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Einstein solution, the equations of motion are always second order and therefore the varia-
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ically higher order, with the additional boundary conditions being associated with new

operators in the dual conformal field theory. We discuss which higher derivative curvature

invariants are expected to arise in the four-dimensional action from a top-down perspec-

tive and compute the corrections to planar AdS black holes and to the spectrum around
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1 Introduction

In this paper we will explore higher derivative corrections to gravity theories in (3 + 1)-

dimensions with negative cosmological constant. Our main motivation for looking at higher

derivative corrections to four dimensional AdS black holes is in the context of holography

and, in particular, applied holography, AdS/CMT, where many of the systems of interest

are modelled by four dimensional bulk spacetimes. The addition of higher derivative terms

allows us to probe the dual physics as one moves away from infinite N and infinite ’t Hooft

coupling.

Finite N effects can change the physics qualitatively. For example, let us consider

holographic superconductors, a subject which has been extensively studied in recent years,

initiated by [1, 2] and [3]. Working with classical gravity there is an apparent violation of

the Coleman-Mermin-Wagner theorem. This well-known theorem states that, for system in

two spatial dimensions, we cannot have continuous symmetry breaking in systems at finite

temperature and hence the formation of a symmetric breaking condensate is forbidden.

However, holographic superfluids have been found in (3 + 1) bulk dimensions, in which a
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symmetry breaking operator in the dual (2 + 1) dimensional CFT acquires an expectation

value. As explored in [4], this is an infinite N effect and at finite N quantum effects in

the bulk indeed ensure that the symmetry breaking operator does not have a well defined

expectation value, in accordance with the expected field theory behaviour [5].

One does not see a qualitative finite N effect such as the restoration of the Coleman-

Mermin Wagner theorem by evaluating higher derivative corrections on the leading order

gravity solution but rather by exploring quantum effects in the bulk. Evaluating higher

derivative corrections rather shifts the saddle point and allows one to compute corrections

to thermodynamic quantities, transport coefficients and so on. In the context of five bulk

dimensions, a considerable effort has been put into investigating higher derivative correc-

tions and exploring the effects on the ratio of the shear viscosity η to the entropy density

s, see for example [6–9].

In particular, [9] used Gauss-Bonnet curvature corrections and initiated a bottom up

exploration of the constraints on the higher derivative corrections imposed by unitarity of

the dual CFT. Working with the Gauss Bonnet term is particularly convenient because the

corrections to AdS planar black holes are known analytically for any value of the Gauss

Bonnet coupling constant, see [10] and also [11–15]. Note that an effect of the Gauss-

Bonnet term relevant to the superfluids mentioned above was discussed in [16], where it

was found that addition of the higher curvature terms makes condensation to a superfluid

phase more difficult.

The Gauss-Bonnet terms, and corresponding corrected AdS black holes, are a useful

way to go beyond classical gravity in bulk dimensions higher than four. However, such

terms are trivial in four bulk dimensions, in the sense that an Einstein metric is uncorrected

and therefore one needs to include higher order curvature invariants to obtain non trivial

corrections.1 An alternative possibility is to couple Einstein gravity to a dilaton in four

dimensions because Gauss-Bonnet type corrections to diatonic black holes are then non

trivial, see for example [18], but this does not address the question of how AdS black holes

with no dilaton are corrected.

Apart from AdS/CMT motivations mentioned above, for which dilatonic AdS black

holes may indeed already capture many relevant features, see for example [19], there are a

number of other important motivations in exploring higher derivative corrections to Ein-

stein gravity with a negative cosmological constant. The first is in understanding the

AdS/CFT correspondence when the dual theory is on an S3. In recent years there has

been considerable progress in understanding dual (supersymmetric) 3d CFTs, following

the works of BLG [20–22] and ABJM [23, 24], and localisation techniques have been used

to compute free energies of the dual theories placed on an S3. Taking the limit of large

N and large ’t Hooft coupling, the free energies have been matched to the onshell renor-

malised action of AdS4 with an S3 boundary in Einstein gravity [25, 26]. Localisation

techniques also allow us to access the subleading terms in the free energy which should be

compared to the effects of higher derivative terms evaluated on the bulk AdS4. Compar-

ing these subleading terms with the gravity results we develop here can be used to test

1A review of higher order gravity theories and their black hole solutions may be found in [17].
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the correspondence and indeed restrict which higher derivative terms can arise in the four

dimensional bulk action.

The second motivation in exploring higher derivative terms in four dimensions is in the

context of understanding the holographic dictionary. One of the main points of this paper

is that the addition of higher derivative terms generically involves additional data being

required for the variational problem to be well-defined. In the context of holography, the

additional data corresponds to a new operator in the dual CFT, in addition to the stress

energy tensor which is dual to the bulk metric. For generic higher derivative terms added

to the action the dual operator has complex dimension and/or negative norm, reflecting

the fact that the corrected added violates unitarity. This analysis provides a very direct

probe of the unitarity properties arising from the higher derivative terms.

Historically the main context in which higher curvature corrections to four-dimensional

gravity has been studied is as a toy model for a quantum theory of gravity. In this con-

text the key problem is that adding higher curvature corrections adds higher-order time

derivatives to the theory and consequently ghosts. Recently there has been considerable

interest in so-called critical gravity theories, in which ghostlike modes appear to be absent,

in both three [27] and four [28, 29] bulk dimensions. The four dimensional story that we

develop here is the exact analogue of the discussions in [30, 31] for topologically massive

gravity in three dimensions [32, 33]: the higher derivative terms in TMG were shown to be

associated with a new operator in the dual two dimensional CFT. In TMG, regardless of

the value of the coupling of the higher derivative term a violation of unitarity was found

in the dual field theory, either by a complex operator dimension or by an operator whose

two point function was non-positive. Note that this violation of unitary persisted even at

the so-called critical point, where the new operator together with the stress energy tensor

were non-diagonalizable. In this paper we will show that analogous problems are found in

the four-dimensional higher derivative theories.

Given that higher derivative terms generically give rise to new boundary conditions

and hence dual CFT operators, whose properties are not consistent with unitary, one may

ask how this observation can be consistent with the fact that top down models arising

from string theory are necessarily unitary. To understand this point, one should first note

that in the context of string theory and holography the higher curvature terms are always

viewed as an infinite series of small corrections to the leading order effective action. The

action with higher derivative terms is not quantized, which makes the issue of ghostlike

modes moot. In other words, the effective action takes the form

I =
1

2κ2

∫

d4x
√−g(R− 2Λ + αnl

n
pR

n + · · · ) (1.1)

where Λ is the cosmological constant; Rn denotes schematically an n-th order invariant;2

αn is a dimensionless numerical constant and lp denotes the effective Planck length. The

effective Newton constant in the Einstein theory is κ2 = 8πG.

2Derivatives of the curvature can also arise but will not be considered here.
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One is by assumption working in a regime where lp is small and therefore the corrections

should be treated perturbatively. Suppose g(0) is a solution of the Einstein theory, namely

Gµν(g(0)) = Rµν(g(0))−
1

2
R(g(0))g(0)µν + Λg(0)µν (1.2)

Then the corresponding solution of the corrected theory can be expressed as a perturbative

series

g = g(0) + ln+1
p g(n) + · · · (1.3)

with

Gµν(g(n)) = −αn
δRn

δgµν
(g(0)) (1.4)

and so on.

One should emphasize at this point the conceptual difference between evaluating the

higher derivative terms on the lowest order solution and treating the higher derivative term

non perturbatively. In the former case, the equations for all the metric corrections g(n) are

second order inhomogeneous differential equations, rather than higher order differential

equations. Since the equations are second order, the only boundary data that needs to

be supplied for the variational problem to be well-defined is the metric. When one is

considering the higher derivative terms evaluated on the lowest order solution, an analogue

of the Gibbons-Hawking-York [34, 35] term in the action can always be defined such that

the variational problem is well-defined for a Dirichlet condition on the metric.

By contrast, as we will explore in sections 2 and 4, whenever the higher derivative terms

are treated non-perturbatively or when we consider the spectrum around a given corrected

background, the resulting equations of motion are generically higher order.3 This means

that additional boundary data needs to be supplied. In the context of holography one

can understand the additional data as corresponding to additional dual operators in the

field theory, beyond the stress energy tensor. The variational problem in such contexts

will be well-defined only if one supplies additional information together with the Dirichlet

condition on the metric; the actual information which is needed depends on which higher

derivative terms are added.

Thus, given a background which solves the supergravity equations at leading order, the

variational problem will be well-defined when one computes the corrections to this solution

without specifying additional data. However, when one looks at the spectrum around this

background, the higher order nature of the field equations manifests itself and additional

data, corresponding to a new dual operator, is required.

A top down model arising from string theory must be consistent with unitarity. This

is guaranteed if the curvature invariant is such that the resulting equations are actually

second order. (Note that since one is treating the corrections perturbatively it is guaranteed

that the shift to η/s is small and is consistent with unitarity, in contrast to the discussions

of [8, 9] in which the coupling constant of the higher derivative term is allowed to be of

order one.)

3The Lovelock theories [36] are a well-known counterexample in which the equations of motion remain

second order.
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As we discuss at the end of section 4 another case in which the higher derivative

invariant is automatically consistent with unitarity is when the linearised field equation

around AdS remains second order. This is a weaker condition than requiring that the

equation of motion is always second order, but suffices to ensure that there is no non-

unitary dual operator induced by adding the higher derivative term. Examples of such

curvature invariants are those built out of the Weyl tensor of order three and higher.

Finally it is interesting to note that reducing a curvature invariant of a given order from

ten or eleven dimensions to four dimensions on a curved manifold gives rise to curvature

invariants in the effective four dimensional action which is both of the same order and

of a lower order, see for example (3.7). In the context of AdS solutions the reduction

required is indeed always on curved manifolds such as spheres. This implies in particular

that a curvature invariant such as one quartic in the Riemann tensor never arises without

an accompanying term quadratic in the Riemann tensor and a shift of the cosmological

constant. Here we show that the term quadratic in the Riemann tensor gives rise to a new

boundary condition for the linearised theory around AdS, and hence a dual operator in the

CFT, which turns out to be non-unitary. When one combines all terms arising from the

corrections at a given order in the upstairs theory, the resulting four dimensional theory

must be unitarity and this may be achieved either by the linearised theory around AdS

being second order or by the higher order terms conspiring to give a unitary dual operator.

The plan of this paper is as follows. In section 2 we discuss in more detail the variational

problem in higher derivative theories and show that it is well-posed with only boundary

data for the metric when one treats higher derivative terms perturbatively about a leading

order Einstein solution. In section 3 we first discuss what curvature invariants are expected

to arise in the effective four-dimensional action from a top down perspective and then we

explore the effects of various curvature invariants on four dimensional planar AdS black

holes. Our goal is to find an analogue of the Gauss-Bonnet corrected black hole in five and

higher dimensions, i.e. a representative corrected AdS4 planar black hole, and we find that

the solution in the Weyl corrected theory is the closest analogue. In section 4 we look in

detail at the spectrum in theories with curvature squared corrections, demonstrating that

there are indeed new dual operators associated with the higher derivative terms and these

are non-unitary. Noting that the spectrum in the Weyl cubed theory is unchanged again

this seems to be the simplest case of a representative correction. In section 5 we conclude.

2 The variational problem in higher derivative theories

In general one cannot define an analogue of the Gibbons-Hawking-York term [34, 35] such

that the variational problem is well-defined with only a Dirichlet condition on the metric -

one must impose additional conditions. This observation explains a long standing problem

in the literature: for generic higher derivative corrections the analogue of the Gibbons-

Hawking-York (GHY) term has never been found.

There is considerable literature discussing the variational problem in higher derivative

theories. In the context of corrections arising in string theory, boundary terms were dis-

cussed in [37] where the analogue of the GHY term was found for Gauss-Bonnet. This
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is a very special case, however, as the field equations are second order. For corrections

involving powers of the Ricci scalar, the variational problem was discussed in [38]. The

generic issues in setting up a variational problem for higher derivative gravity given only

a boundary condition on the metric were highlighted in [39]: the boundary terms which

arise in varying the bulk action cannot in general be integrated to give an analogue of the

GHY term.

Here we argue that the problem in finding a GHY term results from the fact that

in general such a term cannot exist : one must specify additional data together with the

metric. In special cases an analogue of the GHY term was found, for example, for Lovelock

theories. However, Lovelock theories are themselves special in that the equations of motion

are actually second order and this fact explains why a GHY term could be found.

A useful approach to dealing with higher derivative theories is the auxiliary field

method and the variational problem in such a context was discussed in [40]. In this ap-

proach the higher order equations are reduced to coupled second order equations for the

metric and the auxiliary fields, and one specifies boundary data for both the metric and for

the auxiliary field. In the context of perturbatively evaluating higher derivative corrections

on leading order Einstein solutions, the boundary condition for the auxiliary field does not

involve new data, but rather can be built out of the boundary data for the metric. When

one looks at the spectrum, however, one sees that there is indeed generically new data

required for the auxiliary field. These points will be illustrated further when we use the

auxiliary field method to discuss the spectrum in section 4.

Before moving on to consider specific models for higher derivative corrections in four

dimensions, let us discuss the issue with the variational problem. We consider a general

action in (d+ 1) dimensions

I =

∫

M
dd+1x

√−gL, (2.1)

where the Lagrangian L depends only on the metric and the Riemann tensor. The variation

of the action with respect to the metric gives

δI =

∫

M
dd+1x

√−g
(

1

2
gµνL+ Lµν

)

δgµν (2.2)

+

∫

M
dd+1x

√−g
(

LµνρσR λ
µνρ δgσλ + 2∇ρ∇µLµνρσδgνσ

)

+2

∫

∂M
dΣµLµνρσ∇ρδgσν + · · ·

Here ∂M is the boundary of the manifold M and we define

Lµν =
δL
δgµν

Lµνρσ =
δL

δRµνρσ
(2.3)

while the ellipses denote boundary terms which vanish with a Dirichlet boundary condition

on the metric, δg = 0.

In the case of Einstein gravity

L =
1

2κ2
(R− 2Λ) (2.4)
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and thus the boundary term in the variation is

∫

∂M
dΣµ(gνσ∇µδgνσ − gµσ∇νδg

νσ). (2.5)

As is well-known, one can set up a well-defined variational problem by noticing that

δ

(

− 1

κ2

∫

∂M
dx

√−γK
)

= − 1

2κ2

∫

∂M
dΣµ(gνσ∇µδgνσ + · · · ) (2.6)

where the ellipses again denote terms which depend only the on restriction of the metric

variation to the boundary (and which hence vanish given the boundary condition). Thus

the addition of this term, the Gibbons-Hawking-York term, to the action gives a well-

defined variational problem in which the metric on the boundary is held fixed.

For generic Lagrangians involving higher powers of the curvature, the boundary terms

involving metric derivatives cannot be canceled by those in the variation of a boundary

term. To illustrate this it is useful to look at a specific example,

L =
1

2κ2
(R− 2Λ− αRµνρσR

µνρσ). (2.7)

When α = 0 this reduces to the Einstein theory. When α is small the higher derivative

term can be treated perturbatively. It is thus useful to express the equations of motion in

the form

Rµν = T̄µν ≡ Λgµν + αtµν ; (2.8)

tµν =
1

(d− 1)
RρστηRρστηgµν +

4

(d− 1)
∇ρ∇σR

ρσgµν

−2RµρσλR
ρσλ

ν − 4∇ρ∇σRρµνσ,

with T̄ being the effective (trace adjusted) stress energy tensor. In later sections we will be

interested in four dimensional models, in which the Riemann squared term can be rewritten

in terms of the Ricci tensor and the Ricci scalar, but in this section we will work in general

dimension. The reason for consider terms involving the Riemann tensor is that such terms

will always arise from top down models, and (unlike Ricci scalar and Ricci terms) they

cannot be removed by field redefinitions. We can use the Bianchi identities to simplify the

stress tensor as

tµν =
1

(d− 1)
RρστηRρστηgµν − 2RµρσλR

ρσλ
ν (2.9)

+
2

(d− 1)
�Rgµν − 4�Rµν + 4∇ρ∇µRνρ,

where � = ∇ρ∇ρ.

A perturbative treatment of the field equations means that one looks for a solution

such that

gµν = g(0)µν + αg(1)µν + · · · (2.10)

– 7 –
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where g(0) is Einstein with cosmological constant Λ and g(1) satisfies

(LR − Λ)g(1)µν =
1

(d− 1)
Rρστη(g(0))Rρστη(g(0))g(0)µν (2.11)

−2Rµρσλ(g(0))R
ρσλ

ν (g(0)),

where LR is the linearized Ricci operator and terms on the right hand side are evaluated on

the metric g(0) using the connection of that metric. Note that the terms involve derivatives

of the Ricci tensor do not contribute since the covariant derivative of the Einstein metric

g(0) is zero. As emphasised earlier, this equation is a second order inhomogeneous equation

for g(1) and therefore it does not require any new boundary condition. Note that we regard

here the boundary conditions for the metric as being given as a power series in α; i.e. the

homogenous part of the solution g(1) is determined by this data.

Let us now turn to the question of the variational problem for such a theory. The new

(relative to Einstein gravity) boundary term that arises in varying the action is then

2α

κ2

∫

∂M
dΣµRµνρσ∇ρδgσν + · · · (2.12)

where we again suppress terms which vanish for the boundary condition δg = 0. This term

can be manipulated using the Gauss-Codazzi relations as follows. The metric on M can

be decomposed as

ds2 = (N2 +NµN
µ)dr2 + 2Nµdx

µdr + γµνdx
µdxν (2.13)

in terms of hypersurfaces Σr of constant r with the unit normal to each hypersurface being

given by nµ. As the notation suggests, we are most interested in the case where the finite

boundary is at spatial infinity, so r is indeed a radial coordinate.4 Defining the radial

flow vector rµ such that rµ∂µr = 1, the components of rµ tangent and normal to the

hypersurfaces define the shift Nµ and the lapse Nnµ respectively. The extrinsic curvature

Kµν of the hypersurface is given by

Kµν =
1

2
Lnγµν , (2.14)

where L is the Lie derivative. The Riemann tensor of the (d+1) dimensional manifold can

now be expressed entirely in terms of the intrinsic curvature and extrinsic curvature of Σr

via the Gauss-Codazzi relations

γαµγ
β
ν γ

γ
ργ

δ
σRαβγδ = R̂µνρσ +KµσKνρ −KµρKνσ; (2.15)

γρνn
σRρσ = DµK

µ
ν −DνK

µ
µ ;

nρnσRµρνσ = −nρ∇ρKµν −KµρK
ρ
ν ,

where Dµ is the covariant derivative of the metric γ and R̂ denotes the curvature of this

metric. A useful manipulation of these equations gives the following identities

K2 −KµνKµν = R̂+ 2Gµνn
µnν ; (2.16)

LnKµν +KKµν − 2Kρ
µKρν = R̂µν − γρµγ

σ
νRρσ,

4Such a foliation would also be appropriate near timelike infinity, in which case r would be a time

coordinate and grr < 0 in Lorentzian signature.
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with Gµν the (bulk) Einstein tensor. One can simplify these expressions by fixing the gauge

freedom such that N = 1 and Nµ = 0. In this gauge

ds2 = dr2 + γijdx
idxj ; (2.17)

Kij =
1

2
∂rγij .

Moreover the Gauss-Codazzi relations which we will need can be written in terms of the

trace adjusted stress energy tensor as

Rrirj = −∂rKij +Kk
i Kkj ; (2.18)

K2 −KijK
ij = R̂+ T̄rr − γij T̄ij ;

∂rKij − 2K l
iKlj +KKij = R̂ij − T̄ij .

Returning to (2.12) the terms in the variation which do not vanish given a Dirichlet con-

dition on the metric, δγ = 0, in this gauge take the form

2α

κ2

∫

∂M
ddx

√−γRrirjδγ
ij =

2α

κ2

∫

∂M
ddx

√−γ(−∂rKij +Kk
i Kkj)∂rδγ

ij (2.19)

=
2α

κ2

∫

∂M
ddx

√−γ(KKij −Kk
i Kkj − R̂ij + T̄ij)∂rδγ

ij ,

where in the last equality the bulk equation of motion in Gauss-Codazzi form has been

used. Next we note that

δ(KKijKij) =
1

2
KijKijγ

kl∂rδγkl +KKij∂rδγij + · · · (2.20)

δ(K3) =
3

2
K2γij∂rδγij + · · · ;

δ(R̂K) =
1

2
R̂γij∂rδγij + · · · ;

δ(KijK
jkKi

k) =
3

2
KkjKi

j∂rδγij + · · · ;

δ(R̂ijKij) =
1

2
R̂ij∂rδγij + · · · ;

where ellipses denote terms which do not depend on the normal derivative of the metric

derivation. Then

2α

κ2

∫

∂M
ddx

√−γ
(

KKij −Kk
i Kkj − R̂ij + T̄ij

)

∂rδγ
ij (2.21)

=
2α

κ2

∫

∂M
ddx

√−γδ
(

KKijKij −
1

3
K3 + R̂K − 2

3
Kk

i KkjK
ij − 2R̂ijK

ij

)

+
2α

κ2

∫

∂M
ddx

√−γ
(

γij(T̄ k
k − T̄rr) + T̄ ij

)

∂rδγij + · · ·

The terms in the second line are written in terms of quantities intrinsic to the boundary

and define an analogue of the GHY term but the remaining terms left over in the last line

cannot, in general, be expressed in terms of such quantities.

– 9 –
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Suppose however that one works perturbatively in α, evaluating the corrections as a

perturbative series on the leading order metric, so that

gµν = g(0)µν + αg(1)µν + · · · (2.22)

Working to order α in the action one needs to evaluate the terms involving T̄ only to zeroth

order in α, i.e.

(γij(T̄ k
k − T̄rr) + T̄ ij) → dΛγij (2.23)

so that
∫

∂M
ddx

√−γ(γij(T̄ k
k − T̄rr) + T̄ ij)∂rδγij →

∫

∂M
ddx

√−γ2dΛδK + · · · (2.24)

That is, applying the field equations perturbatively, the problematic term can indeed be

reexpressed in terms of quantities which are intrinsic to the boundary.

Putting the terms together, we see that working up to order α the boundary term

needed to set up a well-defined Dirichlet variational problem at a finite radial boundary is

IGHY = − 1

κ2

∫

∂M
ddx

√−γK

−2α

κ2

∫

∂M
ddx

√−γ
(

KKijKij −
1

3
K3 + R̂K (2.25)

−2

3
Kk

i KkjK
ij − 2R̂ijK

ij + 2dΛK

)

,

where implicitly in the first line one needs the metric to order α whilst in the second line

one needs the metric only to zeroth order in α.

It would be interesting to extend this proof to show that the variational problem is well-

defined to arbitrary order. To do this one would need to argue that the problematic term

2α

κ2

∫

∂M
ddx

√−γ(γij(T̄ k
k − T̄rr) + T̄ ij)∂rδγij (2.26)

can always be expressed as the variation of a term intrinsic to the boundary, when the bulk

equations of motion are used iteratively. Such an all orders proof could be developed using

similar inductive techniques to [41, 42].

3 Gravity models

In this section we will consider higher derivative corrections to Einstein gravity with a

negative cosmological constant in four bulk dimensions. Before we describe the features of

various models, let us comment on top down derivations of the effective action. One might

think that it would be straightforward to work out the leading order corrections to the

action from the reduction of ten or eleven dimensional actions, i.e. one could exploit our

knowledge of the M theory action or the type II string actions. Here we point out that there

are many subtleties in implementing such as strategy and our knowledge of these actions is

not currently adequate to derive the corrections to AdS gravity actions in lower dimensions.
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To illustrate this point let us consider the best understood top down possibility to

obtain AdS4, the reduction of M theory on a seven dimensional Sasaki-Einstein SE7 to

four dimensions. At the level of supergravity, it is always consistent to retain just the four-

dimensional graviton in the lower dimensional theory, i.e. the eleven dimensional equations

are solved by eleven-dimensional fields such that

ds211 = ds24(E4) + ds27(SE7); (3.1)

F4 = ηE4
,

where E4 is any Einstein manifold with negative cosmological constant, η(E4) is the volume

form of this manifold and the metric reduction is diagonal over the SE7. The effective four

dimensional action is written only in terms of the metric on E4, gµν . Note however that

not only the eleven-dimensional metric gmn but also the four form F4 in eleven dimensions

are non trivial, and the Riemann tensor of the SE7 is also non trivial since the manifold

has positive curvature.

Let us consider what this implies for the higher derivative corrections to the effective

four-dimensional action. Since the four form is non-trivial at leading order, to compute the

higher derivative corrections to the leading order solution, one would need to know higher

derivative corrections to the eleven-dimensional action involving not just curvatures but

also the four form. Building on [43, 44], leading corrections involving the latter in eleven

dimensions were worked out in [45, 46]; they have the structure

I =

∫

d11x
√−ga

(

t8t8R
4 +

1

4!
ǫ11R

4

)

(3.2)

+

∫

d11x
√−gb

(

t8t8R
4 − 1

4!
ǫ11R

4 − 1

6
ǫ11t8AR

4 + [R3F 2] + [R2(DF )2]

)

,

where a and b are coefficients. It is known by comparison with IIA string calculations that

b =
1

2κ211

l6p
284!

π2

3
, (3.3)

with 2κ211 = (2π)8l9p. Here ǫ11 is the eleven-dimensional epsilon, t8 consists of 4 Kronecker

deltas and t8t8R
4 denotes a specific product of such such t8 tensors and four Riemann

tensors; the explicit expressions will not be needed here. A is the three form of which

F is the four form field strength. The tensor structure of the terms denoted [R3F 2] and

[R2(DF )2] is also not important here; all we need is this schematic form, in which D

denotes the covariant derivative.

One might think that the knowledge of such terms would suffice to compute the leading

corrections to the eleven-dimensional solution of interest, (3.1), and that the these correc-

tions could be rewritten in terms of a corrected equation for the four-dimensional metric

gµν , and hence in terms of a corrected four dimensional action. Apart from the complex-

ity of the actual calculation, there would be a number of subtleties in actually carrying

this out.

First of all, one cannot assume a priori that the higher order terms do not induce

additional four-dimensional fields, as well as the metric, although it seems reasonable that

– 11 –



J
H
E
P
0
6
(
2
0
1
3
)
0
9
6

in some cases they do not. For example, consider a four-dimensional massless scalar field

φ which corresponds to a modulus of the dual conformal field theory. In principle, even

though this field is constant at leading order, it could be sourced by a higher derivative

correction, i.e. one could have an equation such as

�φ ∼ Rn (3.4)

where Rn denotes schematically a scalar curvature invariant of order n. The latter must

be zero when evaluated on AdS itself, as one does not expect the conformal invariance to

be broken, but this argument could not exclude invariants of the Weyl tensor occurring.

Even if could argue that a four-dimensional action involving only gµν exists, there is a

second obstacle in actually computing such an action To illustrate this point, consider just

one of the tensor structures occurring in the R4 invariant

1

l3p
(RmnpqR

mnpq)2. (3.5)

Evaluated on the lowest order metric this picks up contributions

1

l3p

(

(RµνρσR
µνρσ)2 + (RµνρσR

µνρσ)(RabcdR
abcd) + (RabcdR

abcd)2
)

, (3.6)

where Rabcd is the Riemann curvature of the Sasaki Einstein. For any given Sasaki Einstein

this would then result in a term of the form

I ∼ VSE7

l3p

∫

d4x
√−g((RµνρσR

µνρσ)2 + b2(RµνρσR
µνρσ) + b0), (3.7)

in the four-dimensional action with VSE7
the volume of the Sasaki-Einstein and (b0, b2)

computable (dimensionful) parameters. That is, a quartic invariant in eleven dimensions

can lead to quadratic and constant terms in four dimensions, with the latter shifting the

cosmological constant.

Since the Sasaki-Einstein has a curvature radius of the same order as the four dimen-

sional manifold, none of these terms is subleading. Let L be the scale of the curvature

radius for both; then each of the three terms in the action is of order L3/l3p, using the fact

that Riemann squared is of order 1/L4. Note that the Einstein term in the action would

be of order L9/l9p. Terms arising from the reduction of higher order invariants in eleven

dimensions would be subleading in a power series in L/lp.

Recall that in the case of AdS4 × S7 the radius L scales according to L6 ∼ Nl6p where

N is the rank of the dual gauge group. Therefore the Einstein term gives the well-known

scaling of N3/2 [47, 48] whilst the terms given above scale as N1/2 and thus are suppressed

by a factor of 1/N relative to the leading order terms. We will use this scaling later

when discussing the spectrum. Similarly for the case of ABJM [23, 24] where the eleven-

dimensional geometry is AdS4×S7/Zk the curvature radius scales according to L
6 ∼ (kN)l6p

where N is the rank of the dual gauge group. Recalling that the volume of the compact

space scales as 1/k this gives a scaling of k1/2N3/2 for the leading Einstein term. One

can rewrite this as k2λ3/2 where the ’t Hooft coupling is λ = N/k, and this scaling was

– 12 –
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reproduced from the ABJM theory in [25, 26]. In the ABJM case the term give above

would contribute at order λ1/2, i.e. it differs by a factor of 1/(k2Λ) from the leading term.

(Note that validity of the eleven-dimensional description requires N ≫ k5.)

In conclusion, identifying the leading order corrections in four dimensions is very sub-

tle. The leading order correction in four dimensions indeed derives from the leading order

correction in eleven dimensions, but terms involving higher curvature invariants in four

dimensions can actually contribute at the same order! Similarly terms in the higher di-

mensional action involving R3F 2 and so on can give rise to corrections in four dimensions

involving R3.

Note that the term picked out above (3.5) shifts the cosmological constant and is non

zero even when evaluated on AdS itself. This would mean, in particular, that it would be

expected to adjust the value of the free energy for the dual theory (at zero temperature)

evaluated on an S3. If one can argue that there is no such renormalisation, then the four-

dimensional contributions from such a term must cancel those arising from the reduction

of other eleven-dimensional terms. A series of corrections expressed in terms of the Weyl

tensor, which vanishes on a maximally symmetric space, would not induce such a change

in the free energy.

From the string theory perspective one might think that one should in any case start

from a higher dimensional with curvature corrections involving only the Weyl tensor, since

corrections involving Ricci and Ricci scalar can always be absorbed into field redefinitions.

Here we will look nonetheless look at terms such as (3.5) as well as Weyl terms. Firstly

it is is interesting to look at the effects of different curvature invariant structures but

secondly the usual field redefinition argument refers to the bulk field equations but does

not take into account boundary conditions and onshell thermodynamic quantities. We will

see below that it is possible to have terms which do not contribute to the field equations

perturbed around a given leading order solutions but which nonetheless change the action

and change the spectrum. In particular, curvature squared corrections in four dimensions

do not change the metric, so in the past they would have been viewed as trivial, but here

we show that they still introduce additional (non-unitary) operators into the dual CFT

spectrum.

In what follows, we will pursue a bottom up perspective, in which we consider case by

case the effects of various higher derivative terms in four dimensions. In other words, we

discuss the effects of adding particular scalar curvature invariants to the four dimensional

action. We will then return to the issue of which scalar invariants are expected to arise in

top down models.

3.1 Curvature squared corrections

Motivated by requirements of renormalizability of gravity, curvature-squared modifications

to Einstein’s theory were first discussed in [49, 50] and they have been extensively ex-

plored in the literature. The most general action involves curvature squared terms can be

written as

I =
1

2κ2

∫

d4x
√−g(R− 2Λ + αRµνRµν + βR2 + γRµνρσRµνρσ) (3.8)
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However, it is well known that the Gauss-Bonnet invariant,

E4 = RµνρσRµνρσ − 4RµνRµν +R2 (3.9)

does not contribute to the equations of motion in four dimensions but yields only a surface

term. Hence for analysing the field equations we can eliminate the Riemann squared term

in the action above, making the most general action we need to consider, modulo the E4

term, simply

I =
1

2κ2

∫

d4x
√−g(R− 2Λ + αRµνRµν + βR2), (3.10)

(where implicitly the coefficients (α, β) have been shifted relative to the above.) The

equations of motion following from this action are

Gµν + Eµν = 0 (3.11)

where

Gµν = Rµν −
1

2
Rgµν + Λgµν (3.12)

and

Eµν = 2α

(

RµρR
ρ
ν −

1

4
RρσRρσgµν

)

+ 2βR

(

Rµν −
1

4
Rgµν

)

(3.13)

+α

(

�Rµν +
1

2
�Rgµν − 2∇ρ∇(µR

ρ
ν)

)

+ 2β (gµν�R−∇µ∇νR)

By analyzing the above equations of motion it immediately follows that all solutions of

the α = β = 0 theory are also solutions of the full theory as Eµν is zero for any Einstein

spacetime. In particular, AdS-Schwarzschild black holes

ds2 = −dt2
(

ǫ− m

r
+

|Λ|
3
r2
)

+
dr2

(

−m
r + |Λ|

3 r
2 + ǫ

) + r2dΩ2
2(k) (3.14)

are solutions of the higher curvature theory. Here k = 0 and ǫ = 0 corresponds to the case

in which the horizon is flat, with k = 1 and ǫ = 1 corresponding to the case in which the

horizon is a two-sphere. Note however that the thermodynamic properties are modified in

the deformed theory and depend explicitly on the deformation parameters.

It is straightforward to derive the thermodynamic properties in the deformed theory,

exploiting the fact that the metric remains Einstein. (For earlier discussions of thermody-

namics in bulk dimensions higher than four see [51].) The free energy of the black holes

can be obtained by considering the onshell value of the action. In order for the variational

problem to be well-defined, the action must be supplemented by boundary terms. For the

Einstein part of the action the appropriate boundary term is the Gibbons-Hawking-York

term discussed earlier

IGHY = − 1

κ2

∫

d3xK
√−γ. (3.15)
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where K denotes the second fundamental form and γ is the boundary metric. This term

is not however sufficient to ensure a well-defined variational problem: in varying the bulk

action the following boundary terms arise, analogously to those given in (2.12)

1

κ2

∫

∂M
dΣµ (2αRνσ + 2βRgνσ∇µδg

σν + · · · ) (3.16)

where we again suppress terms which vanish for the boundary condition δg = 0. Using the

equation of motion Rµν = Λgµν we note that the variational problem will be well posed if

we add the following boundary terms

I = − 1

κ2

∫

d3x
√−γK(2αΛ + 8βΛ). (3.17)

In this case the fact that the solution remains Einstein implies that this term is sufficient

to evaluate the onshell action, to all perturbative orders in α and β. (It does not however

suffice for discussing fluctuations around the Einstein solution, as we will discuss in section

four.)

Evaluating the complete onshell action gives

I =
1

2κ2
2Λ(1 + 2αΛ + 8βΛ)

∫

d4x
√−g (3.18)

− 1

κ2
(1 + 2αΛ + 8βΛ)

∫

d3x
√−γK.

Relative to the case of α = β = 0, there is just an overall prefactor, which means that we

can immediately read off from [47, 48, 52, 53] the required holographic counterterms as

Ict = − 1

2κ2
(1 + 2αΛ + 8βΛ)

∫

d3x
√−γ

(

4

l
+ lR(γ)

)

, (3.19)

where l2 = |3/Λ|. The asymptotic expansion of the metric g is [47, 48, 53]

ds2 = l2
(

dρ2

ρ2
+

1

ρ2
gij(x, ρ)dx

idxj
)

; (3.20)

gij(x, ρ) = g(0)ij(x) + ρ2g(2)ij(x) + ρ3g(3)ij + · · · ,

g(2)ij = −Rij(g(0)) +
R(g(0))

4
g(0)ij ,

with g(3) being traceless and divergenceless but otherwise undetermined by the asymptotic

analysis. The renormalized stress energy tensor obtained by varying the action with respect

to g(0) is then shifted by an overall prefactor relative to [53]

〈Tij〉 =
3

2κ2
(1 + 2αΛ + 8βΛ)g(3)ij . (3.21)

We can now immediately evaluate thermodynamic quantities for the black hole solu-

tions (3.14); the free energies and masses are clearly shifted relative to those in Einstein

gravity by a proportionality factor:

− βTF ≡ IEonshell =
βTVxy
2κ2

(1 + 2αΛ + 8βΛ)m (3.22)

M ≡
∫

d2x
√−γ〈T00〉 =

Vxy
κ2

(1 + 2αΛ + 8βΛ)m (3.23)
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with βT the inverse temperature (not to be confused with the coupling constant β) and

the temperature being

T =
1

4π

(

2|Λ|
3
rh +

m

r2h

)

, (3.24)

and rh is the horizon position. IE denotes the Euclidean action, which in this static case

is straightforwardly computed by analytic continuation of the time. Note that under such

a continuation iI → −IE . One can also work out the black hole entropy using Wald’s

method [54]. Define

Qµν = −2Lµνρσ∇ρ lσ + · · · (3.25)

where Qµν is antisymmetric and the terms denoted by ellipses vanish for stationary hori-

zons. Here

Lµνρσ ≡ δL

δRµνρσ
. (3.26)

For a stationary horizon the black hole entropy is then given by

S =
1

T

∫

H
Qµν dΣµν , (3.27)

with T being the horizon temperature, H denoting the horizon and lκ being the horizon

normal.

For Einstein gravity

L =
1

2κ2
√−g (R− 2Λ) (3.28)

where κ2 = 8πG and G is the Newton constant. Hence

δL

δRµνρσ
=

√−g
4κ2

(gµρgνσ − gµσgνρ) (3.29)

And so

Qµν = −
√−g
2κ2

(∇µlν −∇ν lµ) (3.30)

and

S =
1

κ2T

∫

H

√−g (∇ν lµ dΣµν) ≡
Ah

4G
(3.31)

with Ah the horizon area, using lν∇ν lµ = κhl
µ where κh = 2πT is the surface gravity of

the horizon.

For the curvature squared corrections, using

δR2

δRµνρσ
= R(gµρgσν − gµσgνρ); (3.32)

δ(RτηRτη)

δRµνρσ
= (Rµρgσν −Rµσgνρ),

the Wald entropy becomes

S = (1 + 2αΛ + 8βΛ)
Ah

4G
. (3.33)
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Putting these results together one finds that the thermodynamic relations

F =M − TS; dM = TdS, (3.34)

are indeed satisfied.

To summarise, the metric is uncorrected but the thermodynamic properties of the

black holes are adjusted: the entropy, the temperature, the mass and the free energy are

all changed, albeit by just an overall factor. It is also interesting to note that the action

evaluated on AdS4 with S3 boundary is also changed. In the latter case the relevant bulk

metric is

ds2 =
3

|Λ|
(

dρ2 + sinh2 ρ dΩ2
3

)

, (3.35)

where 0 < ρ <∞. Using the renormalised action given above, one can compute the onshell

Euclidean action to be

IEonshell =
12π2

|Λ|κ2 (1 + 2Λα+ 8Λβ). (3.36)

This is therefore corrected by the curvature squared terms except when α = −4β, which

corresponds to the case in which the correction is Riemann squared minus E4. Given a

holographic dual in which one can compute the free energy on S3 by localisation techniques,

the answer will give a criterion restricting the terms which can arise in the effective four-

dimensional action. In particular, the case of ABJM theory, for which the exact expression

for the planar free energy was obtained in [25, 26], will be explored in detail elsewhere.

At this point it would seem as if the addition of such terms to the action is rather

trivial because the thermodynamic quantities are shifted by an overall factor, which could

be reabsorbed into the cosmological constant. However, we will discuss in section 4, these

terms are highly non-trivial when one looks at the spectrum of the theory. To find the

spectrum of the dual CFT linearize the above field equations about the background solution

AdS4. As we discuss in section 4, the bulk theory is found to describe a massless spin-2

graviton, a massive scalar and a massive spin-2 field. By tuning the coefficients so that

α = −3β one may eliminate the massive scalar mode. One can also tune the remaining

coefficient β to the so-called critical value [28]

β = − 1

2Λ
(3.37)

where the massive spin two mode becomes logarithmic [55]. Noting that the AdS-

Schwarzschild mass when α = −3β behaves as

M =
m

κ2
(1 + 2βΛ) (3.38)

we see that in the critical theory the black hole solution has zero mass. One can show

furthermore that the Wald entropy vanishes at the critical point.

However we should emphasize that the critical value (3.37) can clearly never be

achieved when the Planck length is small compared to the curvature radius of AdS. If

one is viewing the higher curvature corrections as arising from a top down string model
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then βΛ is necessarily much smaller than one. The critical theory does not therefore provide

a good model for corrections to macroscopic AdS4 black holes.

Let us now make a connection to conformal gravity. With the first parameter choice

of α = −3β we may rewrite the higher curvature term in terms of the Weyl tensor:

− 1

3
α(R2 − 3RµνRµν) =

1

2
α(CµνρσCµνρσ − E4) (3.39)

Hence the Lagrangian is equivalent to

I =
1

2κ2

∫

d4x
√−g

(

R− 2Λ +
1

2
α(CµνρσCµνρσ − E4)

)

. (3.40)

By taking the limit of α → ∞ one recovers Weyl gravity, see related discussions in [56],

but again this would not be reached as a small correction from an Einstein solution.

The variation of the Weyl squared term with respect to the metric is linear in the

Weyl tensor. This means that this correction vanishes identically when evaluated on AdS4
since it has vanishing Weyl tensor. Therefore we can deduce from (3.36) that the onshell

Euclidean action evaluated on AdS4 with S3 boundary for

IE = − 1

2κ2

∫

d4x
√
g

(

R− 2Λ− 1

2
αE4

)

(3.41)

is

IEonshell =
12π2

|Λ|κ2
(

1− 2αΛ

3

)

. (3.42)

In other words, the topological invariant does of course contribute to the action even

though it does not affect the field equations. The renormalised E4 term captures the Euler

invariant of the manifold with S3 conformal boundary. Tuning to the critical value (3.37)

this action is zero.

3.2 f(R) gravity

In our exploration of corrected black hole solutions we will now move on to consider an

f(R) theory. The f(R) theory is obtained when we add a generic polynomial in the Ricci

scalar R to the usual Einstein action,

I =
1

2κ2

∫

d4x
√−g (R− 2Λ + f(R)) (3.43)

where

f(R) =
∑

n≥2

αnR
n, (3.44)

with arbitrary coefficients αn. There us considerable interest in f(R) theories in the context

of phenomenology and cosmology, see the reviews of [57–59], even though such corrections

are not well motivated from top down considerations, since they can be removed by field

redefinitions.
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Indeed it is well known that such a correction will not change the leading order black

hole solution non-trivially, although it will change its thermodynamic properties. This

follows from the equations of motion

Gµν + Fµν = 0 (3.45)

with Gµν defined in (3.12) and

Fµν =
∑

n≥2

αnnR
n−1

(

Rµν −
1

2n
Rgµν

)

(3.46)

+
∑

n≥2

αnn
(

gµν�R
n−1 −∇µ∇νR

n−1
)

.

Consider an Einstein solution gµν which satisfies

Rµν = λgµν ; Rµν =
1

4
Rgµν , (3.47)

Evaluated on such a solution both the second line together with the n = 2 term in the first

line of Fµν vanish and

Fµν =
∑

n>2

αn(n− 2)(4λ)n−1λgµν ≡ −δΛgµν . (3.48)

The field equations (3.45) are then satisfied provided that

Λ = λ+
∑

n>2

αn(2− n)(4λ)n−1λ; (3.49)

i.e. the higher derivative term acts to shift the effective cosmological constant. Treating

the f(R) term as a small perturbation around the leading order solution by setting all

coefficients αn ≪ 1, we may express

λ ≈ Λ(1− α3(4Λ)
2 − 2α4(4Λ)

3 + · · · ), (3.50)

where in the non-linear terms we use the leading order behavior λ ∼ Λ. Therefore any

Einstein solution remains an Einstein solution in the corrected theory, but with a shifted

cosmological constant.

One should again note that the corrected theory does admit non-Einstein solutions,

but any solution which reduces to an Einstein solution in the leading order theory remains

Einstein in the corrected theory. In other words, when one treats the higher order terms

perturbatively one discards solutions which do not reduce to Einstein solutions on setting

αn to zero. The higher derivative terms with recur, however, when one discusses the

spectrum as one will obtain new propagating modes.

As a warm up exercise for the non-trivial corrections discussed in the following sections

it is useful to derive the corrections to static solutions as follows, using a similar method

to that of [60] and also [61]. Let the metric be parameterized as

ds2 = −a(r)b2(r)dt2 + dr2

a(r)
+ r2(dx2 + dy2), (3.51)
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where we now focus on the case of flat horizons. Substituting this metric ansatz, the action

reduces to

I =
1

2κ2
βTVxy Î (3.52)

with βT the periodicity in time; Vxy the regulated volume of the (x− y) plane and

Î = −
∫

dr

[

2rb′
(

−Λ

3
r2 − a

)

+
∑

n

(−1)nαn
An

(br2)n−1

]

(3.53)

−
[

2

3
Λbr3 + 2ab′r2 + a′br2 + 2abr

]∞

rh

where we have used the fact that the Ricci scalar is given by

R = − A(r)

b(r)r2
(3.54)

with A(r) given by

A(r) ≡ 3a′b′r2 + 2ab′′r2 + a′′br2 + 4a′br + 4ab′r + 2ab. (3.55)

The second line in (3.53) arises from partial integrations. Varying the bulk term in the

action we find the following equations of motion for a and b:

0 = 2rb′ −
∑

n

ln−1(−1)nαn
δ

δa

(

An

(br2)n−1

)

(3.56)

where

δ

δa

(

An

(br2)n−1

)

=
nAn−1

(br2)n−1
(2b′′r2 + 4b′r + 2b)− d

dr

(

nAn−1

(br2)n−1
(3r2b′ + 4b)

)

+
d2

dr2

(

nAn−1

(br2)n−1
(br2)

)

(3.57)

The other equation of motion is

0 = −2Λr2 − 2a− 2a′r −
∑

n

ln−1(−1)nαn
δ

δb

(

An

(br2)n−1

)

(3.58)

where

δ

δb

(

An

(br2)n−1

)

=
(1− n)An

r2n−2bn
+

nAn−1

(br2)n−1
(a′′r2 + 4a′ + 2a) (3.59)

− d

dr

(

nAn−1

(br2)n−1
(3r2a′ + 4ar)

)

+
d2

dr2

(

nAn−1

(br2)n−1
(2ar2)

)

.

Solving these equations of motion to linear order in the coupling constants αi we expand as:

a(r) = a(0)(r) +
∑

n

αna(n)(r); (3.60)

b(r) = b(0)(r) +
∑

n

αnb(n)(r).
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To leading order, namely all αn = 0, the equations are solved by

b(0)(r) = 1; a(0)(r) = −1

3
Λr2 − m

r
(3.61)

To linear order in the perturbations, the general solution to the equations of motion is

b(n)(r) = 0; (3.62)

a(n)(r) = (−)n(n− 2)(4Λ)n−1Λr2 − mn

r
.

The latter renormalizes the cosmological constant and in addition allows for a shift in the

integration constant which parameterizes the black hole mass: the corrected metric is

ds2 =
dr2

(−1
3λr

2 − m
r −∑n

αnmn

r )
− dt2

(

−1

3
λr2 − m

r
−
∑

n

αnmn

r

)

+ r2dx · dx. (3.63)

3.2.1 Black hole thermodynamics in f(R) theory

For the f(R) term the analysis is of the variational problem is subtle: varying the bulk

term gives rise to a boundary variation

δI =
1

κ2

∫

d3xf ′(R)δ(K
√−γ), (3.64)

where f ′(R) = ∂Rf(R). The appropriate boundary term for a four-dimensional f(R) theory

was argued by Hawking and Luttrell [38] to be

IHL = − 1

κ2

∫

d3xf ′(R)K
√−γ (3.65)

However, in general this is not satisfactory since R is not intrinsic to the boundary, i.e. it

is the scalar curvature of the bulk metric, rather than the boundary metric. In the case at

hand however one can use the fact that the onshell Ricci scalar is constant to write this

term in terms of quantities manifestly intrinsic to the boundary. Putting all terms together

the complete action is

I =
1

2κ2

∫

d4x
√−g (R− 2Λ + f(R)) (3.66)

− 1

κ2

∫

d3x
√−γK

(

1 + f ′(R)
)

.

To evaluate the free energy one needs to holographically renormalize this action. To linear

order in the couplings for the higher derivative terms, however, one can immediately carry

out this procedure using the known results for asymptotically locally AdS Einstein mani-

folds. Recall that the deformed solution is Einstein, with a different cosmological constant,

the metric can always be expressed as

ds2 = l̃2ds̄2 (3.67)

with

l̃2 =
3

|λ| ; R̄µν = −3ḡµν (3.68)
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and λ < 0. The asymptotic expansion of the metric ḡ is known

ds2 =
dρ2

ρ2
+

1

ρ2
ḡij(x, ρ)dx

idxj ; (3.69)

ḡij(x, ρ) = ḡ(0)ij(x) + ρ2ḡ(2)ij(x) + ρ3ḡ(3)ij + · · · ,

ḡ(2)ij = −R̄ij(ḡ(0)) +
R̄(ḡ(0))

4
ḡ(0)ij ,

with ḡ(3) being traceless and divergencless but otherwise undetermined by the asymptotic

analysis. Given this form for the asymptotic expansion one can now compute the regulated

action and hence the counterterms. In doing so one can use the fact that to linear order

in the new couplings

f(R) → f(R)|R=4Λ. (3.70)

Setting Λ = −3 so that the metric to leading order is normalized to unit curvature radius,

the required counterterms are then

Ict = − 1

2κ2

(

1 +
∑

n

2αn(−12)n−1

)

∫

d3x
√−γ̄

(

4 + R̄ (γ̄)
)

; (3.71)

=
1

2κ2

(

1 +
∑

n

(

3n

2
− 1

)

αn(−12)n−1

)

∫

d3x
√−γ̄ (4)

+
1

2κ2

(

1+
∑

n

(

3n

2
−1

)

αn(−12)n−1
)

∫

d3x
√−̄γ

(

1+
∑

n

(n−2)αn(−12)n−1
)

R̄(γ̄),

and the renormalized stress energy tensor obtained by varying the action with respect to

ḡ(0) is

〈Tij〉 =
3

2κ2

(

1 +
∑

n

2αn(−12)n−1

)

ḡ(3)ij . (3.72)

One can then compute the mass of the black hole in (3.63) as

M =

∫

d2x〈T00〉 =
Vxy
2κ2

(

1 +
∑

n

2αn(−12)n−1

)(

m+
∑

n

αnmn

)

, (3.73)

and evaluating the onshell action gives

− βTF = IE ≡= βT
Vxy
2κ2

(

1 +
∑

n

2αn(−12)n−1

)(

m+
∑

n

αnmn

)

(3.74)

with F the free energy and the black hole temperature being 1/βT .

In the f(R) theory using the fact that

δRn

δRµνρσ
=

1

2
nRn−1(gµρgνσ − gµσgνρ), (3.75)

the Wald entropy (3.27) is given by

S =

(

1 +
∑

n

αn(4Λ)
n−1

)

2πAh

κ2
. (3.76)
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Evaluating this one obtains

S =
2πVxy
κ2

(

1 +
∑

n

2αn(−12)n−1

)(

m+
∑

n

αnmn

)2/3

. (3.77)

Finally the temperature of the black hole is given by

T =
3

4π

(

m+
∑

n

αnmn

)1/3

. (3.78)

Putting these results together one sees that the relation F =M − TS is satisfied together

with the first law dM = TdS. Moreover, it is clear that by choosing the integration

constants mn such that

mn = −2(−12)n−1m (3.79)

the black hole in the f(R) theory has unchanged thermodynamic properties to leading

order in the coupling constants αn.

3.3 Einstein + C3

We now move on to consider the addition to the action of curvature invariants of degree

three or higher. At this point it is useful to look at classifications of scalar curvature

invariants in our dimensions. One such set of invariants are the Carminati-McLenaghan

invariants, [62]. At degree three the possible invariants include both those built of lower

degree invariants, for example RCµνρσCµνρσ, and invariants built by contracting three

tensors with each other. At degree three the latter gives the new invariants

SµρSρνS
ν
µ Cµν

ρσC
ρσ
τηC

τη
µν ∗ Cµν

ρσC
ρσ
τηC

τη
µν (3.80)

SµνSρσCµρνσ SµνSρσ ∗ Cµρνσ

where Sµν is the traceless Ricci tensor, Cµνρσ is the Weyl tensor and ∗Cµνρσ denotes the

dual of the Weyl tensor. Note that these comprise an over complete set of invariants for a

planar static spacetime. Curvature invariants built from the Ricci scalar or Ricci tensor will

behave qualitatively similarly to those at quadratic order, leaving the metric unchanged

but shifting the action. Therefore in this section we will focus on the effect of the cube of

the Weyl tensor on planar black hole solutions, which is qualitatively different.

The action we consider is therefore

I =
1

2κ2

∫

d4x
√−g

(

R− 2Λ + αC ρσ
µν C ηλ

ρσ C µν
ηλ

)

(3.81)

where Cµνρσ is the Weyl tensor.

Since the general field equations are somewhat complicated in this case, the easiest

way to obtain the corrections to the planar black holes is as follows. Evaluated on a static

ansatz (3.51) the action reduces to and effective one dimensional action

Î =

∫ ∞

rH

dr

[

2rb′
(

a+
Λ

3
r2
)

− α
B3

18r4b2

]

−
[

2

3
Λbr3 + 2ab′r2 + a′br2 + 2abr

]∞

rh

(3.82)
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where

B ≡ 2ab− 2rba′ − 2rab′ + 3r2a′b′ + r2ba′′ + 2r2ab′′ (3.83)

Varying this action we get the equations of motion for a and b and these are solved per-

turbatively in α as in sections 3.2 and 3.4. There is in this case a non-trivial correction to

the planar black hole solution:

a(1)(r) =
a1
r

− 8m2Λ

r4
− 16m3

r7
(3.84)

and

b(1)(r) = b1 − 6
m2

r6
. (3.85)

Here a1 and b1 are arbitrary integration constants. The former acts as a redefinition of the

mass parameter m at order α and the latter changes the norm of the time Killing vector at

infinity at order α. We will discuss the interpretation of these integration constants further

below but setting them to zero we obtain

a(r) = a(0)(r) + αa(1)(r)

= −Λ

3
r2 − m

r
+ α

(

−8m2Λ

r4
− 16m3

r7

)

, (3.86)

b(r) = b(0)(r) + αb(1)(r)

= 1 + α

(

−6
m2

r6

)

.

Note that the AdS solution itself is uncorrected, as one would expect: the contribution to

the field equations from the variation of the Weyl cubed term is given below in (3.92) and

evaluated on a solution with vanishing Weyl tensor it is zero.

3.3.1 Thermodynamics of corrected black hole solutions

Let us now work out the thermodynamics of the corrected black hole solution. The horizon

is given by rH such that a(rH) = 0. Since a(r) = a(0)(r) + αa(1)(r), we find rH also to

order α. Let

rH = rH(0) + αrH(1) (3.87)

where

r3H(0) = −3m

Λ
; (3.88)

rH(1) = rH(0)

(

−23

33
Λ2

)

.

The temperature of this black hole solution is given by:

T =
a′(rH)b(rH)

4π
(3.89)

=
|Λ|
4π
rH(0)

(

1− αΛ2 2

27

)

.
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We can also work out the black hole entropy (3.27) giving

S =
r2H(0)

4G

(

1 +
2αΛ2

27

)

. (3.90)

Note that although both the temperature and the entropy are corrected at order α the com-

bination TS is actually uncorrected at this order. Moreover, imposing the thermodynamic

relation

dM = TdS, (3.91)

and using the fact that the C3 term evaluated on pure AdS is zero, we can infer that the

mass must also be unchanged at order α. (In varying the entropy note that both α and Λ

are held fixed.) Using the relation F = M − TS we can also then infer that the onshell

action must also be unchanged at order α.

One can also argue that the free energy and mass are unchanged at order α by con-

sidering their direct evaluation. Let us consider first the onshell action. The first step is

to ensure that the variational problem, including the additional C3 term, is well-posed at

finite radius. To investigate this we vary the bulk action (3.81) with respect to the metric.

From the term at order α one obtains the following contribution to the bulk field equation

Gµν =
1

2
gµνC τη

ρσ C λκ
τη C ρσ

λκ − 6C µη
ρσ Cν

ηλκC
λκρσ + 3CτηλκC µσ

λκ Rν
στη

+ 4CτνλκC µσ
λκ Rτσ − 2CτνλκC µσ

λκ Rgτσ − CρστηCρστηR
µν

+ 6∇σ∇τ (C
τνλκC µσ

λκ ) + 2∇τ∇µ(CτηλκC ρν
λκ gρη) + (3.92)

− �(2CµηλκC ρν
λκ gρη + CρστηCρστηg

µν) − 2∇σ∇τ (C
τηλκC ρσ

λκ gρηg
µν)

+ 2∇σ∇µ(CνηλκC ρσ
λκ gρη) + ∇µ∇ν(CρστηCρστη),

where Gµν = Rµν − 1
2Rgµν + Λgµν . The variation results in the following boundary terms

at order α involving derivatives of the metric

1

κ2

∫

∂M
d3x

√−γ α
[

3nρC
ρσητC µν

ητ ∇νδgµσ + nλCρσητC µν
ητ gµσ∇ρδgλν

+ nλCρσητC µν
ητ gµσ∇νδgλρ − nζC

ρσητC µν
ητ gµσ∇ζδgρν

− nρC
ρσητC µν

ητ gµσg
ξλ∇νδgξλ − CµνρσCµνρσ δK

]

, (3.93)

with n the normal to the boundary. (There are additional boundary terms involving the

metric which automatically vanish for a Dirichlet boundary condition.) As one would have

anticipated, boundary terms involving the normal derivative of the metric arise in this

variation and it would therefore seem as if one needs additional Gibbons-Hawking like

terms in order for the variational problem to be well-posed. Moreover, working iteratively

in α and then using the bulk field equations to simplify the boundary terms looks a very

non-trivial calculation in this case. However, it turns out that one only needs to use

the fact that the leading order metric is Einstein and is asymptotically locally AdS: in

Fefferman-Graham coordinates (3.20), the leading power in the Weyl tensor necessarily

behaves as

Cµνρσ ∼ 1

ρ2
. (3.94)
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One can use this behaviour to show that the boundary terms needed for the variational

problem to be well-posed all go to zero as a positive power of ρ. For example, the term

1

κ2

∫

∂M
d3x

√−γCµνρσCµνρσK (3.95)

evaluated at ρ = ǫ≪ 1 behaves as ǫ, and therefore does not contribute in the limit ǫ→ 0.

Therefore, although one could indeed use the explicit expansion of the onshell Weyl tensor

to express the boundary terms in terms of quantities intrinsic to the boundary, the resulting

boundary action cannot give a finite contribution to the onshell action.

The onshell action is thus given by

Ionshell =
1

κ2

∫

d4x
√−g(Λ + αCµνρσC

ρσηλC µν
ηλ ) (3.96)

− 1

κ2

∫

d3x
√−γ

(

K + 2/l +
l

2
R(γ)

)

,

where we have used the onshell relation R = 4Λ+C3. The terms in the second line denote

the Gibbons-Hawking term along with the counterterms. The latter suffice to remove the

divergences at leading order, but do not in general suffice to remove additional divergences

at order α. However, it again turns out that the Weyl correction falls off sufficiently fast at

the boundary that there are no additional terms needed at order α. To show this one needs

to use the fact that, in Fefferman-Graham coordinates, C3 is of order ρ6 or smaller and

the correction to the metric at order α is of order ρ6 or smaller. Looking at the terms in

the onshell action, this means that the contributions at order α are of order ǫ3 or smaller,

and thus vanish in the limit ǫ→ 0. For example, the term

∫

d4x
√−gC3 ∼

∫

ǫ
dρ

1

ρ4
· ρ6 ∼ ǫ3. (3.97)

Thus only the above terms are needed in computing the renormalised action. Note that this

implies that, as expected, the onshell action for AdS is uncorrected at order α, regardless

of the choice of conformal class of the boundary metric. In particular, if one computes the

free energy for the dual theory on an S3, it is not changed at order α.

It is still non-trivial that the actual value of the free energy for the planar black hole

is uncorrected, as the metric is corrected, the horizon position is shifted and the C3 term

in the action all give finite contributions at the horizon. Explicitly evaluating the onshell

action using (3.86) together with

C3 =
12m3

r9
(3.98)

one obtains

F = −βT IEonshell =
Vxy
κ2

∫ rc

rh

drr2b(r)

(

Λ + α
12m3

r9

)

(3.99)

+
Vxy
κ2

(

√

a(r)∂r(
√

a(r)b(r)r2) +
2

l

√

a(r)b(r)r2
)

rc

,
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where rc ≫ 1 is the cutoff radius. Integrating the bulk term and looking at the horizon

contribution one obtains

Vxy
κ2

(

2

3
Λr3 +

4αm2Λ

r3
− 4αm3

r6

)

rh

=
Vxy
κ2

2m. (3.100)

i.e. the terms of order α cancel! Looking at the contribution from the cutoff boundary, as

already argued the terms of order α fall off too quickly to contribute and one is left with

a contribution

− Vxy
κ2

5m

2
, (3.101)

with the total free energy being

F = −Vxy
2κ2

m, (3.102)

i.e. unchanged at order α. One can similarly argue why the mass M = Vxym/κ
2 is un-

changed at this order: varying the renormalised onshell action with respect to the source

for the stress energy tensor, all terms at order α are subleading in the radial expansion and

do not contribute.

To summarise: the C3 term leads to a correction of the metric of the planar black

hole. The temperature and entropy are both changed at order α but the mass and the free

energy are unchanged.

At this point we return to the physical interpretation of the integration constants in

the corrected solution. The first integration constant a1 corresponds to a shift in the mass

parameter,

m→ m− αa1. (3.103)

This shift will affect the entropy, temperature, mass and free energy. The second integration

constant corresponds to a redefinition of the time coordinate and hence of the temperature.

One can see this by looking at the form of the metric

ds2 = −(1 + 2αb1 + · · · )a(r)dt2 + · · · (3.104)

= −a(r)dt̂2 + · · ·

i.e. by redefining the time coordinate one can absorb the integration constant b1. This in

turn corresponds to a shift of the temperature by

T → T (1 + αb1), (3.105)

with the free energy and mass shifted by the same factor.

By an appropriate choice of the integration constant a1 = −mΛ2/9 one can make the

entropy be uncorrected at order α. However, this value of a1 is such that the temperature,

mass and free energy are corrected:

T → T

(

1− αΛ2

9

)

; M →M

(

1− αΛ2

9

)

; F → F

(

1− αΛ2

9

)

. (3.106)

(These corrections are clearly consistent with the thermodynamic relation.) By fixing the

integration constant b1 appropriately and redefining the time coordinate, one can undo
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these corrections at order α, leaving all thermodynamic quantities unchanged to order α2.

However, such a redefinition is somewhat unnatural from the perspective of the holographic

duality, as it implies that the time coordinate for the field theory is redefined at order α.

Thus the thermodynamics at order α depends on which quantities one has chosen to

hold fixed. In the context of supersymmetric black holes one fixes the mass (and charge),

with the temperature necessarily being zero and the entropy being corrected by the higher

derivative terms. In the context of finite temperature black holes, it would seem natural to

fix the mass also, as we did above, with the temperature and the entropy being corrected.

3.4 Einstein + R4

In order to obtain an eleven-dimensional correction which cannot be rendered trivial by

field redefinitions we need to add a curvature invariant involving the Riemann tensor, with

the first non-trivial term arising at fourth order. As discussed earlier, the reduction of this

term will result in terms quartic in the Riemann tensor in the effective four dimensional

action. In this section we will work with one representative curvature invariant at this order,

the same tensor structure considered earlier, but the generalization of the analysis to other

tensor structures would be straightforward. The reason for considering this particular term

is because, we discussed earlier, such a term would accompany any Riemann squared term

occurring in the effective lower dimensional action.

The action we consider is therefore

I =
1

2κ2

∫

d4x
√−g

(

R− 2Λ + α(RρστλR
ρστλ)2

)

(3.107)

The resulting field equation is

Gµν =
1

2
(RρστλR

ρστλ)2gµν − 4RρστλR
ρστλRµβγδRν

βγδ (3.108)

+ 8∇ρ∇σ(RτλγδR
τλγδRµσρν).

Note also that there is a new boundary term involving derivatives of the metric variation

obtained when varying the term at order α

4

κ2

∫

∂M
d3x

√−γ α RρστλR
ρστλRαβγδ nγ∇βδgαδ. (3.109)

We will discuss this term in the context of the variational problem below.

Now let us turn to the effect of such a correction on the planar black hole metric.

Evaluated on the static ansatz (3.51) the action reduces to

Î =

∫ ∞

0
dr

[

2rb′(a− r2) + α
D2

(br2)3

]

(3.110)

where to simplify formulae in this section we have imposed Λ = −3 and

D ≡ 8a2b′2r2 + 8aa′b′br2 + 4a′2b2r2 + 4a2b2 + 9a′2b′2r4 + 12aa′b′b′′r4

+6a′a′′b′br4 + 4a2b′′2r4 + 4aa′′b′′br4 + a′′2b2r4 (3.111)
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Varying this action we obtain equations of motion for a and b consisting of the piece coming

from the Einstein action and a piece proportional to α coming from the correction. Once

again we solve these perturbatively in α as in section 3.2. The planar black hole solution

is indeed corrected:

a(r) = a(0)(r) + αa(1)(r) (3.112)

= r2 − m

r
+ α

(

(a1
r

− 96r2
)

− 672m2

r4
− 1200m3

r7
− 536m4

r10

)

and

b(r) = b(0)(r) + αb(1)(r) (3.113)

= 1 + α

(

b1 +
336m2

r6
+

224m3

r9

)

.

Again there are two arbitrary integration constants, corresponding to redefining the mass

parameter and the time coordinate at order α. These constants will be set to zero and

their effect will be discussed further below. Note however that the AdS metric itself is

corrected by the quartic Riemann term, since the latter does not evaluate to zero, unlike

the previous Weyl example.

3.4.1 Thermodynamics of corrected black hole solutions

Let us first calculate the corrected horizon position and temperature of this black hole

solution. The horizon is located at

rH =
m1/3

3

(

1 + α
104

3

)

, (3.114)

and the temperature of this black hole solution is given by:

T =
1

4π
m1/3(3− 208α) (3.115)

We also work out the Wald entropy using (3.27) giving

S =
A

4G
− 4α

κ2

∫

H
(RµνρσRµνρσ)R

vrvr√γd2x, (3.116)

where we use ingoing coordinates for the horizon, namely

ds2 = −a(r)b(r)2dv2 + 2b(r)drdv + r2(dx2 + dy2), (3.117)

and the integral is over the spatial part of the horizon. The integrand in the second term

however vanishes when evaluated on the leading order solution since

Rvrvr =
1

2
a′′ = 2− 2m

r3
(3.118)

which vanishes at the horizon. (The Riemann squared term is non-zero at the horizon.)

Hence, in this case, the black hole entropy is given only in terms of the corrected area of

the horizon

S =
Vxy
4G

m2/3

(

1 + α
208

3

)

. (3.119)
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Combining the entropy and the temperature we notice that the combination

TS =
Vxy
2κ2

m+O(α2) (3.120)

is again unchanged at order α. As in the previous section we can now argue that for the

relation

dM = TdS (3.121)

to hold the correction to dM at order α must also vanish.

This argument on its own however does not exclude there being a term in the mass (and

free energy) at order α which is independent of the parameter m: recall that, unlike the

Weyl example, the AdS metric itself is corrected and the R4 term in the action evaluated

on AdS is non-zero. In other words, the holographically renormalized higher derivative

action evaluated on AdS could be non-vanishing. Computation of the renormalised mass

and action is somewhat involved as it requires analysing the corrections to asymptotically

locally AdS solutions, isolating the divergences, computing the counterterms and so on.

Fortunately there is a short cut: when the dual field theory is supersymmetric, the mass

of the m = 0 solution is necessarily zero, as is the free energy, and therefore there cannot

be any contributions to the mass and free energy at order α which are independent of m.

(Note that the free energy of the dual theory on a curved space would in general indeed

be expected to be corrected at order α.)

Thus, in summary, as for the C3 case, the temperature and the entropy are corrected

whilst the mass and free energy are not. By choosing the integration constants a1 and b1
one can adjust which thermodynamic quantities are corrected at order α, but the most

natural physical choice from holographic considerations is indeed that where the mass is

fixed and the entropy is corrected.

3.5 Corrections arising in string theory

In this section we have explored the effect of various curvature invariants added to the

four dimensional action. We have shown that the thermodynamic properties of black hole

solutions are in general corrected even when the metric is not corrected. From a top

down perspective it would be complicated to determine which curvature invariants arise

in the four dimensional action, with a given higher dimensional invariant contributing to

invariants of different derivative order in four dimensions.

From the dual holographic perspective, one can try to restrict the invariants which

arise in four dimensions using the free energy on an S3. This would not restrict at all Weyl

invariants which do not contribute to the free energy. One would also anticipate that other

specific combinations of invariants involving Riemann, Ricci and Ricci scalar can be made

in which the correction to the free energy also vanishes.

In the following section we will turn to another criterion for higher derivative cor-

rections: the spectrum of fluctuations and the corresponding dual operators. In general,

imposing that such corrections lead to CFT operators which are unitary and have positive

norm, rules out many curvature invariants.
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4 Spectrum of curvature squared theories

4.1 Linearized equations of motion

In this section we discuss the spectra of the higher derivative theories. For the sake of

brevity, we will mostly focus on the case of curvature squared corrections, but the analysis

for other higher-derivative theories would be similar and will be discussed at the end.

We consider again the action (3.10), whose equations of motion are given in (3.11)

to (3.13). Since our interest here is in the context of holography, we consider the spectrum

of excitations around AdS4, and when we need an explicit form for the metric we will work

in the Poincaré patch in which

ds2 =
dρ2

ρ2
+

1

ρ2
(−dt2 + dx2 + dy2). (4.1)

We denote by xi the coordinates on the three dimensional slices of constant ρ. We vary the

metric as gµν → ĝµν + δgµν = ĝµν + hµν , where ĝµν is the AdS4 background metric. It was

shown in [28] that the linear variations of the various tensors appearing in the equations

of motion are

GL
µν = RL

µν −
1

2
RLĝµν − Λhµν

RL
µν = ∇λ∇(µhν)λ − 1

2
�hµν −

1

2
∇µ∇νh (4.2)

RL = ∇µ∇νhµν −�h− Λh

where ∇µ is the covariant derivative associated with ĝ. Note that h = ĝµνhµν . We write

explicitly

R = (ĝµν − hµν)Rµν (4.3)

= (ĝµν − hµν)(R(0)
µν +RL

µν)

≡ R(0) +RL,

where R(0) is the Ricci scalar in the background.

To linear order in the variation, the equations of motion then become [28]

δ(Gµν + Eµν) = [1 + 2Λ (α+ 4β)]GL
µν + α

[(

�− 2Λ

3

)

GL
µν −

2Λ

3
RLĝµν

]

+(α+ 2β) [−∇µ∇ν + ĝµν�+ Λĝµν ]R
L. (4.4)

The most common gauge used in holography is radial axial gauge, hρµ = 0 for µ =

(ρ, t, x, y). However, [28] used a covariant gauge

∇µhµν = ∇νh, (4.5)

since in this gauge the equations of motion immediately simplify.
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Substituting (4.5) into the linearized tensors (4.2) gives

GL
µν =

1

2
∇µ∇νh− 1

2
�hµν +

Λ

3
hµν +

1

6
Λhĝµν (4.6)

RL = −Λh

which can then be substituted into (4.4), the variation of the equations of motion. Tracing

over the result yields

0 = δ(Gµν + Eµν) = Λ[h− 2(α+ 3β)�h]. (4.7)

Imposing the above constraint equation for the trace, we find that the variation of the field

equations is,

0 = δ(Gµν + Eµν) = −α
2
�

2hµν −
1

2

(

1 +
2Λα

3
+ 8Λβ

)

�hµν

+
Λ

3

(

1 +
4Λα

3
+ 8Λβ

)

hµν (4.8)

+3(α+ 2β)

(

1

4(α+ 3β)
+ Λ

)

∇µ∇νh

− Λ

12

(

5α+ 6β

α+ 3β
+

4Λ

3
(α+ 6β)

)

ĝµνh.

In [28] this equation was analysed only in the case of (α+ 3β) = 0, with a view to critical

gravity, but we will not impose this constraint here. From (4.8) we wish to extract the

equation of motion for h〈µν〉, the traceless part of hµν , where

hµν = h〈µν〉 +
h

4
ĝµν . (4.9)

This yields, provided that β 6= 0,

0 = −α
2

(

�− 2Λ

3

)(

�+
1

α
+

4Λ

3
+

8βΛ

α

)

h〈µν〉 (4.10)

+
3

4

(α+ 2β)

(α+ 3β)
(1 + 4Λ(α+ 3β))∇〈µ∇ν〉h.

This equation represents an inhomogeneous equation for the traceless part of the metric

fluctuation. However one can rewrite the equation as a homogeneous equation by defining

a new traceless tensor ψ〈µν〉 as

ψ〈µν〉 = h〈µν〉 + λ∇〈µ∇ν〉h, (4.11)

and choosing λ such that the final term in (4.10) is zero. This value turns out to be

λ = − 6(α+ 3β)

3 + 8Λ(α+ 3β)
, (4.12)

making the resulting equation of motion for ψ homogeneous

0 =

(

�− 2Λ

3

)(

�− 2Λ

3
−M2

)

ψ〈µν〉, (4.13)
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where

M2 = −2Λ− 1

α
− 8Λβ

α
. (4.14)

Moreover it is easy to verify that ψ〈µν〉 is transverse.

In the case where α = 0, the analogue of (4.10) is

(1 + 8βΛ)

(

�− 2Λ

3

)

h〈µν〉 + (1 + 12βΛ)∇〈µ∇ν〉 = 0, (4.15)

which can be rewritten as a homogeneous equation
(

�− 2Λ

3

)

ψ〈µν〉 = 0; (4.16)

ψ〈µν〉 = h〈µν〉 −
6β

1 + 8βΛ
∇〈µ∇ν〉h.

Note that this equation is only second order.

The interpretation of these equations is as follows. In the Einstein theory the only

propagating mode is the traceless part of the metric, which couples to the dual stress

energy tensor. In the theory with generic values of (α, β) the trace of the metric is a

propagating mode dual to a scalar operator Oh of dimension

∆Oh
=

3

2
+

√

9

4
+

1

2α+ 6β
(4.17)

whilst the equation of motion for the traceless part of the metric fluctuation is fourth order.

One can write a basis for solutions of this fourth order equation as

ψ〈µν〉 = ψ
(1)
〈µν〉 + ψ

(2)
〈µν〉; (4.18)

(

�− 2Λ

3

)

ψ
(1)
〈µν〉 = 0;

(

�− 2Λ

3
−M2

)

ψ
(2)
〈µν〉 = 0,

with the propagating massless mode ψ
(1)
〈µν〉 coupling to the dual stress tensor and the new

mode ψ
(2)
〈µν〉 being associated with a spin two operator X of dimension

∆X =
3

2
+

1

2

√

9 +M2. (4.19)

In this section we will show explicitly how these modes are associated with the dual spin

two operator and we will discuss how the variational problem is defined.

Note that the special case in which the action on AdS is uncorrected, with the bulk

term in the action reducing to Riemann squared, is obtained by choosing α = 4γ, β = −γ,
in which case

∆Oh
=

3

2
+

√

9

4
+

1

2γ
; (4.20)

∆X =
3

2
+

1

2

√

9− 1

γ
.
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We will discuss later when these operators are unitary, but let us already note here that

for γ → 0, which is indeed the case when the higher derivative corrections are small, either

one or the other operator necessarily has a complex dimension and thus violates unitarity.

For special values of (α, β) one has to look more carefully to obtain the spectrum. At

α = 0 the higher derivative term consists just of the Ricci scalar squared, and the only

new propagating mode in the bulk is the trace of the metric fluctuation, dual to a scalar

operator. At α+3β = 0, when the bulk term reduces to Weyl squared, the metric trace is

zero so there is no dual scalar operator but there is still a propagating spin two mode dual

to a spin two operator. Whenever

(1 + 2Λα+ 8Λβ) = 0, (4.21)

the second spin two mode becomes massless, with the dual operator becoming the loga-

rithmic partner of the stress energy tensor in the dual (L)CFT [55]. Note that this mode

can become massless even when the trace is a propagating mode, with α + 3β = 0 being

an additional constraint used to remove the scalar operator.

4.2 Derivation of equations of motion in general gauge

In this subsection we derive an elegant form for the linearized equations of motion without

imposing a gauge. Taking the trace of the equations of motion (3.11) to (3.13) one obtains

(2α+ 6β)�R− 12−R = 0, (4.22)

where we use the explicit value of the cosmological constant together with the Bianchi

identity

∇µRµν =
1

2
∇νR. (4.23)

Now letting r = (R+ 12) one obtains a diagonal equation of motion for r

(2α+ 6β)�r − r = 0. (4.24)

Note that this equation did not rely on the linearized approximation and is exact. Defining

Rµν + 3gµν = sµν +
1

4
rgµν (4.25)

where sµν is traceless, i.e. gµνsµν = 0, the traceless part of the linearized equation of motion

gives

(α�+ (1− 4α− 24β))sµν = (α+ 2β)∇〈µ∇ν〉r, (4.26)

with the parentheses denoting the symmetric traceless combination. This equation can be

diagonalized by defining

ψr
µν = sµν − γ∇〈µ∇ν〉r (4.27)

with

γ =
2α+ 3β

3(1− 8α− 24β)
(4.28)
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to give

(α�+ (1− 4α− 24β))ψr
µν = 0. (4.29)

The equations (4.24) and (4.29) represent second order equations for the linearized curva-

ture tensor and hold in any gauge. In the covariant gauge ∇µhµν = ∇νh used previously

r = 3h; sµν = −1

2
(�+ 2)h〈µν〉 +

1

2
∇〈µ∇ν〉h. (4.30)

A complete basis for the solutions to (4.24) and (4.29) can be obtained by setting the

metric fluctuation hµν to be

hµν = hTµν + hXµν , (4.31)

with

r(hT ) = 0; sµν(h
T ) = 0, (4.32)

and (r(hX), ψr
µν(h

X)) are non-zero, satisfying (4.24) and (4.29).

In understanding the holography dictionary it is useful to look at the asymptotic

solutions for (4.24) and (4.29). Since r is simply a scalar field, of a specific mass, the

general asymptotic solution to (4.24) is as usual

r(ρ, x) = ρ3−∆Or (r0(x) + ρ2r2(x) + · · · ) + ρ∆Or (r2∆−3(x) + · · · ), (4.33)

where ∆Or
= 3

2 +
√

9
4 + 1

2α+6β . Here r0(x) acts as the source for the dual operator, with

r2∆−3(x) being the normalisable mode, and all other terms in the expansion being fixed by

the field equation.

Equation (4.29) is an equation for a massive spin two field of a given mass. Such fields

are considered less frequently in holography (they were first analysed in [63]) but one can

analyse the general asymptotic solutions to the field equations as follows. The independent

solutions are

ψ〈ρρ〉(ρ,~k) = ρd−∆(f(x) + · · · ) + ρ∆(f̃(x) + · · · )
ψ〈iρ〉(ρ,~k) = ρd−∆−1(Bi(x) + · · · ) + ρ∆−1(B̃i(x) + · · · ) (4.34)

ψ〈ij〉(ρ,~k) = ρd−∆−2(Xij(x) + · · · ) + ρ∆−2(X̃ij(x) + · · · ),

where

∆ =
d

2
+

1

2

√

d2 + 4M2 (4.35)

with d = 3 in this case and M2 given in (4.14). The fields without tildes denote the non-

normalizable modes and those with tildes are the normalizable modes. Only the transverse

traceless part of Xij and X̃ij are independent data, however, since the field equations imply

Xi
i = X̃i

i = 0; (4.36)

Bi = − 1

2−∆
∂jXji;

B̃i = − 1

∆− 1
∂jX̃ij ;

f = − 1

3−∆
∂iBi; f̃ = − 1

∆
∂iB̃i.
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Thus the defining data for the spin two field indeed corresponds to a transverse traceless

spin two operator in the dual field theory.

The new defining boundary data is r(0)(x) in (4.33) and Xij in (4.34), namely the near

boundary behaviour of the scalar curvature and the (trace adjusted) Ricci tensor. One can

obtain a geometric interpretation of these boundary conditions as follows. As commented

earlier, the most natural gauge for holography is the radial axial gauge in which the metric

perturbations satisfy hρµ = 0 and

ds2 =
dρ2

ρ2
+

1

ρ2
(ηij +Hij)dx

idxj . (4.37)

In this gauge the linearized Ricci scalar r[h] defined above is given by

r[H] = ρ2R̂[H]− ρ2tr(H ′′) + 3ρtr(H ′), (4.38)

with a prime denoting a radial derivative and R̂ij being the linearized curvature of Hij ,

namely

R̂ij =
1

2

(

∂k∂jHik + ∂k∂iHjk − ∂i∂jtr(H)− ∂k∂kHij

)

;

R̂ = ∂i∂jHij −�tr(H). (4.39)

From the equation for the linearized Ricci scalar we note that the leading asymptotic

behavior of the metric perturbation corresponding to the propagating scalar mode satisfies

trH =
1

(3−∆)(1 + ∆)
ρ3−∆Or r(0) + · · · (4.40)

We can also express this condition in a more geometric way, in terms of the extrinsic

curvature of the hypersurface with induced metric γµν , as

γµνLnKµν → −4r(0)xρ
3−∆Or . (4.41)

Therefore the new data r(0)(x) supplied corresponds to specifying the boundary condition

for the trace of the normal derivative of the extrinsic curvature.

4.3 Two point functions

To extract the two point functions of the scalar and spin two operators, the field equations

alone do not suffice: one needs to compute the onshell renormalized action. This is a

non-trivial issue, as even when the bulk field has a mass such that the dual operator would

be unitary, the corresponding two point function of that operator is not guaranteed to be

positive. In other words, the sickness of the higher derivative theory can manifest itself in

negative norms.

A useful trick for obtaining the two point functions is the following, borrowed from the

three dimensional discussions in [64]. Let us first rewrite the bulk terms in the action as

I =
1

2κ2

∫

d4x
√−g

[

R− 2Λ +
(

β +
α

4

)

R2 + αSµνSµν

]

, (4.42)
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where Sµν is the traceless part of the Ricci tensor. We next introduce a scalar auxiliary

field φ and a traceless spin two auxiliary field φµν and write the action as

I =
1

2κ2

∫

d4x
√−g

[

R− 2Λ +
(

β +
α

4

)

(2Rφ− φ2)
]

(4.43)

+
1

2κ2

∫

d4x
√−g [α (2Sµνφµν − φµνφµν)] .

Eliminating the auxiliary fields using their equations of motion gives the previous action.

For this action, the boundary term needed for a well-defined variational problem is

IGHY = − 1

κ2

∫

d3x
√−γ

(

K
[

1 +
(

2β +
α

2

)

φ
]

+ αKµνφ
µν
)

. (4.44)

Note that the problems in setting up a variational problem have been solved here, by the

introduction of the auxiliary fields. A similar approach to dealing with the variational

problem in higher derivative theories was discussed in [40]. The action with auxiliary fields

admits Einstein manifolds as solutions, in which

gµν = ĝµν ; φ = R = 4Λ; φµν = Sµν = 0. (4.45)

The action of course also admits other solutions, but in this section we are interested in the

spectrum around an Einstein solution. For such solutions, the boundary counterterms given

previously in (3.17) renormalise the onshell action. Note that, as previously anticipated,

when one looks at the leading order Einstein solutions, the boundary conditions for the

auxiliary fields do not involve non-trivial data (i.e. unlike the metric boundary condition,

the boundary data for the auxiliary fields is not specified by arbitrary scalars or tensors) and

indeed this remains true when evaluating corrections on such solutions. When we compute

the spectrum below, however, we find that there is indeed non-trivial data required for the

auxiliary fields, which is expressed in terms of arbitrary scalars and tensors.

Let us now consider perturbations around such an Einstein solution ĝµν of the equations

of motion, i.e. we let

gµν = ĝµν + hµν ; φ = 4Λ + δφ; φµν = δφµν . (4.46)

The boundary data for δφ and δφµν specify the defining data for dual scalar and tensor

operators, respectively.

Let us begin with the α = 0 case. To quadratic order in the fluctuations one obtains

the following for the bulk terms in the action

δI = − µ

2κ2

∫

d4x
√

−ĝ hµν
(

GL
µν [h]

)

(4.47)

+
β

κ2

∫

d4x
√

−ĝhµν (∇µ∇νδφ−�δφĝµν)

+
β

κ2

∫

d4x
√

−ĝ δφ (R[h]− Λh− δφ) .

where µ = (1 + 8βΛ), h = ĝµνhµν and the linearisation of the Einstein equation is

GL
µν [h] = Rµν [h]− Λhµν −

1

2
R[h]ĝµν +

1

2
Λhĝµν , (4.48)
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and the linearised Ricci tensor is given by

Rµν [h] =
1

2
(∇ρ∇µhρν +∇ρ∇νhρµ −∇µ∇νh−�hµν) , (4.49)

with R[h] = ĝµνRµν [h] being

R[h] = ∇µ∇νhµν −�h. (4.50)

The action can be diagonalised with the field redefinition

hµν = h̄µν + ζ(δφ)ĝµν (4.51)

and letting

ζ = −2β/µ. (4.52)

The bulk action at the quadratic level then becomes

δI = − µ

2κ2

∫

d4x
√

−ĝh̄µν
(

GL
µν [h̄]

)

(4.53)

− β

κ2

∫

d4x
√

−ĝδφ
[

−6
β

µ
�δφ+ δφ

]

.

where we have used

R(δφĝµν) = −3�δφ. (4.54)

The equations of motion resulting from this action describe the graviton together with the

scalar field, and agree with those found in the previous sections.

Having obtained the action, it is now straightforward to extract the two point func-

tions of the dual operators. To do this we need to keep careful track of the boundary

terms, include those which arise in the field redefinitions. In working out these terms it

is convenient to fix a gauge for the metric perturbation h̄µν , the holographic radial axial

gauge in which

h̄ρµ = 0. (4.55)

Thus the perturbed metric may be written as

ds2 =
dρ2

ρ2
+

1

ρ2
(ηij +Hij) dx

idxj (4.56)

where Hij = ρ2h̄ij . Evaluating all boundary terms involving Hij , including those from the

counterterms needed to renormalise the action for the background solution, one obtains

Ionshell = − µ

4κ2

∫

d3x
1

ρ2
(

H ij∂ρHij + 2H∂ρH
)

, (4.57)

where H = ηijHij . These terms can be processed using the Fefferman-Graham expansion,

namely

Hij = H(0)ij + ρ3H(3)ij + · · · (4.58)

with H(3)ij being traceless and transverse. Thus

Ionshell = − 3µ

4κ2

∫

d3xH ij
(0)H(3)ij . (4.59)
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This action is clearly finite, without the need for additional counterterms, as expected as

the counterterms should take of all divergences of Einstein solutions of the field equations.

Moreover, recalling that

〈Tij〉 = − 2
√
g(0)

δIonshell
δg(0)ij

(4.60)

we recover the formula

〈Tij〉 =
3µ

2κ2
H(3)ij , (4.61)

which is the linearisation of the renormalised stress tensor given earlier. Relative to Einstein

gravity, this formula is shifted by a factor of µ which in turn implies that the two point

function for the stress energy tensor will be shifted by factor of µ relative to the Einstein

case [53]. In this theory the ratio η/s is unchanged by the higher order correction. This

was already apparent on general grounds, since the correction evaluated on an Einstein

solution can be removed by field redefinitions. Here the derivation is somewhat non-trivial

as both quantities are shifted by the factor of µ: the Wald entropy was computed earlier,

and η is obtained from the two point function of the stress energy tensor, which according

to the formula above will only be shifted by µ relative to the Einstein case.

What remains is to collect together all of the terms involving the scalar field. These give

Ionshell = −13β2

µκ2

∫

dΣµ∂µ(δφ)δφ. (4.62)

This is the action in Lorentzian signature. The corresponding action in Euclidean signa-

ture is

IEonshell =
13β2

µκ2

∫

dΣµ∂µ(δφ)δφ; (4.63)

=
13β2

µκ2

∫

d3x
1

ρ2
δφ∂ρδφ.

Recalling that the asymptotic expansion of such a scalar field dual to an operator of di-

mension ∆ is

δφ = ρd−∆(δφ(d−∆) + . . . ) + ρ∆(δφ∆ + · · · ) (4.64)

we see that this part of the onshell action still has divergences as ρ → 0. This was indeed

to be expected, as the counterterms computed earlier were for Einstein solutions of the

field equations only.

The holographic renormalization required for such a scalar field is already known: if

the onshell (non-renormalized) Euclidean action for a free scalar field is

IEonshell = −1

2

∫

dΣµϕ∂µϕ (4.65)

then the renormalised two point function of the operator of dimension ∆ dual to the field

ϕ is [65]

〈Oϕ(x)Oϕ(0)〉 =
(2∆− d)Γ(∆)

πd/2Γ(∆− d/2)
R
(

1

x2∆

)

≡ c∆R
(

1

x2∆

)

, (4.66)
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where we denote by R the renormalised quantity. Comparing with our case we obtain the

following for the norm of the two point function of the operator dual to δφ:

〈Oφ(x)Oφ(0)〉 = −13β2

µκ2
c∆R

(

1

x2∆

)

. (4.67)

The norm is never positive and recall that the operator also has complex dimension for

negative β. It would be interesting to carry out a similar analysis for the spin two operator,

setting α 6= 0, to find for which values of α the norm of the dual operator is non-positive.

4.4 Spectra for other curvature corrections

A similar analysis can be carried out for the spectrum around AdS induced by other cur-

vature corrections. For any given curvature invariant one might anticipate that generically

the operator associated with the higher derivative term is either non-unitary or has non-

positive norm. There are certain exceptions to this generic case, however.

If a curvature invariant which is built out of the Weyl tensor is added to the action,

then the equations of motion linearised around AdS are necessarily unchanged since the

Weyl tensor vanishes identically on the background. More precisely, any curvature at least

cubic in the Weyl tensor implies that all contributions to the linearised field equations are

at least linear in the Weyl tensor of the background, which vanishes for AdS. Therefore

the Weyl terms do not change the spectrum of operators in the dual CFT, although they

can modify the correlation functions of these operators. This fits with the observation that

the Weyl terms on asymptotically locally AdS spacetimes fall off sufficiently fast at infinity

that the variational problem is unchanged from the Einstein case. Put differently, one

needs no additional new boundary conditions and therefore there are no new associated

propagating modes and corresponding dual operators.

If one adds several different curvature invariants to the action, the diagonalization of

the linearised field equations becomes more complicated, as we saw in the case of curvature

squared corrections. For each new boundary condition there is an associated new dual

operator. The dimensions and norms of the dual operators are obtained non-trivially from

diagonalising the field equations and manipulating the onshell action.

From a top-down perspective, the leading higher derivative terms in the four-

dimensional action must be consistent with unitarity. This implies that they must give

rise to a linearised spectrum around AdS which is consistent with dual operators of real

conformal dimension and positive norm. We have shown that individual terms such as

R2 are not consistent with unitarity, but we also noted that in reducing a higher dimen-

sional curvature invariant any such curvature squared term always appears with fourth

order curvature terms and a shift of the cosmological constant. Moreover, one needs to in-

clude all higher dimensional curvature invariants to respect unitarity at the required order,

supersymmetry and so on.

Finally let us consider how the dimensions of the dual operators relate to the param-

eters of the dual CFT. The dimensions of the operators for the case of Riemann squared

were given in (4.20). From the discussion around (3.7) we note that when such a term arises

from a reduction of eleven dimensions the coupling constant γ would be the ratio of the
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term descending from R4 to the leading order Einstein term. In other words, for the case of

an S7 reduction γ would be of order 1/N and in ABJM it would be of order 1/(kN) = 1/N ′.

The dimensions of the operators scale as 1/
√
γ, i.e. N1/2 and (N ′)1/2 = kλ1/2 respectively.

Riemann squared on its own is not unitary, so one of the operators always has complex

dimensions, but the combination with other terms arising from top down would give opera-

tors whose dimensions scale similarly. If no such operators exist in the dual CFT, then the

net effect of the reduction of the leading top down terms must be trivial at the linearized

level.

5 Conclusions

In this paper we showed that the variational problem is not in general well-posed in higher

derivative gravity theories without specifying additional data to the boundary metric.

When the higher derivative terms are treated perturbatively around the leading order Ein-

stein solution, the higher derivative equations always become inhomogeneous second order

equations, for which the variational problem is well-posed with only a boundary condition

for the metric. However, in analyzing the spectrum around the corrected background, the

linearized equations of motion are generically higher order and do indeed require additional

boundary conditions. In the context of holography these additional boundary conditions

correspond to data for operators in the dual conformal field theory. For the curvature

invariants we analyzed the operators are non-unitary since their conformal dimensions are

generically complex and their norms are non-positive definite. From a top down perspec-

tive, the reduction of any given higher dimensional curvature invariant results in a lower di-

mensional action involving several curvature invariants of different derivative order. When

the lower dimensional curvature invariants are combined, the resulting spectrum must be

unitary and thus either the dual operators must have real dimensions and positive norms

or (perhaps more likely) the resulting lower dimensional linearized field equations remain

second order with no new operators arising.

Even when the new operators induced by the higher derivative terms are non-unitary,

one might try to look for a unitary subsector of the theory, by switching off these operators.

This is indeed the perspective of [27, 56], whose boundary conditions effectively set to zero

the sources for the irrelevant operators associated with the higher derivative terms. As

explained in detail in [30, 31], however, switching off such sources does not switch off

expectation values for such operators. Moreover, even if one restricts to a subsector of

the theory in which the irrelevant operators are neither sourced nor acquire expectation

values, the theory itself is non-unitary. In particular, the extra fields do contribute in

computation of stress energy tensor correlation functions and there is no guarantee that

the latter would be unitary, nor is it immediately apparent that the additional operators

can always be decoupled from the stress energy tensor.

Many interesting questions deserve further study. By comparison with dual field the-

ory results, one could, at least in the highly supersymmetric examples of ABJM and ABJ

models, restrict what curvature invariants can arise in the effective four-dimensional ac-

tion. It would also be interesting to work out the spectrum for the reduction of a top
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down curvature invariant, i.e. putting together curvature invariants of different order in

four dimensions. In this work we have found that the simplest representative correction

would involve the Weyl tensor at orders higher than two: such corrections are in some

ways analogous to the Gauss-Bonnet examples in higher dimensions, in that the black

holes are corrected but there are no new operators induced in the spectrum. One of the

initial motivations for looking at higher derivative terms in AdS4 was to explore subleading

effects in applied holography and the Weyl solution would be a natural candidate for such

investigations.

One approach to holographic cosmology exploits the domain wall cosmology corre-

spondence [66] to obtain a field theoretic description of cosmologies in one higher bulk

dimension [67, 68]. Since the primary focus is naturally on four dimensional cosmologies,

the results obtained here would be relevant in discussing higher derivative effects in holo-

graphic cosmology. In particular it would be interesting to understand whether corrections

which give rise to non-unitary effects on the AdS side are automatically excluded from be-

ing physical on the cosmological side, and whether the irrelevant operators associated with

the higher derivative terms could actually be useful on the cosmology side in, for example,

exiting from the inflationary era.
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