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1 Introduction

Quantum field theories admit a variety of operators defined not by insertions of the fun-

damental fields, but by constraints which change the domain of the path integral in field

space. An operator defined by such a prescription is called a defect operator. A famous

example is the twist operators of 2d conformal field theory. More generally, one can define

a defect operator inserted along a submanifold L by deleting L and requiring the fields to

have prescribed singularities as one approaches L. The effect of the insertion can be “mea-

sured” by evaluating the expectation values of ordinary operators. When one can detect

the presence of the defect from afar (for example, because some field strengths are now

required to belong to a nontrivial cohomology class), the insertion is said to have created

topological disorder.

The first example of a defect operator in gauge theory is probably the ’t Hooft loop

operator in 4d gauge theories [1] which can be used as an order parameter for Higgs phases.

It also plays an important role in the context of electric-magnetic duality of N = 4 gauge

theories in 3+1 dimensions [2–4]. The duality exchanges states with electric and magnetic

charge and therefore exchanges Wilson loop operators and ’t Hooft loop operators.
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There is a somewhat similar story for 3d gauge theories. In such theories there is a often

a duality which exchanges elementary excitations in the Coulomb phase with Abrikosov-

Nielsen-Olesen vortices in the Higgs phase. A 3d operator creating a very heavy vortex

with world line L is a defect loop operator and may be regarded as analogous to the ’t

Hooft loop operator in 4d creating a monopole. Such a defect operator is defined by the

fact that the gauge field has a fixed holonomy around any small loop linking L. These

operators were studied in [5]. In 4d an analogous construction gives a surface defect [6].

It should be noted that the definition of the vortex loop operator is independent of the

existence of the Higgs phase, or vortex solutions, or even of a dynamical gauge field. The

definition makes perfect sense in the topological pure Chern-Simons theory as a defect in the

gauge connection, although the defect, in that case, can be identified with a Wilson loop [7,

8]. In a theory possessing an abelian global symmetry, a vortex loop can be defined by

gauging a global symmetry using a non-dynamical flat connection satisfying the holonomy

condition. It is also not necessary that the defect be defined on a closed loop, however, to

preserve gauge invariance, an open contour must extent to the boundary of spacetime.

Much more can be said about defect operators when the theory is supersymmetric. All

of the operators mentioned above have BPS analogues in supersymmetric theories in 2+ 1

and in 3+1 dimensions. Extending the definition of a defect so as to preserve a fraction of

the supersymmetry can require imposing conditions on additional fields. This is analogous

to the inclusion of fields other than the connection in the definition of a supersymmetric

Wilson loop. In this work, we will define the supersymmetric analogue of the vortex loop.

Exact computation of the expectation value for a supersymmetric defect may be feasible

by employing localization techniques ([9–11]). This was carried out for the supersymmetric

version of the ’t Hooft loop on S
4 in [12]. Here, we extend previous results for localization

of supersymmetric gauge theories in 2 + 1 dimensions (see [13] for the original derivation

and [14] for a review) to include the supersymmetric vortex loop. We will also discuss the

role played by supersymmetric vortex loops in the context of mirror symmetry.

In section 2, we define several versions of the abelian vortex loop. We discuss the

operator’s transformation under Witten’s SL(2,Z) action on conformal field theories. We

then extend the definition to accommodate supersymmetry. In section 3, we employ local-

ization to evaluate the expectation value of the supersymmetric vortex loop for a generic

superconformal N = 2 gauge theory on S
3. The result can be inferred from the SL(2,Z)

action. We provide an independent derivation using the original definition. In section 4,

we demonstrate, with a few examples, the role of the vortex loop in IR duality of N = 2

gauge theories. We conclude with a discussion of possible extensions.

2 Definition of the abelian vortex loop

2.1 Vortex loop in a gauge theory

Defect loop operators in 3d gauge theories have been previously introduced in the context

of Chern-Simons theories [7, 8]. Such a loop operator is specified by giving a loop γ in the

3-manifold M and an element β of the Lie algebra g of the gauge group G. The holonomy

around any small loop linking γ of the gauge connection A is required to approach β as we
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shrink the loop size to zero. With this condition, A is singular on γ. Separating A into a

smooth part A′ and a singular part A′′, we can write

FA′′ = β ⋆ [γ] (2.1)

where ⋆[γ] is a 2-form current supported on γ whose cohomology class is the Poincarè

dual of [γ] ∈ H1(M,Z) (we assume that M is orientable). In [6], the authors defined

surface operators in N = 4 SYM theory in 3 + 1 dimensions using a similar prescription.

The prescription for a subset of these codimension 2 operators, the one in which only the

connection is singular, coincides with the definition above (substitute α for β). As noted

there, the data specifying the singularity is actually only eiβ , and equation (2.1) should

be handled with care. If the gauge group G is U(1), β is simply a real number. To avoid

ambiguity it is sufficient to restrict the range of β to the interval (−π, π). In what follows,

we will sometimes assume this restriction. We will also set

q =
β

2π
, q ∈

(

−1

2
,
1

2

)

(2.2)

From now on we will assume that G is abelian and will call such a loop operator a

gauge vortex loop.

2.2 Global vortex loops and the SL(2,Z) action

We can define a similar loop operator if G is a global symmetry group rather than a gauge

symmetry group. To this end we merely set the smooth part A′ of the gauge field to zero

and set the singular part (A′′ above) to be a fixed flat connection whose holonomy along

a loop linking γ is eiβ . We will call such a loop operator a global vortex loop. It appears

naturally when we consider the action of Witten’s SL(2,Z) on Wilson loops.

Following [15], we consider a conformal field theory in 2 + 1 dimension with a choice

of an abelian global symmetry current J . We couple J to a background gauge field A, and

consider the partition function as a functional of A

Z[A] =

∫

DΦeiS[Φ]+i
∫ √

gd3xJµAµ+... (2.3)

where “. . .” refers to seagull terms necessary to ensure invariance under gauge transfor-

mations of A. Here Φ and S[Φ] are short hand for the fields and action of the theory. In

addition to the seagull terms, one can add extra terms which are gauge-invariant function-

als of A alone. If we wish to preserve conformal symmetry, a natural choice is the abelian

Chern-Simons term
iα

4π

∫

A ∧ dA (2.4)

If we want to associate A to a non-trivial principal bundle, then this is only defined for

integer α. However, for now, we will assume that A is a connection on a trivial bundle,

and allow arbitrary real values of α. To the triplet (S[Φ], J, α) we associate the following

functional of A:

ZJ,α[A] =

∫

DΦeiS[Φ]+i
∫ √

gd3xJµAµ+...+ iα
4π

∫
A∧dA (2.5)
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Witten defined an SL(2,Z) action on such triplets [15]. The action of the T generator

is merely a shift of α by 1. The action of S is defined by first promoting A to a dynamical

gauge field and then replacing J with the topological U(1) current for this new gauge field

Jtop =
1

2π
⋆ dA (2.6)

Together, these operations generate an action of SL(2,Z) on the set of triples. At the level

of partition functions, these operations act as follows:

(T · ZJ,α)[A] = ZJ,α+1[A] (2.7)

(S · ZJ,α)[A] =

∫

DA′DΦeiS[Φ]+i
∫ √

gd3xJµA′

µ+...+ iα
4π

∫
A′∧dA′+ i

2π

∫
A∧dA′

(2.8)

Our first goal is to extend these operations to observables more general than the

partition function ZJ,α. Specifically, we would like to consider insertions of Wilson loops

for the background gauge field A. First, it is useful to define a slight generalization of an

abelian Wilson loop. Recall that the abelian Wilson loop operator is specified by a loop

γ : S1 →M and a charge q ∈ R and is defined as an insertion of

eiq
∫
γ
A (2.9)

into the path integral. This can be rewritten as

e
i
2π

∫
ω∧A (2.10)

where ω is a closed 2-form current with support along γ, defined so that the integrals in

the previous two expressions agree for all 1-forms A. In local coordinates (r, θ, z) where

the loop lies along the z axis, we can write:

ω = 2πqδγ ≡ qδ(r)dr ∧ dθ (2.11)

Such a term can simply be added to the action, since in the abelian case we do not have

to worry about path ordering the exponential.

We can consider such an insertion for more general 2-form currents ω. Invariance

with respect to infinitesimal gauge transformations forces ω to be closed. Invariance with

respect to “large” gauge transformations (i.e. gauge transformations which are topologically

nontrivial maps from the abelian Lie group G toM) requires the de Rham cohomology class

of ω/2π to be integral. This means that ω arises as the field strength of some connection

Aω on a U(1) bundle, and we can write the Wilson loop as a BF coupling to this new

background gauge field:

e
i
2π

∫
A∧dAω (2.12)

In the case

ω = 2πqδγ (2.13)

where δγ is a 2-form current supported on γ which is Poincarè dual to γ, the integrality

condition on ω reduces to the requirement that the class q[γ] ∈ H1(M,R) is integral. In
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particular, if γ is homologically trivial, there are no integrality constraints on q. Near γ

the connection Aω in suitable coordinates looks as follows:

Aω = qdθ (2.14)

More generally, if we take ω to be supported in a small tubular neighborhood of γ, we get

a regularization of the Wilson loop along γ.

With this in mind, we define a insertion of Wω by

(Wω · ZJ,α)[A] :=

∫

DΦeiS[Φ]+i
∫ √

gd3xJµAµ+...+ iα
4π

∫
A∧dA+ i

2π

∫
Aω∧dA (2.15)

Let us see how the SL(2,Z) generators act on it. It is clear that T commutes with Wω, so

we only need to consider

((S−1WωS)·ZJ,α)[A] =

∫

DA1DA2DΦexp

(

iS[Φ]+i

∫ √
gd3xJµA1µ+. . .+

iα

4π

∫

A1∧dA1+

+
i

2π

∫

A2 ∧ dA1 +
i

2π

∫

Aω ∧ dA2 −
i

2π

∫

A ∧ dA2

)

(2.16)

We can see A2 enters only via a term
∫

(A1 − Aω − A) ∧ dA2, and so the integral over A2

produces exactly a delta function setting A1 = Aω +A [15]. This leaves

∫

DΦexp

(

iS[Φ] + i

∫ √
gd3xJµ(Aωµ +Aµ) + . . .+

iα

4π

∫

(A+Aω) ∧ d(A+Aω)

)

= ZJ,α[A+Aω] (2.17)

Note that, even at A = 0, this gives an insertion of an operator:

exp

(

i

∫ √
gd3xJµAωµ + . . .+

iα

4π

∫

Aω ∧ ω
)

(2.18)

In the case where ω = 2πqδγ , Aω is a flat gauge field with a holonomy e2πiq, and this

operation has the same effect on the path integral as prescribing that all fields charged

under the current J pick up a fixed monodromy around the loop γ. There is also an

additional α-dependent phase factor related to the self-linking number of the loop (which

must be regularized by specifying a framing). We see that in this special case the operation

S maps the charge-q Wilson loop for the background gauge field A to the global vortex

loop with holonomy e2πiq. More generally, for arbitrary ω satisfying the above integrality

conditions we can define an operation

(Dω · ZJ,α[A]) = ZJ,α[A+Aω] (2.19)

What we have demonstrated is that the operation S maps Wω to Dω:

S−1WωS = Dω (2.20)

More precisely, the equality holds up to a phase factor which depends not only on ω, but

also on the Chern-Simons coupling of the theory on which these operations act.
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One can rephrase this result in terms of Wilson loops for dynamical gauge fields.

Gauging a symmetry (without adding a Chern-Simons term) is the same as applying the

operation S. The resulting theory has a new global symmetry U(1)J whose current is

⋆dB/2π, where we denoted by B the dynamical gauge field, to distinguish it from the

background gauge field A which couples to the U(1)J current. Noting that S2 = C (the

charge conjugation), we get

SWω = D−ωS. (2.21)

Applying this to the partition function Zungaged
J,α [B], we learn that

< Wω[B] >= D−ω · Zgauge[A] = Zgauge[A−Aω]. (2.22)

In particular, setting ω/2π to be the delta-function supported on a loop γ, we see that a

global vortex loop for the U(1)J symmetry is nothing more than an ordinary Wilson loop

in the underlying gauge field. Similarly, we find

< Dω[B] >=Wω · Zgauge[A] (2.23)

which shows that, in the absence of a Chern-Simons term, the gauge vortex loop by itself

is somewhat trivial: it merely modifies the functional dependence of Zgauge[A] on the

background gauge field A which couples to the U(1)J current.

2.3 Pure Chern-Simons theory

Before moving on to the supersymmetric version of the vortex loop, let us briefly comment

on how the gauge vortex loop behaves in pure bosonic Chern-Simons theory. It was argued

in [7] that such a defect operator should be equivalent to a Wilson loop. However, we have

seen above that for an abelian gauge group the gauge vortex loop is somewhat trivial, its

only effect being a modification of the U(1)J current by a c-number term supported on the

loop. To see that this agrees with the behavior of the Wilson loops, we recall the formula

for the expectation value of a product of Wilson loops in U(1) Chern-Simons theory at

level k [8]

〈
∏

a

exp(iqa

∫

γa

A)〉 = exp

(

2πi

k

∑

a,b

qaqbΦ(γa, γb)

)

(2.24)

where Φ(γa, γb) is the linking number of the loops a and b. The latter can be written

in terms of the corresponding gauge fields Aa, with dAa = ωa the 2-form delta function

supported on γa, as

Φ(γa, γb) =

∫

γb

Aa =
1

2π

∫

Aa ∧ ωb (2.25)

Letting

ω =
1

k

∑

a

qaωa, (2.26)

we can rewrite the expectation value as follows:

〈
∏

a

exp(iqa

∫

γa

A)〉 = exp

(

ik

2π

∫

Aω ∧ dAω

)

. (2.27)
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Thus the insertion of a collection of Wilson loops is equivalent to a phase factor which

depends on k as well as on a flat connection Aω. This is compatible with the claim that

a collection of Wilson loops in pure abelian Chern-Simons theory is equivalent to a gauge

vortex loop Dω for some 2-form current ω, which in turn is trivial up to a phase.

2.4 Supersymmetric vortex loops

We would like to extend the considerations above to the supersymmetric case. Specifi-

cally, we will work with theories with N = 2 supersymmetry (4 real supercharges). It is

convenient to work in N = 2 superspace, with fermionic coordinated θα and a superspace

derivative Dα. For the theories of interest, the dynamical fields can be organized into chiral

and vector superfields. The gauge field is part of a vector multiplet, and all fields in this

multiplet take values in the adjoint representation of the gauge group. A vector superfield

V satisfies V = V † and contains a vector field Aµ, a real scalar σ, a complex spinor λα,

and a real auxiliary scalar D. Matter fields live in chiral multiplets and take values in some

representation of the gauge and flavor groups. A chiral superfield Φ satisfies D̄αΦ = 0,

and contains a complex scalar φ, a complex two component spinor ψα, and an auxiliary

complex scalar F .

We are interested mainly in a class of renormalizable gauge theories with abelian global

symmetries. These are defined by a UV action which includes a kinetic term for the matter

fields of the form

Scharged matter kinetic = −
∫

d3xd2θd2θ̄
∑

i

(Φi
†e2V Φi) (2.28)

=
∑

i

∫

d3x
(

(Dµφ)i(D
µφ)i + iψ̄iγ

µDµψ
i + FiF

i − φiσ
2φi + φiDφ

i

−ψ̄iσψ
i + iφiλ̄ψ

i − iψ̄iλφ
i
)

(2.29)

and a supersymmetric Yang-Mills action for the fields in the gauge multiplet

SYang Mills =
1

g2

∫

d3xd2θd2θ̄T rf

(

1

4
Σ2

)

(2.30)

=
1

g2

∫

d3xTrf

(

1

2
FµνF

µν +DµσD
µσ +D2 + iλ̄γµDµλ

)

(2.31)

where Σ is a linear multiplet defined by

Σ = D̄αDαV (2.32)

Σ† = Σ (2.33)

DαDαΣ = D̄αD̄αΣ = 0 (2.34)

In addition, one can allow supersymmetric completions of Chern-Simons terms. In the

abelian case, these have a very simple superspace expression

Sabelian Chern Simons =
k

4π

∫

d3xd2θd2θ̄T rf (V Σ) (2.35)

=
k

4π

∫

d3xTrf
(

εµνρAµ∂νAρ − λ̄λ+ 2Dσ
)

(2.36)
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As a slight generalization of this, we can also consider a “off-diagonal” Chern-Simons

term, also known as a BF term, coupling two or more different abelian gauge fields. The

supersymmetric completion of this has the form

SBF =
kij
4π

∫

d3xd2θd2θ̄T rf
(

ΣiV j
)

(2.37)

=
kij
4π

∫

d3x

(

εµνρAj
µ∂νA

i
ρ −

1

2
λ̄jλi +Diσj

)

(2.38)

We will consider the S3 partition function for these theories with insertions of Wilson loop

and defect loop operators. The supersymmetry transformations on S3 are generated by

Killing spinors [13]. We will need the transformations of the vector multiplet fields under

the S3 supersymmetry generated by a particular killing spinor ε

δAµ = − i

2
λ†γµε (2.39)

δσ = −1

2
λ†ε (2.40)

δD = − i

2
Dµλ

†γµε+
i

2
[λ†, σ]ε+

1

4
λ†ε (2.41)

δλ =

(

− i

2
εµνρFµνγρ −D + iγµDµσ − σ

)

ε (2.42)

δλ† = 0 (2.43)

The fermionic symmetry generated by ε will be used in 3 to compute the expectation value

of the defect operator on S3 using localization.

We now attempt to generalize the SL(2,Z) action to the supersymmetric case. To

start, it is natural to define T by simply adding a supersymmetric Chern-Simons term

instead of an ordinary one. For S, we should use the supersymmetric version of the BF

term and integrate over the entire background vector multiplet. It is now a simple exercise

to check that the SL(2,Z) relations remain satisfied for this generalization. We will not

use the (ST )3 = C property, so we omit a check of that relation, but it will be important

that S2 = C, so let us sketch the argument. Consider the supersymmetric version of (2.16)

defined via the action (2.37) where all vector fields have been extended to N = 2 vector

multipelts V, V1, V2 and Vω. When we integrate over the second gauge field, theBF coupling

gives us a delta function constraint imposing that the first gauge field is the negative of the

background gauge field, as before. In addition, one can see that the integration over the

auxiliary fields in the second vector multiplet imposes a similar constraint on the auxiliary

fields of the first vector multiplet. Thus we see that the net effect is to set the first vector

multiplet equal to the negative of the background vector multiplet.

Now consider the supersymmetric generalization of the abelian Wilson loop operator.

For a certain class of loops γ preserving supersymmetry, this has the form

exp

(

iq

∮

γ
(A− iσdℓ)

)

(2.44)
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For example, on S3, the loops must be great circles which are fibers of the Hopf fibration.

This operator is then invariant under the supersymmetry generated by ε. We define an

operator Wγ inserting a supersymmetric Wilson loop in a background vector multiplet

as before. Finally, we define the supersymmetric vortex loop by the prescription Dγ =

S−1WγS.

As before, we can integrate out the auxiliary vector multiplets V1 and V2 to obtain a

description of the defect terms of the original fields alone. To start, let us write the part of

the action containing V2. In terms of component fields the action (in Euclidean signature)

looks as follows:

S[Φ, V1, V2] = . . .+
i

2π

∫

(−A2 ∧ dA1) +
i

2π

∫

d3x

(

− σ2D1 − σ1D2 +
1

2
(λ†1λ2 + λ†2λ1)

)

+iq

∫

γ
(A2 − iσ2dℓ) (2.45)

For simplicity we set to zero the background vector multiplet. We see that the integrals

over D2 and λ2 set σ1 and λ1 to zero, while the integrals over A2 and σ2 impose the

constraints

dA1 = 2πqδγ , ⋆D1 = −2πiqδγ ∧ dℓ. (2.46)

Here dℓ is the volume 1-form on γ and δγ is the 2-form Poincarè dual to [γ], as before.

Note that D1 is purely imaginary, which violates the usual reality condition on D.

As before, we can generalize this operator to account for more general background

gauge multiplet configurations. We to specialize to S3, and pick a supercharge δ corre-

sponding to the Killing spinor ǫ. Then the BPS condition for an abelian vector multiplet

is [13]

0 = (iγµ(− ⋆ Fµ + ∂µσ)− (D + σ))ǫ (2.47)

We would like to find configurations for which only F and D are non-zero. Using vµγµǫ = ǫ,

where vµ is the Killing vector along the Hopf fibration as in [13], we see we can take:

F = 2πf(x) ⋆ v, D = −2πif(x) (2.48)

for a function f : S3 → R. The normalization is for later convenience. Note that the

Bianchi identity implies

0 =
1

2π
dF = d(f ⋆ v) = df ∧ ⋆v = ⋆(vµ∂µf) (2.49)

so that f must be constant along the fibers of the Hopf fibration. Equivalently, we impose

that f arises from a function f̃ : S2 → R by:

f = f̃ ◦ π (2.50)

where π : S3 → S2 is the projection map of the Hopf fibration. Thus, the operator is

really labeled by the function f̃ on S2. When f̃ approaches a delta-function on S2, the

corresponding operator approaches the supersymmetric vortex loop wrapping a fiber of the

Hopf fibration.
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If we apply this construction to the U(1)J symmetry, we get an operator which is a

natural generalization of the supersymmetric Wilson loop:

Of̃ = exp

(

i

∫

S3

√
gd3xf(x)(vµAµ − iσ)

)

(2.51)

That this operator is supersymmetric follows from

δ(vµAµ − iσ) = 0 (2.52)

as can be easily checked. The condition vµ∂µf = 0 is necessary for gauge-invariance.

Taking f̃ to be a delta function on S2, so that f is a delta function supported along a

great circle in S3, one recovers the ordinary supersymmetric Wilson loop. Note that we

have picked the normalizations so that when f̃ is a delta function on S2 integrating to 1,

so that f integrates to 2π on S3, we recover the charge 1 Wilson loop.

3 Localization in the presence of a vortex loop

In this section we compute the expectation value of the global vortex loop on S3 by local-

ization. The global symmetry is assumed to be a U(1) subgroup of the flavor symmetry

group. We will present three approaches to the calculation which yield the same result.

Applying the localization procedure in the presence of the defect requires some regular-

ization and the agreement of the approaches presented below gives us confidence in the

validity of the computation. We begin with a quick review of localization for 3d gauge

theories. Additional details can be found in [13].

3.1 Localization of 3d gauge theories

The expectation value of BPS operators in 3d N = 2 superconformal gauge theories can be

computed by localization on S3. The relevant result, derived in [13], is that deformation

invariance allows us to reduce the computation of the infinite dimensional path integral

with BPS operator insertions to a matrix model with the integration domain given by the

Lie algebra of the gauge group. The data entering the computation is a UV action with

gauge group G, Lie algebra g and Chern-Simons levels ki, a set of representations Ri for

the chiral matter multiplets and the IR conformal dimensions (equivalently R-charges) ∆i

for each chiral multiplet. The integration measure for the matrix model is then

1

Vol(G)
da|a∈Ad(g) (3.1)

The contribution of a level k Chern-Simons term (for a simple gauge group factor associated

to a) is

e−iπkTr(a2) (3.2)

A Fayet-Iliopoulos term with coefficient η contributes

e2πiηTr(a) (3.3)
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Every dynamical gauge multiplet contributes

Zgauge multiplet
1 - loop (a) = detAd(g) (2 sinh(πa)) =

∏

ρ∈roots(g)
2 sinh(πρ(a)) (3.4)

and every dynamical chiral multiplet contributes

Zchiral multiplet
1 - loop (a,∆) =

detOF√
detOB

=
∏

ρ∈R
exp (ℓ (z(ρ(a),∆))) (3.5)

where ρ are the weights of R and

ℓ(z) = −z log
(

1− e2πiz
)

+
i

2

(

πz2 +
1

π
Li2
(

e2πiz
)

)

− iπ

12
(3.6)

z(ρ(a),∆) = iρ(a)−∆+ 1 (3.7)

abelian flavor parameters can be incorporated by shifting ρ → ρ +m. The insertion of a

supersymmetric Wilson loop in a representation R gives a factor of

W (a) =
1

dim(R)
TrR

(

e2πa
)

(3.8)

which for an abelian Wilson loop of charge q reduces to

e2πqa (3.9)

Integration with the measure (3.1) of the product of all relevant contributions yields the

exact expectation value.

In computing (3.5) we have implicitly assumed a standard δ exact term, and hence

standard kinetic operators (OF ,OB), for the fields in the chiral multiplet [13, 16]. In the

presence of the flavor vortex loop, the kinetic term of a charged chiral multiplet is altered

by a background gauge field created by the loop. The new term and the revised 1-loop

contribution are derived below. The contribution of the vector multiplet is unaffected

because it is not charged under flavor symmetries.

3.2 Method 1: using the SL(2,Z) definition of D

The simplest way to extract the effect of inserting a supersymmetric defect line operator

is by using the definition of the operation D as

Dq = S−1WqS (3.10)

where Dq is the vortex loop with holonomy exp(2πiq). There are no integrality constraints

on q because the large circle on S3 is homologically trivial. Since we can perform the opera-

tions on the r.h.s. at the level of the matrix model, it should be possible to compute the l.h.s.

indirectly this way. Explicitly, suppose we compute the partition function as a holomorphic

function of a flavor deformation m (and possibly other parameters which we suppress):

Z(m) (3.11)
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This is the analogue of Z[A] in section 2. The operation S then tells us to treat this flavor

parameter as a gauge parameter, and integrate over it, with a coupling to an FI parameter η:

(S · Z)(η) =
∫

dmZ(m)e2πiηm (3.12)

The operation W1 tells us to insert a charge-q Wilson loop in the background field corre-

sponding to η:

(WqS · Z)(η) = e2πqη
∫

dmZ(m)e2πiηm (3.13)

Finally, S−1 tells us to integrate over η and insert a new FI term, which we will denote m′,
with the opposite sign:

(S−1W1S · Z)(m′) =
∫

e−2πiηm′

e2πqη
∫

dmZ(m)e2πiηm (3.14)

Now to integrate out the variables η andm, we simply note that the integral over η imposes

a delta function which sets m = m′ + iq. Thus we are left with:

(Dq · Z)(m) = Z(m+ iq) (3.15)

Indeed, this result can be inferred from the 4d perspective by considering Wilson and ’t

Hooft loops ending on a 3d boundary [17, 18]. This argument was rather indirect; it also

raises the question about the interpretation of poles in the partition function for special

values of m+ iq. We now proceed to present two more explicit derivations of this result.

3.3 Method 2: smearing the defect

We return to the smeared Wilson loop

Of = exp

(

i

∫

S3

√
gd3xf(x)(vµAµ − iσ)

)

(3.16)

where f is some real function on S3 constant along the fibers of the Hopf fibration, as

above. It is convenient to decompose f(x) as

f(x) =
q

π
+ fo(x) (3.17)

where
∫

S3

√
gd3xfo = 0 (3.18)

and q is constant, specifically, q = 1
2π

∫

S3

√
gd3xf . Note that this normalization agrees

with the case where f is a delta function supported on a great circle, since the integral of

f should give 2π times the charge of the Wilson loop.

For general f , we can decompose Of = OqOfo , so it suffices to study them separately.

Actually, we will find that it is only Oq which contributes to the localized path-integral.

– 12 –
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Specifically, we claim that the operator Ofo can be absorbed into a shift of the action by

a total δ-variation. To see this, let us pick a function g : S3 → R and consider:

δ

(∫ √
gd3xǫ†γµ(∂µg)λ

)

=

∫ √
gd3xǫ†γµ(∂µg)

(

iγν
(

− 1

2
ǫνρσF

ρσ + ∂νσ

)

−(D+σ)

)

ǫ

=

∫ √
gd3x(∂µg)

(

i(gµν+iǫµντvτ )

(

− 1

2
ǫνρσF

ρσ+∂νσ

)

−vµ(D+σ)

)

(3.19)

The term involving D + σ is proportional to vµ∂µg and vanishes if we impose that g, like

f , is constant along the fibers. The remaining terms can be expanded to give:
∫ √

gd3x(∂µg)

(

− i

2
ǫµρσFρσ + Fµνvν + i∂µσ − iǫµνρ∂νσvρ

)

(3.20)

Integrating by parts, the first and last terms can be seen to vanish, and the others give
∫ √

gd3x

(

Aµ(
1

2
∇ν(vµ∂νg − vν∂µg))− iσ(∇2g)

)

(3.21)

The quantity multiplying Aµ can be expanded as:

∇νvµ(∂νg) + vµ∇2g − (∇νvν)∂µg − vν∇ν∂µg (3.22)

Using ∇µvν = ǫµνρv
ρ, this can be simplified to:

vµ∇2g −∇µ(vν∇νg) (3.23)

The second term vanishes when we impose that g is constant along the fibers, and we are

left with: ∫ √
gd3x(∇2g)(vµAµ − iσ) (3.24)

which agrees with the exponent of the operator Ofo above, provided we can find a g such

that:

fo = ∇2g. (3.25)

This clearly requires
∫

S3

√
gd3xfo = 0, so that one cannot use this trick to remove the

constant part of f . However, if this condition is met, then the equation can be solved,

and g will indeed be constant along the fibers.1 This proves that the non-constant part of

the operator can be discarded, as δ-exact terms do not affect the path integral, i.e. we can

replace a Wilson loop localized on a loop by one that is smeared uniformly over the entire

S3; these differ only by a δ-exact insertion.

Thus without a loss of generality we can restrict to the case f = q
π (a constant). Then

the background vector multiplet we must couple the flavor symmetry current to is given by:

F = 2q ⋆ v, D = −2iq (3.26)

1This can be seen most easily by working with a mode expansion fo =
∑

ℓ,m,n cℓ,m,nYℓ,m,n, where Yℓ,m,n

are spherical harmonics on S3, satisfying ∇2Yℓ,m,n = −ℓ(ℓ + 2)Yℓ,m,n and vµ∂µYℓ,m,n = imYℓ,m,n. Then

g =
∑

ℓ,m,n
1

ℓ(ℓ+2)
cℓ,m,nYℓ,m,n, which is well defined since f has no ℓ = 0 component by assumption, and,

like f , has cℓ,m,n = 0 for all m 6= 0.

– 13 –
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Since dv = 2 ⋆ v, the corresponding gauge field can be taken to be

A = qv (3.27)

The δ-exact gauged action of a chiral multiplet of conformal dimension 1/2 is given by [13]

Sδ =

∫ √
gd3x

(

φ†(−DµD
µ + σ2 + iD +

3

4
)φ+ ψ†(iγµDµ − iσ)ψ + F †F

)

(3.28)

Let us couple this to an ordinary BPS background, with σ = −D = σo, as well as the

background vector multiplet described above, with A = qv and D = −2iq. We find:

Sδ =

∫ √
gd3x

(

φ†
(

−∇2−2iqvµ∂µ+q
2+σo

2−iσo+2q+
3

4

)

φ+ψ†(iγµ∇µ−qγµvµ−iσo)ψ+F †F

)

(3.29)

The bosonic operator has the form:

OB = −∇2 + aivµ∂µ + b (3.30)

with a = −2q and b = q2 + σo
2 − iσo + 2q + 3

4 , which has determinant [13]

√

detOB =
∞
∏

ℓ=0

( ℓ/2
∏

m=−ℓ/2

(

ℓ(ℓ+ 2)− 2am+ b

))ℓ+1

(3.31)

=

∞
∏

ℓ=0

( ℓ/2
∏

m=−ℓ/2

(

ℓ(ℓ+ 2) + 4qm+ q2 + σo
2 − iσo + 2q +

3

4

))ℓ+1

(3.32)

Meanwhile, for the fermions, the operator has the form:

OF = iγµ∇µ + icγµvµ + d (3.33)

with c = −q and d = −iσo, which has determinant:

detOF =
∞
∏

ℓ=0

(

(ℓ−c−d+3/2)(ℓ+c−d+3/2)

ℓ/2−1
∏

m=−ℓ/2

(

ℓ(ℓ+2)−4cm−2c+d+c2−d2+3/4

))ℓ+1

=

∞
∏

ℓ=0

(

(ℓ+q+iσo+3/2)(ℓ−q+iσo+3/2)

ℓ/2−1
∏

m=−ℓ/2

(

ℓ(ℓ+2)+4qm+2q−iσo+q2+σo2+3/4

))ℓ+1

(3.34)

We see that most modes cancel, and we are left with:

Z1−loop =
detOF√
detOB

=
∞
∏

ℓ=0

(

(ℓ+ q + iσo + 3/2)(ℓ− q + iσo + 3/2)

(ℓ(ℓ+ 2)− 2qℓ+ 2q − iσo + q2 + σo2 + 3/4)

)ℓ+1

(3.35)

=
∞
∏

ℓ=0

(

(ℓ+ q + iσo + 3/2)(ℓ− q + iσo + 3/2)

(ℓ+ 1 + q + iσo +
1
2)(ℓ+ 1 + q − iσo − 1

2)

)ℓ+1

(3.36)

=
∞
∏

ℓ=0

(

ℓ+ i(σo + iq) + 3/2

ℓ− i(σo + iq) + 1/2

)ℓ+1

(3.37)
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Note that σo and α appear in the combination σ + iq, so that we can just make this

replacement in the ordinary one-loop determinant to find:

Z1−loop = eℓ(
1
2
+iσ−q) (3.38)

In fact, this computation goes through with minimal changes for chiral multiplets of arbi-

trary dimension (one merely shifts σo by an imaginary amount), and we find:

Z1−loop = eℓ(1−∆+iσ−q) (3.39)

Note we have obtained the same result as in the indirect argument above. We will now

turn to an even more explicit argument, where we do not smear out the defect over the

sphere but instead work directly with a (regularized) delta function background.

3.4 Method 3: explicit computation in a singular background

Let us now focus on the specific case where the function f̃ is a delta function, corresponding

to the dual of an ordinary (unsmeared) Wilson loop. Although we have argued that one

can replace the delta function by a constant which has the same integral over S2, we would

like to gain better physical insight into the vortex loop by explicitly finding the modes

in a singular background. For simplicity we will focus on the case where the matter has

canonical dimension, although it is straightforward to generalize this.

Recall that the smeared vortex loop on S3 can be obtained by coupling to a background

F = 2πf ⋆ v and D = −2πif , where f is some function on S3 constant along the fibers of

the Hopf fibration. Here we compute the modes and 1-loop determinant explicitly in the

case where f is a (infinitessimally smeared) delta function supported on a single fiber.

We will work in toroidal coordinates on S3, with η ∈ [0, π/2] and θ and φ in [0, 2π).

Explicitly, we can relate these coordinates to the unit sphere S3 ⊂ R
4 via:

x = cos η cos θ, y = cos η sin θ, z = sin η cosφ, w = sin η sinφ (3.40)

The surfaces of constant η are torii, which degenerate to great circles at η = 0, π2 .

The usual round metric takes the following form in these coordinates:

ds2 = dη2 + sin2 ηdθ2 + cos2 ηdφ2 (3.41)

⇒ ∇2 =
1

sin η cos η

∂

∂η
sin η cos η

∂

∂η
+

1

sin2 η

∂2

∂θ2
+

1

cos2 η

∂2

∂φ2
(3.42)

The Killing vector v is given in these coordinates by:

v =
∂

∂θ
+

∂

∂φ
(3.43)

or, as a 1-form, by:

ṽ = sin2 ηdθ + cos2 ηdφ (3.44)

It satisfies:

dv = 2 cos η sin ηdη ∧ dθ − 2 cos η sin ηdη ∧ dφ = 2 ⋆ v (3.45)
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We take the defect to be supported on the great circle at η = 0. We define a regularized

delta function supported on the loop by:

f =
g(η/ǫ)

2πǫ sin η cos η
(3.46)

where g(x) has support in 0 ≤ x . 1 and integrates to 1 on [0, π
2ǫ ], so that f integrates

to 2π. This approaches a delta function supported on the great circle at η = 0 for ǫ → 0.

Then the background field-strength we need to consider is

F = 2πq f ⋆ v =
q

ǫ
g(η/ǫ)dη ∧ (dθ − dφ) (3.47)

which is solved by a background vector potential

A = qG(η/ǫ)dθ − q(G(η/ǫ)− 1)dφ (3.48)

where G′ = g with G(0) = 0, so that G(x) → 1 for large x, and we pick the constants so

that this is everywhere well-defined. We also have a background auxiliary scalar

D = −2πiqf = − iq g(η/ǫ)

ǫ sin η cos η
(3.49)

3.4.1 Bosons

First consider the bosonic operator on S3:

OB = −DµD
µ + σ2 + iD +

3

4
(3.50)

We will couple to a defect background, as above, as well as an ordinary σ = −D = σo
background. Using the form of D above, along with:

Aµ∂µ =

(

q G(η/ǫ)

sin2 η

∂

∂θ
− q(G(η/ǫ)− 1)

cos2 η

∂

∂φ

)

(3.51)

A2 =

(

q2G(η/ǫ)2

sin2 η
+
q2(G(η/ǫ)− 1)2

cos2 η

)

(3.52)

and looking for an eigenfunction OBφ = λφ of the form φ = f(η)eimθ+inφ, we get the
following equation:

− 1

sin η cos η

d

dη

(

sin η cos η
df

dη

)

+

(

(m+qG)2

sin2 η
+
(n−q(G−1))2

cos2 η
+

qg(η/ǫ)

ǫ sin η cos η
+
3

4
+σo

2−iσo−λ
)

f = 0

(3.53)

Before solving this equation, let us consider the fermions, as we will see their components

satisfy a very similar equation.
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3.4.2 Fermions

The operator in this case is

OF = iD/ − iσ (3.54)

It is convenient to use a left-invariant vielbein. One computes this in toroidal coordinates as:

eLi =















































sin(θ + φ)
∂

∂η
+ cos(θ + φ)(cot η

∂

∂θ
− tan η

∂

∂φ
) i = 1

− cos(θ + φ)
∂

∂η
+ sin(θ + φ)(cot η

∂

∂θ
− tan η

∂

∂φ
) i = 2

∂

∂θ
+

∂

∂φ
i = 3

(3.55)

Then the Dirac operator can be written as:

i∇/ =

(

i∂3 − 3
2 i∂1 + ∂2

i∂1 − ∂2 −i∂3 − 3
2

)

(3.56)

which, in toroidal coordinates, becomes:

i∇/ =









i
∂

∂θ
+ i

∂

∂φ
− 3

2
e−i(θ+φ)

(

− ∂

∂η
+ i

(

cot η
∂

∂θ
− tan η

∂

∂φ

))

ei(θ+φ)

(

∂

∂η
+ i

(

cot η
∂

∂θ
− tan η

∂

∂φ

))

−i ∂
∂θ

− i
∂

∂φ
− 3

2









(3.57)

We should also couple to the gauge field, which amounts to the replacement ∂
∂θ → ∂

∂θ +

iqG, ∂
∂φ → ∂

∂φ − iq(G − 1), as well as the constant σo. Then if we look for eigenspinors of

the form

ψ = eimθ+inφ

(

ψ1(η)

ei(θ+φ)ψ2(η)

)

(3.58)

we get the following coupled first-order equations for ψ1 and ψ2:
(

d

dη
−(m+qG) cot η+(n−q(G−1)) tan η

)

ψ1 =−
(

m+n+q−λ−iσo+
1

2

)

ψ2

(3.59)
(

− d

dη
−(m+qG+1) cot η+(n−q(G−1)+1) tan η

)

ψ2 =

(

m+n+q+λ+iσo+
3

2

)

ψ1

Solving for ψ2 using the first equation and plugging into the second one, we get a second

order equation in terms of ψ1 alone:
(

− d

dη
− (m+ qG+ 1) cot η + (n− q(G− 1) + 1) tan η

)

(

d

dη
− (m+ qG) cot η = (n− q(G− 1)) tan η

)

ψ1 =

= −
(

m+ n+ q − λ− iσo +
1

2

)(

m+ n+ q + λ+ iσo +
3

2

)

ψ1. (3.60)
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This can be rearranged to

− 1

sin η cos η

d

dη

(

sin η cos η
dψ1

dη

)

+

(

(m+ qG)2

sin2 η
+
(n− q(G− 1))2

cos2 η
+

qg(η/ǫ)

ǫ sin η cos η
−(λ+iσo+

1

2
)2+1

)

ψ1 = 0

(3.61)

which is precisely the same equation as satisfied by the bosonic modes, with the following

relation between the eigenvalues:

λB + (iσo +
1

2
)2 = (λF + iσo +

1

2
)2 (3.62)

This is a quadratic equation for λF with two solutions λF±. Their product can be

read off as the constant term, and one can see that this is simply λB.

In principle, we can take ψ1 to be the scalar eigenfunction for a given choice of λB,

take one of the solutions λF± to the equation above, and plug these into the first equation

in (3.59) to solve for ψ2. For each λB and pair of solutions λF± for which this procedure

goes through, we can see that the contribution to the partition function, λF+λF−/λB = 1,

is trivial.

However, there are two exceptions we must be more careful with. First, we must also

allow solutions with ψ1 = 0, but ψ2 non-vanishing. Then we see that (3.59) reduces to:

(m+ n+ q − λ− iσo +
1

2
)ψ2 = 0

(− d

dη
− (m+ qG+ 1) cot η + (n− q(G− 1) + 1) tan η)ψ2 = 0

Thus the eigenvalue in these cases is λ = m+ n+ q − iσo +
1
2 , and ψ2 satisfies:

d

dη
logψ2 = −(m+ qG+ 1) cot η + (n− q(G− 1) + 1) tan η

=

{

−(m+ 1) cot η + . . . near η = 0

−(m+ q + 1) cot η + (n+ 1) tan η in the bulk
(3.63)

⇒ ψ2 =

{

sin−(m+1) η + . . . near η = 0

sin−(m+q+1) η cos−(n+1) η in the bulk
(3.64)

Regularity at the endpoints implies that m and n should be negative integers. But then for

−(q + 1) < m < 0, the bulk solution is singular as it approaches the loop. We will return

to this point in a moment. These solutions correspond to extra fermionic modes that we

have not accounted for before, so their eigenvalues should be included in the numerator of

the partition function.

The other exception occurs when the differential operator acting on ψ1 in the first

equation in (3.59) annihilates our choice of ψ1. Then we must pick ψ2 = 0, and there will

not be two choices of λF , but only one, and so the cancellation with the corresponding

bosonic mode will not be complete. We see that in this case (3.59) gives:
(

d

dη
− (m+ qG) cot η + (n− q(G− 1)) tan η

)

ψ1 = 0

(

m+ n+ q + λ+ iσo +
3

2

)

ψ1 = 0
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Now we find λ = −(m+ n+ q + iσo +
3
2), and ψ1 satisfies:

d

dη
logψ1 = (m+ qG) cot η − (n− q(G− 1)) tan η =

{

m cot η + . . . near η = 0

(m+ q) cot η − n tan η in the bulk

(3.65)

⇒ ψ1 =

{

sinm η + . . . near η = 0

sin(m+q) η cosn η in the bulk
(3.66)

Now regularity at the endpoints forces m and n to be nonnegative integers, and the bulk

solutions are singular for 0 ≤ m < −q. These are modes for which there is only one

solution, say λF+, to the equation (3.62), and so the cancellation with the bosons is not

complete. The net contribution is λF+/λB = 1/λF−, and one can read this off from (3.60)

as λF− = m+ n+ q − iσo +
1
2 .

Putting this together, we see all modes cancel out of the partition function except for

the special cases noted above, and these give:

Z =

∏

m,n<0(m+ n+ q − iσo − 1
2)

∏

m,n≥0(m+ n+ q − iσo +
1
2)

(3.67)

=
∞
∏

ℓ=0

(−ℓ+ q − iσo − 3
2

ℓ+ q − iσo +
1
2

)ℓ+1

(3.68)

= eℓ(
1
2
+q−iσo) (3.69)

Thus we have obtained the result for the 1-loop determinant without ever having to

solve the second order differential equation. However, note that this function may have

poles, e.g. when q = 1
2 . To get a better understanding of the origin of these singularities,

we will now solve the differential equation explicitly.

3.4.3 Solving the eigenvalue equation

Consider the following second order equation, which has come up for both the bosons and
fermions:

− 1

sin η cos η

d

dη

(

sin η cos η
df

dη

)

+

(

(m+ qG)2

sin2 η
+

(n− q(G− 1))2

cos2 η
+

qg(η/ǫ)

ǫ sin η cos η
+1−(ℓ+1)2

)

f = 0

(3.70)

where, for later convenience, we have written the eigenvalue in terms of a parameter ℓ.

This is related to the eigenvalues by:

λB = (ℓ+ 1)2 − (iσo +
1

2
)2, λF± = ±(ℓ+ 1)− iσo −

1

2
(3.71)

Near Loop Region Let us start by focusing on the region 0 < η . ǫ, as this will

determine what boundary conditions to impose on the bulk solution. We start by defining

ξ = η/ǫ, and expanding the equation above to leading order in ǫ:

− 1

ξ

d

dξ

(

ξ
df

dξ

)

+

(

(m+ qG(ξ))2

ξ2
+
qg(ξ)

ξ

)

f = 0 (3.72)
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One solution can be immediately obtained, independent of the functional form of g and G,

by noting that this equation follows from the first order equation:

df

dξ
=
m+ qG

ξ
f (3.73)

as can be easily checked using G′ = g. Then, using G→ 0 as χ→ 0 and G→ 1 as χ→ ∞,

we see that:

f(ξ) ∼
{

ξm ξ → 0

ξ(m+q) ξ → ∞ (3.74)

Form ≥ 0, this is the regular solution we want. We can match with the solution in the bulk

by looking at the behavior in the the large ξ region, and we see that we should take the

bulk solution which goes as f(η) ∼ η(m+q). Note that if q < 0, for 0 ≤ m < −q, the bulk

solution would appear to be singular right up until we reach the near loop region, at which

point the presence of the defect modifies the solution to go as η−m and be regular. For

m ≥ −q, we take the regular solution, as in the absence of a defect. Note that this behavior

does not depend on the precise functional form of g, only that it correctly reproduces a

delta function in the ǫ→ 0 limit.

It remains to understand what happens when m < 0. Here, the first order equation

does not have any non-trivial solutions regular at ξ = 0, so we must return to the second

order equation. Then we can find a regular solution, but it appears it depends non-trivially

on g and G. Specifically, we find:

f(ξ) ∼
{

ξm ξ → 0

A(g,m, q)ξ|m+q| +B(g,m, q)ξ−|m+q| ξ → ∞ (3.75)

for some constants which depend non-trivially on g, m, and q, and in particular are gener-

ically both non-zero, unlike in the previous case.

Nevertheless, if we reinstate the ǫ dependence, we see that to match with the bulk, we

should take the solution there to go as:

f(η) ∼ A(g,m, q)η|m+q|ǫ−|m+q| +B(g,m, q)η−|m+q|ǫ|m+q| (3.76)

and for ǫ→ 0, the first term will dominate, and so we should take the regular solution.

Thus we should always take the regular solution, f ∼ η|m+q|, except in the case where

the coefficient of the regular part is precisely zero, which happens only when 0 ≤ m < −q,
and in these cases we take the singular solution f ∼ η−|m+q|.

Bulk. Since G = 1 and g = 0 everywhere except an infinitessimal region near η = 0, in

the bulk the equation reduces to:

− 1

sin η cos η

d

dη

(

sin η cos η
df

dη

)

+

(

(m+ q)2

sin2 η
+

n2

cos2 η
+ 1− (ℓ+ 1)2

)

f = 0 (3.77)

It is convenient to look for an f of the form:

f(η) = sinm̃ η cosñ ηh(sin2 η) (3.78)
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for m̃, ñ we will choose in a moment. Plugging this in, we find the following equation for
h(x):

x(1−x)h′′+(m̃+1−(m̃+ñ+2)x)h′−1

4

(

(m+ q)2 − m̃2

x
+
(n− q)2 − ñ2

1− x
+(m̃+ñ+1)2−(ℓ+1)2

)

h = 0

(3.79)

The greatest simplification is achieved by setting m̃2 = (m+ q)2 and ñ2, with the sign of

m̃ and ñ to be fixed later. Then we are left with the hypergeometric equation:

x(1− x)h′′ + (c− (a+ b+ 1)x)h′ − abh = 0 (3.80)

where:

c = m̃+ 1, a+ b = m̃+ ñ+ 1, ab =
1

4
((m̃+ ñ+ 1)2 − (ℓ+ 1)2) (3.81)

⇒ a, b =
1

2
(m̃+ ñ+ 1± (ℓ+ 1)) (3.82)

The solutions can be written in terms of hypergeometric functions 2F1(a, b; c;x):

2F1(a, b; c;x) =

∞
∑

n=0

(a)n(b)n
(c)nn!

xn (3.83)

where (a)n = a(a + 1) . . . (a + n − 1). Provided this is well-defined,2 it converges for all

|x| < 1, and for |x| = 1 if Re(c− a− b) > 0.

In general, there are two linearly independent solutions, but if we impose regularity at

the boundary at x = 1 this restricts us to the solution:

h(x) = 2F1(a, b; a+ b+ 1− c; 1− x) (3.84)

=
Γ(a+ b+ 1− c)Γ(1− c)

Γ(a+ 1− c)Γ(b+ 1− c)
2F1(a, b; c;x)

+
Γ(a+ b+ 1− c)Γ(c− 1)

Γ(a)Γ(b)
x1−c

2F1(a+ 1− c, b+ 1− c; 2− c;x) (3.85)

= C1(a, b, c) 2F1(a, b; c;x) + C2(a, b, c) 2F1(a+ 1− c, b+ 1− c; 2− c;x) (3.86)

we should also set ñ = |n| to ensure f(η) is regular.

Now we need to fix the behavior at the other endpoint. We have:

f(η) ∼ C1(a, b, c)η
m̃ + C2(a, b, c)η

−m̃ (3.87)

Thus, depending on the behavior we want here, we should fix the relative values of the Ci

which will impose a condition on ℓ and restrict us to a discrete spectrum. Actually, since

we are free to choose the sign of m̃, we can simply pick m̃ so that the behavior we want is

ηm̃, and then the condition is always C2 = 0. This is ensured if the argument of one of the

2Specifically, if c is a negative integer, we must have a or b to be a negative integer greater than or equal

to c for this series to make sense.
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Gamma functions in the denominator in C2 is set to a negative integer, which determines:

a, b =
1

2
(m̃+ |n|+ 1± (ℓ+ 1)) = −k, k ∈ Z>0 (3.88)

⇒ λB = (ℓ+ 1)2 +

(

σo −
i

2

)2

= (m̃+ |n|+ 2k + 1)2 +

(

σo −
i

2

)2

(3.89)

λF = ±(ℓ+ 1)− iσo −
1

2
= ±(m̃+ |n|+ 2k + 1)− iσo −

1

2
(3.90)

Finally, we recall that the correct choice of m̃ was found above to be:

m̃ =

{

−|m− q| 0 ≤ m < −q
|m− q| else

(3.91)

Then the set of eigenvalues is given by taking the expressions above for all integers m,n

and non-negative integers k.

Actually, as above, we need to be more careful with the fermions. Specifically, there will

be eigenvalues in addition to these, as well as some that we have to throw out, corresponding

to the cases where, respectively, the top and bottom components of the fermion vanish.

These are precisely the exceptions noted in the previous section, from which the entire

contribution to the partition function comes.

One interesting property of these eigenvalues is that, since m̃ may be negative, the

eigenvalues may become zero, and the bosonic eigenvalues may even be negative. The first

place these zero modes can occur is for q = −1
2 , in which case for m = k = σo = 0, λB and

λ+F are both zero. Actually this fermionic eigenvalue is one of the spurious ones that we

should throw out, and so in fact there is a single bosonic zero mode which results in a pole

in the 1-loop partition function. For larger q, one finds negative bosonic eigenvalues, which

become difficult to make sense of in the path integral. We will take the viewpoint that the

vortex loop operator is only properly defined for q > −1
2 (and, when the matter content is

in a self-conjugate representation of the relevant flavor symmetry, this also forces q < 1
2),

although the naive result for the determinant gives a natural analytic continuation of this

quantity which may have some physical relevance.

4 Duality with vortex loop operators

Let us now turn to some applications of the vortex loop operator. Since this operator is

defined by an explicit procedure applied to a global U(1) symmetry, then if we know what

this symmetry maps to across a duality, we obtain an identification of loop operators on

each side of the duality. This provides a new operator mapping across duality, although it

does not provide any essentially new information beyond the mapping of global symmetries.

One inter?sting case is when a U(1)J symmetry on one side of the duality is identified

with a flavor symmetry on the dual. This occurs, for example, in 3D mirror symmetry.

Let us take the simplest case, the duality between N = 4 SQED with one flavor and a free

hypermultiplet. Note that there are Wilson loops on the SQED side, but it is less clear

what the corresponding loop operators on the dual side are, since there is no gauge group.
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However, the results above provide the answer: the Wilson loop on the SQED side

are the same as defects in the global U(1)J symmetry. Mirror symmetry dictates that this

symmetry is identified with a U(1)V flavor symmetry under which the two chirals in the

hypermultiplet have charge ±1. Then the Wilson loop in SQED simply maps to a defect

operator in this flavor symmetry, supported on the same loop.

At the level of the matrix model, this follows from the identity:

∫

dλ
e2πiηλe2πqλ

2 cosh(πλ)
=

1

2 coshπ(η − iq)
(4.1)

which simply follows from extending the usual self-Fourier-transform property of 1/ cosh

to the entire complex plane.

It is worth noting that the integral on the l.h.s. only converges for |q| < 1
2 . As remarked

above, this is precisely the range in which the defect operator is also well-defined. The

divergence on the l.h.s. as |q| → 1
2 is reflected on the r.h.s. as a bosonic zero mode developing

in the defect background. The r.h.s. gives a natural analytic continuation of this quantity

to |q| > 1
2 , but it is not clear what, if any, physical relevance this has.

We can also consider mirror symmetry applied to SQED with Nf flavors. Here the dual

is a quiver theory with gauge group U(1)Nf /U(1)diag ∼= U(1)Nf−1, with Nf bifundamental

flavors (qaq̃a) charged as (1,−1, 0, . . .), (0, 1,−1, . . .), . . . , (−1, 0, . . . , 1), Nf neutral chirals

Sa, and a superpotential
∑

a qaSaq̃a. Here the U(1)J symmetry of SQED maps to a flavor

symmetry under which the all the qa have charge 1
Nf

. In particular, the Wilson loop in

SQED maps to a defect in this symmetry. Note that, because of the extra factor of 1
Nf

in

this mapping, the restriction on the defect charge now allows us to consider Wilson loops of

charge up to ±Nf

2 . This coincides with the fact that, in the matrix model, the Wilson loop

expectation value now converges for this wider range of charges because of the increased

damping in the integrand from the factor (2 cosh(πλ))−Nf .

Finally, we note that we can also apply this type of argument to theories with U(N)

gauge symmetries for N > 1, provided we restrict only to Wilson loops in the overall U(1)

of the gauge group. For example, in the U(N) versions of Aharony ([19]) and Giveon-

Kutasov dualities ([20]), it is known that the U(1)J current maps to itself, up to a flip of

sign, and so a Wilson loop in the overall U(1) of the gauge group must map to the same

Wilson loop, with the opposite charge. One can also consider such abelian Wilson loops in

non-abelian mirror symmetry, where they will map to flavor defects as above.

5 Discussion

We have defined a set of abelian vortex loop operators which exist in any abelian gauge

theory in 2+1 dimensions. The definition can be extended to conformal field theories with

abelian global symmetries by weakly gauging the symmetry currents. Witten’s SL(2,Z)

action for this class of theories naturally extends to loop operators. In fact, abelian vortex

loops are the S-duals of the ordinary Wilson loops. Alternatively, a Wilson loop in a

U(1) factor of the gauge group can be viewed as a global vortex loop for the associated

topological U(1)J symmetry.
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One of our results was the definition of the supersymmetric version of the vortex

loop. This was accomplished by identifying the fields in the abelian vector multiplet which

needed to be turned on to create the right type of singularity. It turns out that, besides the

singular gauge connection, we needed to also give an imaginary background value to the

auxiliary scalar D. This is an interesting example of the fact that background fields need

not satisfy the reality conditions usually imposed on the dynamical fields of the theory.

We proceeded to evaluate the expectation value of a supersymmetric defect loop, defined

on a great circle on S3, using localization. The result could be anticipated by considering

the SL(2,Z) action and, indeed, had already been derived from the 4d perspective. We

have given, by using and comparing two different regularization methods, an additional

microscopic derivation.

The supersymmetric vortex loop plays a central role in mirror symmetry of 3d gauge

theories. This class of dualities has the property that it exchanges flavor symmetries

with the topological symmetries associated to the abelian factors of the dual gauge group.

As a consequence, the duality exchanges (the supersymmetric versions of) U(1) Wilson

loops with abelian vortex loops. Identifying such entries in the duality dictionary is an

important step towards, possibly, proving the duality for the full quantum theory. We

have demonstrated that the expectation values for the dual loop operators match, in simple

examples, by using localization and the matrix model.

The analysis presented here has a natural extension to non-abelian defects. The def-

inition of such an operator can require additional steps to ensure gauge invariance. For

a defect in a global non-abelian symmetry group the definition is similar to the abelian

case and the results can be read off from section 3 by conjugating the defect data into

the Cartan of the flavor group. When the defect appears in a dynamical gauge field, the

localization procedure for the vector multiplet is modified. The result in the case of pure

Chern-Simons theory is known to require a quantization of the data entering the definition

of the defect, the overall effect being, again, the insertion of a Wilson loop operator in

some representation [7]. A naive analysis would imply that this result is not affected by

the presence of additional charged matter. However, the mapping of such operators under

mirror symmetry for non-abelian theories and under Seiberg-like dualities requires further

investigation.
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