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1 Introduction

The recently proposed firewall phenomenon [1] has dramatically emphasized the extent to

which black holes remain interesting and mysterious in quantum gravity. Using “reasonable”

assumptions about the structure of the quantum theory of black holes, the authors of [1],

henceforth referred to as AMPS, have argued that unitarity of black hole evaporation, along

with some limited form of locality, is inconsistent with a smooth horizon for an observer
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falling into an “old” black hole.1 There has been significant discussion of this claim in the

literature, but in our view none of the followup work so far has decisively challenged the

original argument.

We will review the AMPS argument in section 2 below, but a key point in motivating

their setup is a claim that an infalling observer is able to extract information from the

Hawking radiation of a black hole prior to falling in.2 The model black hole of Hayden

and Preskill [3], also partially reviewed below, suggests that this should be possible pro-

vided that the observer is able to perform a sophisticated nonlocal measurement on the

Hawking radiation that has come out so far. In this paper we will argue using methods

from the theory of quantum computation that this measurement can almost certainly not

be done fast enough and thus that the AMPS experiment is not operationally realizable

even in principle.

As a simple example, consider a Schwarzschild black hole in 3 + 1 dimensions. Its

entropy is proportional to M2 in Planck units, and it evaporates in a time proportional

to M3. A would-be AMPS experimentalist thus has to extract information from n ∼ M2

bits of Hawking radiation in a time T ∼ n3/2 to be able to jump in before the black hole

evaporates. From a computer science point of view this is very special: the decoding needs

to be accomplished in a time that scales as a low-order polynomial in n. In order to get

at the information our experimentalist would need to apply a unitary transformation to

the Hawking radiation which “unscrambles” the desired information by putting it into an

easily accessible subfactor of the Hilbert space.3 As we will review below in section 3.2,

applying a generic unitary transformation to an n-bit Hilbert space requires time that is

exponential in n. Only very special unitary transformations can be implemented faster,

and in this paper we will argue that the decoding operation relevant to AMPS is unlikely

to be special in this way. In fact we conjecture, but cannot rigorously prove, that the

decoding time for Hawking radiation will in general be exponential in the entropy of the

remaining black hole.4

In light of our discussion, a firewall enthusiast might nonetheless argue that even

though the decoding cannot be done the information is still “there”. It has been clear

for some time however that operational constraints are important in understanding the

structure of the Hilbert space used in describing black hole evaporation, and we view

our results in this context. More concretely the real issue at stake is for which types of

1We recently found out that a similar argument was made by Braunstein, later joined by Pirandola and

Życzkowski, back in 2009 [2], who called the firewall an “energetic curtain”. Some details of their model

do not seem consistent with standard assumptions about black hole physics, however, and restoring those

assumptions seems to rule out their curtain-avoiding resolution.
2As emphasized by AMPS, the observer does not actually need to do the experiment to get into trouble.

The possibility of the experiment being done is enough to argue against a smooth horizon. We will be more

precise below about what is meant by “extract information”.
3In line with standard parlance we will sometimes refer to this operation as “decoding”; we will see the

precise connection to what is called decoding in quantum information theory in section 4.
4It may seem that beating a small power with an exponential is overkill, but we will show that for more

general types of black holes the exponential really is necessary to prevent the AMPS experiment from being

done. In those cases it will be recurrence phenomena rather than evaporation which doom the experiment.
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situations we should trust effective field theory (EFT). Traditionally EFT was viewed as

holding away from local regions with high energy density or spacetime curvature. If this

were the only way in which EFT could break down however, then we would seem to be led

inexorably to information loss [4]. If we wish to maintain belief in unitarity, as AdS/CFT

strongly suggests we should, then there must be a more broad set of criteria for when EFT

is not be valid. It is not trivial however to find such criteria which do not flagrantly violate

the extraordinary level to which EFT has been experimentally tested. Careful analysis of

thought experiments near black holes in the mid 1990’s [5–7] led to an additional criterion

involving causality:

• Two spacelike-separated low-energy observables which cannot both be causally ac-

cessed by some single observer do not need to be realized even approximately as

distinct and commuting operators on the same Hilbert space.

This criterion was claimed to preclude the apparent contradiction between unitarity and

local EFT in Hawking’s argument. It is clear that it does not lead to obvious testable

violations of EFT, and it was also claimed to avoid more subtle problems like quantum

cloning and unacceptably large baryon number violation. The key point for us however is

that this criterion, which is a profound statement about the structure of the Hilbert space

of quantum gravity, was motivated by operational constraints. It says that whether or not

quantum information is “there” is indeed related to its practical accessibility.5

The deep insight of AMPS is that even with this stronger causal restriction on when we

may use effective field theory there is still a paradox that seems to require more modification

of the rules, either by having firewalls or by further violating effective field theory. We

interpret our results as supporting a new criterion for the validity of effective field theory:

• Two spacelike-separated low-energy observables which are not both computationally

accessible to some single observer do not need to be realized even approximately as

distinct and commuting operators on the same Hilbert space.

By computationally inaccessible we mean that one or both of them is so quantum-

mechanically nonlocal that measuring it would require more time and/or memory than

the observer fundamentally has available. This criterion clearly implies the previous one,

but it is stronger: as we will see, it can apply even if both observables are within the

past lightcone of some observer. In Minkowski space this criterion (and also the causality

criterion) is irrelevant, but in spacetimes with singularities there are observers whose avail-

able time is fundamentally limited. This is also true in spacetimes where the fundamental

Hilbert space is effectively finite, for example the de Sitter static patch. In that case recur-

rence phenomena limit how much time is available for low-energy observation rather than

5The authors of [7] also attempted to give a less operational reason for the break down of EFT involving

large integrated boosts, although aspects of this claim were later questioned [8]. It remains to be seen

whether a similar argument might exist for the breakdown we advocate here.
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a singularity.6 Our proposal violates what AMPS call postulate II, and we will see below

that it seems to remove the contradiction that led AMPS to argue for firewalls.

Lest the reader worry we are throwing the baby out with the bathwater, we here point

out that a traditional asymptotic observer at infinity, whom we will refer to as Charlie, has

all the time and memory needed to measure the Hawking radiation as carefully as he likes.

Our arguments are thus no threat to the unitarity of black hole evaporation as a precise

quantum mechanical process; there will be new restrictions on the validity of effective field

theory only for an observer we call Alice who falls into the black hole before it evaporates.7

Both the weaker “causality” criterion and the stronger “computational” criterion are

negative statements; they tell us what the Hilbert space is not. It is of course very important

to understand what the structure of the Hilbert space is, and there are two interesting

proposals. The first, sometimes called “strong complementarity”, takes the point of view

that each observer has her own quantum mechanical theory, which is precise for some special

observers and approximate in general.8 There are then consistency conditions between the

different theories to ensure that observers who can communicate with each other agree

on the results of low-energy experiments visible to them both. Within this framework it

was argued [14, 15] that if the AMPS experiment cannot be done, the firewall argument

breaks down.9 The basic point is that physical restrictions on what measurements can be

done weaken the overlap conditions, allowing for more “disagreement” between Alice and

Charlie’s quantum mechanical descriptions of what is going on.

The other proposal for the Hilbert space structure, which might be called “standard

complementarity”, claims that there is a single Hilbert space in which states undergo exact

unitary evolution. The quantum physics of various observers are embedded into this single

Hilbert space in such a way that each observer has for each time slice a set of distinct

operators that approximately commute. The semiclassical interpretation of an operator

according to one observer can be quite different from that of another observer however,

and in particular things which are inside the horizon according to one observer might be

outside from the point of view of another. This viewpoint is essentially that of [5–7], and

6In [9] these limits were used to conjecture that “precise” descriptions of spacetime require observers

who have access to an infinite amount of information. This conjecture is distinct from the idea proposed

here, but they are clearly related.
7There could be “cosmological” restrictions on what Charlie is able to do, but it seems that these should

be decoupled from restrictions “intrinsic” to the black hole. From our discussion of Udyn in section 3.3 it

seems that in a completely pristine environment Charlie should even be able to test unitarity in polynomial

time; we won’t address whether or not Charlie would be able to do this in a “noisy” environment.
8This general point of view has been advocated by Banks and Fischler, who have tried to realize it

more concretely in a formalism called “holographic spacetime” [10, 11]. In their setup quantum mechanics

is precise for all observers, even those who encounter singularities or recurrences. They have recently

argued that their formalism evades the firewall argument [12], but their claim requires a decoupling in

Charlie’s description of the black hole dynamics between the near-horizon field theory modes and the

horizon degrees of freedom. Such a decopuling seems rather implausible, especially in the context of the

mining operations of [1, 13].
9In [15] one of us tried to argue, for a reason having nothing to do with computation, that the experi-

ment cannot be done. That argument proved unconvincing, and we regard the computational complexity

arguments of this paper to be much stronger.
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in the context of firewalls it is sometimes called “A = RB” for reasons we will soon see. It

has been suggested by several people10 as a way out of firewalls, but it has so far run into

various paradoxes involving apparent cloning and acausality [14, 18]. We postpone further

discussion of these two options until after we present the firewall argument, but it seems

that in either framework our computational breakdown of EFT may be sufficient to avoid

the paradoxes without any need for firewalls.11

It is also interesting to think about whether more general types of black holes have fire-

walls. For example Reissner-Nordstrom black holes semiclassically seem to take an infinite

amount of time to evaporate, apparently allowing ample time for quantum computation

prior to jumping in. We will explain however that the well-known “fragmentation” phe-

nomenon [20, 21] destroys the black hole well before the computation can be completed.

Big AdS black holes do not evaporate at all, so the AMPS argument does not directly

apply to them, but arguments have been put forward suggesting that they nonetheless

have firewalls. In particular Don Marolf has argued that one could simply mine the black

hole until half of its entropy is gone, after which the mining equipment would play the role

of the Hawking radiation in the original AMPS argument. If the decoding time is indeed

exponential in the entropy of the black hole, as we argue it is, then it becomes comparable

to the Poincaré recurrence time of the AdS-Schwarzschild space [22]; we argue that no

observer or computer can isolate itself from a big black hole for so long in AdS space.

The strictest test of our criticism of the AMPS experiment uses a setup suggested to

us by Juan Maldacena, in which a large AdS black hole is placed very far down a throat

whose geometry is asymptotically Minkowski. By putting the decoding apparatus out in

the Minkowski region, it seems that one could use the redshift to arbitrarily speed up the

decoding time compared to the evaporation time. We will explain in section 5 however that

the decoupling which makes the decay slow in this situation also makes it very difficult to

send the results of the computation back down the throat, and for a particular example we

show that, for a wide variety of probes, the time required to successfully send a message

down the throat is longer than the recurrence time of the black hole down the throat. So

indeed it seems there is a fairly robust conspiracy preventing the AMPS experiment from

being done. These results are consistent with a point of view expressed by Aaronson [23]

that the laws of physics should not permit computational machines that radically alter the

basic structure of complexity theory. At most, they should force some marginal changes

around the edges, as in the case of Shor’s factoring algorithm.

It is interesting to note that if our computational complexity argument is correct, it

supersedes many of the classic black hole thought experiments [3, 5–7]. In particular the

argument of [3] that the scrambling of information by a black hole in a time no faster than

M logM is necessary to prevent observable cloning would no longer be needed.

An objection to our argument that we have sometimes encountered is the following:

say that we have a quantum computer which is simulating some quantum gravity theory

10Including but probably not limited to [14, 16, 17].
11Another interesting proposal, raised again recently in the firewall discussion by John Preskill and Alexei

Kitaev, is the Maldacena/Horowitz “black hole final state” scenario [19]. Our results could have interesting

implications for that idea, but we won’t explore them here.
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like N = 4 Super Yang-Mills theory. Somebody who is working the computer could decide

to make a black hole in the simulation, let it evaporate for a while, pause the simulation,

use the computer to decode the radiation while the simulation is paused, and then start the

simulation again. In this way divine intervention from the outside is able to circumvent

our claim that the radiation cannot be decoded in time for an infalling observer to see

it. One can try to make this proposal sound somewhat less artificial by setting it in

AdS, where the claim would be that, since the spacetime is not globally hyperbolic, these

manipulations can be done by coupling the bulk to an arbitrary external system at the

boundary and manipulating this coupling at will. From our point of view however the main

question at stake here is whether or not nonsingular initial data on some Cauchy surface

generate singularities (such as firewalls) beyond those predicted by low energy physics.

We are less concerned about the question of what happens if some godlike entity, external

to the system, disrupts it in some arbitrary way. In particular if something subtle like

standard complementarity is going on in the structure of the Hilbert space, then outside

manipulations which naively don’t affect the region behind the horizon might actually

have rather drastic effects on it.12 We would be more concerned by this argument if the

coupling of AdS to the external system were accomplished in a manner in which it were

clear that low energy physics might be expected to hold throughout the joint system, and

indeed one can interpret the throat geometry we discuss in section 5 as a realization of

this. In that setup physical restrictions seem to prevent any observer from overcoming the

computational complexity of decoding.

This introduction has telegraphically sketched our main points. In the remainder of the

paper we will make the case again in much more depth. Because of our expected audience

we will try to keep our discussions of quantum computation and coding self-contained, but

the same definitely cannot be said for our discussions of black holes and gravity. Other

work on firewalls includes [25–35].

2 The firewall argument

We begin with a somewhat reorganized presentation of the original argument of [1]. Their

argument rests on some basic assumptions about the quantum description of a black hole

from the points of view of an external observer Charlie and an infalling observer Alice, and

we will try to be clear about what these assumptions are. The argument has many fine

technical points, and we will not address all of them. Our goal is to motivate equation (2.4),

on which the rest of our paper will be based.

12Adam Brown has pointed out that somebody who believes this “pause the simulation argument” might

also use it to support Hawking’s original nice-slice argument for non-unitarity by claiming that an external

deity could reach inside of the black hole and teleport the collapsing matter that originally made the black

hole out into the vicinity of the Hawking radiation, producing verifiable cloning unless unitarity is false.

This clearly illustrates the danger of using a naive picture of the Hilbert space in “pause the simulation”

arguments. Another example is the eternal two-sided AdS black hole [24], where even though the dual is

two decoupled CFTs it seems reasonable to expect that doing arbitrary manipulations on one of the CFTs

destroys the interior for somebody who jumps in from the other side.
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2.1 A quantum black hole from the outside

We’ll first discuss Charlie’s description, which is based on the following three postulates:

• According to Charlie, the formation and evaporation of the black hole is a unitary

process. Moreover, in addition to an asymptotic S-matrix, we can also think about

either continuous or discrete time evolution in which at any given time there is a pure

quantum state |Ψ〉 in some Hilbert space Houtside.

• At any given time in this unitary evolution we can factorize Houtside into subfactors

with simple semiclassical interpretations:

Houtside = HH ⊗HB ⊗HR. (2.1)

Here HR are the modes of the radiation field outside of the the black hole, roughly

with Schwarzschild coordinate radius r > 3GM . HB are the field theory modes in

the near-horizon region, roughly with support over 2GM + ε < r < 3GM where

ε is some UV cutoff. The geometry in this region is close to Rindler space. HH
are the remaining degrees of freedom in the black hole, which we can heuristically

think of as being at the stretched horizon at r = 2GM + ε. Clearly the distinctions

between these subfactors are somewhat arbitrary. In particular, it will be convenient

to restrict the modes in HB to have Schwarzschild energy less than the black hole

temperature T = 1
4πGM . Those with higher energy are not really confined to the

near-horizon region and we will include them as part of HR. The time evolution of

|Ψ〉 does not respect this factorization and cannot be computed using low energy field

theory, but for our purposes it is enough to consider the state at a given time.

• If |H| and |B| are the dimensionalities of HH and HB respectively, then log |H| and

log |B| are both proportional to the area of the black hole horizon in Planck units

at the time at which we study |Ψ〉. Thus their size decreases with time. Naively

HR is infinite dimensional since all sorts of things could be going on far from the

black hole, but we will restrict its definition to only run over the subfactor which in

|Ψ〉 is nontrivially involved in the black hole dynamics. Thus the size of HR grows

with time.

The third assumption leads to an interesting distinction between “young” and “old” black

holes [3], with the separation based on whether |R| is bigger or smaller than |H||B|. When

the black hole is young, |R| is quite small and B and H are entangled significantly. As the

black hole becomes old however, |R| becomes large and B and H taken together become a

small subsystem of the full Hilbert space Houtside. Page’s theorem [36] then suggests that

the combined system BH has a density operator which is close to being proportional to

the identity operator:13

ρBH ≈
1

|B||H|
IB ⊗ IH . (2.2)

13Page’s theorem says that in a Hilbert space which can be factorized into HA ⊗HB , with |A| ≤ |B|, a

typical pure state has SA = log |A| − |A|
2|B| +O

(
1
|A|

)
.
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The time beyond which this is true has come to be called the Page time. More carefully we

would expect a thermal distribution in the Schwarzschild energy at the usual temperature

T = 1
4πGM , but since we have put high-frequency modes in HR the thermal density matrix

for HH ⊗HB is quite close to (2.2).14

We can describe the state concisely by saying that BH is maximally entangled with a

subspace in R. More precisely, there is a |Ψ〉-dependent decomposition of HR

HR = (HRH ⊗HRB )⊕Hother, (2.3)

with |RH | = |H| and |RB| = |B|, such that we can write the state of the full system, to a

good approximation, as15

|Ψ〉 =

(
1√
|H|

∑
h

|h〉H |h〉RH

)
⊗

(
1√
|B|

∑
b

|b〉B|b〉RB

)
. (2.4)

Here h and b label orthonormal bases for HH and HB respectively, and we have chosen

convenient complementary bases forHRH andHRB . RH and RB are called the purifications

of H and B respectively. The state has zero projection onto Hother.

This form of |Ψ〉 makes it clear that any measurement done on B is perfectly correlated

with some other measurement done on RB. This consequence of the entanglement was em-

phasized in [1]; in their language measurements done on RB project onto particular states

in the basis |b〉B. We hope that it is clear however that the presence of this entanglement

does not require any such measurement to be done; once we accept the three assumptions

the entanglement follows directly. Indeed we would argue that Charlie’s ability to measure

RB provides justification for accepting the Hilbert space structure of the model.16

2.2 A quantum black hole from the inside

We now consider Alice the infalling observer’s point of view. As mentioned in the introduc-

tion, it may be possible to “embed” Alice’s quantum mechanics into Charlie’s via some sort

of nontrivial operator mapping. We will discuss this eventually but for the moment will

just treat Alice’s theory as an independent construction. Here are the basic assumptions

about it:

• Although Alice eventually hits the singularity, we imagine that well before that she

has an approximately quantum mechanical description of her experiences in terms of

a quantum state on a time slice like the one shown in figure 1. We will not insist

that the state be pure.

14It is important in what follows that these “low-energy” modes can have quite high proper energy near

the horizon, so they are relevant to the experience of an observer who is near the horizon even though the

Schwarzschild temperature is typically very small compared to any scale relevant to that observer.
15This representation of the state is called the Schmidt decomposition.
16Remember Charlie stays outside the black hole and has an arbitrarily large amount of time and re-

sources, so there seems to be no limit on his experimental ability. This will be different for Alice, whom we

discuss now.
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A B
R

Figure 1. Alice’s quantum mechanics, compared to Charlie’s. The world inside her horizon is

drawn in blue and the time slice she quantizes on is in red. For reference Charlie’s world is in

yellow, and the overlap is green. We’ve chosen Charlie’s black slice to coincide closely with Alice’s

near B and R.

• Alice’s Hilbert space also has a roughly semiclassical factorization of the form

Hinside = HA ⊗HB ⊗HR ⊗HH′ . (2.5)

HereHB andHR are factors shared with Charlie, since they are outside the black hole

horizon and are causally accessible to both Charlie and Alice. HA are the field theory

modes just inside the horizon, say with support over GM < r < 2GM − ε. HH′ are

the remaining degrees of freedom having to do with Alice’s horizon (which is distinct

from the black hole horizon). HH is absent; the region 2GM − ε < r < 2GM + ε is

passed through by Alice in an extremely short period of time and does not have any

operational meaning to her. Of course, at times long before she falls in, the black

hole horizon is indistinguishable from her horizon, and HH is roughly part of HH′ .
We emphasize however that the details of this accounting don’t matter.

• Because HB and HR are shared with Charlie, we must have ρ
{Alice}
BR = ρ

{Charlie}
BR .

This is sometimes called the overlap rule, and it is designed to prevent contradic-

tions where Alice and Charlie disagree about the results of experiments they can

communicate about.

With these assumptions, one can now argue following AMPS that Alice must not see a

smooth vacuum at the horizon. Recall that the modes in HB and HA are basically Rindler

modes on two different sides of a Rindler horizon. In the Minkowski vacuum state such

– 9 –
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modes are close to maximally entangled:

|vac〉 ∼
∑
ω

e−
βω
2 |ω〉A|ω〉B, (2.6)

where βω is the dimensionless Rindler energy; here it is just the ratio of Schwarzschild

energy to the black hole temperature. This however is problematic from our discussion of

Charlie. We argued that for an old black hole Charlie should see B being close to maximally

entangled with RB, and by the third assumption about Alice this must also be true for her.

But entanglement in quantum mechanics is monogamous: such entanglement prevents B

from also being entangled with A as in (2.6). One way to see this more precisely, again

following AMPS, who themselves were motivated by a similar argument due to Mathur [37],

is to note that strong subadditivity [38] requires

SABRB + SB ≤ SAB + SBRB . (2.7)

By construction we have SBRB = 0, which also implies (for example by the Araki-Lieb

triangle inequality) that SABRB = SA. For (2.7) to be consistent with the subadditivity

inequality SA + SB ≥ SAB we then must have

IAB ≡ SA + SB − SAB = 0. (2.8)

IAB is called the mutual information between A and B, and it is zero if and only if the

density matrix ρAB is actually a product ρA ⊗ ρB. This is clearly inconsistent with A and

B being close to the highly entangled state (2.6). This concludes the AMPS argument;

one possible interpretation is that the resolution of the contradiction is that there is a

“firewall” of high energy quanta at the horizon of an old black hole which annihilates any

infalling observer.

2.3 A way out?

A key step in the AMPS argument is that B and RB are accessible to both Charlie and Alice

and that therefore they must agree on the entanglement between them. But is this really

true? In [15] it was argued that it is difficult for Alice to measure B because she passes

through it quickly, but the details of that argument have not worked out satisfactorily. The

much more difficult measurement however is the one on RB. RB is defined as the subfactor

of the Hawking radiation which is entangled with B, but this subfactor is presumably

very convoluted from the point of view of a basis of Hawking quanta that is easy to

measure. Probing RB entails doing quantum measurements involving nonlocal quantum

superpositions of large numbers of Hawking quanta. Such measurements need to be very

carefully engineered, and one might expect that this engineering takes a significant amount

of time. This is no problem for Charlie, who has all the time in the world to look at the

Hawking radiation, but Alice needs to be able to make the measurement fast enough that

she can then jump into the black hole before it evaporates. In this paper we will argue

that Alice simply does not have time to do this.

As a result one can consider modifying her postulated quantum mechanics, for example

in one of the two directions described in the introduction. In the “strong complementarity”

– 10 –
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approach, Alice’s quantum mechanics has no direct relation to Charlie’s. They are related

only insofar as they must agree on the results of experiments which are visible to both

of them. Since operators acting on HRB are not accessible to Alice, our computational

criterion for the breakdown of effective field theory allows us to either disentangle HRB
from HB in Alice’s theory (but not Charlie’s) or more perhaps simply to just remove

HRB from her Hilbert space altogether. This then “frees up” B to be entangled with A,

ensuring Alice a smooth journey across the horizon. In “standard complementarity” we

instead think of Alice’s theory as being embedded in Charlie’s. To avoid firewalls one might

try to arrange that operators on Alice’s HA are really just her interpretations of operators

acting on what Charlie would have called HRB . As mentioned in the introduction, this

idea, which is essentially an enhanced version of the original proposal of [5–7], is referred

to as “A = RB” since the entanglement will only work out consistently if we “build”

interior operators out of exterior operators which already have the correct entanglement

with operators acting on HB. Without limitations on Alice’s ability to directly measure

RB however it seems to lead to paradoxes and has thus been viewed with some skepticism.

We view our work as potentially restoring the credibility of this proposal. We will discuss

this a bit more concretely in section 6 below.

3 The AMPS experiment as a quantum computation

We now begin our discussion of the decoding problem confronting Alice. We will phrase the

discussion in terms of Charlie’s Hilbert space, since for the moment we are following AMPS

and granting that Charlie and Alice must agree on the density matrix of HB ⊗ HR. For

simplicity we will throughout model all Hilbert spaces using finite numbers of qubits. In the

Schmidt basis the state of the old black hole she is interested in is given by equation (2.4),

but this basis is very inconvenient for discussing Alice’s actions. From here on we will use

exclusively a basis for the radiation field which is simple for Alice to work with, and whose

elements we will write as

|bhr〉R ≡ |b1 . . . bk, h1 . . . hmr1 . . . rn−k−m〉R. (3.1)

Here there are n ≡ log2 |R| total qubits, each of which we assume Alice can manipulate

easily. b1 . . . bk are the first k of these qubits, where k is the number of bits in HB, and m

is the number of bits in HH . We can think of k+m as the number of qubits remaining in

the black hole; we will eventually argue that the decoding time is likely of order 2k+m+n.

The ri qubits make up the remainder of the modes which have non-trivial occupation from

the Hawking radiation. Roughly we might expect that

n ≈ Sinitial/ log 2− k −m, (3.2)

where Sinitial is the horizon area in Planck units of the original black hole prior to any

evaporation. This is something of an underestimate because the computational basis is

local while the information is nonlocal, but this “coarse-graining” enhancement isn’t large.

The radiation mostly comes out in s-wave quanta so it is effectively one-dimensional. It
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extends out to a distance L ∼M3 and consists mostly of quanta whose energy is of order

1/M , so its thermal entropy is n ≈ LT ∼ M2, which is still of order the initial black hole

entropy as we would conclude from (3.2).17 Perhaps surprisingly the black hole makes

quite efficient use of the information storage capacity available to it.

We will adopt standard terminology and refer to the basis (3.1) as the computational

basis. In the computational basis we can write the state (2.4) as

|Ψ〉 =
1√
|B||H|

∑
b,h

|b〉B|h〉HUR|bh0〉R, (3.3)

where UR is some complicated unitary transformation onHR. What unitary transformation

it is will depend on the details of quantum gravity, as well as the initial state of the black

hole. For simplicity we have defined it to act on the state where all of the ri qubits are

zero. Clearly the challenge Alice faces is to apply U †R to the Hawking radiation, after which

it will be easy for her to confirm the entanglement between HB and HRB . Engineering a

particular unitary transformation to act on some set of qubits is precisely the challenge of

quantum computation, and we will henceforth often refer to Alice’s task as a computation.

So far we have been interpreting HB as the thermal atmosphere of the black hole, but

to actually test the AMPS entanglement it would be silly for Alice to try to decode all of the

atmosphere. Indeed the separation between HB and HH is rather ambiguous, and we are

free to push some of the atmosphere modes we are not interested in into HH . So from here

on we will mostly take k to be O(n0). This ostensibly simplifies her computation, because

in any event she only needs to implement UR up to an arbitrary element of U(2n−k) acting

on the last n − k qubits of the radiation. This simplification turns out to be irrelevant

since the dimensionality of the coset U(2n)/U(2n−k) still scales like 22n for k > 0, but

more importantly it is clear from (3.3) that UR has only really been defined acting on

the 2k+m-dimensional subspace of HR spanned by states of the form |bh0〉. Its action

on the orthogonal subspace can be chosen freely to simplify the computation provided

that it preserves orthogonality, and we will see below that this reduces the time of Alice’s

computation from a naive 22n to only 2k+m+n. Since the black hole is old we have n > k+m,

so this is at least 22(k+m).

Since the unitary group is continuous it is clear that Alice will not be able to do the

computation exactly. We thus need a good definition of how “close” she needs to get to

reliably test the entanglement. One standard way to quantify closeness of operators is the

trace norm [39], which for an operator A is defined as

||A||1 ≡ Tr
(√

A†A
)
. (3.4)

When A is hermitian this is just the sum of the absolute values of its eigenvalues. The

motivation for this definition is as follows: say ρ1 and ρ2 are two density matrices, and Πa

is a projection operator for some measurement to give result a. Then

|P1(a)− P2(a)| = |Tr {(ρ1 − ρ2)Πa} | ≤ ||(ρ1 − ρ2)||1, (3.5)

17We thank Don Page for several useful discussions of this point.
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B R C

U

C

comp

R

Figure 2. What the computer does. The connecting lines at the top and bottom indicate entan-

glement, and time goes up. The subsystem H goes along for the ride, and after the computation

its purification is split between R and C in some complicated way.

so if the trace norm of the difference of two density operators is less than ε then the

probabilities they predict for any experimental result will differ by at most ε. The trace

norm of their difference is clearly preserved by unitary evolution.

If both states are pure then the trace norm of their difference has a simple interpreta-

tion. For any two pure states |Ψ1〉 and |Ψ2〉 we can write that

|Ψ2〉 = eiα
(√

1− δ2/4|Ψ1〉+
δ

2
|χ〉
)
, (3.6)

where |χ〉 is orthogonal to |Ψ1〉, α is real, and δ is real and positive. A simple calculation

then shows that

|| |Ψ2〉〈Ψ2| − |Ψ1〉〈Ψ1| ||1 = δ. (3.7)

3.1 Quantum computing is hard

We begin with a rather formal discussion of Alice’s computation to illustrate some basic

limitations on what is possible; we will take a more standard approach in the following

subsection. In order to do her computation Alice needs to adjoin the radiation to some

computer, whose initial state lives in a new Hilbert space HC , and then wait for the natural

unitary evolution Ucomp on HR ⊗ HC to undo UR and put the bits which are entangled

with B into an easily accessible form, let’s say the first k qubits of the memory of the

computer. We show this pictorially in figure 2. For most of this subsection we will fix

the amount of time that the computer runs for, meaning that we will take Ucomp to be

determined by the laws of physics and thus unchangeable. The only way Alice has any

hope of getting the computer to do what she wants is by carefully choosing its initial state.

Without loss of generality she can take this initial state to be pure, perhaps at the cost of

increasing the size of the computer. We will show that no matter how large she makes her

computer, it is very unlikely that she will be able to find even one initial state which does

the computation.
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More precisely what Alice would like to do is find a state |Ψ〉C which for all b and h

evolves as

Ucomp : UR|bh0〉R ⊗ |Ψ〉C 7→ |something〉 ⊗ |b〉mem, (3.8)

where |something〉 is any pure state of the computer and radiation minus the first k bits of

the memory. |something〉 can and will be different for different h. To estimate how likely

it is that such a |Ψ〉C exists, we discretize the Hilbert space using the trace norm. In any

Hilbert space H of dimension d we can find a finite set Sε ⊂ H with the property that any

pure state in H is within trace norm distance ε of at least one element of Sε. Such a set

is called an ε-net, and it is not too hard to get an estimate of how many elements it must

have [40]. One first observes from (3.7) that half of the trace norm difference is weakly

bounded by the Hilbert space norm:

|||Ψ2〉−|Ψ1〉||22 = 2
(

1−cosα
√

1− δ2/4
)
≥
(
δ

2

)2

=

(
1

2
|| |Ψ2〉〈Ψ2|−|Ψ1〉〈Ψ1| ||1

)2

. (3.9)

Thus an ε/2-net for the Hilbert space norm is also an ε-net for the trace norm. The

minimal size of an ε/2-net for the Hilbert space norm is the number of balls of radius ε/2

centered on points on the unit sphere in R2d that are needed to cover it, which at large d

is proportional to some small power of d times
(

2
ε

)2d−1
.18 Intuitively we may just think of

unitary evolution as an inner-product preserving permutation of the
(

2
ε

)2d
states.

Applying this now to our discussion of the computer, for fixed b and h the total

number of possible states that could appear on the right hand side of (3.8) is
(

2
ε

)2|C||R|
.

The number of possible |something〉’s is
(

2
ε

)2|R||C|2−k
. For a given |Ψ〉C , the probability

over random choices of Ucomp that (3.8) holds for all 2k+m values of b and h is then roughly(
2
ε

)−2|C||R|2m(2k−1)
. The number of available initial states is

(
2
ε

)2|C|
, so the probability that

Alice can find one for which (3.8) holds is no more than19

P =

(
2

ε

)−2|C|(|R|2m(2k−1)−1)
. (3.10)

For any nontrivial k and |R| = 2n, it is clear that this probability is extraordinarily

small. Making the computer bigger just makes it even more unlikely that the computation

can be done!

What then is Alice to do? One might hope that, although the probability of success

is small for any given computer size, by searching over many values of |C| Alice might

find one that works. This is a bad idea; summing (3.10) over |C| produces a finite sum

18This is a slight overestimate for the size of the trace norm ε-net because the Hilbert space norm

distinguishes between states that differ only by a phase while the trace norm does not. We can fix this by

taking the quotient of the unit S2d by the phase to get to a unit CPd−1, whose volume is just a negligible

power in d times the volume of S2d. This quotient effectively sets α = 0 between any two states, in which

case equation (3.9) tells us that the Hilbert space norm becomes close to one half the trace norm. The

induced metric CPd−1 inherited from R2d will then for small ε be the same as one half the trace norm

distance. The upshot is then that the number of balls needed to cover CPd−1 scales like
(
2
ε

)2d−2
.

19In this counting we can easily ignore the constraint that orthogonal states must be sent to orthogonal

states.
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whose value remains exponentially small in |R|. Alice can do better however by varying the

running time of the computer. This lets her sample a variety of Ucomp’s without increasing

the size of the Hilbert space. If each Ucomp is different, then the longest she might have to

wait to get a Ucomp that works is

t ∼ e2 log( 2
ε )|R||C||H||B|. (3.11)

Although finite, this is unimaginably long for any reasonable system size. For an astro-

physical black hole in our universe it is something like 101010
40

years.

The timescale (3.11) has a simple physical interpretation; it is the quantum recurrence

time. This is the timescale over which a quantum system comes close to any given quantum

state, and as we found here is double-exponential in the entropy of the whole system. In

doing the computation this way, Alice is simply waiting around for a quantum recurrence

to do it by pure chance.

Fortunately for civilization, these simple estimates are not the final word on quantum

computing power. In particular, (3.11) does not really hold unless Ucomp is chosen randomly

at each time step. To the extent that there is some structure in how Ucomp varies with

time, as there is in our world, Alice can take advantage of it to speed up her computation.

Similarly, if the way Ucomp changes with increasing |C| also has structure, she can use

that as well. The lesson of this section however is that without using special properties

of the computer-radiation dynamics, no amount of preparation of the initial state of her

computer will allow Alice to do her computation in any reasonable amount of time. In

the following two sections we will see that by using such physical properties Alice is able

beat the double exponential in computer entropy down to a single exponential in just the

radiation entropy, but we will also argue that that is probably all she gets.

As a tangential comment it is interesting to note that the result of this section is

actually special to quantum mechanics; there is a somewhat analogous problem in classical

coding which can easily be solved by making the computer bigger. Say that we have a

classical bit string of length n. There are 2n such strings, but say we are interested in some

subset of size 2k. For example this could be the set with a k-bit message in the first k bits

and zero for the rest. Acting with some random permutation on the space of 2n strings,

we can send these 2k strings to a set of 2k scrambled “code words”, which are analogous

to some basis for RB in the quantum problem. We could then imagine adjoining one of

our n-bit strings to a c-bit “computer” string, and then acting with a given permutation of

the 2n+c states of this larger system. This permutation is the analogue of our Ucomp. The

question is then the following: given this larger permutation, can we find a single initial

string for the computer such that, after the permutation is applied, it will send the set of

codewords to a set for which the message is again displayed in the first k qubits. It turns

out that the answer to this question is yes; out of the(
2n+c

2k

)
≈ 2

(
n+c−k+ 1

log 2

)
2k

(3.12)

possible sets of codewords there are 2(n+c−k)2k which have the message in the first k bits.

Thus for a given initial string for the computer the probability that the permutation sends
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a generic set of codewords to a “good” set is

P ≈ e−2k , (3.13)

which for fixed k we can easily beat by trying the various 2c initial states for the computer.

It does require an c ∼ 2k-bit computer however.

3.2 Implementing a general unitary transformation with quantum gates

In our world, the result of the previous section, that doing a quantum computation at

worst takes a time which is double exponential in the entropy of the computer, had better

not be optimal if we are ever to do any quantum computation at all. It can be improved

upon of course, and the reason is that locality of interactions makes the dependence of

Ucomp on time and computer size very special indeed.20 Since no quantum computer has

yet been built we do not know exactly how one might be implemented physically, but

there is a widely accepted model for quantum computation called the quantum circuit

model. In the quantum circuit model one imagines having a “quantum memory” consisting

of n qubits, on which one can easily act with some finite set of one- or two-qubit unitary

transformations, called quantum gates, on any qubit or pair of qubits. The computer builds

up larger unitary transformations by applying the various gates successively. Interestingly

the number of different types of gates needed to generate arbitrary unitary transformations

with high precision is quite small. In fact, one is sufficient provided it is generic enough

and that it can be applied to any two of the qubits (and in either order on those two). A

set of gates having this property is called universal. A specific set of three gates which is

universal is the Hadamard gate, which acts on a single qubit as

H|0〉 =
1√
2

(|0〉+ |1〉)

H|1〉 =
1√
2

(|0〉 − |1〉) , (3.14)

the Z1/4 gate which acts on a single qubit as21

Z1/4|0〉 = |0〉

Z1/4|1〉 = e
iπ
4 |1〉, (3.15)

and the CNOT gate Ucnot, for “controlled not”, which acts on two qubits as

Ucnot|b1, b2〉 = |b1, b1 + b2〉 (3.16)

with the addition being mod 2. This gate flips the second bit if and only if the first bit is

1. There is a standard graphical notation for representing circuits, which we have already

used in figure 2, and we illustrate it some more in figure 3.

20This subsection is entirely pedagogical and contains no original material, good references are [41–43].
21In this equation we see the unfortunate but standard convention in quantum computation theory that

the Pauli-z operator, usually written as Z, acts as Z|0〉 = |0〉 and Z|1〉 = −|1〉. The Hadamard operator

can then be interpreted as switching from the Z eigenbasis to the X eigenbasis. As a simple example it is

worth seeing how to build the Pauli operators X, Y , and Z out of H and Z1/4 gates.
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H Z
14

H

Figure 3. The standard representations of the three gates described in the text, as well as a simple

circuit that maps the product basis |b1, b2〉 to a basis each element of which has the two qubits

maximally entangled. In the CNOT gate the addition is done at the hollow circle.

We can now ask how many gates are needed to make a complicated unitary transfor-

mation like UR in equation (3.3). This is a good measure of the amount of time/space

needed to actually do the computation, since we can imagine that the gates can be imple-

mented one after another in a time that scales at most as a small power of n. For a set of

f fundamental gates, the number of circuits we can make which use T total gates is clearly((
n

2

)
f

)T
≈ (n2f)T . (3.17)

To proceed further we need some basic idea of size and distance for the unitary group.

The unitary group on n qubits is a compact manifold of dimension 22n, and we can

parametrize its elements as

U = ei
∑22n

a=1 cat
a
. (3.18)

Here ta are generators of the Lie algebra of U(2n), and we can very roughly think of the

ca’s as parametrizing a unit cube in R22n . Also roughly we can think of linear distance in

this unit cube as a measure of distance between the unitaries. For example say we wish to

compute the difference between acting on some pure state |Ψ〉 with two different unitary

matrices U1 and U2 and then projecting onto some other state χ:

〈χ|(U1 − U2)|Ψ〉 = 〈χ|
(
I − U2U

†
1

)
U1|Ψ〉 ≈ −i〈χ|

∑
a

δcat
aU1|Ψ〉. (3.19)

If the sum of the squares of the δca’s is less than ε2, the right hand side will be at most

some low order polynomial in 2n times ε. This polynomial is irrelevant as we now see.

Around each of our (n2f)T circuits we can imagine a ball of radius ε in R22n . The

volume of all the balls together will be of order the full volume of the unitary group when

(n2f)T ε2
2n ≈ 1. (3.20)

Thus we see that in order to be able to make generic elements of U(2n) we need at least

T ∼ 22n log

(
1

ε

)
(3.21)
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gates, where we have kept only the leading dependence on n and ε. As promised, because

ε appears inside a logarithm the crude nature of our definition of distance has not mat-

tered. More importantly, we see that the number of gates is now only a single exponential

in (twice) the entropy. The fact that this crude counting bound can be achieved by an

appropriate sequence of gates is known as the Solovay-Kitaev theorem. So the quantum

circuit model is able to do arbitrary quantum computations much faster than our calcu-

lation of the previous section suggested; this is essentially because locality enables us to

dynamically isolate parts of the computer in such a way that we can push the chaos of the

system into heating the environment (not explicitly modeled here) instead of messing up

our computation.

Given that we have so quickly beaten down a double exponential to a single expo-

nential, one might be optimistic that further reduction in computing time is possible.

Unfortunately, in our universe that does not seem to be the case. Simple modifications of

the quantum circuit model such as changing the set of fundamental gates or considering

higher spin fundamental objects instead of qubits, for example qutrits, make only small

modifications to the analysis and don’t change the main 22n scaling. One could imagine

trying to engineer gates that act on some finite fraction of the n qubits all at once, perhaps

by connecting them all together with wires or something, but it is easy to see that any such

construction requires a number of wires exponential in n. One could also try to parallelize

by applying gates on non-overlapping qubits simultaneously whenever possible, as well as

adding additional “ancillary” qubits. As long as the number of extra qubits scales like

some power of n, however, it is clear they cannot beat the 22n. Even with exponentially

many ancilla or wires just the travel time between the various parts of the computer will be

exponential in n. In the face of these difficulties the reader might be tempted to try using

some sort of exotic nonlocal system like a black hole to do the computation, but this would

just give up what the circuit model accomplished and most likely return us to the even

worse situation of the previous section. In this paper we will adopt the widely held point

of view that the quantum circuit model accurately describes what are physically realistic

expectations for the power of a quantum computer.

Thus if UR has no special structure, we do not expect Alice to be able to implement

it (or its inverse) in time shorter than 22n. As discussed below equation (3.3) however,

UR was defined only by its action on a subspace of dimension 2k+m. In studying the

complexity of UR we are free to quotient U(2n) by multiplication on the right by a block

diagonal matrix which acts as the identity on the subspace spanned by states of the form

|bh0〉. The dimensionality of this quotient is 2k+m+n, and since it is good enough to find

a circuit which produces any element of the coset containing UR the counting argument of

this section suggests that Alice will be able to use a decoding circuit implementable in a

time scaling like

T ∼ 2k+m+n. (3.22)

3.3 Why is Alice’s computation slower than the black hole dynamics?

We now turn to the question of whether or not the black hole dynamics constrain UR in

any way that could help Alice implement it faster. One thing we know about the black
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Figure 4. The black hole dynamics for a 7-bit black hole. With each step the subfactor we interpret

as the radiation gets larger.

hole is that it produces the state (3.3) relatively quickly, in a time that scales like n3/2 for a

Schwarzschild black hole. This seems to suggest that Alice might be able to implement U †R
quickly by some sort of time-reversal. This turns out not to be the case. To explain this

we introduce a slightly more detailed model of the dynamics that produce the state (3.3).

To describe the evaporation process it is clearly necessary to have a Hilbert space in

which we can have black holes of different sizes. We can write this as

H = ⊕nfn=0

(
HBH,nf−n ⊗HR,n

)
. (3.23)

Here the subscripts n and nf − n indicate the number of qubits in the indicated Hilbert

spaces. The dimensionality of H is nf2nf . We can imagine starting in the subspace with

n = 0 and then in each time-step acting with a unitary transformation that increases n by

one. We will take the evolution on the radiation to be trivial. The black hole becomes old

after nf/2 steps. This “adiabatic” model of evaporation assumes equation (3.2) is exact

and does not involve any energetics but, as discussed below equation (3.2), it is not a bad

approximation for the decay of a Schwarzschild black hole: the number of Hawking quanta

produced is of order the entropy of the black hole, and so is their coarse-grained entropy.

An actual black hole formed in collapse will have some width in energy, which here

means a width in n, but by ignoring this we can make a further simplification. Starting in

one of the 2nf states with n = 0, the evolution never produces superpositions of different

n. So we can actually recast the whole dynamics as unitary evolution on a smaller Hilbert

space of dimension 2nf , but in which the interpretation of subfactors changes with time.

We illustrate this with a circuit diagram in figure 4.

With this simplification we can now combine all of the timesteps together into one big

unitary matrix Udyn acting on our 2nf dimensional Hilbert space. The matrix UR appearing

in the state (3.3), which we now interpret as having been produced by Udyn, will (unlike

Udyn) depend rather sensitively on the initial state, and since Alice only needs to be able

to do the computation for some particular initial state we will for simplicity choose it to
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just have all the bits set to zero. For n >
nf
2 we then expect

Udyn|00000〉init ≈
1√
|B||H|

∑
b,h

|b〉B|h〉HUR|bh0〉R. (3.24)

So this equation tells us something about UR, whose complexity we are interested

in understanding. To proceed further we need to make some sort of assumption about

Udyn. This is a question about the dynamics of quantum gravity so we can’t say anything

too precise, but for those black holes which are well understood in matrix theory [44] or

AdS/CFT [24, 45, 46] the dynamics are always some matrix quantum mechanics or matrix

field theory. Theories of this type can usually be simulated by polynomial-sized quantum

circuits [47–50], so it seems quite reasonable to assume that Udyn can be generated by a

polynomial number of gates.22 Such circuits are usually called “small”, so more precisely

we want to know the following: does the existence of a small circuit for Udyn imply the

existence of a small circuit for UR? If the answer is yes, then our model would imply that

Alice can decode RB out of the Hawking radiation fairly easily.

It is clear that acting on the state |00000〉init we can easily decompose Udyn into URUmix,

where Umix is a simple circuit that entangles the first four subfactors in |00000〉init:

Umix|00000〉init =
1√
|B||H|

∑
b,h

|b〉B|h〉H |bh0〉R. (3.25)

Umix is very easy to implement, we can just use the circuit on the right in figure 3 nf − n
times for a total of 2(nf − n) gates. We can then define a new operator

ŨR = UdynU
†
mix, (3.26)

which has the property that

ŨR
1√
|B||H|

∑
b,h

|b〉B|h〉H |bh0〉R =
1√
|B||H|

∑
b,h

|b〉B|h〉HUR|bh0〉R. (3.27)

ŨR can obviously be implemented with a small circuit, and it apparently seems to be

exactly what Alice needs; she can just apply the inverse circuit to the state (3.3) and

the decoding is accomplished. Unfortunately for her this does not work. Although the

operator ŨR appears to only act on the radiation, the circuit this construction provides

involves gates that act on all of the qubits. While she is doing the decoding Alice does not

have access to the qubits in B and H, so she cannot directly use them. Of course, if the

circuit really acted as the identity operator on B and H for any initial state this would

not matter, she could just throw in some ancillary qubits in an arbitrary state to replace

those in B and H and still use the Ũ †R to undo UR. The problem is that (3.27) holds only

22Technically this also assumes that the mapping from the “microscopic” degrees of freedom on which

the quantum mechanics looks simple to the “macroscopic” basis (3.1) is relatively simple. For low energy

fields outside the horizon this seems plausible to us, for example in AdS/CFT the well-known construction

of [51] seems to accomplish this in a straightforward way for operators outside the horizon. We discuss this

more in section (6) below.
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when ŨR acts on the particular state 1√
|B||H|

∑
b,h |b〉B|h〉H |bh0〉R. This can be traced back

to the fact that the definition of UR in the first place depended on the initial state of the

black hole on which Udyn acts.

Although Alice cannot use these small circuits to decode the entanglement, she can

move it around. For example acting with a CNOT gate three times on two qubits, switching

which qubit is the “control” qubit each time, exchanges the pair:

|b1, b2〉 → |b1, b1 + b2〉 → |b2, b1 + b2〉 → |b2, b1〉, (3.28)

so by adjoining a set of n ancillary qubits to the state |Ψ〉, Alice can use this operation

to achieve

1√
|B||H|

∑
b,h

|b〉B|h〉HUR|bh0〉R|000〉anc →
1√
|B||H|

∑
b,h

|b〉B|h〉H |000〉RUR|bh0〉anc.

(3.29)

This trivializes the state of the radiation, but of course doesn’t really accomplish much

since testing the entanglement still requires undoing UR. It does show however that Alice

can move the quantum information from the radiation to a more “stable” quantum memory

in a short amount of time.

The lesson of this section is that because Alice does not have access to all of the qubits

in the system, she is unable to simply time-reverse the black hole dynamics and extract

RB in a time that is polynomial in the entropy. Without such a simple construction,

she will in general be left with no option but to brute-force her construction of U †R using

of order 2n+k+m gates.23 It is still possible that some yet-unknown special features of

black hole dynamics will conspire to provide a simple circuit for UR, but it would be

rather surprising. After all there are many ways a unitary could be atypical, and most

still require exponentially many gates. In the following section we will see that for some

analogous questions in the theory of error-correcting codes, within the context of simple

circuits with O(n2) gates it is possible to run into problems which almost certainly take

exponential time to solve. These results will unfortunately not be directly applicable here,

but by recasting Alice’s decoding task as an error correction problem we will be able to

get more intuition about how the exponential arises. We will also see that being able to

efficiently perform a decoding very similar to UR would have very unlikely implications for

the complexity class Quantum Statistical Zero-Knowledge.

3.4 Two counting arguments

So far we have mostly restricted ourselves to thinking about a particular black hole mi-

crostate, which in the previous section we took to be an element of the basis where Udyn

can be constructed out of a polynomial-size quantum circuit. By considering more general

23Of course even if she could just time reverse the black hole, the circuit would still take of order the

evaporation time to run. In fact since the black hole is old it would probably take longer to run than the

evaporation. We are not comfortable with this argument as a way out of firewalls however. Often when

there is a general algorithm that gives a polynomial circuit to do something, special details of the problem

and tricks like parallelization can be exploited to get polynomial increases in the running speed.
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initial states we can prove that for a generic initial state the decoding necessarily takes

exponential time. Restating the setup of the previous section, we can think of the black

hole as a polynomial-size circuit Udyn which acts on a set of microstates |i〉 as

Udyn|i〉 =
1√
|B||H|

∑
bh

|b〉B|h〉HUR(i)|bh0〉R. (3.30)

The point here is that we must be able to recover any initial state from the final state, so

the unitaries UR(i) must all be distinct elements of the coset U(2n)/U(2n−2m+k). But how

many initial states are there? If we ignore the coarse-graining that made equation (3.2)

only approximate, then there is a basis of size 2n+k+m for the total number of initial states

of the black hole. The full set of initial states includes superpositions however, and we can

count them by constructing an ε-net like that discussed around equation (3.9). The total

number of initial states then is roughly
(

1
ε

)2n+k+m
. The point then is that this is comparable

to the total number of elements in the coset, which also scales like
(

1
ε

)2n+k+m
. Since each

state |i〉 must have its own distinct UR(i), the vast majority of initial microstates must be

decoded by generic UR’s which necessarily take time of order 2n+k+m to implement. Being

more careful about the coarse-graining decreases the number of initial states somewhat,

but the number is still much too large for anything more than a vanishingly small fraction

to be decodable in polynomial time.

Proponents of the AMPS experiment could still hope for a basis of initial states where

each basis element is easy to decode. A natural basis to try is the one in which Udyn is

polynomial size, but we will present arguments in the following section that even in this

basis the decoding is hard. One could however try to construct such a basis by taking a

basis of final states where the decoding is trivial and then evolving it back with U †dyn.24

This construction can be disrupted however by taking into account the coarse-graining in

equation (3.2) more carefully. More explicitly, let’s say that n+k+m = Sinitial/ log 2+∆n

for some ∆n > 0. The number of initial states is then double exponential in n+k+m−∆n.

It is then not hard to see that even when ∆n = 1, this set of initial states produces a set of

UR’s which form a doubly-exponential small fraction of the coset U(2n)/U(2n − 2m+k). If

each UR were chosen at random and independently, it is doubly exponentially unlikely that

even one of these states would produce a UR which can be implemented with a polynomial-

size circuit. The initial states constructed by time reversal of trivial decoding states would

not correspond to black holes; they would be states in some larger Hilbert space involving

entanglement between the black hole and the radiation field.

4 Quantum coding and error correction

The theory of quantum error correcting codes has interesting implications for the AMPS

experiment, which we discuss in this section.25 We will review the main points of this

theory assuming no prior experience with the subject. This will be something of a sidetrip

from our main exposition, so casual readers may want to skip over this section in a first

24This possibility was suggested to us by Raphael Bousso.
25A recent paper [52] also discussed the AMPS argument in the language of error correction; their use of

error correction was quite different from that we discuss here.
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U

E S A

U

noise

correct

Figure 5. Quantum error correction. Here S is the system whose state we want to restore, E is the

environment it becomes entangled with via the interaction Unoise, and A is the ancilla it interacts

with via Ucorrect. At the end the environment is entangled with the ancilla and the system S is in

the same quantum state it started in.

reading. For the impatient the conclusions of relevance for AMPS are summarized at the

end of the section.

4.1 Review of error correcting codes

Typically quantum systems cannot be isolated from their environment. It is interesting

to understand to what extent a system which began in an unknown state can be restored

to that state after it has interacted nontrivially with its environment. Usually this is

done by introducing another ancillary system and transferring the entanglement with the

environment from the system whose state we want to restore to the ancillary system. We

show this pictorially in figure 5.

Error correction is not always possible. For example, say that the transformation Unoise

from figure 5 is such that it results in the system S being maximally entangled with the

environment E. There is no information about its initial state remaining in S, and no

choice of Ucorrect will allow recovery. What is perhaps surprising is that it is ever possible

to restore the initial state after a nontrivial Unoise has acted. To see that this can be done,

following Shor [53] we consider an arbitrary superposition |Ψ〉 = a+|+〉 + a−|−〉 of the

following two nine-qubit states:

|±〉 ≡ 1

23/2
(|000〉 ± |111〉) (|000〉 ± |111〉) (|000〉 ± |111〉) . (4.1)

As a crude model of interaction with the environment, we can imagine that the state |Ψ〉
will be acted on randomly by a single Pauli operator X, Y , or Z on one of its nine qubits.

After this can we restore the state |Ψ〉 without destroying it? As Shor explained in [53],

we can. The idea is to measure the following set of eight “check” operators:

Z1Z2, Z2Z3, Z4Z5, Z5Z6, Z7Z8, Z8Z9,

X1X2X3X4X5X6, and X4X5X6X7X8X9. (4.2)
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Since the states |±〉 are both eigenstates of eigenvalue one for all eight of these operators,

this measurement will do nothing to the state Ψ. Let’s say however that interaction with

the environment has caused the state to be acted on by X1. This commutes with the last

seven check operators, so their eigenvalues are unaffected, but it will change the result

of measuring Z1Z2 to from 1 to −1 for both states |±〉. It is easy to see that none of

the other possible single-Pauli errors will give this signature as a result of measuring the

check operators. We can then “repair” the error up to an overall irrelevant phase by acting

with X1. Similarly say that the error acts with Z1. This will now flip the eigenvalue of

X1X2X3X4X5X6 without affecting any of the other check operators. There are now two

other single-Pauli errors with the same signature, Z2 and Z3, but we can correct any of the

three up to an overall phase by acting with Z1 on the state. In this manner it is easy to

see that any single-Pauli error can be corrected.26 This protocol is called the Shor code,

and it was the first quantum error correcting code to be discovered.

The Shor code works for two reasons. One is that it is redundant, meaning that the

number of bits of information it protects is significantly fewer than the number of physical

bits present. This allows “room” for noise to creep in without disrupting the message.

The other reason is that it is nonlocal; the information is carried in the entanglement

between multiple qubits, which protects it against local decoherence and depolarization.

These observations motivate the general definition of a quantum code as a code subspace -

a k-qubit subspace of a larger n-qubit Hilbert space out of which we can build states we

wish to protect. In the Shor code the code subspace is spanned by the states |±〉. Given

a code subspace HC ⊆ H we can always define an encoding transformation Uenc with the

property that

|c̄〉 = Uenc|c1 . . . ck, 0 . . . 0︸ ︷︷ ︸
n−k zeros

〉, (4.3)

with |c̄〉 a complete basis for HC .

To describe error correction more generally, we first need to say more about how to

understand the noise generated in a quantum system S interacting with an environment.

In such a situation we can always write

Unoise|s0〉 =
∑
s′,e

〈s′e|Unoise|s0〉|s′e〉 ≡
∑
e

Me|se〉, (4.4)

where |e〉 is an orthonormal basis for the environment and the operators Me are called

Kraus operators [54]. They act only on the system S, have matrix elements

〈s′|Me|s〉 = 〈s′e|Unoise|s0〉, (4.5)

and obey ∑
e

M †eMe = 1. (4.6)

26It is not hard to describe this procedure in terms of unitary interaction Ucorrect with an ancillary

system. For example to measure Z1Z2 we introduce a single ancilla qubit in the state |0〉anc and then use

two CNOT gates with the first and second qubits being the control bits in the gate. This accomplishes

|b1, b2〉|0〉anc → |b1, b2〉|b1〉anc → |b1, b2〉|b1 + b2〉anc, which writes the result of the measurement onto the

ancillary qubit.
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A set of operators Me obeying (4.6) is sometimes called a quantum channel, or occasionally

a superoperator.

The Kraus operators can be awkward to work with in practice because their definition

depends on the details of the interaction with the environment, which we usually do not

know. It is therefore convenient to expand them in a standard basis Eα of operators such

as the 22n distinct products of the Pauli operators

Me =
∑
α

CαeEα, (4.7)

and rewrite

Unoise|s〉|0〉 =
∑
α

Eα|s〉|α〉. (4.8)

Here we have defined |α〉 ≡
∑

eCαe|e〉, which are no longer necessarily orthonormal.

In this language there is a necessary and sufficient condition for when exact error

correction is possible for a given code [55, 56]. A set E of errors Eα is exactly correctable

if and only if

〈c̄′|E†αEβ|c̄〉 = δcc′Cαβ (4.9)

for any |c̄〉, |c̄′〉 in some orthonormal basis for the code space, for any Eα, Eβ ∈ E , and with

the coefficents Cαβ independent of c. If the Kraus operators produced by the interaction

with the environment can be written only in terms of Eα’s in a set E with this property,

then a generalization of the procedure described above for the Shor code will always allow

the state to be recovered perfectly.

To build some intuition for this criterion, consider the trivial code Uenc = 1. The

codespace is spanned by states of the form

|c̄〉 = |c1 . . . ck, 0 . . . 0〉. (4.10)

There is an obvious set of n−k “check” operators acting on this code space with eigenvalue

one; the spin Z operators acting on the last n− k qubits. As suggested above we can take

the Eα’s to be some subset of the 22n distinct products of Pauli matrices, which in general

we can write as

Xα1
1 Zβ11 . . . Xαn

n Zβnn . (4.11)

The parameters α1, β1, . . . take the values 0 or 1. This set of errors has the special property

that each element either commutes or anticommutes with each of the check operators, so

the condition (4.9) implies that the matrix Cαβ will be zero for any two errors Eα, Eβ in

E unless they commute with the same set of check operators. Moreover it further implies

that in the event that Cα,β 6= 0 then the product E†αEβ is equal to a product of check

operators. Now say we have a channel∑
α

Eα|c̄〉|α〉, (4.12)

with all Eα with |α〉 6= 0 in a set E obeying (4.9). Channels with this property are called

exactly correctable. By measuring the check operators we can collapse this state to one

where all remaining Eα’s commute with the same with the same set of check operators.
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We may then pick any one of the remaining Eα’s and apply E†α to restore the state |c̄〉,
since in each term this produces some product of check operators which acts trivially

on the code space. This correction procedure is easily extended to the general case of

nontrivial Uenc. We can simply take the set E of correctable errors for the trivial code

and conjugate it by Uenc to define E ′ = UencEU †enc. The check operators can be taken to

be UencZiU
†
enc for the last n − k Pauli spin Z operators. This construction is not unique

since for a given code subspace there will be many Uenc’s which satisfy (4.3). Of course

channels are not always exactly correctable, and when they are not a would-be quantum

repair-person needs to look at the set of possible corrections consistent with the result of

the check operator measurements and then make her best guess about which one to apply

based on her understanding of which errors are most likely. This procedure is sometimes

called Maximal Likelihood Decoding.

The correction protocol just described is not necessarily the best one in general situa-

tions. The transformation Uenc relates the “logical” basis in which the code is trivial to the

“computational” basis in which the interactions with the environment are simple. The set

of conjugated Pauli errors we just discussed is simple from the point of view of the logical

basis, but depending on the complexity of Uenc it could be quite unnatural from the point

of view of the computational basis. In particular we usually expect the Kraus operators to

be simple in the computational basis, and insisting on expanding them in the conjugated

Pauli basis will lead to more nonzero |α〉’s than are really necessary. A simple example of

this that we will use below is the depolarizing channel, which acts on a single qubit coupled

to a 4-state environment as

Unoise : |Ψ〉|0〉 7−→ 1

2

[
|Ψ〉|0〉+X|Ψ〉|1〉+ Y |Ψ〉|2〉+ Z|Ψ〉|3〉

]
. (4.13)

The Kraus operators for this channel are I/2, X/2, Y/2, Z/2, and it is not hard to verify

that it maximally entangles the qubit with the environment, erasing any information about

the initial state |Ψ〉. More generally, the erasure channel is defined as applying this channel

to some known set of l out of our n total qubits. The total set of errors appearing in the

channel is then 22l, but if we conjugate them by Uenc and re-expand in the Pauli basis

we in general find more. Moreover even if the set of 22l erasures obey the correctability

condition (4.9), it will not in general be possible to find some set of conjugated Pauli’s that

do. For stabilizer codes [57], a widely studied set of codes that we review briefly in the

following subsection, the encoding transformation sends Pauli errors to Pauli errors and we

can use the check operator correction procedure described above. For more general Uenc

we need to do something else.27

27Daniel Gottesman has suggested a simple “something else” to us, in the case where the matrix Cαβ is

diagonal. In that case the errors Eα in E send the code space to a set of mutually orthogonal subspaces of

the Hilbert space; this will typically be the case in the erasure channel if 2l < n− k. To do the correction

we can just measure the projection operators onto each of these subspaces in succession, stopping when

the measurement returns one instead of zero. We can then just apply the correction appropriate for that

subspace. This procedure clearly takes an amount of time equal to the number of possible errors, which in

the erasure channel is 22l.
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4.2 Computational complexity, stabilizer codes, and NP-hardness

One obvious source of computational hardness in the error correction procedure described

in the previous section is that in measuring the check operators and applying corrections, we

need to repeatedly use the encoding transformation Uenc. If this unitary is difficult to imple-

ment as a quantum circuit, the error correction procedure will be very time-consuming. In

our discussion of the AMPS experiment below however, Uenc will always be implementable

with a small circuit. The rest of the correction procedure seems straightforward, but there

is one crucial point where after measuring the check operators we need to pick a correction

E†α to apply. In general there are 22n possible errors, out of which 2n+k are consistent with

any given result for the check operator measurements. For a general channel it might be

quite hard to decide which of these 2n+k corrections to apply. Since there are 2n−k possible

results for measuring the check operators, it is impractical to carry around a list of which

correction to apply for each syndrome. Without such a list however, it will generally take

time exponential in n to determine which check operator to apply since one will just have

to go through the list of 2n+k potential corrections and compute the probability for each

that it is the correct one to apply. In this section we sketch some known results about

the hardness of this step for a widely studied set of quantum error correcting codes, the

stabilizer codes.

Stabilizer codes [57] are defined by the property that the n− k check operators in the

computational basis are all just products of Pauli operators of the form (4.11). Clearly

both the Shor code and the trivial code are stabilizer codes. The reason for the name is

that the check operators generate a 2n−k-element abelian subgroup S of the full group G of

22n products of Pauli operators, with the property that with respect to the action of G on

the n-qubit Hilbert space S is the stabilizer subgroup of the k-qubit code subspace. Thus

rather than giving the codespace explicitly we can instead define it by picking some Abelian

subgroup of the Pauli group; in practice this is a much more convenient way of defining

an error correcting code. Stabilizer codes are fairly easy to encode: for any stabilizer code

there is a relatively simple construction [57] of a circuit of size O(n2) which implements

Uenc exactly.

Stabilizer codes have the special property that we can expand the errors in Pauli

products of the form (4.11) in the computational basis instead of the logical basis and

still have each error commute or anticommute with each check operator. This enables an

elegant way of describing the relation of the errors to the results of the check operator

measurements. For each check operator we can define a 2n component row vector where

the first n components are its α’s from the parametrization (4.11) and the last n are its

β’s. We can then assemble these row vectors into an (n− k)× 2n matrix H which is often

called the parity check matrix. For each error we can make a 2n-component column vector

e whose first n elements are the β’s for the error and whose last n components are its α’s.

Finally we can define the syndrome s of the error as an n − k component column vector

whose ith element is 0 if the error commutes with the ith check operator and is 1 if it

anticommutes. It is then not hard to check that He = s, with the matrix multiplication

done in the field Z2. Thus the set of errors e consistent with the syndrome s are just the

solutions of this linear equation.
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One simple channel in which one could study the hardness of stabilizer error correction

is the erasure channel defined in the previous subsection. In this case the possible error

vectors e are nonzero only for a known set of l out of the n qubits. We are then free to

remove the 2(n − l) columns from H which correspond to qubits which are never erased,

finding a new matrix H ′ which is only (n − k) × 2l. When the inequality 2l < n − k

is satisfied the matrix equation H ′e′ = s is overdetermined and can always be solved by

Gaussian elimination in polynomial time unless no solution exists. Indeed this inequality

characterizes the channel capacity of the erasure channel, since it can be shown that when

it is violated it is impossible for the conditions (4.9) to be satisfied, while when it is

satisfied (4.9) will also be satisfied for a typical stabilizer code [42]. Thus stabilizer codes

in the erasure channel can be corrected in polynomial time. We emphasize however that

this matrix structure is special to stabilizer codes, and that for more general codes with

polynomial size Uenc this procedure will not work. The procedure described in the footnote

at the end of the last section will work, but it requires a time 22l which will be quite large

when l is order n.

This result may not seem so promising from the point of view of the goal of this

article, but in fact there is a slightly more complicated channel in which it is possible to

show that stabilizer decoding is NP-complete [58, 59]. This is the gold standard in evidence

that a classical computation cannot be performed in polynomial time. Good reviews of

the basic properties of NP-completeness and its possible relevance for physics are [23, 60].

Unfortunately the technical details of this argument restrict it to showing NP-completeness

only if k grows nontrivially with n, since the exponential search which arises involves a

search through 2k things. This is an assumption we’d like to drop in the context of Alice’s

experiment, since we’d like her to be unable to verify the entanglement even when k is order

one, but the result is still indicative of our main point since it shows quite convincingly

how exponential time may be required for error correction even when Unoise and Uenc are

both polynomial size.28 The channel studied by [59] is one in which X or Z errors can

occur on any qubit with probability p. The probability for a general error Eα is

Pr(Eα) = pwα(1− p)2n−wα , (4.14)

where wα is called the weight of the error and is defined as as the number of αi’s and βi’s in

the parametrization (4.11) which are nonzero.29 In order to correct this channel one needs

to find the most likely set of errors, all fixable by a single correction, which is consistent

with the syndrome s. As explained in [59], the ability to answer this question for general

stabilizer codes in time polynomial in n would allow a solution of the following question

about matrices in time polynomial in k:

28In more detail, the argument of [59] splits the error correction into two parts, one of which is proven

to be NP-complete for large k, and thus likely to require time exponential in k. The other part appears to

require time exponential in n, but they do not study its complexity in detail. We expect stabilizer decoding

in general to be hard even at fixed k and large n.
29Note added in proof: that Y is special is an undesirable asymmetry that is necessary for the proof

of [59]. A very recent article has shown the the problem remains NP-complete when X, Y and Z errors all

have equal probability [61].
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• Say we are given an integer w > 0, an (n−k)×n matrix A, and a vector y with n−k
components, with the components of the latter two being elements of the finite field

Z2. Is there a vector x with n components in Z2, of which at most w are nonzero,

with the property that Ax = y?

This problem is called the Coset Weights problem; it appears in classical coding theory and

was long ago shown to be NP-complete [58]. Since Coset Weights is NP-complete, this then

would allow polynomial time solution of any size k problem in the computational class NP.

This is still not known to be impossible, but the very widely believed conjecture P 6= NP

precludes it. For a discussion of the vast support for this conjecture, see for example [62].

4.3 Alice’s task as error correction

Having reviewed all this formalism we now see what it has to tell us about Alice’s computing

task. There is a straightforward way to recast what Alice is trying to do as a quantum

coding problem [3]. We can write the state (3.3) of the black hole as

|Ψ〉 =
1√
|B|

∑
|b〉B|b̄〉, (4.15)

where

|b̄〉 ≡ 1√
|H|
|h〉HUR|bh0〉R (4.16)

is a basis for a k dimensional subspace of HH ⊗ HR. We can obviously interpret this

subspace as a quantum code, with encoding transformation

Uenc ≡ URUmix,H . (4.17)

Here Umix,H is a simple entangling transformation analogous to Umix from equation (3.25),

but here entangling only the m qubits of H and the n + 1 to n + mth qubits of R. For

later convenience we will take Umix,H to act on each pair of qubits as

|b1b2〉 7→
1√
2

(
(−1)b1 |b1b2〉+ |b1 + 1, b2 + 1〉

)
, (4.18)

which is not quite the transformation given by the circuit in figure 3; to implement it we

need to act with an extra CNOT gate prior to the Hadamard transformation and CNOT

gates in figure 3. In this language, we can think of Alice not having access to H as putting

this code through an erasure channel that erases all qubits in H.

This simple recasting unfortunately does not allow us to learn anything about the

computational complexity of UR, since the state |Ψ〉 has the special property that it can

be decoded just by acting with U †R. The error correction is no harder than the encoding,

whose complexity we don’t know a priori. We can do better by recalling the discussion of

section 3.3, where we interpreted the state |Ψ〉 as arising from the action of a polynomial

size circuit Udyn

Udyn|0〉BHR =
1√
|B||H|

∑
bh

|b〉B|h〉HUR|bh0〉R. (4.19)
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We’d like to interpret Udyn as an encoding transformation and UR as a correction operation,

but this is not quite manifest here since Udyn always acts on the same state so the code

space appears one dimensional whereas we’d like it to be 2k dimensional. We can fix this

by introducing an additional system B′, with the same number of qubits as B, and then

entangle it with B by acting with a transformation Umix,B′ which acts as (4.18) on the ith

qubits of B′ and B for all i ∈ 1, . . . , k. We can then define a k-qubit code subspace of

this 2k + m + n qubit Hilbert space via the encoding transformation Uenc ≡ Umix,B′Udyn

such that

Uenc|b′〉B′ |0〉BHR =
1√
|B||H|

∑
bh

Umix,B′ |b′b〉B′B|h〉HUR|bh0〉R. (4.20)

The errors introduced by the environment we again take to be erasures, now acting on both

B and H. With B and H erased, the only way to extract b′ and restore the initial state is

to unscramble the entanglement between B′ and R, which effectively requires being able

to implement U †R. More concretely, say that we have a polynomial size circuit for UR. We

may use it to act on the state (4.20) with U †R. We may then act with Umix,B′ , now with

the second element of each pair of qubits taken from the first k qubits of R instead of from

B, which we no longer have access to. This produces a state

|b′〉 1√
|B||H|

∑
bh

|b〉B|h〉H |bh0〉R, (4.21)

so we have recovered the information b′. From here we can explicitly restore the initial

state in polynomial time by using ancilla to return BHR to the state |0〉BHR and then

using Uenc to get back to the state (4.20) as desired. We may thus apply the lesson of

the previous section, which is that in general doing error correction for codes with small

encoding circuits requires exponential sized circuits. For stabilizer codes in the erasure

channel we saw that this was not true, but there is no reason to expect that the encoding

map (4.20) produces a stabilizer code. For more general Uenc the only known correction

procedure even in the erasure channel is the one described in the footnote at the end of

section 4.1, which takes a time 22l where l is the number of erased qubits.3031

So far we have only discussed errors arising from Alice not having access to B and H.

There are of course other errors that can occur, having to do with the practical difficulty

of controlling the Hawking radiation. In particular an order one fraction of the radiation

30By reshuffling factors between Uenc and Unoise we can turn erasures for a general code into a more

general channel for a stabilizer code, which for simplicity we can just take to be the trivial code. The

NP-completeness results of [59] strongly suggest that no general polynomial time error correction algorithm

exists for putting stabilizer codes through general channels, and essentially prove it when k is large provided

that P 6= NP.
31It is interesting to note that since we here have l = k+m, the correction time 22(k+m) is actually a bit

faster than our estimate (3.22) which came from counting gates. This is because the correction procedure

from the footnote just mentioned involves doing quantum operations on B′, which is fictitious and not

available from the point of view of the original black hole problem. In other words, any circuit for UR can

be used to correct the channel just constructed but the converse is not true; a generic correction procedure

for this channel cannot be converted into a circuit for UR of comparable complexity.
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will be gravitons, which are very hard to detect at all, never mind coherently manipulate.

It was shown long ago by Page [63] that the rate of Hawking radiation into a field of spin s

decreases as s increases, so for Schwarzschild black holes in our universe the fraction will be

small. The question of how many bits can be lost without losing the ability to error correct

with high probability of success has been studied in the literature, and as discussed in the

previous subsection for the erasure channel the number of bits which are lost must be less

than n−k
2 . For a typical stabilizer code any smaller number of erasures can be corrected with

high probability of success [42]. This will typically be true for more general codes like the

one discussed here as well since they should protect information at least as well as stabilizer

codes. For the channel just constructed, what was called n in our general discussion of

error correction is 2k + m + n in terms of the parameters of our black hole model, so we

can lose at most k+m+n
2 bits. k+m have already been lost since Alice does not have access

to B and H, so she can lose n−k−m
2 more and still be able to error correct. Say that the

fraction of the radiation which is gravitons is α. Since α < 1
2 , this means that if Alice waits

long enough she can lose all of the gravitons and still be able extract the entanglement

accurately with room to spare for correcting additional errors. Of course doing this error

correction can be an additional source of computational hardness, which will only make

it even harder to complete the decoding before the black hole evaporates. This discussion

shows however that without taking into account computational complexity, the difficulty

of measuring gravitons does not prevent the AMPS experiment from being done.

4.4 Error correction and zero-knowledge proofs

We’ve seen that the known NP-hardness results about decoding quantum error correcting

codes, although suggestive, break down for technical reasons when k is order one and thus

unfortunately can’t be invoked directly to draw any firm conclusions about UR in that

case. Moreover one might worry that the appearance of the NP-complete problem Coset

Weights in the argument of [59] was a consequence of their particular decoding strategy;

perhaps some more exotic correction procedure could somehow do the error correction

without having an intermediate step that allowed solution of Coset Weights. We find this

unlikely, but both of these concerns can be addressed somewhat by observing that the

difficulty of implementing UR is actually closely related to another complexity class known

as Quantum Statistical Zero-Knowledge (QSZK). The idea of a zero-knowledge proof is

best explained by example.

Consider the problem of determining whether two graphs G1 = (V1, E1) and G2 =

(V2, E2) are isomorphic, that is, whether there exists a permutation π of the vertices of G2

turning G2 into G1. There is currently no polynomial time classical or quantum algorithm

known for the graph isomorphism problem. Suppose, however, that some inventive com-

puter scientist claimed to be able to solve the graph isomorphism but jealously guarded

his secret abilities. Would he be able to convince you that two G1 and G2 are isomorphic

without revealing any information about the isomorphism? Yes! The computer scientist

begins by randomly permuting the vertices of G1, sending you the resulting graph G3.

At that point, you flip a coin and, depending on the outcome, challenge him to exhibit

an isomorphism to either G1 or G2. He will be able to succeed if the graphs really were
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isomorphic but will necessarily fail half the time otherwise. After a few repetitions of the

process, you will become convinced of the existence of the isomorphism between G1 and

G2 without learning anything at all about its structure.

There are different ways to formalize the idea of a zero-knowledge proof, leading to

potentially different complexity classes. The version relevant here is known as the class

Statistical Zero-Knowledge (SZK) [64]. In the quantum mechanical analogue, the two

participants, usually known as the prover and the verifier, would exchange qubits rather

than bits, with the resulting class called QSZK [65]. There is absolutely no constraint on

the computational power of the prover, but the verifier can only perform polynomial time

quantum computations. Moreover, only a statistically negligible amount of information

should leak from the prover to the verifier. QSZK is the set of computational problems

with yes/no answers for which such a prover can always convince the verifier of yes instances

but will fail with high probability for no instances. It is known that the quantum model is at

least as powerful as the classical one: SZK ⊆ QSZK [66]. QSZK also trivially contains BQP,

the class of problems that can be solved on a quantum computer: for such problems, the

verification can be done directly using the computer itself without any need for a clever

discussion with a prover. QSZK should therefore be understood as the set of problems

whose yes instances can be reliably identified using a quantum computer with the help of

an all-powerful prover, albeit one who is both secretive and dishonest. To assert that all

the problems in QSZK can be solved in quantum polynomial time, that QSZK = BQP, is

to assert that the prover is ultimately no help at all.

Given some arbitrary polynomial-sized quantum circuit Udyn acting on three systems

B, H and R such that |ψ〉BHR = Udyn|000〉BHR with |ψ〉BHR maximally entangled between

B and HR, determining whether maximal entanglement with B can be decoded from R is

a well-defined computational problem. Call it the Error Correctability problem.32 Note that

Error Correctability has a quantum statistical zero-knowledge proof, which simply consists

of having the prover implement the quantum error correction operation on R (not caring

that it might take exponential time) and having the verifier check the result. In fact, the

problem of determining whether noise is correctable in this sense is complete for QSZK,

meaning that any other problem in QSZK can be efficiently mapped onto a version of the

error correction problem [67] (see also section 7 of [68]).

Suppose now that, given a circuit for an arbitrary correctable Udyn, it were possible to

efficiently find and implement the error correction procedure. In that case, the entire zero-

knowledge proof for Error Correctability described above could be implemented efficiently on

a quantum computer. In the case of yes instances, the procedure would produce verifiable

maximal entanglement with B. In the case of no instances, no such entanglement could

be produced regardless of the decoding procedure attempted. Moreover, since Error Cor-

rectability is QSZK-complete, that means that every problem in QSZK could be solved on a

quantum computer: being able to efficiently decode noise whenever it is correctable would

imply that QSZK = BQP. (It is important to remember, however, that simply determining

whether some errors are correctable could be much easier than actually correcting them.)

32The channel constructed in the previous subsection shows how to relate this definition to more conven-

tional error correction.
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Crucially, Error Correctability remains QSZK-complete even if B consists of only a single

qubit, unlike the NP-hardness result for stabilizer decoding discussed earlier. The question

at the core of this article is whether the decoding can be performed in time polynomial in

the size of the circuit for Udyn. We have seen that being able to do so would imply that

QSZK = BQP if Udyn represented arbitrary correctable noise.

Since the real Udyn describing black hole evaporation is very special, we could ask

whether its known properties are so unusual as to undermine the argument. Specifically, for

sufficiently late times, we expect maximal entanglement between BH and R. It is possible

to a certain extent to achieve the same thing using arbitrary |ψ〉BHR = Unoise|000〉BHR by

simply working with k copies of |ψ〉. The resulting state |ψ〉⊗k rapidly converges to one

with near-maximal entropy concentrated in the “typical subspace” of B⊗kH⊗k [69]. This

property is similar to true maximal entanglement generated by Udyn, albeit slightly weaker.

The conviction that P 6= NP has developed over several decades of research in algorithm

design and complexity theory. The belief that QSZK-complete problems cannot be solved

efficiently on a quantum computer is admittedly less well-founded but does have some

algorithmic and complexity theoretic support.

Researchers have been working for twenty years on the design of efficient quantum

algorithms and some problems have stubbornly resisted attack. In particular, Shor’s fac-

toring algorithm naturally extends to an efficient quantum algorithm for the more general

Abelian Hidden Subgroup problem [70]. Researchers have been trying consistently since then

to attack the non-Abelian version of the problem but with only very limited success [71–

73]. (Note that the non-Abelian version includes the graph isomorphism problem discussed

above as a special case [74].) Large classes of strategies based on Shor’s Fourier-sampling

approach are known to fail [75, 76].

Given all the fruitless effort that has gone into trying to find an efficient quantum

algorithm for solving the non-Abelian Hidden Subgroup problem, researchers have begun to

suspect that no such algorithm exists. Moore, Russell and Vazirani (MRV) took one step

further and defined a classical invertible function that is efficient to evaluate but hard to

invert on a quantum computer under the assumption that there is no efficient quantum

algorithm for non-Abelian Hidden Subgroup [77]. Their construction is easily adapted to rule

out efficient quantum algorithms for decoding efficiently encoded quantum error correcting

codes under the same assumption. Structurally, the function is parametrized by a list of

m vectors V over Fnq . The MRV function fV takes a matrix M ∈ GLn(Fq) to MV , with

the output returned as an unordered list. (m is selected to be only slightly larger than n,

which is sufficient to ensure that the function is injective with high probability.)

Instead of returning an unordered list, however, the output vectors could equivalently

be ordered but permuted by an unknown permutation π, which can be used to define the

following isometry:

U : |M〉A 7→
1√
m!

∑
π∈Sm

|π〉H |π(MV )〉R. (4.22)

Then (IB ⊗ U) acting on a state maximally entangled between A and B efficiently gen-

erates a state maximally mixed on BH with the property that the purification of B can
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be recovered by a unitary acting on R alone, precisely mimicking the key properties of∑
b,h |b〉B|h〉HUR|bh0〉R. If fV is hard to invert on a quantum computer, however, the de-

coding unitary can’t be implemented in polynomial time. Under the assumption that there

is no efficient algorithm for non-Abelian hidden subgroup, however, fV is hard to invert, even

for V chosen uniformly at random.

At the level of complexity theory, there is some evidence that QSZK-complete prob-

lems cannot be solved using small quantum circuits. (An efficient quantum algorithm

corresponds to a small circuit that can itself be laid out efficiently, a further requirement

that should arguably be relaxed in discussions of the AMPS paradox.) It is known that

determining whether a function is 1-to-1 or 2-to-1 requires exponentially many calls to

the function, even for a quantum computer [78]. It is easy to construct a statistical zero-

knowledge protocol for the problem, however, in the setting in which the prover knows

the function and the verifier is making queries to try and distinguish the 1-to-1 and 2-to-1

cases. Since SZK ⊆ QSZK, the protocol lifts to a quantum statistical zero-knowledge proof

as well. In this model, therefore, an exponentially large number of queries is required to

solve the problem using a quantum computer even though it has a zero-knowledge protocol.

Any demonstration that QSZK has small circuits would somehow have to be reconciled with

that fact, which essentially rules out any strategy which just directly transforms a zero-

knowledge protocol directly into a small circuit. Instead, the demonstration would need to

make essential use of some subtle internal structure of the problems contained in QSZK.33

The conclusion of this section is that by recasting Alice’s problem as quantum error

correction, we have set it into a framework where there are general arguments that such

problems likely take exponential time to solve. Moreover the practical difficulties of doing

the experiment, in particular the problems associated with measuring gravitons, further

increase the difficulty of this computational task. We did not quite manage to prove that

her task is NP-hard at fixed k, but it is almost certainly at least QSZK-hard and there

are strong reasons to believe that such problems can’t be solved in polynomial time on

a quantum computer. From the computer science point of view, it would be extremely

surprising if implementing U †R did not require exponential time.

5 More general black holes

For a Schwarzschild black hole the evaporation time scales like the entropy to the 3/2

power, which is clearly much too fast for Alice to complete a computational task that

requires time that is exponential in the entropy. In this section we consider the AMPS

experiment for some more general classes of black holes.

5.1 Schwarzschild in a box

In order for Alice to have any chance of doing the AMPS experiment given our claim of

exponential decoding time, she will clearly need some way of slowing down the evaporation

of the black hole. The simplest thing she could imagine is letting the black hole become

old and then putting it inside of some sort of reflecting box to prevent it from evaporating.

33We thank John Watrous for suggesting this argument.
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Closed finite entropy systems however behave very strangely over times of order eS .

For example over that kind of timescale a gas of particles in a room sometimes finds itself

collected up in the corner of the room, and other times find itself spontaneously assembling

into a puddle of liquid on the floor. This is the phenomenon of Poincaré recurrence [22].

Indeed eS is sometimes called the “classical recurrence time”, to be contrasted with the

“quantum recurrence time” ee
S

which we encountered in section 3.1. This nomenclature is

a little misleading; after all, quantum mechanics is the reason that the entropy of the gas

is finite in the first place, but what it really means is the following: eS is the time scale

over which some finite entropy quantum mechanical system will be “classically close” to

an order one fraction of some orthogonal basis for its Hilbert space, up to conservation

laws. In other words the probability that repeated measurements in that basis over a time

of order eS at some point give any particular result allowed by conservation laws is order

one. The significantly longer quantum recurrence time, by contrast, is the time it takes

for the system to get close in the trace norm to any particular quantum state. The basic

distinction here is that the number of elements in a basis of the Hilbert space is eS , while

the number of elements in an ε-net of the type discussed in section 3.1 is ee
S
.

This means that it will be very difficult to confine the black hole in a box for such a

long period of time. For example there is an order one probability that the black hole will

produce a gigantic nuclear warhead and fire it at the side of the box. Or another black

hole. The black hole will also itself crash into the box every now and then. Making the

box big to try to avoid such things is not allowed because then the black hole will just

evaporate into a diffuse gas of particles inside the box and there will be no black hole left

when Alice finishes her computation and opens the box.

Of course every string theorist knows how to avoid the problems with putting a black

hole in a box in Minkowski space: we just put it in Anti de Sitter space! As long as the

black hole is large enough the reflecting boundary of AdS space will feed its own radiation

back into it fast enough to prevent it from evaporating. Of course to make the AMPS

argument at all we need the black hole to become maximally entangled with some external

system, so following a suggestion of Don Marolf we imagine this is done by mining the black

hole down to less than half of its initial entropy.34 But this setup brings with it a new

problem; we now need to put Alice, her mining equipment, and her computer in the box

as well! Since the calculation still takes of order the recurrence time, this means that both

Alice and her assorted paraphernalia now need to be resistant to nuclear warheads/mini

black holes/etc. Alice could try to avoid this by staying very far away from the black hole,

namely exponentially near the boundary, so that from her point of view the recurrences

become effectively low energy enough not to affect her. In doing so however she will

34It is unclear to what extent this argument can be applied to the eternal two-sided AdS black hole, since

the thermal bath will make it difficult to extract energy. Indeed of all black holes this seems to be the

least likely to have a firewall. Its gravity dual is two CFT’s which are entangled in just the way that seems

necessary to produce a smooth horizon [24]. When we discuss AdS black holes we will always be imagining

one-sided black holes made from some sort of collapse. Interesting previous work on the interior of AdS

black holes includes [79, 80]; it would be illuminating to understand how to ask the firewall question in

either of these frameworks.
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be fighting against an effective potential pulling her back to the center. To do this for

enough time to accomplish the computation would require exponentially large amounts of

rocket fuel, and the exhaust from burning all that fuel would fall back into the black hole

anyway and pollute her experiment. Trying to use angular momentum to stabilize her

orbit would not work because over such long time scales her orbit would rapidly decay via

gravitational radiation.

In fact there is a way to avoid these problems as well, which was suggested to us by

Juan Maldacena. It involves putting a big AdS black hole in a throat geometry where the

near horizon region is asymptotically AdS but there is also an asymptotically Minkowski

region. In this way the geometry provides a box with the benefits of both the Minkowski

box and the AdS box without the problems of either. There is still a problem with this

setup, but it is more subtle and we return to it later in this section.

5.2 Reissner-Nordstrom

Another way Alice could try to extend the lifetime of her black hole is by giving it some

charge. The Reissner-Nordstrom black hole of mass M and charge Q has metric

ds2 = −dt2f(r) +
dr2

f(r)
+ r2dΩ2

2, (5.1)

where

f(r) = 1− 2GM

r
+
GQ2

r2
≡ (r − r+)(r − r−)

r2
(5.2)

and

r± = GM ±
√
G(GM2 −Q2). (5.3)

Its entropy is

S =
πr2

+

G
≡
πr2

+

`2p
(5.4)

and its temperature is

T =
r+ − r−

4πr2
+

. (5.5)

We see when M`P = Q, the black hole is extremal and the temperature is zero. If we

start the black hole with mass above extremality, it will radiate and gradually approach

extremality. The relevant point here is that as it does this, the temperature decreases and

semiclassically it appears that the decay takes an infinite amount of time. More precisely

if we define the energy above extremality to be

E = M −Q`−1
p , (5.6)

the energy-temperature relation is

E = 2π2Q3T 2`p (5.7)

and a simple calculation tells us that, for a black hole which starts with energy E0 ≤ Q`−1
p ,

we have

E(t) =
E0

1 + αtE0Q−4
. (5.8)
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Here α is some order one numerical constant. Thus it appears that the black hole takes an

infinite amount of time to reach extremality. There is a well-known problem with this argu-

ment however [20, 21], which is that from (5.7) we see that when the temperature reaches

T ∼ 1

Q3`p
(5.9)

the remaining energy E above extremality is no longer bigger than the temperature T .

At this point the semiclassical description of the evaporation process breaks down, and

quantum gravity is necessary to understand what happens next. This is related to an

instability of AdS2 called fragmentation [21], and in the cases where it can be understood

in string theory it is always true that the geometry breaks apart into something that has

little resemblance to the original Reissner-Nordstrom geometry. For nice recent discussions

of the possibilities for what might happen when T becomes of order Q−3 see [81, 82].

It is easy to see that no matter whether we start with E near extremality or much

larger, this instability always sets in well before the exponential of the initial entropy. For

example, say that we start with E0 ≤ Q (setting `p = 1). The initial entropy is of order

Q2, while the time to reach the instability is of order Q7. Alternatively if we start with

E0 � Q then we are back to the Schwarzschild situation where evaporating back down to

E ≈ Q`−1
P takes a time of order E3

0 ≈ S
3/2
0 , and the additional time to get down to the

instability is Q7 � S
7/2
0 . The total evaporation time is always bounded by a polynomial

in S0. Thus charged black holes, near extremal or otherwise, are of no use to Alice.

5.3 Near extremal AdS throat

Recall the AdSd Schwarzschild geometry

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−2, (5.10)

with

f(r) = 1 +
( r
R

)2
− α

rd−3
. (5.11)

A scalar field on this background feels an effective potential. In particular if we look for

solutions of the Klein-Gordon equation of the form

φ ≡ r−
d−2
2 e−iωtY`(Ωd−2)Ψω`(r), (5.12)

it is not hard to see that Ψω` must obey a Schrodinger-type equation

− d

dr2
∗

Ψω` + Veff(r)Ψω` = ω2Ψω`. (5.13)

Here r∗ is a “tortoise” type coordinate obeying

r′∗(r) = f−1, (5.14)
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and the effective potential is

Veff(r) = R−2

(
1 +

(
R

r

)2

− αR2

rd−1

)[(
m2 +

d(d− 2)

4R2

)
r2

+

(
`(`+ d− 3) +

(d− 2)(d− 4)

4

)
+

(d− 2)2

4
· α

rd−3

]
. (5.15)

The details of this potential do not matter, but we see that it vanishes linearly at the only

real positive root of f(r), that is at the horizon, and that it grows quadratically with r at

large r. Near the horizon the solution then behaves as Ψω` ∼ eiω(±r∗−t), while at large r

we have φ ∼ r−∆± with the usual AdS/CFT formula

∆± =
d− 1

2
± 1

2

√
(d− 1)2 + 4R2m2. (5.16)

The idea of this section is to cut off this geometry at some large value of r and sew

it onto Minkowski space, after which the effective potential (5.15) would go back to zero

provided we set the scalar field mass m2 to zero. The black hole would then be able to

decay via massless quanta tunneling out of this potential into the Minkowski region, and by

choosing the crossover value of r to be large we could adjust the decay time independently

of the entropy of the black hole. We can also “outsource” the computation by putting

the computer out in the Minkowski region, which allows us to buy a large redshift factor

enhancement in the time it takes to do the computation from the point of view of Alice

living down by the black hole.

There is a new problem with this construction however, which is that any attempt to

send the result of the computation from the Minkowski region back down the throat to

the vicinity of the black hole has to get back through the potential barrier. The signal

the computer sends down the throat will need to be very low energy, so its absorption

probability will be exponentially small. Nonetheless one could imagine trying to send the

signal repeatedly, hoping that eventually one of the times it will get through. This approach

gets much harder as the size of the signal we wish to send increases, but unlike the previous

examples it is not obvious that it cannot be done and we need to analyze it more carefully.

5.3.1 The brane setup

To quantitatively test the feasibility of using a throat to evade the computational hardness

of decoding, we need a specific example of this type of geometry. In string theory there is a

standard way of producing throat geometries with the desired properties by stacking branes;

for example D3 branes in type IIB string theory or M5 branes in M-theory. To realize

the geometry (5.10) explicitly we would need a configuration of branes which is spherically

symmetric and stable. Spherical symmetry is a bit inconvenient because branes in spherical

configurations tend to collapse under their own tension unless there is something else

supporting them. A simple thing we could do is start with the AdS3× S3× T 4 solution of

IIB supergravity with RR flux, itself the near horizon limit of the D1 − D5 system, and

then wrap some D3 branes on the S3. This throat would not be asymptotically Minkowski,

but we could easily arrange for the curvature radius of the AdS3 to be much larger than the
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curvature radius of the AdS5 near the D3 branes. Rather than try to make this construction

work in detail, we will instead consider a simpler setup in which the black hole has planar

symmetry instead of spherical symmetry.

One of the best-known solutions of ten-dimensional IIB supergravity is the extremal

planar black 3-brane [83], with metric

ds2 = Z(r)−1/2
(
−dt2 + d~x2

)
+ Z(r)1/2

(
dr2 + r2dΩ2

5

)
. (5.17)

Here

Z(r) = 1 +

(
R

r

)4

, (5.18)

and R is a parameter of the solution. The string theory interpretation of this solution is

that it gives the backreacted geometry in the presence of N D3 branes, with

R4 = 4πgN`4s ∼ N`4p (5.19)

where g is the string coupling, `s is the string length, and `p is the ten-dimensional Planck

length. By looking at Z(r) we see that this geometry indeed has the property that for

r � R it behaves like AdS5 in Poincaré coordinates, times an extra S5 of constant radius,

while for r � R it becomes ten dimensional Minkowski space.

To get something like a black hole down the throat we need to put this solution at

finite temperature, and to get the entropy to be finite we need to compactify the spatial ~x

directions. Although it will not be explicit in our equations, we will choose anti-periodic

boundary conditions for the fermions around the compact dimensions.35 To add some

temperature we just need to consider the non-extremal version of the solution [84]:

ds2 = Z(r)−1/2
(
−f(r)dt2 + d~x2

)
+ Z(r)1/2

(
dr2

f(r)
+ r2dΩ2

5

)
, (5.20)

where Z(r) is now

Z(r) = 1 + λ

(
R

r

)4

, (5.21)

with

λ =

√
1 +

1

4

(r0

R

)8
− 1

2

(r0

R

)4
(5.22)

and

f(r) = 1−
(r0

r

)4
. (5.23)

To put the black hole far down the throat we clearly want r0
R � 1, and in this limit

the entropy of the black hole is

S =
Ω5L

3r3
0R

2

4G
∼ L3r3

0R
2

`8p
(5.24)

35The reason for this choice is that compactifying with periodic boundary conditions preserves supersym-

metry, which introduces an instability of the throat. Supersymmetry ensures there is no potential energy

cost for separating the D3 branes that make up the throat. In CFT language the dual gauge theory is

unable to pick a vacuum and its zero modes wander freely on its moduli space. Antiperiodic boundary

conditions break supersymmetry and generate a potential that keeps the branes together. We thank Igor

Klebanov and Juan Maldacena for discussions of this point.
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and the temperature is

T =
1

π

r0

R2
. (5.25)

Here Ω5 is the volume of a unit S5 and L is the periodicity of the ~x directions. In the same

limit the ADM energy36 is

EADM =
Ω5L

3

4πG

(
R4 +

3

2
r4

0

)
. (5.26)

One can check that when r0 → 0 this reproduces the correct D3-brane tension. The energy

above extremality is

E =
3Ω5L

3r4
0

8πG
∼ L3r4

0

`8p
. (5.27)

It is straightforward to check that the instability encountered in Reissner-Nordstrom does

not happen here; in fact we have

E =
3

2
ST, (5.28)

so the energy will be bigger than the temperature until the black hole has Planckian area.

We may then worry that the black hole evaporation time is independent of the intial

entropy, as we worried with Reissner-Nordstrom, but there is now a new phenomenon

which comes to the rescue.

5.3.2 Hawking-Page transition for toroidal black holes

For spherical black holes in AdS with metric (5.10), it is well known [86, 87] that for

small enough values of α the black hole is unstable to decay by Hawking radiation. The

crossover point is when the temperature is of order R−1.37 This phenomenon provides a

natural endpoint for the type of decay we discussed in the previous section; the black hole

will very slowly radiate energy up the throat and into Minkowski space until it reaches

the critical temperature, after which it will decay essentially immediately into low energy

quanta in the AdS-region of the throat. Does something similar occur for our toroidal black

hole as well? The answer is yes, but as we now describe the analysis has a few details that

differ from the spherical case. This transition has been previously discussed by [88].

Far down the throat, our geometry becomes a compactified version of a general solution

called a black AdS brane. In AdSd the metric for this solution is38

ds2 = r2
(
−f(r)dt2 + d~x2

)
+

dr2

r2f(r)
, (5.29)

with

f(r) = 1− α

rd−1
. (5.30)

36For an asymptotically flat geometry, in coordinates where the metric is ηµν + hµν with hµν small, the

ADM energy is defined [85] as limr→∞
1

16πG

∫
dAni

(
∂jhij − ∂ihjj

)
. Here the integral is over the S5 × T3

at infinity.
37More carefully this is the temperature below which the black hole no longer dominates the thermal

ensemble. In the microcanonical ensemble the energy below which a single black hole is actually unstable

is lower by some power of R/`p, but this distinction will not be important for us for reasons we explain

below. We thank Juan Maldacena for explaining this distinction to us.
38In this section we set the AdS radius R to one.
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In the spherical case the action of the Euclidean version of the solution (5.10) can be

compared to the action of another Euclidean solution which has the form (5.10) again but

with α = 0. In both cases the Euclidean time τ = it is compactified. The competition

between these two solutions is the source of the Hawking-Page transition. In the toroidal

setting there is an analogous construction of a second solution, where we set α = 0, but

it turns out always be subdominant to the black brane solution (5.29). There is another

solution however with the same boundary conditions; we can take the “emblackening factor”

f(r) and move it from in front of −dt2 to one of the planar coordinates:39

ds2 = r2
(
−dt2 + f(r)dx2 + (d~x⊥)2

)
+

dr2

r2f(r)
. (5.31)

This geometry is sometimes called the AdS Soliton. It has no region behind the “horizon”

at r = r0, instead it caps off smoothly provided that we choose the correct value of r0 as

a function of the periodicity L. When we continue to Euclidean time we can set the τ

periodicity of the AdS soliton (5.31) freely, but for the black brane (5.29) we must choose

r0 to be consistent with the τ periodicity for the Euclidean geometry to be smooth. An

important subtlety is that for a given periodicity of the circle at the boundary, the correct

value of r0 and also the coordinate periodicity of τ are different in the two solutions.40 The

Euclidean action is

S = − 1

16πG

(∫
ddx
√
−g (R+ (d− 1)(d− 2)) + 2

∫
dd−1x

√
γK

)
, (5.32)

where γ is the determinant of the induced metric at the boundary and K is the trace

of the extrinsic curvature. Making the action finite involves cutting off the geometry at

some large r = rc, and then carefully matching the boundary geometry on the regulator

surface in the two cases. We will not present the details explicitly here since they are fairly

standard in the literature. (See [87, 89] for examples.) The result is that the finite parts

of the actions are

− SBB =
1

16πG

(
4π

d− 1

)d−1

(LT )d−2 (5.33)

for the black brane and

− Ssol =
1

16πG

(
4π

d− 1

)d−1

(LT )−1 (5.34)

for the AdS soliton. Thus at high temperatures compared to L−1 the black brane wins

while at low temperatures the AdS soliton wins. This then is the effect that we want; as the

black hole radiates it will eventually undergo a transition to some other type of geometry

with no horizon and Alice will no longer be able to test AMPS. The dual field theory

39Had we chosen supersymmetric boundary conditions in the spatial directions this solution would

not exist.
40Actually in Euclidean signature they are really just the same solution with different parameters, so the

calculation only needs to be done once.
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interpretation of this is clear; it is the same large N phase transition as in the spherical

case, just studied with different spatial topology.41

5.3.3 Time scales

In this section we work out the time scales for sending signals down the throat from the

Minkowski region to the vicinity of the black hole horizon at r0 in (5.20), as well as the time

to evaporate down to the transition temperature just discussed in the previous section.

Since we will ultimately compare these time scales to the computation and recurrence

times, both of which are exponential in the entropy of the black hole, we will be focused

on extracting only the pieces of them which are exponential in entropy. Specifically we will

write S0 to mean the entropy of the black hole just after the Page time, so that it is also

roughly the size of the radiation and one half of the entropy of the original black hole. If

we had started the computer any later it would just have made the task more difficult, and

we want to give Alice a fair shot.

We will see shortly that for the decay to be slow enough for Alice to have a chance

at computing, we will need the temperature to be exponentially small in the entropy,

perhaps with some coefficient in front of S0 in the exponent. From equation (5.25) this

means we will need r0 to be exponentially small. From equation (5.24) we see that to

keep the entropy fixed in the same limit we will need L to be exponentially large such

that Lr0 is fixed. Looking at (5.27) we see that the energy above extremality will then

be exponentially small througout the decay process. Having fixed S0 we can also derive

an interesting bound on the AdS radius R in Planck units: we know that we must have

T > L−1 to avoid starting the computation below the phase transition discussed in the

previous section, so we must have

(TL)3 =

(
r0L

R

)3

= S0

(
R

`p

)−8

> 1. (5.35)

Thus the AdS radius in Planck units is bounded by a polynomial in S0 and we can neglect

it in most equations.

To understand how hard it is to send some particular quanta down the throat, we

need to compute its absorption probability Pabs. This probability will be a function of the

frequency ω of the quanta of interest, and in the limit ωR � 1 it can often be computed

analytically [90]. For massless scalars in the extremal black three brane (5.17) this problem

was studied by Klebanov in [91].42 A simple generalization of his result shows that for

quanta with frequency ω, angular quantum number ` on the S5, and momentum k in the

41As in the spherical case, in the microcanonical ensemble the energy at which the black hole is actually

unstable is somewhat lower than this. This decrease depends only on the parameters of the AdS region of

the geometry however, and is insensitive to the total length of the throat. Since we will need the total length

of the throat to exponential in the entropy in the following section, which will lead to an exponentially long

decay time, the additional time to get from T ∼ L−1 to the actual instability will be negligible compared

to the time to get down to T ∼ L−1 in the first place.
42Computing these absorption factors in the extremal background is an excellent approximation for our

purposes since r0 � R and the potential is very close to extremal.
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planar direction, the absorption probability is

Pabs ∼
(√

ω2 − k2R
)8+4`

. (5.36)

In sending signals down the throat, we need to use low enough energy to avoid our signals

backreacting significantly on the throat. Certainly a necessary condition is that we need

ω < E, and looking at (5.28) this means we need ω ∼ T up to a power of the entropy, which

as usual we ignore. This means that we must use quanta of exponentially low energy to

send any messages; the absorption probability (5.36) will thus be exponentially small. It is

still possible to send a message, but we must try many times. Since it takes an energy ω−1

just to produce a message of energy ω, to have any chance of success sending the message

we need a time of order

tmsg ∼
1

ωPabs
. (5.37)

Clearly we have the best chance of sending a message using scalars if we set k = ` = 0.

Other types of communication will have different absorption probabilities. For example,

we show in appendix A that the absorption probability for sending messages down a string

threading the throat by moving the string along the S5 is proportional to (ωR)2. Ap-

parently this is a better method of communication than the massless scalar, although we

will see it is still not good enough to be of use to Alice.43 In general we will parametrize

low-energy absorption probabilities as

Pabs = (ωR)b, (5.38)

so neglecting all factors polynomial in S0 we can estimate

tmsg ∼
1

T b+1
. (5.39)

The units here are provided either by powers of `p or R, it doesn’t much matter. To be

concrete we can evaluate the temperature at the same time that we defined S0, which was

just after the Page time.

Absorption probabilities are also important in understanding how long it takes for the

black hole to evaporate. As Hawking showed in his original paper [92] the energy flux out

of a black hole is
dE

dt
= −

∑
n

∫
dω

2π

ωPabs(ω, n)

eβω − 1
, (5.40)

where the sum on n is over different modes. It is often the case that only a particular mode

contributes significantly, for example for Schwarzschild black holes it is only the ` = 0 mode.

The low energy absorption probability for Schwarzschild is proportional to (2GMω)2, from

which one can use (5.40) to motivate the usual “Stefan-Boltzmann” assumption for the

decay rate. In that case the low energy approximation breaks down before the peak of the

integrand and numerical analysis is necessary to compute the prefactor correctly [63], but

for us the temperature is very low compared to R−1 so using the low energy approximation

43We thank Joe Polchinski for suggesting a stringy telephone.
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for Pabs throughout is justified. The intuition of (5.40) is quite simple; the thermal factor

is just the expected occupation number of the near horizon modes, and by a basic fact

about one-dimensional scattering theory the probability of absorption in from the outside

is the same as the probability of transmission out from the inside.

For the absorption probability (5.36) the decay is dominated by ` = 0 modes, but it

is necessary to include modes of low but finite k. Roughly k is quantized in units of 1/L,

and since we are interested in the region where TL � 1 we will have ω � L−1. We can

then convert the sum over discrete modes into an integral over k and write

dE

dt
= −

∫
ωdω

2π
L3

∫
|k|<ω

d3k

(2π)3

(ω2−k2)4R8

eβω−1
∼−L3R8

∫
dω

2π

ω12

eβω−1
∼−L3R8T 13. (5.41)

More generally we can write

dE

dt
∼ −

∫
dω

2π

(Lω)a(Rω)bω

eβω − 1
∼ −LaRbT a+b+2, (5.42)

where the parameter b is the same as in (5.38) and the parameter a accounts the phe-

nomenon just encountered for the scalar. For the string we discuss in appendix A we have

a = 0, b = 2.

To find the evaporation time we need to integrate (5.42) to find the energy as a function

of time. As the decay proceeds L cannot change because it is fixed by the boundary

conditions at r → ∞, so it will be r0 that gradually decreases. We integrate from initial

energy E = S0T down to final energy E =
(
R
`p

)8
L−1. The details of the integral depend

on whether a + b − 2 is positive, negative, or zero, but the final power of T does not.

Indeed we find

tevap ∼
1

T b+1
, (5.43)

where again we can make up the dimensions with either R or `p without affecting the

exponent in the entropy. By comparing (5.43) to (5.39) we see that the evaporation time is

always the same order in T as is the time to send any signal at all!44 Which one is bigger

depends on the prefactors we omitted, but there are definitely cases where tmsg < tevap so

this fact by itself, although certainly troubling, is not enough to kill the experiment.

In section 3.2 we argued that Alice’s quantum computation takes a time of order e2S0 .45

For now we will be a little more general and write this as

tcomp ∼ eαS0 . (5.44)

The recurrence time is basically eS0 , but we need to include a red-shift factor to account

for the extremely low energy of the states involved in the recurrences. Thus

trec ∼ T−1eS0 . (5.45)

44It is the same b that appears in both because whichever b is smallest will control the decay rate and

also give the highest probability of success for sending messages.
45The reader should not be confused by us writing e2S0 here and 22n there. Previously n was the entropy

in base-2 logarithm while S0 here is the entropy in the natural logarithm. Also our general result there was

tcomp ∼ 2n+k+m, but since we are here letting Alice start just after the Page time we have k +m ≈ n.
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With these estimates we are finally in a position to assess the viability of Alice’s

experiment. For the computation to finish before the black hole evaporates we need tcomp <

tevap, which implies

T < e−
α
b+1

S0 . (5.46)

This confirms our earlier claim that the temperature needs to be exponentially small in

the entropy. To be able to send a message down the throat in less than a recurrence time

we need tmsg < trec, which implies

T > e−
1
b
S0 . (5.47)

The condition that tcomp < trec gives

T < e(1−α)S0 . (5.48)

It is straightforward to see that all three of these can be satisfied only if

b <
1

α− 1
. (5.49)

In the text we saw that if UR is completely general then α = 2, in which case the experiment

can be done only if b < 1. Neither the string nor the free scalar field are close to this,

and actually there is a simple argument that no scalar field of any kind can satisfy this

inequality. The coefficient b in the absorption factor is related to the conformal dimension

of the operator that the scalar couples to in the CFT dual as b = 2∆ [93], so the unitarity

bound ∆ > 1 in four dimensions precludes b < 2. A similar argument can perhaps be

constructed for the defect operators that couple to the ends of general strings but we have

not tried to do so.

It is interesting that were the computer able to decrease α it would make it easier

to satisfy these inequalities. In fact we don’t see any particular reason why improved

algorithms shouldn’t be able to use special features of the black hole dynamics to decrease

α by some order one factor. If α could be decreased below 3/2, the string might become an

effective method for communicating down the throat. We stress however that this is not

sufficient for doing the AMPS experiment, it is only necessary. For one thing even if the

“true” α could be decreased by algorithms, our discussion below equation (3.2) suggests

that, because of coarse-graining, α should be increased by some order one factor. More

significantly, being able to send one piece of classical information is not enough to do the

strongest version of the AMPS experiment. That requires us to send a particular quantum

state which purifies B. Preserving the coherence of this state would presumably require

some sort of apparatus (also made out of fluctuations on the string) which would also have

to make it through the barrier, and even without the apparatus we probably want k to be

at least a little bit bigger than one to be able to build up any kind of statistics. Getting all

of these things to make it through the barrier at once probably requires us to raise tmsg by

some order one power, which would help compensate for an α that has been decreased by

clever algorithms. Even this is not enough however; the purification of B is more likely to

be partially reflected than to get all the way through, which means that it will be partially

reflected many times before most of it gets through. In fact getting slightly more than
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half of it through is enough since somebody living down the throat can do error correction

to restore the other half, but each time that more than half of it is reflected the person

outside will need to do error correction before trying to send it again. This will usually

succeed, but there is a small S0-independent probability it will fail. Since we need the

correction procedure to work every time in order to continue sending the correct state,

this means that eventually it will fail. For these reasons we are quite confident that the

“strong” AMPS experiment where Alice carries the purification of the black hole in with

her can’t be done in this setup.

There is a weaker version of the AMPS experiment where the state of RB is measured

out in the Minkowski region at the end of the quantum computation and what is sent

down the throat to Alice is just a classical record of the result of that measurement.

This would be sufficient, for example, to implement a Bell inequality test using the state

entangled between B and RB. Because classical information can be cloned, sending the

record of the measurement outcome to Alice is easier than sending RB itself; she doesn’t

have to worry about error correction and she can send multiple copies at once. Sending

exponentially many copies of the information down the throat at once is dangerous from a

back-reaction point of view however. For example, to do this using strings would require an

exponential number of strings, all parallel and located at different values of x, which would

become extremely dense down the throat; the distances between the strings would become

exponentially sub-Planckian. For massless scalars the total number of modes we can use

without backreaction is, at the level of exponential factors, of order (LT )3. Since L ∼ T−1,

using all of these modes at once is of no help in trying to beat the exponential in tmsg.

Given the possibility of α < 2 we are not decisively able to rule out this ‘weak” AMPS

experiment, but at a minimum we are comfortable interpreting this section as casting

serious doubt on the feasibility of using an AdS throat to facilitate an AMPS experiment.46

6 The structure of the Hilbert space

The main argument of this paper is now complete, and although the paper is already long,

we can’t resist making a few comments about the possible implications of our results for

how to think about the interior of a black hole. In the introduction we briefly discussed

two alternatives, “strong complementarity” and “standard complementarity”, for how to

think about Alice the infalling observer’s quantum mechanics. It is very important to

decide which, if either, of these frameworks is the correct way to think about black hole

interiors. In this section we assess the status of each in turn in light of our computational

arguments. This section has substantial overlap with a paper by Susskind [94] appearing

simultaneously with this one, and which explains some of these ideas in more detail.

46Steve Shenker has suggested that another way to buy a little more “room” for dealing with α < 2 is

to notice that the classical recurrence time decreases under coarse-graining. For example if one considers

a system of N particles on a line with L lattice points, S = N logL and eS is the time one has to wait

to find all N particles on a single lattice point. To find all of them on some particular set of
√
L lattice

points however we only need to wait a time of order eS/2. Also we have so far essentially treated Alice as

a “probe observer”, but Borun Chowdhury has pointed out that Alice and her equipment will have their

own recurrence time which is probably significantly shorter than that of the black hole.
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The least restrictive idea for how to think about Alice is to imagine that she has her own

quantum mechanics, possibly approximate since she encounters a singularity later, which

is a priori independent of the quantum mechanics of an observer at infinity like Charlie.

This type of theory has been argued for by Banks and Fischler for a while, who attempt

to realize it precisely as quantum mechanics with no approximations for anybody, in a

formalism called “holographic spacetime” [10, 11]. The basic idea will be discussed using

as illustration figure 1 above. In this framework it seems necessary for consistency [14, 15]

for Alice and Charlie to agree about the results of measurements in the green region of

the figure. It is fairly clear in this setup that if Alice indeed cannot decode the radiation

before jumping in, we are free to change her state in a way that produces no observable

contradiction with the fact that Charlie, who is able to decode, will later conclude that that

RB was entangled with B. Charlie, not having access to the degrees of freedom behind the

horizon, will not be able to check that B is entangled with A. Moreover a previous objection

to strong complementarity [1], that it required some sort of discontinuity in the experiences

of a sequence of observers who jump in at different times, is not relevant since the only

thing that determines whether or not RB can be decoded is whether or not the observer

ever falls in. So Alice’s inability to decode apparently allows strong complementarity to be

consistent without firewalls.

Although strong complementarity is in some sense straightforward, it is rather un-

satisfying. Each observer having her own description of the universe, approximate or

not according to taste, and with no clear precise relationship between them, seems to us

like a rather inelegant fundamental framework. In particular it is to be contrasted with

AdS/CFT [45, 46, 95], where there is a single Hilbert space and set of operators which

is conventionally understood to describe all of the physics in AdS space within a single

sharp framework. It would be reassuring if strong complementarity could be set into such

a framework, in which its ambiguities would be understood as arising from measurements

that are not precisely well-defined. Without such an embedding, it would seem like strong

complementarity would amount to a step backwards; even in AdS space the CFT would

not be a complete description of the physics of an infalling observer.47 As we discussed

above this embedding has been called A = RB in the context of firewalls; in the remainder

of this section we sketch a basic proposal for how it could work more precisely.

We imagine that there is a single Hilbert space H, which we will think of as the

CFT Hilbert space in an AdS setup to be concrete. To understand Charlie’s physics on

some spatial slice like the black one in figure 1, we need to compute expectation values

of some set of operators Cn, which approximately commute.48 Indeed there is a fairly

well-known construction [51] for constructing these operators in some cases, which we

illustrate in figure 6.

Our proposal for the interior is then that there is another set of operators, which we

will call An’s, which are also mutually commuting with each other and whose expectation

47The point of view of that follows here is in some respects close to that of [16], although we disagree

with their assertion that their construction by itself addresses the argument of AMPS.
48It is interesting to ask whether approximately commute means up to powers in N−1 or up to exponen-

tially small terms in N . We are agnostic about this here.
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Figure 6. The construction of bulk operators by Kabat, Lifschytz, and Lowe for an AdS black hole.

Here the yellow region is a lightcone ending on the operator and extending out to the boundary,

and the operator is constructed by integrating a CFT operator over the boundary of the yellow

region against a kernel that depends on the position of the operator. Note that as the operator

approaches the horizon the operator becomes sensitive to the entire history on the boundary and

thus to the details of the quantum state.

values in the same (Heisenberg picture) state used by Charlie describe Alice’s experience

on the red slice in figure 1. Some of the An’s are interpreted by Alice as being outside

the horizon, and she can also try to construct them using the method of [51]. Consistency

then requires that these An’s are equal to the appropriate Cn’s to prevent disagreement

between Alice and Charlie about events in the green region of figure 1. Others of the

An’s are interpreted by Alice as being behind the horizon and, as shown in the figure the

construction of [51], breaks down in that case. These An’s naively do not seem to have low

energy interpretations for Charlie. From the AMPS argument however we know that to

have a smooth horizon it must be that there are some operators just outside the horizon,

which act on what we’ve been calling B, measurements of which need to be close to perfectly

correlated measurements of some of the behind-the-horizon An’s. Before the Page time,

none of Charlie’s Cn’s are expected to have this correlation with the B operators, and as

recently argued by Susskind, Verlinde, and Verlinde [18, 52] Charlie can then interpret the

An’s as just being some complicated mess acting on the remaining black hole. After the

Page time, however, Charlie expects the operators acting on B to be perfectly correlated

with nonlocal Cn’s acting on what we’ve called RB in the radiation. So it must be that from

Charlie’s point of view the appropriate An’s now act on the complicated subfactor of the

radiation which purifies B. Hence the name A = RB. This clearly is rather nonlocal, but as

shown in the figure the breakdown of the construction of [51] suggests that the construction

of operators behind the horizon does indeed depend on sensitive details of the state.

This idea is very confusing to interpret however if Alice is able to decode the Hawking

radiation, because she then has two low energy observables which she wants to identify

with the same quantum mechanical operator on the same Hilbert space. This is sometimes

called cloning, although it isn’t really because the theory is quantum mechanical and thus

doesn’t clone, but it seems like a rather serious problem for the physical interpretation of

quantum mechanics. By doing low-energy manipulations of the Hawking radiation Alice
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would be able to construct a situation where looking at some localized piece of the Hawking

radiation far from the black hole is indistinguishable from looking behind the horizon. At

a minimum this type of observable bizarreness would allow acausal communication, and in

any event it doesn’t seem particularly less crazy than the idea that there is a firewall. In

the context of the discussion of this paper however, if Alice in principle cannot decode RB
then there does not seem to be any such problem with interpreting An as being behind the

horizon from Alice’s point of view and out in the radiation from Charlie’s point of view.

This is something like strong complementarity, but now realized in a single quantum theory.
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A The absorption probability for a Nambu-Goto string

In this section we compute the low-energy absorption probability for transverse oscillations

of a string stretching down the extremal black three brane geometry (5.17). This has been

previously been computed by Maldacena and Callan [96]; our method is the same as in [91]

for a massless scalar. The Nambu-Goto action is

SNG = − 1

2π`2s

∫
d2σ
√
−det (GMN∂iXM∂iXN ), (A.1)
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and parametrizing the string in static gauge and considering only oscillations in the S5

direction we have

t = τ

r = σ

~x = 0

θ = θ(τ, σ).

Linearizing the action in θ we find

S =
1

4π`2s

∫
dσdτσ2

(
Z(σ)θ̇2 − θ′2

)
, (A.2)

and looking at modes of definite frequency ω the equation of motion is

θ′′ +
2

σ
θ′ + Z(σ)ω2θ = 0. (A.3)

Defining ρ = ωσ, the equation becomes

θ′′ +
2

ρ
θ′ +

(
1 +

(
ωR

ρ

)4
)
θ = 0. (A.4)

For ρ� ωR the solution is approximately

θ = A
eiρ

ρ
+B

e−iρ

ρ
, (A.5)

while for ρ� ωR the solution is approximately

θ = Ãe
iω2R2

ρ + B̃e
−iω2R2

ρ . (A.6)

When ωR � 1 we can also find an approximate solution for (ωR)4/3 � ρ� 1 by keeping

only the derivative terms in (A.4):

θ =
C

ρ
+D. (A.7)

Since this range overlaps with the other two ranges, we can use this solution to connect

them together. Since we are computing an absorption probability we want B̃ = 0, which

means that matching the two “inner” regions gives

C = iω2R2Ã

D = Ã. (A.8)

Matching the “outer” two regions gives

C = A+B

D = i(A−B), (A.9)
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so when ωR� 1 we have

A ≈ −B ≈ − i
2
Ã. (A.10)

Finally to compute the absorption probability we inspect equations (A.5) and (A.6), switch-

ing back from ρ to r, and compute the square of the ratio of the coefficients of the waves.

The result is

Pabs ∼ (ωR)2, (A.11)

consistent with [96]. One could also study oscillations along the brane direction, according

to [97] these give an absorption probability proportional to (ωR)4.
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