 2q2

r0(1+Q2)
GIR
1,T (ω)

. (5.11)

As in the T = 0 case, GIR
2,T (ω) contributes to these constants only at a subleading order in

the low ω and q expansion, and is thus outside the range of validity of our approach.

5.4 Greens functions

Our final step in computing the retarded Greens functions is to substitute the outer solu-

tions (3.11) and (3.12) with ingoing boundary conditions given by (5.11) into the on-shell

action (2.14). This gives (where the argument (ω) is shorthand for (ω, q))

S =
1

2κ24

∫

r→∞

dωdq

(2π)2
3r20q

2GIR
1,T (ω)

L4
(

ω2 + 2q2

r0(1+Q2)
GIR
1,T (ω)

)

[

ϕ
(0)
1 (−ω)ϕ

(0)
1 (ω) (5.12)

+
16Q2

9 (1+Q2)2
ϕ
(0)
2 (−ω)ϕ(0)

2 (ω)+
4Q

3 (1+Q2)

(

ϕ
(0)
1 (−ω)ϕ(0)

2 (ω)+ϕ
(0)
2 (−ω)ϕ(0)

1 (ω)
)

]

,
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up to contact terms. After using equation (3.22) to express the boundary values of the

gauge-invariant fields in terms of the sources of dual field theory operators, we can compute

the retarded Greens functions of these dual operators via the usual prescription [61, 62].

The results, valid for T . ω ≪ µ, are identical to those in the hydrodynamic limit given

in equation (3.23) and the Ward identities (2.12) are automatically satisfied due to our

gauge-invariant formulation. These results are valid only at lowest order in T, ω and q

(with T, ω ∼ q2) and are valid only up to contact terms.

In particular we note that when T . ω ≪ µ, there is a diffusive mode with dispersion

relation (where the ellipses denote terms which are higher order in q and T )

ω2 +
2q2

r0 (1 +Q2)
GIR
1,T (ω) + . . . = 0 −→ ω = −i

L2

3r0 (1 +Q2)
q2 + . . . , (5.13)

which agrees precisely with the diffusion mode predicted by the hydrodynamic derivative

expansion in equations (1.1) and (1.4). As in the T = 0 case, it is the dimension of

the CFT1 operator dual to the field ϕ1 in the near-horizon Schwarzschild-AdS2 geometry

which controls the power of q in the dispersion relation. As we indicated earlier, it is

the lack of any T -dependence of the CFT1 Greens function GIR
1,T (ω) which result in there

being no terms in the leading order dispersion relation (5.13) which are q-independent but

T -dependent.

6 Numerical computations of poles and spectral functions

As a check of the validity of our analytic results, we have computed numerically both the

poles of the retarded Greens functions and the spectral functions of the operators studied

above. This also allows us to reconcile our results with some previous numerical results for

the planar RN-AdS4 theory [37, 39]. We have used two different numerical methods to do

these calculations.

The simplest method conceptually is to numerically solve the equations of mo-

tion (2.13a) and (2.13b) by integrating out from the horizon of the planar RN-AdS4 space-

time. If one demands ingoing boundary conditions at the starting point of the integration

(the horizon), then both the poles of the retarded Greens functions and the spectral func-

tions are easy to determine from the values of the fields at the end point of the integration

(the boundary). This numerical procedure is described in detail in [62].

It is well-known that this method becomes very difficult to implement when T = 0, as

the horizon becomes an irregular singular point of the equations of motion (when T 6= 0

it is a regular singular point). Leaver’s method [65] is an alternative way to compute

the poles of the Green’s functions which does not require integration around a singular

point. This method involves making a quasinormal mode ansatz for the fields ϕ (r) =

ϕQNM (r)ϕrem. (r), where ϕQNM (r) contains the relevant asymptotic boundary conditions

such that ϕ (r) is ingoing at the horizon and its leading term vanishes at the boundary of the

spacetime. After making this ansatz, one then expands the remainder ϕrem. (r) as a power

series (up to order Nmax.) around a regular point of the differential equations — usually
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Figure 1. The locations of the purely imaginary ‘poles’ nearest the origin as determined by Leaver’s

method when q/µ = 0.1 (shown as dots), as a function of the order of the power series expansion

used Nmax.. The red line shows the analytic result (4.12) for the T = 0 diffusion mode.

taken to be the midpoint between the horizon and the boundary.4 One can then expand

the equations of motion in a power series up to order Nmax. around the same point to give

Nmax. + 1 algebraic equations for the Nmax. + 1 coefficients of the power series expansion

of ϕrem. (r). If a non-trivial solution to this set of equations exists, then it implies the

existence of a bulk quasinormal mode and hence a pole in the retarded Green’s functions

of the dual field theory. Note that although this method is most useful at T = 0 where

the method of direct numerical integration is difficult, it can also be applied at non-zero

T . This numerical procedure is described in more detail in [37, 39, 66].

6.1 Zero temperature poles

As indicated above, we will use Leaver’s method to determine the poles of the Greens func-

tions when T = 0. For the planar RN-AdS4 theory, it is simplest to implement this method

using the gauge-invariant Kodama-Ishibashi variables (rather than the variables (2.11)) for

which the equations of motion decouple [63]. This was done in detail in [37] and we refer

the reader to that work for the technical details, as our calculation is identical to that

described therein.

Leaver’s method indicates the existence of a discrete spectrum of poles with complex

frequencies, as well as a very large number of closely-spaced poles along the negative imag-

inary frequency axis. As described in [37], these purely imaginary ‘poles’ are actually a

numerical representation of the fact that there is a branch cut along the negative imag-

inary ω axis due to multi-valued terms in the Greens functions (which can be seen in

equation (4.14)). If one increases the accuracy of the implementation of Leaver’s method

by increasing Nmax., the spectrum of these imaginary ‘poles’ becomes denser and denser

as they move closer to the origin and in the limit Nmax. → ∞, this spectrum of ‘poles’ will

become a continuous line along the negative ω axis, which represents the branch cut.

In figure 1, we show how the locations of the purely imaginary ‘poles’ are dependent

upon the accuracy of the calculation Nmax.. As expected, most of these ‘poles’ have a

4For this method to work, the closest singularities to this regular point should be those at the horizon

and the boundary of the spacetime.
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Figure 2. Dispersion relations of the purely imaginary ‘poles’ nearest the origin as determined by

Leaver’s method, at fixed Nmax. = 300 (shown as dots). The red line shows the analytic result (4.12)

for the T = 0 diffusion mode. The data on both plots is the same — the left hand plot is a magnified

version of the near-origin region of the right hand plot.

location which is not stable — as one increases Nmax., they move closer together. However,

the location of the pole closest to the origin is stable as one increases Nmax. and its location

agrees precisely with that of the zero temperature diffusion mode predicted by our analytic

calculation (4.12). We thus conclude that in addition to the branch cut, there is a genuine

diffusive pole of the retarded Greens functions with dispersion relation (4.12). Our analytic

calculation has captured this diffusive pole but not the multi-valued term (which is higher

order in ω, q). In this sense, the analytic calculation of the low frequency Greens functions

in [37] is complementary to ours, as it determines the existence of the multi-valued term,

but not of the diffusive pole.

In figure 2, we show the dispersion relations of some of the purely imaginary ‘poles’ at

fixed Nmax. = 300. The location of the ‘poles’ which are just a representation of the branch

cut are approximately q-independent. However, the genuine pole has a dispersion relation

which is described accurately by our analytic diffusion result (4.12) when q ≪ µ. Figure 2

also shows that the ‘poles’ representing the branch cut extend all the way along the negative

imaginary ω axis to the origin, and do not end at the location of the diffusion pole. Of

course, the analytic structure of these poles in the complex ω plane is not observable. Any

observable (e.g. the imaginary part of the Green’s function) can be measured only as a

function of real ω. The existence of the diffusion pole in the complex ω plane will strongly

influence how these observables depend upon real ω, as can be seen from equation (3.23),

whereas the multi-valued terms which produce the branch cut have only a subleading effect.

6.2 Non-zero temperature poles

At non-zero temperature, where the branch cut is resolved into a discrete spectrum of

poles, it is possible to compute the spectrum of poles using either Leaver’s method (as was

done in [37, 39]) or direct numerical integration. We computed numerically the dispersion

relation of the candidate diffusion mode and fitted this result to a function of the form

ω = −iDq2 − i∆q4, for various values of T/µ. The corresponding numerical values of the

diffusion constant D as a function of T/µ are shown in figure 3.The results obtained using
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Figure 3. The numerical values of the dimensionless diffusion constant µD (shown as dots) as a

function of T/µ as computed by Nmax. = 300 Leaver’s method (left hand plot) and direct numerical

integration from the horizon (right hand plot). These were extracted by fitting the function ω (q) =

−iDq2 − i∆q4 to the numerical location of the pole ω (q) at q/µ = {0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
The red lines show the hydrodynamic result for µD, given by equations (1.1) and (1.4), which

according to our previous analysis should be valid for all T/µ shown.

each numerical method coincide, and are well-described for all temperatures by the hydro-

dynamic results (1.1) and (1.4). These results differ from those in figure 9 of [39] — this is

because the fitting function used there does not include a q4 term, the effects of which are

important towards the upper range of the values of q/µ that we have studied numerically.

6.3 Spectral functions

As a further check of our analytic calculations, we have computed numerically the T 6= 0

spectral functions of the transverse components of Tµν and Jµ, which are defined as

χOO (ω, q) ≡ −2ImGR
OO (ω, q) . (6.1)

This was done by directly integrating the equations of motion (2.13a) and (2.13b) from

the horizon to the boundary as described in [62]. The resulting spectral functions, at all

numerically-accessible temperatures, are well-described by the spectral function formulae

computed from our analytic results (3.23). In figure 4 we show a sample of these results

although for conciseness we will not give a detailed exhibition of them here.

7 Discussion

In this paper we have studied the two-point functions of the transverse components of Tµν

and Jµ for the field theory dual to the planar RN-AdS4 black hole. Our main result is that

a long-lived diffusion mode — described by the hydrodynamic formulae (1.1) and (1.4) —

exists outside of the commonly-studied range ω ≪ T . Specifically, it exists provided that

ω ≪ T or µ. It exists even in the extremal limit T = 0.

Recall that hydrodynamics is constructed as a derivative expansion, valid when the

length scale over which macroscopic quantities vary is much larger than a characteristic
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Figure 4. Numerical results for the q/µ = 0.1 spectral functions χT tyT ty (shown as dots) and χJyJy

(shown as crosses), computed via direct numerical integration from the horizon, for T/µ ≈ 0.005

(left hand plot) and T/µ ≈ 0.16 (right hand plot). χT tyT ty is plotted in units of r3
0
/2κ2

4
L4 and

χJyJy is plotted in units of r0/2κ
2

4
. The analytic results (3.23) for χT tyT ty (dashed line) and χJyJy

(solid line) are plotted in red.

length scale lmfp. Our results indicate that this length scale is given by

lmfp =
s

4π (ǫ+ P )
=

L2

3r0 (1 +Q2)
=

1

3µ

Q

(1 +Q2)
, (7.1)

since with this definition the hydrodynamic diffusion result is valid when ωlmfp, qlmfp ≪ 1.

Note that Q is implicitly a complicated function of T/µ, given in equation (2.4). In the

µ = 0 limit, lmfp ∼ 1/T and in the T = 0 limit, lmfp ∼ 1/µ (we have neglected numerical

factors of order 1). By definition, this mean free path is equivalent to that suggested

in [20] for related global black hole solutions. Our work confirms the assumption therein

that the lifetime of the longest-lived mode is proportional to the quantity s/(ǫ + P ) at

all temperatures.

A natural extension of the work we have done here is to calculate the low-energy

excitations of the longitudinal components of Tµν and Jµ for this theory outside the usual

hydrodynamic range ω ≪ T . We expect that the results will be similar in spirit to those

presented here in that there will be a sound mode with dispersion relation given by (1.2)

and (1.4), and a charge diffusion mode, provided that ω ≪ T or µ. There is already

numerical evidence to support this claim — in [38] it was shown numerically that there is

a T = 0 sound mode whose real part agrees closely with the hydrodynamic result (1.2) and

whose imaginary part differs from the hydrodynamic result by around 10%.5 Furthermore,

in [40] the sound dispersion mode was studied at non-zero temperatures. Although not

explicitly stated there, both the real and imaginary parts of this mode are consistent with

the hydrodynamic results (1.2) and (1.4) for all T provided that ω ≪ µ.6 A convincing

verification of this expectation will require an analytic derivation of the dispersion relation

5No T = 0 charge diffusion mode was identified, but this may just be due to the difficulties in numerically

disentangling it from the branch cut as described in section 6.
6This can be seen by comparing the numerical results for the sound attenuation in figure 11 of [40]

to those for the diffusion constant in figure 3 of this paper, and noting the relation between these two

quantitites predicted by hydrodynamics from equations (1.1) and (1.2).
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of the low-energy modes, and we are hopeful that the method we have used here may be

suitably modified to provide this.

The low-temperature two-point functions that we have derived are valid only at lowest

order in an expansion in small ω, q and T with ω, T ∼ q2. It would be interesting to

try to generalise our low-temperature calculations to include higher order terms in ω, q

and T . Firstly, this will allow us to determine more accurately many of the ω → 0

properties of our theory such as the conductivity and the scaling of the imaginary parts of

the Greens functions in this limit. Presently, the calculations of [37, 42] are more accurate

in this regard. Perhaps more importantly, this would indicate whether the predictions of

hydrodynamics are valid at low temperatures to higher orders in the derivative expansion,

or just at the leading order as shown here. Due to the presence of the branch cut, we

expect that hydrodynamics will in fact break down at some higher order. In a similar

vein, one could investigate the range of validity of non-linear hydrodynamics in this theory

by computing higher-point Greens functions. We do not know of an effective theory that

incorporates the branch cut in addition to the hydrodynamic collective mode we have found

here, and it would clearly be of interest to determine such a theory.

Another obvious question is whether the applicability of hydrodynamics when T .

ω ≪ µ, as shown in this paper, is generic to (non-probe D-brane) holographic field theory

states with a large chemical potential. The planar RN-AdS4 solution is in some ways a very

special solution, as its entropy density s is non-zero when T = 0. This feature is intimately

linked to its near-horizon AdS2×R
2 geometry which is critical for our results since the decay

rate of the diffusion mode is controlled by the dimension of a scalar operator in the CFT1

dual to the AdS2 geometry. States with s = 0 at T = 0 can be studied by including matter

fields in the gravitational theory — these states typically have a different near-horizon

geometry which can, for example, have Lifshitz scaling and/or violate hyperscaling. A

particularly interesting example are the near-horizon geometries of [67] which are conformal

to AdS2 × R
D−1 and have a vanishing zero temperature entropy.

It would be of interest to determine which (if any) of the hydrodynamic results (1.1)

and (1.4) break down at small T for different near-horizon geometries, and if the appli-

cability of these formulae at small T is dependent upon the extent of fractionalisation of

the U(1) charge in the dual field theory (which has a strong influence on the near-horizon

geometry as reviewed in [68]). It would be a surprising result if the hydrodynamic re-

sults (1.1), (1.2) and (1.4) are valid at low temperatures irrespective of the dual geometry.

This would mean that the leading q2 term in the decay rates of the diffusion and sound

modes in ‘realistic’ field theories (i.e. those with s = 0 at T = 0) vanish at T = 0 and

hence these modes would live for an anomalously long time compared to, for example, the

well-understood zero temperature sound mode of a Fermi liquid [21, 23, 24]. However, as

we have stressed previously, one of the main lessons learned so far from studying strongly-

coupled field theories using gauge/gravity duality is that their transport properties can be

very different from those one would expect from a quasiparticle-based theory.
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