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1 Introduction

Gauge/gravity duality has provided a powerful new tool to analyze certain condensed mat-

ter systems. In particular, it can be used to calculate transport properties of strongly

correlated systems at finite temperature. Remarkably, this is achieved by mapping the

problem to a gravitational problem in one higher dimension. Since the system of interest

lives in one dimension less than the gravitational problem being solved, this approach is

often called holographic.

The optical conductivity in a simple holographic model of a 2+1 dimensional conductor

was recently studied including the effects of a lattice [1]. Earlier studies assumed translation

invariance which implied momentum conservation. In that case, the charged particles

cannot dissipate their momentum so the real part of the optical conductivity contains

a delta function at zero frequency reflecting infinite DC conductivity. With the lattice

included, the delta function is resolved. It was found that at low frequency the conductivity

follows the simple Drude form, but at intermediate frequency, it follows a power law

|σ(ω)| = B

ω2/3
+ C (1.1)

The exponent −2/3 is surprisingly robust, and is independent of the all the parameters

in the model including lattice spacing, lattice amplitude, and temperature. Strikingly, a

power-law at mid-infrared frequencies with exactly this exponent is seen in measurements

of the normal phase of bismuth-based cuprates [2, 3]. (See also [4] for earlier experimental
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results and [5–7] for attempts to explain this scaling). Also in agreement with the measure-

ments is the fact that the coefficient B is temperature independent, although the cuprates

do not appear to have the off-set C.

The origin of (1.1) from the gravitational side is still not understood. It has been shown

that a similar power-law is seen in the thermoelectric conductivity and for a 3 + 1 dimen-

sional conductor (although the exponents differ) [8]. In a recent paper, Vegh [9] studied the

optical conductivity in a holographic model in which momentum conservation was broken

by a graviton mass term. He finds a similar power-law scaling of the conductivity (including

the constant off-set), but the exponent is not fixed. It depends on the mass of the graviton.

The goal of this paper is to extend these results to the superconducting regime. We

add a lattice in the form of a periodic potential to the simplest (original) holographic

superconductor [10, 11] and compute the optical conductivity. We find that below Tc, in

addition to the superfluid, there is a normal fluid component with the following properties

• It has simple Drude behavior at low frequency

σ(ω) =
ρnτ

1− iωτ
(1.2)

where the normal component density ρn and relaxation time τ are temperature de-

pendent (but frequency independent).

• The scattering rate 1/τ drops rapidly below Tc.

• At intermediate frequency, the normal component again satisfies the power law (1.1)

with the same coefficient B that was seen above Tc.

• There is evidence for a superconducting gap of size ∆ = 4.0 Tc.

• Despite this, in the limit of low temperature, ρn does not vanish, indicating the

presence of uncondensed spectral weight.

• The Ferrel-Grover-Tinkham sum rule relating the superfluid density to the decrease

in Re[σ(ω)] is satisfied, but only if large frequencies of order the chemical potential

are included. If one considers only the Drude peak and power law region, there is

“missing spectral weight”.

As we will discuss, these are all observed properties of the bismuth-based cuprates. In

particular, experiments have shown that the power-law is unchanged when the temperature

drops below the critical temperature and the material becomes superconducting [12].

2 Gravitational model

We will work with the simplest holographic superconductor which requires gravity coupled

to a Maxwell field and charged scalar Φ. The action is

S =
1

16πGN

∫
d4x
√
−g
[
R+

6

L2
− 1

2
FabF

ab − 2|(∇− i eA)Φ|2 +
4|Φ|2

L2

]
, (2.1)
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where L is the AdS length scale and F = dA. The scalar mass, m2 = −2/L2, is chosen

since for this choice, the asymptotic behavior of Φ is simple. From here on we work in

units in which L = 1. If the metric asymptotically takes the usual form

ds2 =
−dt2 + dx2 + dy2 + dz2

z2
(2.2)

then

Φ = zφ1 + z2φ2 +O(z3) . (2.3)

In the standard interpretation, Φ is dual to a dimension two charged operator O in the

dual theory with source φ1 and expectation value φ2. Since we want this condensate to

turn on without being sourced, we set φ1 = 0.

As Gubser first suggested [13], the above action has the property that (electrically)

charged black holes become unstable at low temperatures to developing scalar hair. The

reason is essentially that the effective mass of the scalar gets a contribution e2A2
t g
tt < 0 from

its coupling the Maxwell field which causes the Φ = 0 solution to become unstable. It was

shown in [10, 11] that this is precisely the gravitational dual of a conductor/superconductor

phase transition.

The vector potential At must vanish at the horizon and is asymptotically

At = µ− ρz +O(z2) (2.4)

where µ is the chemical potential and ρ(x) is the charge density. For these electrically

charged solutions, the field equations and boundary conditions require the phase of Φ to

be constant. We will set it to zero and treat Φ as a real field. We introduce the lattice by

requiring that the chemical potential be a periodic function of x:

µ(x) = µ̄ [1 +A0 cos(k0x)] . (2.5)

The lattice is only introduced in one direction for computational convenience, and we will

compute the conductivity only in the direction of the lattice. This “ionic” lattice has been

discussed earlier (see, e.g., [14–18]) but almost always treated perturbatively. In [8] it was

treated exactly in the theory (2.1) without the charged scalar field.

Our model has several parameters. In principle one could vary the mass and charge of

the scalar field Φ in the action. However, we have already fixed the mass for convenience.

The boundary condition (2.5) depends on three parameters: the mean chemical potential

µ̄, the lattice wavenumber k0 and the lattice amplitude A0. In addition, the solution will

depend on a temperature T . Due to a scaling symmetry, physics depends on only three

dimensionless quantities which can be taken to be A0, k0/µ̄, and T/µ̄.

For definiteness, we will choose k0/µ̄ = 2 for the results presented later in this paper.

Although the physics is scale invariant, when doing calculations, we will also set µ̄ = 1. Our

choice of k0 is very close to the one which yields a low temperature DC resistivity which

is linear in T in the absence of superconductivity [1, 14]. Even though k0 corresponds to

an unrealistically large lattice spacing, the nonlinearity of Einstein’s equation generates

structure on much smaller scales.
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3 Backgrounds

To numerically construct the gravitational dual of the normal phase we employ the ansatz

used in [1, 8]:

ds2 =
1

z2

[
−H1G(z)(1−z)dt2+

H2dz
2

(1−z)G(z)
+S1(dx+Fdz)2+S2dy

2

]
, A=ψdt, Φ=0,

(3.1)

and G(z) = 1 + z + z2 − µ2
1 z

3/2. Here G(z) controls the black hole temperature given by

T ≡ G(1)/4π = (6− µ2
1)/8π and H1,2, S1,2, F and ψ are six functions of x and z, that we

determine using the numerical methods described in [1], which were first introduced in [19]

and studied in great detail in [20].

When A0 = 0 the problem reduces to the original holographic superconductor [11]. It

was shown there that there is a critical value of T/µ such that above this value, the scalar

field vanishes and the solution is the simple planar Reissner-Nordström AdS metric. Below

this value, the Reissner-Nordström solution becomes unstable to developing scalar hair.

We now increase A0 and solve the Einstein-Maxwell equations to find rippled versions

of the Reissner-Nordström AdS metric. This is exactly the same as what was done for the

ionic lattice in [8]. To see when these solutions become unstable to forming scalar hair,

we look for a static normalizable mode of the scalar field. It is intuitively clear that if

one increases the charge e on the scalar field, it becomes easier for this field to condense

and the critical temperature becomes higher. To find the critical temperature for a given

charge it is convenient to turn the problem around. For each A0 and any temperature T ,

we find the value of the charge e such that T is the critical temperature for a field with

charge e. At the onset of the instability, Φ is a static normalizable mode of the charged

scalar field and can be treated perturbatively:

(∇a − i eAa)(∇a − i eAa)Φ + 2 Φ = 0, (3.2)

with Φ being a function of x and z only. Also, the connections ∇ and A are evaluated

on the rippled Reissner-Nordström AdS black holes. Finally, one can recast the former

equation to take the following appealing form

−∇a∇aΦ− 2 Φ = e2 (−AaAa) Φ, (3.3)

which one recognizes as a positive selfadjoint eigenvalue problem for e2. At the boundary

we demand Φ to decay as in eq. (2.3) and at the horizon we demand regularity.

The results are shown in figure 1. There are seven curves on this plot denoting seven

different values of the lattice amplitude A0 between 0 and 2.4. Each curve shows the

expected rise in critical charge with temperature (or critical temperature with charge).

Comparing the different curves for a given charge, we see that increasing the lattice ampli-

tude also increases the critical temperature. This was first noticed in [21] when the lattice

was treated perturbatively. It can be understood as follows. As we said, the critical tem-

perature of a uniform holographic superconductor is proportional to µ. By making µ vary

periodically, one raises the maximum value of µ which induces the scalar field to condense
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Figure 1. For each T/µ we plot the charge of the scalar field for which T would be the critical

temperature. This is repeated for several values of the amplitude of the lattice. From the top

down the lines represent: A0 = 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4. Setting e = 2 we read off the critical

temperatures used in this paper.

at a higher temperature. It then leaks into the regions where µ is smaller. This effect was

seen in models of a holographic Josephson junction [22]. We will set e = 2 since this is a

natural value for a superconducting condensate.

Having found the critical temperature, one can next solve the coupled Einstein-

Maxwell-scalar equations to find the solutions for T < Tc. In order to find the rippled

superconducting phase we have to change the ansatz (3.1). The reason being that eq. (3.1)

is adapted1 to probe geometries for which the entropy is nonzero as T → 0. The homoge-

neous holographic superconductors are known not to have this feature. In particular, their

entropy decreases towards zero as the temperature is lowered, thus obeying to the third

law of thermodynamics. One ansatz that is adapted to this property is given by

ds2 =
1

z2

{
−H1 y

2
+ (1−z)dt2+

H2 dz
2

(1−z)
+y2

+

[
S1 (dx+F dz)2+S2 dy

2
]}

, A=ψ dt (3.4)

where H1,2, S1,2, F , ψ and Φ are seven functions of x and z to be determined using the

numerical methods introduced in [1]. Here, y+ parametrizes the black hole temperature as

T = y+/4π and, in the homogenous case, is the black hole horizon size measured in units

of the AdS radius.

The result are hairy, rippled, charged black holes. From the asymptotic form of the

scalar field one reads off the expectation value of the charged condensate in the dual theory.

The condensate is a function of x, oscillating about a mean value. In figure 2 we plot this

mean value as a function of temperature for various values of the lattice amplitude. In

each case, the condensate follows a familiar form, rising rapidly as T drops below Tc and

1By adapted here we mean that the T → 0 limit can be achieved without introducing large gradients

on the functions S1,2.
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Figure 2. The mean value of the condensate as a function of temperature for e = 2 and various

values of the lattice amplitude. From the inner to outer curves: A0 = 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4.

The colors agree with figure 1.
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Figure 3. The condensate as a function of x for e = 2, A0 = 2, and T/Tc = .2, .7, .9, .99 from top

down. Note that by T/Tc = .7 the condensate has almost reached its low temperature limit.

then saturating at low temperature. It is clear from figure 2 that increasing the lattice

amplitude increases the low temperature mean value of the condensate. In figure 3 we show

the variation in the condensate by plotting 〈O(x)〉 for A0 = 2 and various temperatures.

The variation is roughly 50% of the mean and the condensate remains positive always.

The transition at T = Tc which turns on the scalar condensate corresponds to a

continuous phase transition. One can show this without explicitly computing the free
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energy as follows. Consider first the homogeneous case with constant chemical potential

µ, and compactify x and y. The free energy in the grand canonical ensemble is F =

E − TS − µQ, so its variation is

δF = δE − TδS − µδQ− SδT −Qδµ (3.5)

But the first law says that δE = TδS + µδQ, so at fixed µ,

dF

dT
= −S (3.6)

Since the branch of solutions with scalar hair joins the branch of solutions without hair at

T = Tc, their entropies must agree, and hence dF/dT is continuous. There are examples of

holographic superconductors in which the superconducting phase transition is first order,

but in those cases the solution with nonzero scalar field does not approach the solution

without the scalar as T → Tc.

This argument generalizes to the case of a position dependent chemical potential. The

µQ term in the free energy is replaced by
∫
µ(x)ρ(x)dxdy and the µδQ term in the first

law is replaced by
∫
µ(x)δρ(x)dxdy (see appendix). Since we are keeping µ(x) fixed as we

change the temperature, we recover (3.6). The two branches of solutions with ripples still

join at T = Tc, so the phase transition is again continuous.

Since we have only introduced the lattice in one direction, one could think of our

solutions as representing a striped superconductor. However we will not pursue that

interpretation here.2

In the homogeneous case, the zero temperature limit of these hairy black holes is

known to take the form [24]

ds2 = r2(−dt2 + dxidx
i) +

dr2

g0r2(− log r)
(3.7)

and Φ = 2(− log r)1/2 near r = 0. This metric has a null singularity at r = 0. The scalar

field on the horizon of our solutions is becoming more homogenous as T → 0, and at

low temperatures, the entropy scales like S ∝ T 2.4 independent of the lattice amplitude.

However, the coefficient in the entropy formula does depend on the lattice amplitude, so

it is not clear if (3.7) applies to the T = 0 limit of our rippled solutions.

The solutions we have discussed so far are not the only static, rippled, hairy black

hole solutions. There are radial excitations where the scalar field has nodes in the

radial direction. There are also excitations in the direction of the lattice which can be

constructed as follows. Given a solution Φ with period λ0 = 2π/k0, −Φ is clearly also a

solution. One can construct a solution in which Φ changes sign from one region of size

λ0 to the next, by simply starting with a seed solution in Newton’s iterative method that

changes sign. Given this, one can construct solutions with period (n + m)λ0 in which Φ

changes sign on m of the regions. This would clearly result in a smaller mean value for

the condensate. We expect that these other solutions all have higher free energy than the

ones we study, in which Φ remains positive everywhere.

2It is not a gravitational dual of the novel striped superconductor introduced in [23] since that required

a condensate whose average value was zero.
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Figure 4. The real and imaginary parts of the conductivity for A0 = 2, k0 = 2, and T/Tc = .71.

4 Conductivity

To compute the optical conductivity in the direction of our lattice we introduce a pertur-

bation with harmonic time dependence and fix the usual boundary condition on δAx:

δAx →
E

iω
+ Jx(x, ω)z +O(z2) . (4.1)

This corresponds to adding a homogeneous electric field Ex = Ee−iωt on the boundary.

This perturbation induces perturbations in most metric components as well as other

components of the vector potential and scalar. Solving these linear equations with suitable

boundary conditions allows us to read off the current Jx(x, ω) which determines the

conductivity via σ̂(ω, x) = Jx(x, ω)/E. In contrast with the ionic lattice of [8], there are

now a total of twelve linear functions to be determined. In addition to the perturbations

present in the ionic case, we also have two more perturbations corresponding to the

real and imaginary parts of the charged scalar field. We could have worked with U(1)

gauge invariant variables, such as in [22], however here we follow a standard gauge fixing

procedure. For the metric and gauge field perturbations we use the de Donder and Lorentz

gauges, respectively. Since we impose a homogeneous electric field, we are interested

in the homogeneous part of the conductivity, σ(ω), that can be retrieved from the full

conductivity via Fourier mode decomposition:

σ̂(ω, x) = σ(ω) +
+∞∑

n=−∞
n6=0

σn(ω)ei n k0 x. (4.2)

In this section, we will fix the lattice amplitude to be A0 = 2, which corresponds to

a critical temperature Tc = .11µ̄.

The real and imaginary parts of the conductivity for T/Tc = .71 are shown in figure 4.

The first thing to note is that there is a pole in the imaginary part of the conductivity.
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Figure 5. The low frequency part of the conductivity for T/Tc = 1.0 (blue circles), .97 (red

squares), .86 (yellow diamonds), and .70 (green triangles). The vertical red line in Re(σ) denotes

the zero frequency delta function.

This implies (from the Kramers-Kronig relation) that there is a delta function at ω = 0 in

the real part confirming that this is a superconductor. So, unlike the normal phase, the

holographic lattice does not remove the delta function in the superconducting regime.3 The

coefficient of the pole is the superfluid density. The bump in the real part of σ at ω/T ≈ 20

is a resonance which is analogous to the one studied in [8] coming from a quasinormal mode

of the black hole. We will return to this later, but for now, the most interesting feature

of Re(σ) is the rise at low frequency. This shows that there is a normal component to the

conductivity even in the superconducting regime. Thus, our holographic superconductor

resembles a two fluid model with a normal component as well as a superfluid component.

4.1 Low frequency region

Let us now focus on this low frequency region. The real and imaginary parts of the

conductivity for various temperatures are shown in figure 5. There are four curves ranging

from T/Tc = 1 down to T/Tc = .7. It should be emphasized that the curve with T/Tc = 1

was done with a completely different numerical code using a different metric ansatz and

solving for one fewer unknown function (no scalar). The continuity of the results is a

good check on the numerical accuracy. It is clear from figure 5 that as we lower the

temperature, the normal component is decreasing, and the pole in the imaginary part is

increasing, showing an increase in the superconducting component.

A closer examination of the normal component of the conductivity when T < Tc
shows that it behaves very much like the conductivity above the critical temperature. In

fact, at low frequency both the real and imaginary parts of the conductivity are very well

fit by simply adding a pole to the Drude formula:

σ(ω) = i
ρs
ω

+
ρnτ

1− iωτ
(4.3)

3This was noticed earlier in a perturbative treatment of the lattice [18, 25].
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Figure 6. The density of the superfluid and normal components as a function of temperature,

extracted from the fit to (4.3). The dashed red line on the right is a fit to (4.4).

where ρs is the superfluid density, ρn is the normal fluid density, and τ is the relaxation

time. The three parameters ρs, ρn and τ are temperature dependent but frequency

independent. On the right hand side of figure 5 one can clearly see the Drude behavior in

the bottom curve which is still in the normal phase. As the temperature is lowered, the

pole grows rapidly and soon swamps the Drude behavior of the normal component.

The temperature dependence of ρs and ρn are shown in figure 6. On the left one sees

that ρs rises rapidly as T drops below Tc, and on the right, one sees that ρn drops rapidly.

The red dashed line is a fit to

ρn(T ) = a+ b e−∆/T with ∆ = 4.0 Tc . (4.4)

This is similar to a BCS superconductor in which the normal component consists of ther-

mally excited quasiparticles with a gap ∆, but in BCS theory the gap is smaller, ∆ ≈ 1.7 Tc.

Observations on the cuprates indeed show a gap of order ∆ = 4.0Tc [26], showing that

they are not weakly coupled superconductors. In the early work on holographic supercon-

ductors, an attempt was made to measure this gap. Since the system was homogeneous,

there was no Drude peak so people looked at limω→0 Re(σ). This was found to behave like

e−∆σ/T over a range of low temperatures. In the probe limit (where the spacetime metric

is fixed), one found a value close to what we find here, ∆σ = 4.2Tc [10, 27], but when

backreaction was included, ∆σ became smaller and depended on the charge of the scalar

field [11]. With the lattice, we have a much better way to measure the superconducting

gap and its intriguing that we get a realistic value even for a charge two condensate.4

Another key difference from BCS is the presence of the constant a in (4.4). If we

believe this extrapolation then ρn remains nonzero even at zero temperature indicating

4Curiously, in the probe limit at low temperature, Re(σ) is strongly suppressed for ω < ωg ≈ 8Tc, even

if one changes ∆σ by changing the mass of the scalar field and spacetime dimension [27].
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Figure 7. The relaxation time as a function of temperature, extracted from the fit to (4.3). The

dashed curve is a fit to (4.5).

uncondensed spectral weight.5 Observations on the cuprates indeed show uncondensed

spectral weight at T = 0 [29]. Of course the cuprates are d-wave superconductors in

which the gap has nodes on the Fermi surface which probably contribute to this effect.

It is surprising to see ρn 6= 0 at T = 0 in an s-wave superconductor, as we have here. In

quasiparticle language, it suggests that the normal component consists of two constituents,

one of which is gapped and the other remains gapless. Of course quasiparticles may not

be the right language for the strongly correlated dual system. (A precursor to this was

seen in the homogeneous case, where it was found that limω→0 Re(σ) was exponentially

small but not zero at T = 0 [24].)

To check the extrapolation of ρn, one would like to compute ρn at lower temperatures.

This is very difficult because the relaxation time τ rises rapidly as the temperature is

lowered (see figure 7). To see the Drude peak, one needs to probe frequencies ωτ ∼ 1.

Since τ is rising so rapidly, the Drude peak is squeezed to very small frequencies which

become difficult to resolve. The dashed line in figure 7 is a fit to

τ = τ0 e
∆̃/T with ∆̃ = 4.3 Tc . (4.5)

It follows that the scattering rate, 1/τ , drops rapidly as T is reduced below Tc. This is

another observed feature of the cuprates [30]. One often distinguishes clean and dirty limits

of superconductors by comparing the scattering rate to the gap. It is easy to check that

our holographic superconductor is in the clean limit: 1/τ � 2∆ for all T < Tc.

It is natural to ask if ρn is related to the charge inside the black hole. This appears not

to be the case. As we lower the temperature, the charge inside the horizon is reduced, and

5In a very different holographic realization of a two fluid model, it was found that ρn remained nonzero at

T = 0 when the charge on the scalar field was small, but vanished when the scalar charge became larger [28].
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Figure 8. The normal component of the conductivity on a log-log scale showing power law behavior

with exponent −2/3. The pole in the imaginary part has been subtracted out. The lines correspond

to T/Tc = 1.0 (blue circles), .97 (red squares), .86 (yellow diamonds), and .70 (green triangles).

more of the charge is carried by the scalar field outside the horizon. However, in the limit

T → 0, the charge inside goes to zero as the horizon area vanishes, in contrast to (4.4).

4.2 Power law

At slightly larger frequency, the absolute value of the conductivity of the normal component

follows the same power law (1.1) as was found in the normal phase above the critical

temperature. This is shown in figure 8 where we have subtracted the pole in the imaginary

part of σ coming from the superfluid component, and plotted the absolute value of the

result, |σ̃|, minus the off-set C vs frequency on a log-log plot. The four lines correspond

to the same temperatures as in figure 5. The fact that the lines are parallel implies that

the exponent is the same. The fact that the lines lie on top of each other implies that

the coefficient B of the power law is again temperature independent. Recall that the

lowest curve represents the normal phase. This clearly shows that the power law fall-off is

completely unaffected by the superconducting phase transition.

This result is in agreement with observations of the bismuth-based cuprates6 [12].

Figure 9 shows measurements of |σ(ω)| (without the pole in the imaginary part) for

Bi2Sr2CaCu2O8+δ, commonly called BSCCO. The figure includes eight separate log-log

plots showing measurements on eight different samples ranging from underdoped with Tc =

67K to the optimally doped with Tc = 96K to overdoped with Tc = 60. Each plot shows

a variety of temperatures both above and below Tc. All show power-law behavior at inter-

mediate frequencies which does not change as the temperature is reduced below Tc. The

measured exponent is −2/3 for the optimally doped and overdoped samples but increases to

about −1/2 in the most underdoped samples. The agreement between figure 8 and figure 9

is striking, and we do not understand why our simple gravity model is able to reproduce

this feature of BSCCO so well. Of course one important difference is that the experimental

measurements do not show an off-set C. Another difference is that the power law in BSCCO

extends up to a temperature independent frequency (the lower cut-off is temperature de-

pendent). In our calculations the power law always extends roughly between 2 < ωτ < 8

6We thank van der Marel for bringing this paper to our attention.
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Figure 9. A log-log plot of the optical conductivity in eight BSCCO samples ranging from un-

derdoped (UD) to overdoped (OD). The numbers following UD or OD in the plot labels are the

critical temperatures. Each plot contains curves at several different temperatures both above and

below Tc. The power-law fall-off is clearly unaffected by Tc. Plot is taken from [12].

which is exactly the same range as was found in the normal phase T > Tc [1]. Since τ is

temperature dependent, both the upper and lower cut-offs are temperature dependent.

The phase of the complex conductivity computed from the gravitational dual is

roughly constant over the range of frequencies where the magnitude follows the power

law. However, this phase is temperature dependent and varies between 60o and 80o. The

data on BSCCO shows a temperature independent phase of 60o. This difference is likely

connected with the constant off-set in our power law. Without the offset, scale invariance,

causality and time reversal symmetry require σ(ω) ∝ (−iω)α [2], so the phase is related

to the exponent of the power law.

4.3 Sum rule

The Ferrell-Glover-Tinkham (FGT) sum rule states that the reduction in the spectral

weight when T < Tc is taken up by the superfluid density ρs:∫ ∞
0+

dωRe[σN (ω)− σS(ω)] =
π

2
ρs (4.6)

– 13 –



J
H
E
P
0
6
(
2
0
1
3
)
0
8
7

0 1 2 3 40.0

0.5

1.0

1.5

2.0

wêm

R
eHs
L

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

wêm

2 p
‡ 0+w

êm R
eHs

N
-
s
S
L

Figure 10. Left panel : the conductivity in the normal phase T = Tc (upper blue curve) and

superconducting phase T = .71 Tc (lower red curve). Right panel : the red dashed line is the

superfluid density obtained from the pole in the imaginary part of the conductivity. The black line

is (2/π)
∫ ω/µ̄

0+ dω̃Re[σN (ω̃)− σS(ω̃)]. This integral approaches the red line at large ω showing that

the FGT sum rule (4.6) is satisfied.

where σN is the conductivity in the normal phase and σS is the conductivity in the super-

conducting phase. We now ask whether this is satisfied in our gravitational model.7 The

left panel of figure 10 shows Re[σ(ω)] over a wide range of frequency in both the normal

phase T = Tc and the superconducting phase T = .71 Tc. The right panel of figure 10

shows that (2/π)
∫ ω/µ̄

0+
dω̃Re[σN (ω̃) − σS(ω̃)] indeed approaches the superfluid density at

large ω. At the end of the integration, they differ by less than 0.6%. This is not only a

confirmation that our holographic superconductor satisfies the FGT sum rule, but also a

strong test of the numerics. The two curves on the left panel of figure 10 were computed

using different codes, and the fact that an integral of their difference gives precisely the

expected answer is confirmation of the accuracy of the numerical results.

Note that the two curves on the left panel of figure 10 differ over a range of frequencies

of order µ̄. In conventional superconductors, Re[σ(ω)] is reduced only over a much smaller

range of frequency, so it is common to cut off the integral in (4.6) at a convenient low fre-

quency ω0. However, when this is done in the cuprates, one finds that the integral underes-

timates the superfluid density [12]. In other words, some of the spectral weight represented

by ρs is missing from the low frequency part of Re[σ(ω)]. One must indeed include frequen-

cies of order the chemical potential to recover the sum rule, just as we have seen here [34].

4.4 Resonance

The resonance in the conductivity at ω/µ̄ ≈ 1.5 can be understood on the gravity side as

arising from a quasinormal mode oscillation of the black hole, just like the example in [8].

As discussed in [35] quasinormal modes correspond to poles in retarded Green’s functions.

7See [31–33] for general discussions of sum rules from gravity for translationally invariant backgrounds.
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We can determine the quasinormal mode frequency by fitting the conductivity to

σ(ω) =
GR(ω)

iω
=

1

iω

a+ b(ω − ω0)

ω − ω0
. (4.7)

For T = Tc, one finds the resonance is very well fit by this expression with ω0/µ̄ =

1.48−0.42i. This quasinormal mode changes very little when the temperature drops to .7 Tc.

5 Discussion

We have seen that a simple holographic model of a superconductor reproduces quantitative

features of BSCCO including an intermediate frequency power law in the optical conduc-

tivity with exponent −2/3 which is unaffected by the superconducting phase transition,

and a superconducting gap ∆ ≈ 4Tc. In addition, it reproduces many qualitative features

of the cuprates including a rapidly decreasing scattering rate below Tc, uncondensed

spectral weight at T = 0, and a superconductivity induced transfer of spectral weight

involving energies of order the chemical potential.

We find it remarkable that so many features of the optical conductivity of some

cuprates can be reproduced by such a simple gravity model. Since gravity coupled to a

Maxwell field and charged scalar are part of the low energy limit of string theory with

many different compactifications, one can perhaps view it as the universal part of the

theory. However one should not forget that our model describes an s-wave superconductor.

We still do not have a satisfactory description of a d-wave holographic superconductor.

See [36] for a description of some of the difficulties.

We have presented results for the optical conductivity in the superconducting region

for only one value of the lattice amplitude A0 = 2 and one value of the wavenumber k0 = 2

(with µ̄ = 1). We believe that the −2/3 exponent in the power law is independent of these

choices since it is unchanged when one enters the superconducting regime, and above Tc
it has been shown to be very robust. We have done preliminary calculations with k0 = 1

which indicate that the behavior of the normal component density ρn(T ) is also independent

of these choices. In particular, although Tc increases, the gap remains ∆ = 4Tc and ρn
approaches the same nonzero value as T → 0. The behavior of the relaxation time τ is

qualitatively the same, but there is an important difference. Although one again finds τ =

τ0e
∆̃/T , the value of ∆̃ is half what it was for k0 = 2. In other words, it appears that 1/τ ∝

e−ak0/T . This is the behavior predicted in [14] where the scattering rate was related to the

density-density correlation function at ω = 0 and k = k0. Since Poincaré invariance appears

to be restored in the zero temperature infrared geometry (3.7), low energy physical states

should have ω ∼ k so states with ω = 0 and k = k0 would be exponentially suppressed.

The fact that we still see -2/3 power law even in the superconducting phase, makes it

clear that this power law has nothing to do with the AdS2 ×R2 near horizon geometry of

the zero temperature Reissner-Nordström solution. As we have discussed, with the charged

scalar present, the zero temperature solution has a singular horizon.

Homes has discovered a remarkable relation between the low temperature superfluid

density ρs, the critical temperature Tc and the DC conductivity just above the critical

– 15 –



J
H
E
P
0
6
(
2
0
1
3
)
0
8
7

temperature σdc [37]. He found that for a wide range of high temperature superconductors

ρs ≈ 35σdc Tc . (5.1)

This relation appears to be universal. It holds for the conductivity perpendicular to the

CuO2 planes in the cuprates as well as the conductivity in the plane, and also holds for the

iron pnictides. Unfortunately, it is easy to see that Homes’ law cannot hold for the class

of holographic superconductors we have discussed here where the critical temperature

depends on the lattice amplitude.8 The reason is that as A0 → 0, σdc diverges since the

system becomes translationally invariant. However, both ρs and Tc approach finite limits

given by the original homogeneous holographic superconductor. So (5.1) cannot hold. To

reproduce (5.1) one would have to fix a large A0 and vary Tc by other means, perhaps by

adding a double trace perturbation [39].
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A The first law for black holes with varying chemical potential

In this appendix, we derive the first law for electrically charged black hole solutions to (2.1)

with nonconstant chemical potential, µ(x, y). For convenience we will imagine that the x

and y directions are periodically identified so the black holes have finite horizon area and

mass. We follow the approach of Sudarsky and Wald [40]. As usual for a diffeomorphism in-

variant theory, the Hamiltonian is a linear combination of the constraints plus surface terms:

H =

∫
Σ

[NaCa +NaAa(DiE
i)] + surface terms (A.1)

where Na is the lapse-shift vector and Ca are the usual Hamiltonian and momentum

constraints of general relativity. The surface terms are determined by the requirement

that the variations of H with respect to the canonical variables qij , p
ij , Ai, E

i are well

defined. In addition to the usual gravitational surface terms, there is an additional term

coming from the Gauss law constraint:∮
∂Σ

(NaAa)EidS
i (A.2)

Given a static, electrically charged black hole, we choose Σ to be a constant t surface

which starts at the bifurcation surface on the horizon and ends at infinity. We also choose

Na = (∂/∂t)a. Now under a perturbation of the black hole

δH =

∫
δqij∂H/∂qij + · · · = 0 (A.3)

8An earlier unsuccessful attempt to find a holographic realization of Homes law was made in [38].
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since the partial derivatives of the Hamiltonian just yield the time derivatives of the canon-

ical variables in the background which vanish since the background is static. On the other

hand, if the perturbation solves the linearized field equations, it certainly solves the lin-

earized constraints, so from (A.1) δH reduces to a sum of the variation of the surface terms.

The gravitational surface terms yield the usual δM−(κ/8π)δA. Since ∂/∂t = 0 at the bifur-

cation surface, the electromagnetic surface term (A.2) only has a contribution from infinity

which is simply
∫
µ(x, y)ρ(x, y)dxdy. Since µ(x, y) is fixed by our boundary conditions,

the variation of this surface term is
∫
µ(x, y)δρ(x, y)dxdy. We thus obtain the first law:

δM =
κ

8π
δA+

∫
µ(x, y)δρ(x, y)dxdy (A.4)

In the homogeneous case with constant µ, this clearly reduces to the familiar form

δM =
κ

8π
δA+ µδQ . (A.5)
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