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1 Introduction

The ATLAS and CMS experiments at the Large Hadron Collider (LHC) have discovered a

new particle with a mass of approximately 125 GeV [1, 2] whose properties are consistent

with that of the Standard Model Higgs boson. Continuing studies at the LHC are focusing

on the detailed understanding of the quantum numbers of this particle [3] and its couplings

to gauge bosons and fermions (see e.g. [4] and references therein). The successful completion

of this task is crucial for determining if the new particle is indeed the long-awaited Higgs

boson or instead some other state.

A reliable understanding of coupling constants cannot occur without accurate theo-

retical predictions for the main Higgs boson production and decay processes. Arriving at

such predictions requires the computation of higher-order QCD corrections, since they are

known to affect Higgs production rates and decay branching fractions in a significant way.

In fact, for gluon-initiated processes gg → H+X, where X is a state with zero, one or two

hard jets, the next-to-leading order (NLO) QCD radiative corrections are known to be so
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large [5–12] that next-to-next-to-leading order (NNLO) QCD computations are important

for reliable phenomenology.

Unfortunately, current computational technology only allows NNLO QCD computa-

tions for the case of Higgs boson production in association with zero jets [13–18]. Extending

this result to one or more jets will lead to a refined analysis of the pp → H → W+W−

process, since in that case final states with different jet multiplicities are treated as different

processes in order to optimize search strategies. The information about the relative signif-

icance of the Higgs boson production in association with zero, one or two jets is currently

extracted from available fixed-order computations supplemented with resummations of the

most important terms in the perturbative expansion [19–23]. Explicit NNLO computa-

tions for multi-jet processes will be indispensable for understanding the reliability of these

predictions.

The other motivation for this work is of a more theoretical nature. One can argue

that the framework of perturbative QCD that has been developed since the late 1970’s has

proven to be one of the most important areas of particle physics phenomenology. Indeed, it

is impossible to imagine contemporary high-energy physics without hadron collider physics

whose proper description is intimately related with parton shower event generators, sophis-

ticated fits of parton distribution functions, fixed-order perturbative calculations and the

like. Much of our understanding of perturbative QCD is based on how soft and collinear

singularities cancel in suitable “infra-red safe” quantities, since this defines short-distance

observables that can be calculated in perturbation theory. Currently, there exists an inter-

esting gap in this understanding. On one hand, general theorems [24, 25] ensure that this

cancellation occurs in suitably defined quantities to all orders in perturbation theory. On

the other hand, we only know how to use those ideas for generic computations of infra-

red-safe observables at leading and next-to-leading order in perturbative QCD [26, 27].

It is still not entirely clear how to construct a general calculational scheme for two- and

higher-loop computations.

It is important to point out that, in spite of the fact that a generic computational

scheme is not available, a fairly large number of NNLO computations for various pro-

cesses have already been performed [16–18, 28–41], but until very recently such compu-

tations always utilized a particular aspect of a specific process. Such aspects included a

small number of final-state particles, or their color neutrality, or absence of color-charged

particles in the initial state, or even the fact that all matter particles in a particular

process were massive. A generic algorithm that is valid irrespective of the details of

the process under consideration was not worked out. This situation is somewhat pe-

culiar, because following the successful development of generic methods for NLO com-

putations [26, 27], it was generally felt that the development of similar methods for

NNLO computations would be relatively straightforward. For this reason, about ten

years ago many authors calculated infra-red and collinear limits of generic QCD ampli-

tudes [42–49] that are potentially relevant for NNLO computations, and a large num-

ber of two-loop 2 → 2 scattering amplitudes became available [50–62]. Unfortunately,

since it proved harder than expected to develop a working scheme for NNLO computa-
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tions, these infra-red and collinear limits were never used to obtain a complete physical

result.1

Recently, important steps towards developing a general computational scheme valid

through NNLO QCD that, at least in principle, is applicable to processes of arbitrary

multiplicity, were made by Czakon [66, 67], who suggested to combine the ideas of sector

decomposition [68–70] and Frixione-Kunszt-Signer (FKS) [27] phase-space partitioning.

These results were used to obtain NNLO QCD corrections to the cross-sections for qq̄ →
tt̄ [71, 72] and qg → tt̄ [73] processes. A similar computational scheme was also developed in

ref. [74] where it was applied to the calculation of NNLO QED corrections to Z → e+e−.

We note that parallel developments in the antennae subtraction technique [75–79] have

recently led to the calculation of the NNLO QCD corrections to the leading-color all-gluon

contribution to di-jet production at the LHC [80].

While the above results mark important progress in developing a suitable framework

for NNLO computations, a large number of technical aspects still needs to be understood

and worked out. It is best to do this by considering a realistic example with all the ensuing

complications. This is the purpose of the current paper. We consider the hadro-production

of the Higgs boson in association with one hadronic jet at NNLO in QCD. To make

calculations as simple as possible, we work in pure gluodynamics, i.e. QCD without light

fermions. We note that an understanding of how to compute the NNLO QCD corrections

to H + j production is instructive because this process possesses all non-trivial aspects of

a generic NNLO QCD problem. Indeed,

• there are colored particles in the initial state;

• there are colored particles in the final state;

• already at leading order, the total cross-section for this process does not exist unless

a jet algorithm is specified;

• this process exhibits the most general structure of infra-red and collinear singularities,

since these singularities occur due to radiation of gluons in the initial and final states;

• singular collinear splittings g → gg involve non-trivial spin correlations;

• the number of Feynman diagrams that we need to compute is large.2

The only “non-generic” feature of the process that we consider is the high symmetry of

the final state which simplifies the bookkeeping and speeds up the computation. We feel,

however, that having this simplification is useful in the first step in the development of the

new technology and that it does not affect the generality of the method that we describe

in this paper.

1We note that these universal limits are at the base of the NNLO subtractions scheme [63, 64], whose

formulation was recently completed in the case of massless QCD and colorless initial state [65].
2For example, the process gg → Hggg is described at leading order by 230 diagrams while the gg → Hgg

process at one-loop is described by 603 diagrams.

– 3 –



J
H
E
P
0
6
(
2
0
1
3
)
0
7
2

The remainder of the paper is organized as follows. In the next section we describe the

setup of the calculation. In section 3 we discuss the parametrizations of the phase-space

for leading, next-to-leading and next-to-next-to-leading order computations. In section 4

we explain how singular limits of amplitudes are used. In section 5 we describe how O(ǫ)

parts of the relevant amplitudes can be computed using helicity methods. In section 6 we

describe the numerical implementation of our method. In section 7 we discuss some tests

and show the results of the computation. We conclude in section 8. Some useful formulae

are given in the appendix.

2 The setup

We are interested in the computation of NNLO QCD corrections to the process g + g →
H + g, where the Higgs boson can decay into arbitrary particles. To compute this and

related processes, we use the QCD Lagrangian, supplemented with a dimension-five non-

renormalizable operator that describes the interaction of the Higgs boson with gluons in

the limit of very large top quark mass3

L = −1

4
G(a)

µνG
(a),µ,ν − λHggHG(a)

µνG
(a),µ,ν . (2.1)

Here, G
(a)
µν is the field-strength tensor of the gluon field and H is the Higgs boson field.

Matrix elements computed with the Lagrangian of eq. (2.1) need to be renormalized;

to do so, two renormalization constants are required. The first one relates bare and renor-

malized QCD coupling constants

α(0)
s µ2ǫ

0 Sǫ = µ2ǫαsZαs , Zαs = 1− β0
ǫ

(αs

2π

)

+

(

β2
0

ǫ2
− β1

2ǫ

)

(αs

2π

)2
+ . . . . (2.2)

Here, αs is the strong coupling constant in the MS scheme evaluated at the renormalization

scale µ, Sǫ = (4π)−ǫe−γǫ, γ = 0.5772 is the Euler constant and

β0 =
11Nc

6
, β1 =

17N2
c

6
(2.3)

are one- and two-loop contributions to the QCD β-function computed with the Lagrangian

of eq. (2.1). Nc = 3 is the number of colors. We note that eq. (2.3) is only valid in a theory

without light fermions, as defined by the Lagrangian eq. (2.1).

The second renormalization constant ensures that matrix elements of the HGG

dimension-five operator are finite. It reads

λ
(0)
Hgg = − αs

12πv
C(αs)Zeff(αs), Zeff = 1− β0

ǫ

(αs

2π

)

+

(

β2
0

ǫ2
− β1

ǫ

)

(αs

2π

)2
+ . . . (2.4)

In the above formula, C(αs) is the Wilson coefficient of the HGG operator in the MS

scheme [89–92]

C = 1 +
11

2

(αs

2π

)

+
(αs

2π

)2
[

2777

72
+

19

4
ln

µ2

m2
t

]

+O(αs, Nf ), (2.5)

3Finite top-mass effects have been studied for inclusive Higgs production. Corrections beyond LO are

found to be small, both for inclusive observables [81–86] and differential distributions [87, 88].
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where mt is the mass of the top quark. We emphasize again that the displayed result is

only valid in the approximation when no light fermions are present in the theory.

Renormalization of the strong coupling constant and of the effective Higgs-gluon cou-

pling removes ultraviolet divergences from the matrix elements. The remaining divergences

are of infra-red origin. To remove them, we must both define and compute infra-red safe ob-

servables, and absorb remaining collinear singularities by renormalizing parton distribution

functions. We now discuss these two issues.

Generic infra-red safe observables are defined using jet algorithms. For the calculation

described in this paper we employ the k⊥-algorithm. This algorithm belongs to the class

of sequential jet algorithms. It requires specification of the minimal transverse momentum

of the reconstructed jets p⊥,j and the minimal “angular” distance between two partons,

∆Rij =
√

(yi − yj)2 + (ϕi − ϕj)2, where y = 1/2 ln(E+pz)/(E−pz) is the rapidity and ϕ is

the azimuthal angle of a parton. Once ∆R and p⊥,j are specified, the jet algorithm maps a

set of parton momenta onto a set of jet momenta in such a way that jet momenta are stable

against soft and collinear parton splittings. The Kinoshita-Lee-Naunberg theorem [24, 25]

then ensures that observables constructed from jet four-momenta are determined by short-

distance physics and can therefore be computed in QCD perturbation theory. However,

because massless colored partons are present in the initial state of the partonic process

gg → H +X, the infra-red and collinear cancellation is not complete, even in the presence

of a jet algorithm. Collinear singularities associated with gluon radiation by incoming

partons must be removed by additional renormalization of parton distribution functions.

We describe how to perform this renormalization in what follows. For definiteness, we

focus our discussion on the production cross-section of a Higgs boson and a jet in pure

gluodynamics.

We denote the UV-renormalized partonic cross-section for the production of the Higgs

boson and a jet in a gluon fusion by σ̄(x1, x2), and the collinear-renormalized partonic cross-

section by σ(x1, x2). Once we know σ(x1, x2), we can compute the hadronic cross-sections

by integrating the product of σ and gluon distribution functions over x1 and x2

σ(p+ p → H + j) =

∫

dx1dx2 g(x1)g(x2) σ(x1, x2). (2.6)

The relation between σ and σ̄ is given by the following formula4

σ = Γ−1 ⊗ σ̄ ⊗ Γ−1, (2.7)

where the convolution sign stands for

[f ⊗ g] (x) =

1
∫

0

dzdyδ(x− yz)f(y)g(z). (2.8)

The collinear counter-terms are defined as

Γ = δ(1− x)−
(αs

2π

)

Γ1 +
(αs

2π

)2
Γ2, (2.9)

4We show this relation for pure gluodynamics; if more species of partons are present, eq. (2.7) becomes

a matrix equation.
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with

Γ1 =
P

(0)
gg

ǫ
, Γ2 =

1

2ǫ2

(

P (0)
gg ⊗ P (0)

gg + β0P
(0)
gg

)

− 1

2ǫ
P (1)
gg . (2.10)

The relevant splitting functions and their convolutions are given in the appendix. We write

the UV-renormalized partonic cross-section through NNLO as

σ̄ = σ̄(0) +

(

Γ(1 + ǫ)αs

2π

)

σ̄(1) +

(

Γ(1 + ǫ)αs

2π

)2

σ̄(2), (2.11)

and the collinear-renormalized partonic cross-section as

σ = σ(0) +
(αs

2π

)

σ(1) +
(αs

2π

)2
σ(2). (2.12)

We note that the collinear-renormalized cross-section is finite. We then use eq. (2.7) to

obtain

σ(0) = σ̄(0), σ(1) = σ̄(1) +
Γ1 ⊗ σ(0)

Γ(1 + ǫ)
+

σ(0) ⊗ Γ1

Γ(1 + ǫ)
,

σ(2) = σ̄(2) − Γ2 ⊗ σ(0)

Γ(1 + ǫ)2
− σ(0) ⊗ Γ2

Γ(1 + ǫ)2
− Γ1 ⊗ σ(0) ⊗ Γ1

Γ(1 + ǫ)2
+

Γ1 ⊗ σ(1)

Γ(1 + ǫ)
+

σ(1) ⊗ Γ1

Γ(1 + ǫ)
.

(2.13)

Although finite, the σ(i) still depend on unphysical renormalization and factorization

scales because of the truncation of the perturbative expansion. In the following, we will

consider for simplicity the case of equal renormalization and factorization scales , µr =

µf = µ. The residual µ dependence is easily determined by solving the renormalization

group equation order-by-order in αs. The equation reads

0 = µ2dσp+p→H+j

dµ2
= µ2 d

dµ2

∫

dx1dx2g(x1, µ
2)g(x2, µ

2)σ(x1, x2, αs(µ
2), µ2). (2.14)

The µ-derivative of the right hand side can be computed using the known evolution equa-

tions for the strong coupling constant and the gluon density

µ2∂αs

∂µ2
= −αs

(

β0
αs

2π
+ β1

(αs

2π

)2
+O(α3

s)

)

,

µ2∂g(µ
2)

∂µ2
=

αs

2π
g(µ2)⊗

(

P (0)
gg +

αs

2π
P (1)
gg +O(α2

s)
)

.

(2.15)

Solving these renormalization group equations, we get

σ(0)
µ1

= σ(0)
µ2

, σ(1)
µ1

= σ(1)
µ2

+ L12

(

3β0σ
(0)
µ2

− P (0)
gg ⊗ σ(0)

µ2
− σ(0)

µ2
⊗ P (0)

gg

)

,

σ(2)
µ1

= σ(2)
µ2

+ L12

(

4β0σ
(1)
µ2

− P (0)
gg ⊗ σ(1)

µ2
− σ(1)

µ2
⊗ P (0)

gg + 3β1σ
(0)
µ2

− P (1)
gg ⊗ σ(0)

µ2
+

− σ(0)
µ2

⊗ P (1)
gg

)

+
1

2
L2
12

(

12β2
0σ

(0)
µ2

− 7β0

(

P (0)
gg ⊗ σ(0)

µ2
+ σ(0)

µ2
⊗ P (0)

gg

)

+

+ P (0)
gg ⊗ P (0)

gg ⊗ σ(0)
µ2

+ σ(0)
µ2

⊗ P (0)
gg ⊗ P (0)

gg + 2P (0)
gg ⊗ σ(0)

µ2
⊗ P (0)

gg

)

,

(2.16)

where σ
(i)
µ ≡ σ(i)(αs(µ), µ) and L12 = lnµ2

1/µ
2
2.
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It follows from eqs. (2.13), (2.16) that, in order to obtain σ(2) at a generic scale, apart

from lower-order results we need to know the NNLO renormalized cross-section σ̄(2) and

convolutions of NLO and LO cross-sections with various splitting functions. Up to terms

induced by the renormalization, there are three contributions to σ̄(2) that are required:

• the two-loop virtual corrections to gg → Hg;

• the one-loop virtual corrections to gg → H + gg;

• the double-real contribution gg → H + ggg.

We note that helicity amplitudes for all of these processes are available in the literature.

The two-loop amplitudes for gg → Hg were recently computed in ref. [93]. The one-loop

corrections to gg → Hgg [94] and the tree amplitudes for gg → Hggg [95, 96] are known.

Moreover, in the two latter cases, these amplitudes are available in the form of a Fortran

code in the program MCFM [97]. In principle, they can be just taken from MCFM and

used with no modification in another numerical program.

Since the above discussion implies that all ingredients for the NNLO computation of

gg → H + jet are available and, in fact, have been available for some time, it is important

to understand what has prevented the community from performing this and similar cal-

culations. In fact, the main difficulties with NNLO calculations appear when we attempt

to combine the different contributions, since integration over phase-space introduces addi-

tional singularities if the required number of jets is lower than the parton multiplicity. To

perform the phase-space integration, we must first isolate singularities in tree- and loop

amplitudes. It required a long time to establish a convenient way to do this.

The computational method that we will explain shortly is based on the idea that

relevant singularities can be isolated using appropriate parametrizations of phase-space

and expansions in plus-distributions [27, 70]. To illustrate this point, we consider the

integral

I(ǫ) =

1
∫

0

dxx−1−aǫF (x), (2.17)

where the function F (x) has a well-defined limit lim
x→0

F (x) = F (0). We would like to

construct the Laurent expansion of I in ǫ. This can be accomplished by writing

1

x1+aǫ
= − 1

aǫ
δ(x) +

∞
∑

n=0

(−ǫa)n

n!

[

lnn(x)

x

]

+

(2.18)

so that

I(ǫ) =

1
∫

0

dx

(

−F (0)

aǫ
+

F (x)− F (0)

x
− aǫ

F (x)− F (0)

x
ln(x) + . . .

)

. (2.19)

The above equation provides the required Laurent expansion of the integral I(ǫ). We note

that each term in such an expansion can be calculated independently from other terms.
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To use this approach for computing NNLO QCD corrections, we need to map the

relevant phase-space to a unit hypercube in such a way that extraction of singularities is

straightforward. It is intuitively clear that correct variables to use are the re-scaled energies

of unresolved partons and the relative angles between two unresolved (collinear) partons.

However, the problem is that different partons become unresolved in different parts of the

phase-space. It is not immediately clear how to switch between different sets of coordinates

and cover the full phase-space.

We note that for NLO QCD computations, this problem was solved in ref. [27], where

it was explained that the full phase-space can be partitioned into sectors in such a way

that in each sector only one parton (i) can produce a soft singularity and only one pair of

partons (ij) can produce a collinear singularity. In each sector, the proper variables are the

energy of the parton i and the relative angle between partons i and j. Once the partitioning

of the phase-space is established and proper variables are chosen for each sector, we can use

an expansion in plus-distributions to construct relevant subtraction terms for each sector.

With the subtraction terms in place, the Laurent expansion of cross-sections in ǫ can be

constructed, and each term in such an expansion can be integrated over the phase-space

independently. Therefore, partitioning of the phase-space into suitable sectors and proper

parametrization of the phase-space in each of these sectors are the two crucial elements

needed to extend this method to NNLO. In the next section we discuss these issues in

detail.

3 Phase-space parametrizations and sector decomposition

3.1 Phase-space for leading order processes

We now discuss how to parametrize the leading-order phase-space for the process g1+g2 →
H+g3. This will be needed both for the leading-order cross section and for the NLO virtual

and NNLO double virtual corrections, so it must be computed in d = 4 − 2ǫ dimensions.

We note that the integration over the leading order phase-space is not singular, because

of the requirement that a jet is observed. We work in the center-of-mass frame of the two

incoming gluons, so that their momenta are parametrized as

p1 =

√
s

2
(1, 0, 0, 1) , p2 =

√
s

2
(1, 0, 0,−1) . (3.1)

The center-of-mass collision energy is denoted by
√
s and the mass of the Higgs boson is

denoted by mH . The production cross-section, averaged over spins and colors of the two

colliding gluons, is written as

dσgg→H+g =
1

512s
dLips12→H3|Mgg→gH |2 × Fj , (3.2)

where Fj is the “measurement function” that restricts the integration to the region of

phase-space where there is an identified jet. The amplitude Mgg→gH describes production

of an on-shell Higgs boson in hadronic collisions and dLips12→H3 is the Lorentz-invariant

phase-space.
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The parametrization of the phase-space dLips12→3H in eq. (3.2) is easily obtained by

integrating over the momentum of the on-shell Higgs boson and then over the center-of-

mass energy of the gluon g3. We find

dLips12→3H =
dΩ

(d−2)
3 p−2ǫ

⊥,H d cos θ3

8(2π)d−2

(

1− m2
H

s

)

, p⊥,H = Emax sin θ3, (3.3)

where Emax = (s −m2
H)/(2

√
s). With this parametrization, the momentum of the gluon

g3 reads

p3 = Emax (1, ~n3) , (3.4)

where n3 = (sin θ3 cosϕ3, sin θ3 sinϕ3, cos θ3), and the Higgs boson momentum is obtained

from momentum conservation: pH = p1 + p2 − p3. Note that in eq. (3.3), p⊥,H is the

transverse momentum of the Higgs boson relative to the collision axis.

Before proceeding further, we note that the azimuthal angle ϕ3 of the emitted gluon

is a dummy variable, since neither matrix element squared nor the measurement function

FJ depend on it for our choice of p1 and p2. Hence, we can rotate it away by taking the g3
momentum to be

p3 = Emax (1, sin θ3, 0, cos θ3) , (3.5)

and integrate over dΩ
(d−2)
3 in eq. (3.3). Once this is done, we can set this solid angle to its

four-dimensional expression to simplify calculations at higher orders. This is legitimate to

do as long as we can identify this angle, associated with global rotations of final states in the

plane transverse to the collision axis, when parametrizing higher-multiplicity phase-spaces.

Nevertheless, to maintain sufficiently general leading order kinematics, we re-introduce the

azimuthal angle ϕ3 and keep it to generate momenta of the gluon and the Higgs boson.

This amounts to writing dΩ
(d−2)
3 → dϕ3 in eq. (3.3) and then using eq. (3.4) for the gluon

g3 momentum. In addition, since the transverse momentum of the Higgs boson is an

observable quantity, the differential cross-section dσ/dp⊥,H should be finite for each value

of p⊥,H to all orders in perturbation theory. Hence, we can divide the cross-section by p−2ǫ
⊥,H

without changing the final result. This amounts to removing this factor from the phase-

space parametrization at both leading and higher orders in perturbation theory. Putting

all these remarks together, we conclude that we can choose the leading order phase-space

to be “four-dimensional,”

dLips12→3H → d cos θ3dϕ3

32π2

(

1− m2
H

s

)

=

(

1− m2
H

s

)

dx3dx4
8π

, (3.6)

where we introduced cos θ3 = 1−2x3 and ϕ3 = 2πx4 to parametrize the momentum of gluon

g3 as given by eq. (3.4). We must remember to normalize NLO and NNLO phase-spaces

to p−2ǫ
⊥,H for consistency.

Although we will not discuss this in any detail in this paper, we note that it is straight-

forward to include decays of the Higgs boson. Indeed, because the Higgs boson momentum

is an observable quantity, all singularities should cancel out in the differential cross-section

dσ/d~pH . Once this differential cross-section is known and because the Higgs boson is a

scalar particle, so that no spin correlations are present, we can easily turn dσ/d~pH into
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quantities such as dσ/d~pγ1d~pγ2 by letting the Higgs boson decay in its rest frame and then

boosting the four-momenta of the two photons into the center-of-mass frame.

3.2 Phase-space for next-to-leading order processes

In this section, we consider the parametrization of the phase-space for the process g1+g2 →
H + g3 + g4. This process represents a real-emission contribution to the production cross-

section of the Higgs and one jet at next-to-leading order. It is also important for the NNLO

computation where integration of one-loop corrections to gg → Hgg amplitudes over the

ggH phase-space is required.

As we already explained in the Introduction, a good parametrization of the phase-space

dLipsg1g2→Hg3g4 should facilitate the extraction of singularities from the matrix elements

of the process g1g2 → Hg3g4. Of particular importance are collinear singularities. We can

compare two cases: i) g4 is emitted collinear to g1; ii) g4 is emitted collinear to g3. In the

first case, it is easiest to extract the singularity if the z-axis is chosen to coincide with the

direction of the gluon g1 and in the second case with the direction of the gluon g3. This

immediately tells us that a suitable parametrization of the phase-space should depend on

the kinematics of the process. As we mentioned in the Introduction, this is the main idea

behind the FKS subtraction method [27].

Following ref. [27], we note that the first step towards a convenient phase-space pa-

rametrization is the phase-space partitioning. The goal of such a partitioning is to create

sectors where one and only one gluon or one and only one pair of gluons can become

unresolved. Once we know which gluon or which pair of gluons can produce singularities,

we choose the energy of the potentially soft gluon and the relative angle between the two

potentially collinear gluons as the primary variables for the phase-space parametrization in

the given sector. To illustrate this procedure, we begin by removing the symmetry between

the two gluons in the final state by separating them into “resolved” and “unresolved” ones.

To this end, we introduce the following function of transverse momenta of gluons g3 and g4,

∆(i)
p⊥

=
p⊥,j

p⊥,3 + p⊥,4
, j 6= i, (3.7)

and write

1

2!
dLips12→34H =

1

2!
dLips12→34H

(

∆(4)
p⊥

+∆(3)
p⊥

)

→ dLips12→34H∆(4)
p⊥

. (3.8)

In the last step we used the fact that the phase space, the kinematic constraints on final-

state particles and all matrix elements are symmetric with respect to permutations of gluons

g3 and g4. Given the structure of the damping factor ∆
(4)
p⊥ , it is clear that singularities of

the matrix element related to gluon g3 are unimportant, and we only need to consider cases

when gluon g4 becomes either soft or collinear to one of the three hard directions defined

by the momenta g1, g2 and g3. Note that g3 and g4 cannot both be soft, or collinear to the

collision axis at the same time, because we require a jet in the final state. To separate the

collinear-singular regions, we introduce another partition of unity

1 = ∆
(41)
θ +∆

(42)
θ +∆

(43)
θ . (3.9)
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In eq. (3.9), we use

∆
(4i)
θ =

ρj4ρk4

ρ14ρ24 + ρ14ρ34 + ρ24ρ34
, j, k 6= i, 4, (3.10)

where ρij = 1 − ~ni · ~nj and ~ni is the three-vector that parametrizes momentum direction

of the particle i. Again, the ∆
(4i)
θ are labeled in such a way that the subscript indicates

a pair of particles that can become collinear without forcing the angular damping factor

to vanish. Inserting this partition of unity eq. (3.9) into the phase-space of eq. (3.8), we

obtain

1

2!
dLips12→34H →

3
∑

i=1

dLips
(4i)
12→34H , dLips

(4i)
12→34H = dLips12→34H∆(4)

p⊥
∆

(4i)
θ . (3.11)

The above decomposition defines pre-sectors that we will refer to as Sc(4i). A phase-space

parametrization for each of these pre-sectors is chosen in such a way that the soft and

collinear singularities that are relevant for that pre-sector can be extracted in the easiest

possible way.

We now describe these parametrizations explicitly. In general, we will parametrize the

phase-spaces by splitting them into “regular” and “singular” parts

dLips
(4i)
12→34H = ∆(4)

p⊥
∆

(4i)
θ dLipsQ(12)→3H × [dg4]

(4i). (3.12)

The regular NLO phase-space is the same for all pre-sectors. It includes all particles except

the (potentially soft) gluon g4. We write it as

dLipsQ(12)→3H =
dx4dx5
(8π)

2Eg3

(Q0 − ~Q · ~n3)

(

E2
g3 sin

2 θ3

p2⊥,H

)−ǫ

, (3.13)

where we have introduced the notation Q = p1 + p2 − p4 and p3 = Eg3(1, ~n3). Also,

Eg3 =
Q2 −m2

H

2(Q0 − ~Q · ~n3)
, ~n3 = (sin θ3 cosϕ3, sin θ3 sinϕ3, cos θ3) ,

cos θ3 = 1− 2x4, sin θ3 = +
√

1− cos2 θ3, ϕ3 = 2πx5.

(3.14)

Following the discussion of the leading order phase-space parametrization, we have dropped

the ǫ-dependent part of the integral over azimuthal angle of the gluon g3, and have nor-

malized the remaining ǫ-dependent part of the phase-space to the transverse momentum

of the Higgs boson.

Parametrization of the singular phase-space depends on the pre-sector. To explain this,

we begin by considering pre-sector Sc(41). To parametrize the singular phase-space for this

pre-sector, we note that, thanks to the damping factors, the singularities occur when g4 is

collinear to g1 or when g4 is soft. Hence, it is convenient to choose the parametrization

where the energy of the gluon g4 and the relative angle between the three-momenta of g4
and g1 are basic variables. The azimuthal angle of the gluon g4 is conveniently defined

relative to the plane formed by the g1 and g3 three-momenta. We therefore write

p4 = Eg4 (1, sin θ4 cosϕ4, sin θ4 sinϕ4, cos θ4) , (3.15)
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where ϕ4 = ϕ̃4 + ϕ3. The singular phase-space reads

[dg4]
(41) =

Ed−3
g4 dEg4d cos θ4dϕ4(sin

2 θ4 sin
2 ϕ̃4)

−ǫdΩ(d−3)

2(2π)d−1
. (3.16)

The (d−3)-dimensional solid angle does not enter any of the scalar products and therefore

can be integrated away. We write

Eg4 = Emaxx1, cos θ4 = 1− 2x2, (3.17)

where Emax is introduced after eq. (3.3). The singular phase-space for Sc(41) becomes

[dg4]
(41) = Ed−2

max

2−2ǫΩ
(d−2)
4

(2π)d−1
x1−2ǫ
1 x−ǫ

2 (1− x2)
−ǫdϕ4(sin

2(ϕ4 − ϕ3))
−ǫ

2π
∫

0

dϕ4(sin
2(ϕ4))−ǫ

dx1dx2. (3.18)

We use
2π
∫

0

dϕ4(sin
2 ϕ4)

−ǫ = 21−2ǫB

(

1

2
− ǫ,

1

2
− ǫ

)

, (3.19)

and write ϕ4 = 2πx3 to find

[dg4]
(41) =

(

1− π2

3
ǫ2 − 2ζ3ǫ

3 +
π4

90
ǫ4
)

Γ(1 + ǫ)

(4π)d/2
2−2ǫ (2Emax)

2−2ǫ

× x1−2ǫ
1 x−ǫ

2 (1− x2)
−ǫ(sin2(ϕ4 − ϕ3))

−ǫ
3
∏

1

dxi.

(3.20)

Combining everything, we find the expression for the phase-space of the pre-sector Sc(41)

to be

dLips
(41)
12→34H = Norm× PSw × PS−ǫdx1dx2dx3dx4dx5

x1+2ǫ
1 x1+ǫ

2

×
[

x21x2
]

, (3.21)

where PS = 16E2
maxE

2
3 sin

2 θ3(1− x2)(sin
2(ϕ4 − ϕ3))/p

2
⊥,h and

Norm =
Γ(1 + ǫ)

(4π)d/2

(

1− π2

3
ǫ2 − 2ζ3ǫ

3 +
π4

90
ǫ4
)

,

PSw =
E2

maxE3

π (
√
s− E4(1− ~n3 · ~n4))

∆
(41)
θ ∆(4)

p⊥
.

(3.22)

These equations allow us to generate four-momenta of all final-state particles. Indeed,

a set of random numbers x1, . . . , x5 gives us momenta of the gluon g4 and the direction

of the unit vector ~n3 that parametrizes the momentum direction of a “hard” gluon g3
in the center-of-mass frame of colliding gluons. Using this information, we can find the

energy of the gluon g3 and determine the momentum of the Higgs boson from momentum

conservation.

The phase-space of the second pre-sector Sc(42) dLips
(42)
12→34H is parametrized in a sim-

ilar way, except that we now need a simple parametrization of the relative angle between
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gluons g2 and g4. Therefore, we write cos θ4 = −1 + 2x2. This is the only change that

occurs at the level of momentum generation and everything else, including the phase-space

parametrization, can be borrowed from eq. (3.21).

The phase-space parametrization for the third pre-sector Sc(43) requires some changes.

The main difference with respect to the previous cases is that now the collinear direction

corresponds to the “hard” final state gluon g3, which means that we need to choose the

relative angle between g3 and g4 as the primary variable for phase-space parametrization.

In the reference frame where the momentum of gluon g3 is along the z-axis, the direction

of the gluon g4 is chosen to be

~n4,3||z = (sin θ4 cosϕ4, sin θ4 sinϕ4, cos θ4) . (3.23)

The phase-space parametrization employs angles θ4 and ϕ4. The momentum of the gluon

g4 in the center-of-mass reference frame is obtained by rotating eq. (3.23) in the x−z plane

by θ3 and in the x − y plane by ϕ3. We parametrize the energy of the gluon g4 and its

relative angle with respect to g3 using eq. (3.17). We conclude that the parametrization

of Sc(43) phase-space coincides with eq. (3.21) except that in PS−ǫ, we should substitute

(sin2(ϕ4 − ϕ3))
−ǫ → (sin2(ϕ4))

−ǫ.

The above formulae can be used to construct phase-space parametrizations for next-

to-leading computations or for the calculation of the one-loop corrections to gg → H + gg

process. In the latter case, one should be careful since it is customary for one-loop virtual

corrections to be normalized with the factor

cΓ =
Γ(1 + ǫ)Γ(1− ǫ)2

(4π)2−ǫΓ(1− 2ǫ)
. (3.24)

If we choose the normalization in such a way that one power of Γ(1+ ǫ)/(4π)d/2 is factored

out per loop, the expression for Norm in eq. (3.22) changes. To use eq. (3.21) for the

computation of real-virtual corrections, we should make the following replacement there

Norm → NormRV ≡ cΓNorm =
Γ2(1 + ǫ)

(4π)d

(

1− π2

2
ǫ2 − 4ζ3ǫ

3 +
π4

24
ǫ4
)

. (3.25)

3.3 Phase-space for next-to-next-to-leading order processes

In this section we consider the partonic process g1 + g2 → H + g3 + g4 + g5 and discuss

how to generate the phase-space in a way that facilitates the extraction of singularities.

We begin with a discussion of the phase-space partitioning. Similar to the one-loop case,

we first partition the phase-space in a way that allows us to identify the “hard” gluon by

writing

∆(ij)
p⊥

=
p⊥,k

p⊥,3 + p⊥,4 + p⊥,5
, i 6= j 6= k, i, j, k ∈ [3, 4, 5]. (3.26)

Because ∆(34) + ∆(35) + ∆(45) = 1, we can use this partition of unity and the symmetry

of the phase-space, the measurement functions and the matrix elements with respect to
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permutations of gluons g3, g4 and g5, to write

1

3!
dLips12→H345 =

1

3!
dLips12→H345

(

∆(34)
p⊥

+∆(35)
p⊥

+∆(45)
p⊥

)

=
1

2!
dLips12→H345∆

(45)
p⊥

= dLips12→H345∆
(45)
p⊥

θ(Eg4 − Eg5).

(3.27)

In the last step we introduced the energy ordering of the two gluons; this allows us to

remove the final symmetry factor.

We must next partition the phase-space to extract collinear singularities. To do so, we

closely follow the discussion of the next-to-leading order case in the previous section. We

split the phase-space into nine different sectors that we denote by the possible collinear

directions of the gluons 4 and 5. We have three triple-collinear sectors 4||5||i, with i = 1, 2, 3

and six double-collinear sectors 4||i ⊗ 5||j, where i 6= j ∈ [1, 2, 3]. To write the weight for

each of the nine sectors, we introduce the auxiliary quantities

di∈[4,5] =
3
∑

j=1

ρij , di∈[4,5]k =
3
∑

j=1,j 6=k

ρij , d45ij = ρ45 + ρ4i + ρ5j . (3.28)

Denoting the weight of a sector where gluon 4 is allowed to become collinear to gluon i

and gluon 5 to gluon j by w4i;5j , we write (k 6= n 6= 4 6= 5 6= i 6= j)

w4i;5j |i=j =
ρ4kρ4nρ5kρ5n

d4d5

[

(

1

d4k
+

1

d4n

)(

1

d5k
+

1

d5n

)

+

(

1

d4i
+

1

d4k

)(

1

d5k
+

1

d5n

)

ρ4i
d45ni

+

(

1

d4i
+

1

d4n

)(

1

d5k
+

1

d5n

)

ρ4i
d45ki

+

(

1

d4k
+

1

d4n

)(

1

d5i
+

1

d5k

)

ρ5i
d45in

+

(

1

d4k
+

1

d4n

)(

1

d5i
+

1

d5n

)

ρ5i
d45ik

]

,

(3.29)

and (k 6= n 6= 4 6= 5 6= i, l 6= m 6= 4 6= 5 6= j)

w4i;5j |i 6=j =
ρ4kρ4nρ5lρ5m

d4d5

(

1

d4k
+

1

d4n

)(

1

d5l
+

1

d5m

)

ρ45
d45ij

. (3.30)

Using eq. (3.27), we decompose the phase-space as

1

3!
dLips12→H345 =

∑

α∈S

dLips
(α)
12→H345, (3.31)

where S = [(41; 51), (42; 52), (43; 53), (41; 52), (42; 51), (41; 53), (43; 51), (42; 53), (43; 52)]

and

dLips
(α)
12→H345 = dLips12→H345 ∆

(45)
p⊥

θ(Eg4 − Eg5) wα. (3.32)

We now discuss the parametrization of the phase-spaces for individual pre-sectors.

Because of the ∆
(45)
p⊥ factor, we consider gluon g3 as part of the regular phase-space and

gluons g4, g5 as part of the singular phase-space. Regular phase-spaces are the same for all
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pre-sectors and are parametrized in the same way as at NLO in eq. (3.13), except that the

vector Q in that equation becomes Q = p1 + p2 − p4 − p5.

We begin with the triple-collinear sectors. We have three such sectors Sc(4i;5i), i ∈
[1, 2, 3]. In these sectors, singularities can appear if gluons g4,5 are soft, and if they are

collinear to the direction ~ni, or to each other. The phase-space parametrization should

enable us to extract all of these singularities. We will start the discussion with the triple-

collinear initial sector Sc(41;51).

The first step is to find independent degrees of freedom, which is non-trivial because

we have to perform computations in dimensional regularization. To illustrate this point,

we use d-dimensional rotational invariance to choose the momenta of five gluons as follows

p1,2 =

√
s

2
(1, 0, 0,±1; 0) ,

p3 = Eg3 (1, sin θ3 cos ϕ̃3, sin θ3 sin ϕ̃3, cos θ3; 0) ,

p4 = Eg4 (1, sin θ4, 0, cos θ4; 0) ,

p5 = Eg5 (1, sin θ5 cosϕ5, sin θ5 sinϕ5 cosα, cos θ5; sin θ5 sinϕ5 sinα) .

(3.33)

Note that these momenta are shown as five-dimensional vectors; the fifth component cor-

responds to one of the axes in the (d − 4)-dimensional space. The angle α parametrizes

leakage into the (d−4)-dimensional vector space. Note also that we have chosen to give the

(d− 4)-dimensional component to the softer of the two gluons. The reason for this choice

will be explained shortly. With this parametrization, the angular part of the phase-space

becomes

dΩ(d−1)
g3 dΩ(d−1)

g4 dΩ(d−1)
g5 ∼ d[cos θ3](sin

2 θ3)
−ǫdϕ̃3(sin

2 ϕ̃3)
−ǫdΩ(d−3)

g3

× d[cos θ4](sin
2 θ4)

−ǫdΩ(d−2)
g4 d[cos θ5](sin

2 θ5)
−ǫ

× dϕ5(sin
2 ϕ5)

−ǫd[cosα](sin2 α)−1−ǫdΩ(d−4)
g5 .

(3.34)

We can generalize the momentum parametrization in eq. (3.33) by rotating all momenta

in the xy-plane by the angle ϕ4. Obviously, the momenta of the incoming gluons p1,2 do

not change, while the other momenta become

p4 = E4 (1, sin θ4 cosϕ4, sin θ4 cosϕ4, cos θ4; 0) ,

p5 = E5 (1, sin θ5 cosα(ϕ4 + ϕ5), sin θ5 sinα(ϕ4 + ϕ5), cos θ5; sin θ5 sinϕ5 sinα) ,

p3 = E3 (1, sin θ3 cosϕ3 sin θ3 sinϕ3, cos θ3; 0) .

(3.35)

In eq. (3.35), we have introduced the notation

cosα(ϕ4 + ϕ5) = cosϕ4 cosϕ5 − sinϕ4 sinϕ5 cosα,

sinα(ϕ4 + ϕ5) = sinϕ4 cosϕ5 + cosϕ4 sinϕ5 cosα,
(3.36)

and ϕ3 = ϕ̃3 + ϕ4. Note that the phase-space is written in terms of ϕ̃3, the relative

azimuthal angle of g4 and g3, and that

cos2α(a) + sin2α(a) 6= 1. (3.37)
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Before we express the phase-space parametrization in terms of suitable variables, we

make a few general comments. We note that our choice of the phase-space parametrization

and assignment of extra-dimensional components is restricted by two requirements:

• extra-dimensional components and angles should not complicate the extraction of

singular limits;

• extra-dimensional momenta components should not appear in the non-singular matrix

elements and kinematic constraints.

It turns out that the parametrization of the momenta in eq. (3.35) satisfies the first require-

ment for the triple-collinear sector Sc(41;51). This happens because the parametrization is

chosen in such a way that the scalar products p1 · p4, p1 · p5, p4 · p5 that can potentially lead

to singularities in this sector do not depend on the extra-dimensional angle α.

We now discuss how to satisfy the second requirement. We note that full parametriza-

tion of eq. (3.35) is not needed for the highest multiplicity gg → Hggg hard matrix element.

Indeed, a configuration where all the three final-state gluons are resolved is non-singular,

hence we can use a d = 4 phase-space parametrization to describe it. We will see explicitly

below that this amounts to setting α = 0 in eq. (3.35). Therefore, we only have to explain

how to satisfy the second requirement in configurations where one or both of g4, g5 are

unresolved. To this end, we note that in all soft limits this requirement is automatically

satisfied. Indeed, since Eg4 → 0 implies Eg5 → 0, in any of the soft limits the gluon

momentum with the ǫ-dimensional component is not present in the hard matrix element

and in kinematic constraints. The α-dependence will therefore reside solely in the unre-

solved phase-space and in eikonal factors and splitting functions. It is important that this

dependence on α is non-singular, so that the numerical integration can be performed in a

straightforward way.

The collinear limits are more complicated. If p5 is collinear to either p1 or p4, then

ϕ5 = 0 or θ5 = 0, which implies that the ǫ-dimensional components of momenta and the

dependence on α disappear from the matrix elements. On the other hand, this does not

mean that collinear limits are independent of α. Indeed, such a dependence is present

in the spin-correlation part of the splitting functions. We must account for that in the

computation. This can be done in a straightforward way since this dependence is non-

singular. Finally, consider the kinematic situation where p4 is collinear to p1 and p5 is

resolved . In this case, the matrix element squared becomes

|M|2 ≈ 1

p1 · p4
(2CAg

2
s)P

µν
gg (p4, κ4)Mµ(p14, p2, p3, p5)M∗,ν(p14, p2, p3, p5), (3.38)

where p14 = p1 − p4 and κ4 is the spin-correlation vector that tells us how the collinear

direction is approached (see section 4 or [26] for details). Eq. (3.38) implies that the matrix

element depends on the four-vector p5 and, according to eq. (3.35), p5 has ǫ-dimensional

components. This dependence is unfortunate, since it becomes unclear how to use four-

dimensional methods, such as spinor-helicity techniques, to simplify calculations of scat-

tering amplitudes in that situation. However, when p1||p4 we are left with only three
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different directions n1, n3, n5. We can use d−dimensional rotational invariance to remove

any ǫ-dimensional components from the matrix elements in eq. (3.38). To do so, we first

remove the y-component of p3 by rotating all momenta in the xy-plane by the angle −ϕ3.

This rotation does not change p14 ∼ (1, 0, 0, 1) and p2 ∼ (1, 0, 0,−1). We then perform

another rotation in the yǫ-plane, to remove the ǫ-dependent component of the vector p5.

Because none of the momenta in the matrix element has both y- and ǫ-dimensional compo-

nents, such a rotation does not change p14, p2 and p3, while it makes p5 four-dimensional.

We note that, although we rotated away the ǫ-dimensional components of the resolved

four-vectors that are used in the hard matrix elements, these vectors still depend on the

ǫ-dimensional angle α. In addition, because of spin correlations, we also must rotate the

vector κµ4 = (0, cosϕ4, sinϕ4, 0, 0) that enters P
µν
gg in eq. (3.38). This rotated vector receives

ǫ-dimensional components and becomes α-dependent. The purpose of the rotation therefore

is to move the ǫ-dimensional components from the resolved momenta in the matrix element

to the splitting function, where it is easy to account for them explicitly. Finally, we stress

that the very possibility to rotate away the ǫ-dimensional components of particle momenta

is connected to the rotational invariance of spin-summed scattering amplitudes squared in

d-dimensional space-time. This seems to suggest that the easiest framework in which to

implement this techniques is conventional dimensional regularization, where the momenta

of all external particles and their polarization vectors are treated as d-dimensional. We

will discuss this point in more detail shortly.

We now discuss the explicit parametrizations of the relevant phase-spaces. For the

sector Sc(41;51), the singular phase-space reads

[dg4][dg5]θ(Eg4 − Eg5) =
dΩ

(d−3)
g4 dΩ

(d−4)
g5

24+2ǫ(2π)2d−2
dϕ4

[

sin2(ϕ4 − ϕ3)
]−ǫ

d cosα
[

sin2 α
]−1−ǫ

× [ξ1ξ2]
1−2ǫ [η4(1− η4)]

−ǫ [η5(1− η5)]
−ǫ [λ(1− λ)]−1/2−ǫ |η4 − η5|1−2ǫ

D1−2ǫ

× (2Emax)
4−4ǫ θ(ξ1 − ξ2)θ (ξmax − ξ2) dξ1dξ2dη4dη5dλ.

(3.39)

The variables introduced in the above formula parametrize the energies and angles of the

(potentially) unresolved gluons in the following way

Eg4,g5 = Emaxξ1,2, ξmax = min

[

1,
1− ξ1

1− (1−m2
h/s)ξ1η45

]

, (3.40)

and

η45 =
|η4 − η5|2

D
, sin2 ϕ5 = 4λ(1− λ)

|η4 − η5|2
D2

,

D = η4 + η5 − 2η4η5 + 2(2λ− 1)
√

η4η5(1− η4)(1− η5).

(3.41)

The two variables η4,5 are scalar products of the reference direction vector ~n1 and the

vectors that parametrize directions of the two gluons

2η4,5 = 1− ~n4,5 · ~n1. (3.42)
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The parametrization of triple-collinear phase-spaces in eq. (3.39) is still too complicated to

extract all singularities; further decomposition is required. This is achieved by a sequence

of variable changes that we describe below, following refs. [66, 67]. Specifically, we split

the triple-collinear initial-initial sector into five sectors

dLips(41;51) =
5
∑

i

dLips(41;51,i). (3.43)

To project onto individual contributions, we need to perform the following changes of

variables

Sc(41;51,1) : ξ1 = x1, ξ2 = x1xmaxx2, η4 = x3, η5 =
x3x4
2

,

Sc(41;51,2) : ξ1 = x1, ξ2 = x1xmaxx2, η4 = x3, η5 = x3

(

1− x4
2

)

,

Sc(41;51,3) : ξ1 = x1, ξ2 = x1xmaxx2x4, η4 =
x3x4
2

, η5 = x3,

Sc(41;51,4) : ξ1 = x1, ξ2 = x1xmaxx2, η4 =
x3x4x2

2
, η5 = x3,

Sc(41;51,5) : ξ1 = x1, ξ2 = x1xmaxx2, η4 = x3

(

1− x4
2

)

, η5 = x3.

(3.44)

We also write λ = sin2(πx5/2). This change of variables introduces a factor of π in the

normalization of the phase-space that is included in the expressions below. The integration

region for x5 is always between zero and one.

We also note that the (d−4)-dimensional angle α introduces singularities in the phase-

space parametrization. To take care of them, we calculate the integral over this angle,

Iα =

1
∫

−1

d cosα

[sin2 α]1+ǫ
=

1

21+2ǫ

1
∫

0

dx9

x1+ǫ
9 (1− x9)1+ǫ

=
Γ(−ǫ)2

21+2ǫΓ(−2ǫ)
, (3.45)

and write

d [cosα]

[sin2 α]1+ǫ
= Iα × Γ(1− 2ǫ)

2Γ(1− ǫ)2
(−ǫ)

dx9

x1+ǫ
9 (1− x9)1+ǫ

→ Iα × Γ(1− 2ǫ)

Γ(1− ǫ)2
(−ǫ)

dx9(1− x9)
−ǫ

x1+ǫ
9

,

(3.46)

where cosα = 1 − 2x9 and in the last step we used the symmetry of the matrix element

with respect to x9 ↔ 1 − x9, to simplify the integrand. We can expand eq. (3.46) in

plus-distributions. Such an expansion does not introduce additional poles in ǫ. We find

− ǫ

x1+ǫ
9

= δ(x9)− ǫ

[

1

x9

]

+

+ . . . (3.47)

Note that the first term in the expansion corresponds to α = 0, which reduces the

parametrization of momenta of all final-state particles to their four-dimensional limits.

The “extra-dimensional” momenta components and the “extra-dimensional” angles ap-

pear with an additional suppression in ǫ, but because of infra-red singularities, they start

contributing to differential cross-sections already at O(ǫ−2).
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For each of the five sectors Sc(41;51,i), we write the phase-space in the form

dLips
(i)
41;51 ∼ Norm×PSw,iPS

−ǫ
i × (−ǫ)

x1+ǫ
9

9
∏

k=5

dxk×
4
∏

j=1

dxj

x
1+a

(i)
j ǫ

j

×
[

x
b
(i)
1
1 x

b
(i)
2
2 x

b
(i)
3
3 x

b
(i)
4
4

]

. (3.48)

Below we present the functions PSw,i, PSi and the exponents a
(i)
j=1...4 and b

(i)
j=1...4 for each

of the sectors. First, we note that the normalization factor is common to all sectors; it

reads

Norm =

[

Γ(1 + ǫ)

(4π)d/2

]2(

1− π2

2
ǫ2 − 2ζ(3)ǫ3 +

3π4

40
ǫ4
)

. (3.49)

We also note that we can write

PSw,i =
4E3E

4
max

π
(

Q0 − ~Q · ~n3

) PSw,i, PSi =
1024E2

3 sin
2 θ3E

4
max(1− x9)

µ4p2⊥,H

sin2 (ϕ43) PSi,

(3.50)

where ϕ43 = ϕ4 − ϕ3. The expressions for the exponents and the phase-space factors for

each of the five sectors read (we suppress the sector label everywhere in the equations

below)

Sector Sc(41;51,1) : {a1 = 4, a2 = 2, a3 = 2, a4 = 1}, {b1 = 4, b2 = 2, b3 = 2, b4 = 1};

PSw =
(1− x4

2 )x
2
max

2N1(x3,
x4
2 , λ)

,

PS =
x2max

(

1− x3x4
2

)

λ(1− λ)
(

1− x4
2

)2
(1− x3)

2N2
1 (x3,

x4
2 , λ)

.

Sector Sc(41;51,2) : {a1 = 4, a2 = 2, a3 = 2, a4 = 2}, {b1 = 4, b2 = 2, b3 = 2, b4 = 2};

PSw =
x2max

4N1(x3, 1− x4
2 , λ)

,

PS =
x2max(1− x3)

(

1− x4
2

) (

1− x3(1− x4
2 )
)

λ(1− λ)

4N2
1 (x3, 1− x4

2 , λ)
.

Sector Sc(41;51,3) : {a1 = 4, a2 = 2, a3 = 2, a4 = 3}, {b1 = 4, b2 = 2, b3 = 2, b4 = 3};

PSw =
x2max(1− x4

2 )

2N1(x3,
x4
2 , λ)

,

PS =
x2max(1− x3)

(

1− x3x4
2

) (

1− x4
2

)2
λ(1− λ)

2N2
1 (x3,

x4
2 , λ)

.

Sector Sc41;51,4 : {a1 = 4, a2 = 3, a3 = 2, a4 = 1}, {b1 = 4, b2 = 3, b3 = 2, b4 = 1};

PSw =
x2max(1− x2x4

2 )

2N1(x3,
x4x2
2 , λ)

,

PS =
x2max(1− x2x3x4

2 )
(

1− x2x4
2

)2
(1− x3)λ(1− λ)

2N2
1 (x3,

x2x4
2 , λ)

.
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Sector Sc(41;51,5) : {a1 = 4, a2 = 2, a3 = 2, a4 = 2}, {b1 = 4, b2 = 2, b3 = 2, b4 = 2};

PSw =
x2max

4N1(x3, 1− x4
2 , λ)

,

PS =
x2max(1− x3)(1− x4

2 )(1− x3(1− x4
2 ))λ(1− λ)

4N2
1 (x3, 1− x4

2 , λ)
.

(3.51)

The function N1 reads

N1(x3, x4, λ) = 1 + x4(1− 2x3)− 2(1− 2λ)
√

x4(1− x3)(1− x3x4). (3.52)

The above phase-space parametrization is such that the limits xi → 0, i = 1 . . . 4 of

the matrix element squared can be easily computed; we will discuss this in more detail

in the next section. In the remainder of this section, we will focus on the phase-space

parametrization of the other pre-sectors.

We note that the phase-space parametrization for the triple-collinear pre-sector Sc42;52

is constructed in exact analogy to Sc41,51. The only difference is that the collinear direction

is now ~n2 = (0, 0,−1) instead of ~n1 = (0, 0, 1). This means that, in terms of the η-variables,

angles of gluons g4,5 relative to the collision axis are given by cos θ4,5 = −1 + 2η4,5.

The construction of the phase-space parametrization for the triple-collinear pre-sector

Sc(43;53) is slightly more involved, since the collinear direction now is the direction of the

gluon g3. It is therefore convenient to write momenta of g4 and g5 in the reference frame

where g3 is along the z-axis. We write

p
(z)
3 = Eg3 (1, 0, 0, 1; 0)

p
(z)
4 = Eg4 (1, sin θ4 cosϕ4, sin θ4 sinϕ4, cos θ4; 0) ,

p
(z)
5 = Eg5 (1, sin θ5 cosα(ϕ45), sin θ5 sinα(ϕ45), cos θ5; sin θ5 sinϕ5 sinα) ,

(3.53)

where ϕ45 = ϕ4 + ϕ5. In this sector, the scalar products whose vanishing leads to sin-

gularities are p3 · p4, p3 · p5 and p4 · p5. It is easy to see from eq. (3.53) that these scalar

products are independent of α. The phase-space for Sc43;53 depends on two relative angles

ϕ4 and ϕ5, so that Lips43;53 ∼
(

sin2 ϕ4 sin
2 ϕ5

)−ǫ
. To get the momenta in the center-of-

mass frame, we rotate these vectors first in the xz plane by θ3, and then in the xy plane by

ϕ3. The parametrization of the singular phase-space is similar to what we have discussed

in connection with Sc(41;51), except that the collinear direction now is ~n3.

We finally turn to the discussion of the double-collinear sectors. First, consider the sec-

tors where collinear singularities arise from emission along two incoming particles, (Sc(41;52)

and Sc(42;51)). In such sectors, scalar products whose vanishing may create singularities

are p4,5 · p1 and p4,5 · p2. Vanishing of the scalar product p4 · p5 cannot lead to singularities

in this sector, see eq. (3.30). With this in mind, we parametrize momenta of the three

– 20 –



J
H
E
P
0
6
(
2
0
1
3
)
0
7
2

final-state gluons in the center-of-mass frame as

p3 = Eg3 (1, sin θ3 cosϕ3, sin θ3 sinϕ3, cos θ3; 0) ,

p4 = Eg4 (1, sin θ4 cos(ϕ3 + ϕ̃4), sin θ4 sin(ϕ3 + ϕ̃4), cos θ4; 0) ,

p5 = Eg5 (1, sin θ5 cosα(ϕ3 + ϕ̃5), sin θ4 sinα(ϕ3 + ϕ̃5), cos θ5; sin θ5 sinϕ5 sinα) .

(3.54)

The phase-space is parametrized in terms of the relative angles ϕ̃4 and ϕ̃5. We find

[dg4][dg5]θ(Eg4 − Eg5) =
E2d−4

max

4(2π)2d−2
Ω(d−2)
g4 Ω(d−2)

g5 θ(ξ1 − ξ2)θ(ξmax − ξ2)

× dξ1dξ2ξ
1−2ǫ
1 ξ1−2ǫ

2 d cos θ4d cos θ5(sin
2 θ4)

−ǫ(sin2 θ5)
−ǫ

× dϕ4(sin
2 (ϕ̃4))

−ǫ

2π
∫

0

dϕ̃4(sin
2 ϕ4)−ǫ

dϕ̃5(sin
2 ϕ̃5)

−ǫ

2π
∫

0

dϕ5(sin
2 ϕ5)−ǫ

× d [cosα]

Iα[sin
2 α]1+ǫ

,

(3.55)

where Eg4,g5 = Emaxξ1,2. We now change variables ξ1 = x1, ξ2 = x1x2xmax, cos θ4,5 =

1−2x3,4, ϕ̃4,5 = 2πx5,6 and cosα = 1−2x9. We use symmetry with respect to x9 → 1−x9
to simplify the expression for the phase-space. We obtain

dLips41;52 ∼ Norm× PSwPS
−ǫ × (−ǫ)

x1+ǫ
9

9
∏

k=5

dxk ×
4
∏

j=1

dxj

x
1+ajǫ
j

×
[

xb11 xb22 xb33 xb44

]

. (3.56)

The normalization factors read5

Norm =

[

Γ(1 + ǫ)

(4π)d/2

]2(

1− π2

2
ǫ2 − 2ζ(3)ǫ3 +

3π4

40
ǫ4
)

,

PSw =
4E3E

4
maxx

2
max

π
(

Q0 − ~Q · ~n3

) PSw,

PS =
28E2

3 sin
2 θ3E

4
maxx

2
max

µ4p2⊥,H

sin2 ϕ̃4 sin
2 ϕ̃5(1− x3)(1− x4)(1− x9),

(3.57)

and the exponents read

{a1 = 4, a2 = 2, a3 = 1, a4 = 1}, {b1 = 4, b2 = 2, b3 = 1, b4 = 1}. (3.58)

The other type of double-collinear sectors that need to be considered is the initial-final

one. We focus for definiteness on Sc(41;53). The momenta read

p3 = Eg3 (1, sin θ3 cosϕ3, sin θ3 sinϕ3, cos θ3; 0) ,

p4 = Eg4 (1, sin θ4 cos(ϕ3 + ϕ̃4), sin θ4 sin(ϕ3 + ϕ̃4). cos θ4) ,

p
(z)
5 = Eg5 (1, sin θ5 cos ϕ̃5, sin θ5 sin ϕ̃5 cosα, cos θ5; sin θ5 sin ϕ̃5 sinα) .

(3.59)

Note that p3 and p4 are given in the center-of-mass frame, while p5 is written in the reference

frame where p3 is along the z-axis. To obtain p5 in the center-of-mass frame, we rotate it

by θ3 in the xz-plane and by ϕ3 in the xy-plane. The phase-space is identical to eq. (3.57).

The discussion of all other double collinear sectors proceeds along the same lines.

5We note that in ref. [67] the double collinear sectors are further split by an additional partitioning of

energy and angle variables. We find that such a partitioning is unnecessary.
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4 Singular limits

In this section, we describe the extraction of singular limits. We begin with the next-to-

leading order computation. We note that we will not discuss the most general case from

the point of view of color correlations; instead we will make use of the fact that we are

studying Higgs boson production in association with a jet and so the number of colored

particles never exceeds five. This feature leads to simplification of the color correlations in

soft limits. We will make use of these simplifications in what follows.

4.1 Limits at next-to-leading order

Consider, for definiteness, the NLO sector Sc(43). The phase-space for this sector,

dLips
(43)
12→34H , is given by an expression similar to eq. (3.21), where x2 parametrizes the rela-

tive angle between g4 and g3. We have to integrate the matrix element squared |Mgg→Hgg|2
over the phase-space. The integration has the form

1
∫

0

dx1

x1+2ǫ
1

dx2

x1+ǫ
2

. . .× F (x1, x2, . . .), F (x1, x2, . . .) =
[

x21x2
]

|Mgg→Hgg|2, (4.1)

where the ellipses denote the measurement function, regular parts of the phase-space, var-

ious damping factors and possible additional arguments of the function F . All of these

things are not important for discussing the structure of singularities which is shown ex-

plicitly in eq. (4.1). The singularities correspond to x1 = 0 or x2 = 0, and the function

F (x1, x2, . . .) is finite in those limits. The integral in eq. (4.1) is calculated using an expan-

sion in plus-distributions, as we explained in section 2. It follows that in order to perform

the integration in eq. (4.1), we need to understand values of the function F (x1, x2, . . .) in

cases when one (or both) of the two first arguments vanishes.

Consider first the x1 = 0 limit. According to the phase-space parametrization described

in section 3.2, x1 = 0 implies that g4 is soft: Eg4 = 0. In the soft limit, the matrix element

is written as a product of a reduced matrix element and the eikonal factor

|Mg1g2→Hg3g4 |2 ≈ CAg
2
s

(

I(0)
12;4 + I(0)

13;4 + I(0)
23;4

)

|Mg1g2→Hg3 |2, (4.2)

where

I(0)
ij;k = Sij(pk) =

pi · pj
(pi · pk)(pj · pk)

, (4.3)

is the eikonal factor. To calculate the soft x1 → 0 limit, we note that the eikonal factor

is quadratic in p4 = Eg4(1, ~n4) ∼ x1 and so it is easy to compute the required limit. We

obtain

F (0, x2, . . .) =
CAg

2
s

2E2
max

(

ρ12ρ34
ρ14ρ24

+
ρ13
ρ14

+
ρ23
ρ24

)

|Mgg→Hg3 |2, (4.4)

where we traded x2 for ρ34/2 which is valid in sector Sc(43). We note that potential

singularities that correspond to gluon g4 being collinear to gluons g1 or g2 are apparent in

eq. (4.4); these singularities are removed by the angular damping factor eq. (3.10) for this

sector.

– 22 –



J
H
E
P
0
6
(
2
0
1
3
)
0
7
2

The second singular limit we have to consider is x2 = 0. In sector Sc(43), x2 = 0 means

that gluon g4 is collinear to gluon g3. The corresponding limit reads

|Mgg→Hgg|2 ≈
2CAg

2
s

p3 · p4
P (gg)
µν (z, ǫ)Mµ

gg→HgM
∗,ν
gg→Hg, (4.5)

where z = Eg4/(Eg3 + Eg4) and

P (gg)
µν (z, κ4, ǫ) = −gµν

(

z

1− z
+

1− z

z

)

+ 2(1− ǫ)z(1− z)κ4,µκ4,ν (4.6)

is the gluon splitting function. The vector κ4,µ is the normalized remnant of the momentum

p4 that parametrizes the projection of p4 on the plane transverse to the collinear direc-

tion which in this case is fixed to be the momentum of gluon g3. Because of the chosen

parametrization of pµ4 at next-to-leading order, κµ4 has only four-dimensional components.

We will now show how to simplify eq. (4.5). The idea is to trade the sum over the

Lorentz indices µ and ν for a sum over helicity indices. This is achieved by inserting the

completeness relation
∑

ǫµλǫ
∗,µ′

λ = −gµµ
′

d +
pµ3 ñ

µ′

+ pµ
′

3 ñµ

p3 · ñ
, (4.7)

where gµνd denotes the metric tensor of the d-dimensional vector space and ñ is an auxiliary

vector such that p3 · ñ 6= 0. Next, we write

P (gg)
µν (z, ǫ)Mµ

gg→HgM
∗,ν
gg→Hg = −P (gg)

µν

(

∑

ǫµλǫ
∗,µ′

λ − pµ3 ñ
µ′

+ pµ
′

3 ñµ

p3 · ñ

)

Mµ′M∗,ν

= −P (gg)
µν

∑

ǫµλǫ
∗,µ′

λ Mµ′M∗,ν ,

(4.8)

where the last step follows from the transversality of the physical amplitude Mµp3,µ = 0

and from κ4 · p3 = 0. Repeating the same procedure with the index ν, we find

P (gg)
µν (z, ǫ)MµM∗,ν =

∑

λ,λ′

P
(gg)
λλ′ (z, ǫ)MλM∗

λ′ , (4.9)

where the sum over physical helicities in d-dimensional space-time is performed.

We now explain how to compute P
(gg)
λλ′ . First, we note that the polarization vectors of

a gluon with four-dimensional momenta embedded in a d-dimensional space-time can be

chosen in the following way. We take the polarization vectors to be either four-dimensional

vectors that describe states of plus and minus helicity, or (d − 4) dimensional vectors of

the type ǫµ = (0, 0, 0, 0; 0, . . . , 1, 0, . . . , 0), where projection on a single extra-dimensional

direction is non-vanishing. The helicity-dependent splitting function P
(gg)
λλ′ (z, ǫ) reads

P
(gg)
λλ′ (z, ǫ) = δλλ′

(

z

1− z
+

1− z

z

)

+ 2(1− ǫ)z(1− z)(ǫλ · κ4) (ǫ∗λ′ · κ4). (4.10)

For regular ± polarizations, both terms in eq. (4.10) are in general non-vanishing. For

extra-dimensional polarizations, ǫλ · κ4 = 0, because κ4 in this case is a four-dimensional

vector, and P
(gg)
λλ′ ∼ δλλ′ for these polarizations.
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We can now compute P (gg)(z, ǫ) and calculate the x2 = 0 limit of the function

F2(x1, x2). The final result reads

F2(x1, 0, . . .) =
CAg

2
sx1

E3Emax

∑

λ,λ′

P
(gg)
λλ′ (z, ǫ)Mλ

gg→g̃3HMλ′

gg→g̃3H , (4.11)

where g̃3 means that the matrix element should be computed with the momentum of the

final state gluon given by the sum of the momenta of the gluons g3 and g4. We note

that eq. (4.11) requires the computation of scattering amplitudes for the gg → Hg process

when λ parametrizes an extra-dimensional polarization vector. We explain how to do this

in section 5.

Finally, we discuss how the vector κ4 is computed. This vector parametrizes how the

collinear limit is approached in the plane transverse to the collinear direction. For this

reason, it depends on the considered sector. To make this explicit, we consider the sector

Sc(43) and write p4 = xp3 + yp̃3 + k⊥κ4, where p̃3 = (E3,−~p3), κ4 · p3 = 0 and κ4 · p̃3 = 0.

A simple computation gives ~κ4 = (cos θ3 cosϕ3 cosϕ4 − sinϕ3 sinϕ4, cos θ3 sinϕ3 cosϕ4 +

cosϕ3 sinϕ4,− sin θ3 cosϕ4). The analogous vectors for the other sectors are much simpler.

For example, for sectors Sc(41) and Sc(42), we find ~κ4 = (cosϕ4, sinϕ4, 0). We note that

these vectors are uniquely determined for each of the phase-space points; this allows us to

construct the correct splitting function and perform the local subtraction of singularities.

The quality of the subtraction terms so constructed will be studied in section 7.

These are the only two limits that are required for a NLO computation. An expression

for F (0, 0, . . .) can be easily obtained from the soft limit eq. (4.4), which is non-singular for

η34 → 0. Note that the collinear limit has a well-known 1/(1 − z) singularity as gluon g4
becomes soft; therefore, to compute F (0, 0, . . .) from the collinear limit, one has to cancel

x1 in the numerator in eq. (4.11) with 1/(1− z) ∼ 1/x1 in the splitting function.

4.2 Limits of double-real emission processes

In this section, we briefly discuss the singular limits of the double-real emission processes.

As already pointed out, the phase-space partitioning splits the phase-space into double-

singular and triple-singular sectors. Collinear singularities of the double-collinear sectors

are given by products of gluon splitting functions, because the two unresolved gluons must

be collinear to different directions. On the contrary, in the triple-collinear sectors, the

1 → 3 gluon splitting functions [47] are required to describe collinear limits. For both

double-singular and triple-singular sectors, soft singularities originate from both double-

soft and single-soft limits.

We begin by discussing the double-soft limit of the g1g2 → Hg3g4g5 scattering am-

plitude. It occurs when the momenta of g4 and g5 become vanishingly small. In general,

double-soft limits involve color-correlated matrix elements, but in our case this does not

occur. The reason is that, once gluons g4 and g5 decouple, the matrix element depends

on three colored particles, g1, g2, g3. If, following ref. [26], we denote the color charge of a

particle i by the operator ~Ti, color conservation implies

~Tg1 +
~Tg2 +

~Tg3 = 0. (4.12)
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In addition, the squares of the color charge operators are equal to the Casimir operators

of the SU(3) gauge group. For gluons, this means ~T 2
gi = CA. Using these two equations,

we find
~Tg1 · ~Tg2 = ~Tg1 · ~Tg3 = ~Tg2 · ~Tg3 = −CA/2, (4.13)

so that all color correlations are absent. As a result, we can use a simple formula for the

double soft limit (Sp = [12, 13, 23])

|Mg1g2→Hg3g4g5 |2 ≈ C2
Ag

4
s









∑

ij∈Sp

Sij(p4)









∑

kn∈Sp

Skn(p5)





+
∑

ij∈Sp

Sij(p4, p5)−
3
∑

i=1

Sii(p4, p5)



 |Mg1g2→Hg3 |2.

(4.14)

We note that Sij(pk) is given in eq. (4.3) and Sij(p4, p5) can be found in ref. [47]. Using the

parametrization of the NNLO phase-space and the explicit dependence of the momenta on

the singular variable x1 that controls the double-soft limit, it is straightforward to show

that all the singularities can be resolved in triple-collinear sectors. In turn, this implies that

in such sectors we can compute any limit of the form F (0, x2, x3, x4, . . .) from the double

soft-limit, with no need to further distinguish the xi=2,.,4 = 0 case from the xi=2,...,4 6= 0 one.

Another new element at NNLO is the triple-collinear limit. Similar to double-collinear

limits, the triple-collinear limits are described by the corresponding splitting functions. For

example, in the case of the final-state triple-collinear splitting when the momenta of all

final-state gluons become parallel, we find

|Mg1g2→Hg3g4g5 |2 ≈
4g4s
s2345

P (g3g4g5)
µν Mµ

g1g2→Hg345
M∗,ν

g1g2→Hg345
, (4.15)

where s345 = (p3+p4+p5)
2, and g345 denotes a gluon with momentum p345 = p3+p4+p5.

The splitting function P
(g3g4g5)
µν was computed in ref. [47]; it reads

Pµν
(g1g2g3)

= C2
A

[

(1− ǫ)

4s212

[

− gµνt212,3 + 16s123
z21z

2
2

z3(1− z3)

(

k̃2
z2

− k̃1
z1

)µ(

k̃2
z2

− k̃1
z1

)ν ]

− 3

4
(1− ǫ)gµν +

s123
s12

gµν
1

z3

[

2(1− z3) + 4z23
1− z3

− 1− 2z3(1− z3)

z1(1− z1)

]

+
s123(1− ǫ)

s12s13

[

2z1

(

k̃µ2 k̃
ν
2

1− 2z3
z3(1− z3)

+ k̃µ3 k̃
ν
3

1− 2z2
z2(1− z2)

)

+
s123

2(1− ǫ)
gµν

(

4z2z3 + 2z1(1− z1)− 1

(1− z2)(1− z3)
− 1− 2z1(1− z1)

z2z3

)

+
(

k̃µ2 k̃
ν
3 + k̃µ3 k̃

ν
2

)

(

2z2(1− z2)

z3(1− z3)
− 3

)

]]

+ 5 permutations.

(4.16)

In eq. (4.16), sij = (pi + pj)
2, sijk = (pi + pj + pk)

2, and

tij,k = 2
zisjk − zjsik

zi + zj
+

zi − zj
zi + zj

sij .
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The relevant vectors in this formula are computed in the following way. For final-state

triple-collinear splitting, the momentum of the resolved gluon g3 defines the collinear

direction. The energy fractions zi are obtained from energy ratios zi = Egi/Es where

Es = Eg3 + Eg4 + Eg5 . Similar to the NLO case, for each phase-space point, we compute

directions in the plane transverse to the collinear direction p3 along which collinear limits

for g4, g5 are taken. We denote such directions as κ4,5, respectively. The vectors that enter

the triple-collinear splitting function read6

E−1
s k̃µg4 = z4(1− z4)κ

µ
4 − z4z5κ

µ
5 ,

E−1
s k̃µg5 = z5(1− z5)κ

µ
5 − z5z4κ

µ
4 ,

E−1
s k̃µg3 = −z3z4κ

µ
4 − z3z5κ

µ
5 .

(4.17)

It is easy to check that
5
∑

i=3
k̃gi = 0, thanks to the energy-conservation condition

5
∑

i=3
zi = 1.

Finally, we note that for the initial triple-collinear limits that correspond to gluons g4
and g5 being collinear to incoming gluons g1 or g2, the above formulas are valid up to a

replacement Eg3 → −Eg1 or Eg3 → −Eg2 .

We also require the triple-collinear splitting function in the strongly ordered configura-

tion, sij ≪ sijk ≪ 1. In principle, we can obtain it by directly taking the limit of eq. (4.16).

However, it is also easy to compute it directly. Indeed, in this case the full triple-collinear

P
(g1g2g3)
µν splitting function factorizes into a (spin-correlated) product of ordinary splitting

functions. We find that in the strongly-ordered s35 ≪ s345 ≪ 1 limit, the full matrix

element can be written as

|Mg1g2→Hg3g4g5 |2 ≈
g4s

s35s345
P (g3g4g5)
s.o,µν Mµ

g1g2→Hg345
M∗,ν

g1g2→Hg345
. (4.18)

The strong-ordered splitting function reads

Pµν
s.o.,(g3,g4,g5)

= 16C2
A

{

−gµν
[(

z4
1− z4

+
1− z4
z4

)(

z5
1− z5

+
1− z5
z5

)

+

+
z4

1− z4
(1− ǫ)2z5(1− z5)(κ4 · κ5)2

]

+ κµ4κ
ν
4(1− ǫ)2z4(1− z4)×

×
(

z5
1− z5

+
1− z5
z5

+ z5(1− z5)

)

+ κµ5κ
ν
5(1− ǫ)2z5(1− z5)

1− z4
z4

}

,

(4.19)

where z5 = Eg5/(Eg3 + Eg5), z4 is defined as before z4 = Eg4/Es and κ4,5 are the spin-

correlation vectors κi = zip3 + k⊥κi + yip̃3.

4.3 Real-virtual corrections

In this section we consider the computation of one-loop corrections to the real-emission

process g1g2 → Hg3g4. We will refer to this contribution as “real-virtual”. To calculate

this contribution, we must integrate the interference of the one-loop and the tree-level

6We give these vectors for physical labels of the three final state gluons.
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matrix elements for g1g2 → H + g3g4 over the NLO phase-space. The NLO phase-space

was discussed in section 3.2, where we showed how to partition it in such a way that soft

and collinear singularities can be extracted. Following section 3.2, we denote the resolved

final-state gluon as g3 and the potentially unresolved final state gluon as g4. For each

sector, we denote the product of the phase-space parameters and the interference of tree-

and one-loop matrix elements as

F̃RV(x1, x2, . . .) = x21x2 2Re
(

M(1)
g1g2→Hg3g4

M(0),∗
g1g2→Hg3g4

)

, (4.20)

where x1 parametrizes the energy of g4 and x2 = (1 − cos θ)/2 parametrizes the cosine of

the angle between the direction of the gluon g4 and the collinear direction. This direction

is sector-dependent, and is given explicitly later. The ellipses in eq. (4.20) stand for other

parameters that are needed to fully describe the final-state kinematics.

We must integrate the function F̃RV over the phase-space of the softer gluon; schemat-

ically, the integral takes the form

1
∫

0

dx1dx2

x1+2ǫ
1 x1+ǫ

2

F̃RV(x1, x2, . . .). (4.21)

We note that the extraction of singular limits would have been no different from the NLO

case discussed in section 4.1, if not for the fact that the function F̃RV is not well-defined

for x1 = 0 and x2 = 0. This happens because F̃RV(x1, x2, . . .) contains branch cuts in the

limits x1 → 0 and x2 → 0. To make use of the expansion in plus-distributions, we must

isolate these branch cuts before extracting the singularities. We can accomplish this by

writing F̃RV(x1, x2) as the sum of three terms

F̃RV(x1, x2, . . . ) = F1(x1, x2, . . . ) +
(

x21x2
)−ǫ

F2(x1, x2, . . . ) + x−2ǫ
1 F3(x1, x2, . . . ), (4.22)

where the functions Fi(x1, x2, . . . ) are free from branch-cut singularities so that their values

at x1 = 0 or x2 = 0 can be computed. To justify the decomposition of eq. (4.22), we consider

the limit when the energy of the gluon g4 becomes small. In this limit, the matrix element

squared for g1g2 → H + g3g4 factorizes as [48]

|Mg1g2→Hg3g4 |2 ≈ g2sµ
2ǫ2CA (I12,4 + I13,4 + I23,4) |Mg1g2→Hg3 |2, (4.23)

where the soft factors Iij,4 read

Iij,4 =
I(0)
ij,4

2
+ 2g2sµ

2ǫCAcΓI(1)
ij,4 + . . . . (4.24)

The function I(0)
ij,4 is given in eq. (4.3). The one-loop function I(1)

ij,4 reads

I(1)
ij,4 = − 1

ǫ2
Γ2(1− ǫ)Γ2(1 + ǫ)

Γ(1− 2ǫ)Γ(1 + 2ǫ)

[

Sij(p4)

2

]ǫ Sij(p4)

2
, (4.25)

where the eikonal factor Sij can be found in eq. (4.3).
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We next expand eq. (4.23) through first order in the strong coupling constant to obtain

2Re
(

M(1)(g1, . . . , g4)M(0),∗(g1, . . . , g4)
)

∣

∣

∣

∣

∣

g4→0

→

4g2sCA

([

I(0)
12,4 + I(0)

13,4 + I(0)
23,4

2

]

Re
(

M(1)
g1g2→Hg3

M(0),∗
g1g2→Hg3

(g1, . . . , g3)
)

+ cΓg
2
sCA

[

I(1)
12,4 + I(1)

13,4 + I(1)
23,4

]

|M(0)
g1g2→Hg3

|2
)

.

(4.26)

Using the explicit expression for the function Sij , and the parametrization of p4 in terms

of x1 and x2 for a given collinear direction, it is easy to verify that when the collinear

direction is the direction of the hard gluon gh, h ∈ (1, 2, 3), terms in eq. (4.26) that are

proportional to I(0)
ij,4 contribute to F1, terms proportional to I(1)

ih,4 or I(1)
hi,4 contribute to F2

and terms that are proportional to I(1)
ij,4 with i 6= h, j 6= h, contribute to F3.

As the next step, we check that the parametrization in eq. (4.22) is consistent with the

behavior of the real-virtual matrix elements in the collinear limit. Consider for definiteness

the Sc(43) sector, where the singularity occurs when gluon g4 becomes collinear to gluon

g3. In the collinear limit, color-ordered matrix elements factorize as follows [49]

M(1)
g1g2→Hg3g4

= gsSplit
tree
g̃3→g3g4 ⊗M(1)

g1g2→Hg̃3
+ g3sSplit

1loop
g̃3→g3g4

⊗M
(0)
g1g2→Hg̃3

, (4.27)

where the convolution sign refers to a sum over the helicities of the intermediate gluon g̃3.

The tree splitting function for gp → gagb reads [49]

Splittree(gp → gagb, z) = −
√
2

sab
(−ǫa · ǫbkb · ǫp + kb · ǫaǫp · ǫb − ka · ǫbǫa · ǫp) , (4.28)

where by definition z = Ea/(Ea+Eb) is the momentum fraction carried by ga, ǫa,b,p are the

polarization vector of three particles that participate in the splitting and all momenta are

taken to be outgoing, so that p+ ka + kb = 0. The one-loop splitting function is given by

Split1−loop(gp → gagb, z) = Ftree(z) Split
tree(gp → gagb, z)

+
1√
2s2ab

Fnew(z) (ka − kb) · ǫ1 (sabǫa · ǫb − 2kb · ǫaka · ǫb) .

(4.29)

In conventional dimensional regularization, the functions Ftree and Fnew read

Ftree =
1

2

(

µ2

−sab

)ǫ

[zf1(z) + (1− z)f1(1− z)− 2f2] ,

Fnew =
ǫ2

(1− 2ǫ)(3− 2ǫ)

(

µ2

−sab

)ǫ

f2,

(4.30)

where

f1 =
2

ǫ2
cΓ

(

−Γ(1− ǫ)Γ(1 + ǫ)z−1−ǫ(1− z)ǫ − 1

z
+

(1− z)ǫ

z
2F1(ǫ, ǫ, 1 + ǫ, z)

)

,

f2 = − 1

ǫ2
cΓ.

(4.31)
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In calculating the splitting functions, one has to be careful with imaginary parts. Note that

sab in eq. (4.30) can be both positive and negative so that (−sab)
−ǫ may or may not have

an imaginary part. Also, because of analytic continuation in the space-like region z can be

smaller or larger than one, in which case f1 may have an imaginary part. However, these

cases are mutually exclusive since sab is positive for the final state splitting where z < 1,

and negative for the initial state splitting where z > 1. As a result, we do not need to

care about the interference of two imaginary parts, or about their consistent definition. We

require the expansion of the hypergeometric function in eq. (4.31) through O(ǫ3). It reads

2F1(ǫ, ǫ, 1 + ǫ, z) = 1 + Li2(z)ǫ
2 + ǫ3

[

ζ3 +
1

2
ln z ln2(1− z) + ln(1− z)Li2(1− z)

− Li3(1− z)− Li3(z)

]

+O(ǫ4).

(4.32)

We will need products of splitting amplitudes summed over polarization states of un-

resolved particles. These polarization states must be taken in d-dimensions but, because of

the real-virtual kinematics, the four-momenta of all gluons are four-dimensional. We write

these products as

∑

λa,λb

Splittree(gµp → gagb)Split
tree(gνp → gagb) =

2

sab
P (gg),µν(z, κa, ǫ), (4.33)

with the LO splitting function defined in eq. (4.6) and

∑

λa,λb

Splittree(gµp → gagb)Split
1−loop(gνp → gagb) =

2

sab
Pµν
gg,int(z, κa, ǫ),

Pµν
gg,int(z, κa, ǫ) = Ftree(z)P

(gg),µν(z, κa, ǫ)− 2Fnew(z)(1− 2z(1− z)ǫ)κµaκ
ν
a.

(4.34)

With these definitions, we are in position to present the limiting behavior of the inter-

ference of one-loop and tree amplitudes in the collinear limit. We find

2Re
(

M(0),∗
gg→HggM

(1)
gg→Hgg

)

≈ 2CAg
2
s

sab
Re
(

M(0),∗
µ,gg→HgM

(1)
ν,gg→Hg

)

2P (gg),µν

+
4C2

Ag
4
s

sab
Re
(

M(0),∗
µ,gg→HgM

(0)
ν,gg→Hg

)

Re
(

Pµν
gg,int

)

.

(4.35)

Note that in the last term we have taken the interference splitting function outside of the

real part and have replaced this splitting function by its real part. We are allowed to do

that because Pµν
gg,int is a symmetric tensor, so that we can write

M(0),∗
µ,gg→HgM

(0)
ν,gg→HgP

µν
gg,int =

1

2

(

M(0),∗
µ,gg→HgM

(0)
ν,gg→Hg + (µ ↔ ν)

)

Pµν
gg,int

= Re
(

M(0),∗
µ,gg→HgM

(0)
ν,gg→Hg

)

Pµν
gg,int.

(4.36)

This observation is useful since we need Pµν
gg,int for z both smaller and larger than one, and

the above equation implies that the analytic continuation of Pµν
gg,int(z) can be done in an

arbitrary way since the imaginary part drops out.
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It follows from eq. (4.35) that in the collinear limit the amplitude has a single branch

cut x−ǫ
2 . Indeed, Pµν

gg (z) is a rational polynomial of z and therefore contributes to F1 while

Pµν
gg,int is proportional to s−ǫ

ab ∼ x−ǫ
2 . We therefore match the x2 → 0 limit to F1 and F2 and

require that F3(x1, 0) vanishes. Finally, we note that the splitting functions in eq. (4.35)

exhibit spin correlations; we can handle them in exactly the same way as described in

the section dedicated to next-to-leading order computations, where we explained that for

each phase-space point we compute the vector κµ such that kµ⊥ =
√

−k2⊥κ
µ. We do this

at the level of phase-space point generation, where we resolve all singularities related to

the collinear k2⊥ → 0 limit analytically. Once the vectors κµ are known, we can rewrite

eq. (4.35) through sums over (d-dimensional) helicities in complete analogy with what was

done at next-to-leading order.

5 Higher-order ǫ terms in amplitudes

The computational algorithm that we discuss in this paper is based on conventional di-

mensional regularization, in which the polarization states of all particles are continued to

d-dimensions. Therefore, it becomes an important issue in our construction to understand

how scattering-amplitude contributions at higher orders in ǫ can be calculated. The goal

of this section is to discuss this issue.

We begin by pointing out that the highest-multiplicity amplitudes at any order of

perturbation theory are needed to O(ǫ0), since they only contribute to the finite parts of

the relevant correction. Therefore, at NNLO for Higgs plus jet production, we can use

four-dimensional expressions for tree amplitudes gg → Hggg and we can truncate one-loop

amplitudes gg → Hgg at O(ǫ0). However, for lower-multiplicity amplitudes, such as tree-

level gg → Hg and gg → Hgg, we need to know higher-order ǫ terms. In principle, it can be

expected that higher-order ǫ terms for the one-loop gg → Hg amplitudes are needed but, as

it was pointed out in ref. [98], this is not the case. Indeed, the O(ǫ) contributions to these

amplitudes cancel out between the two-loop virtual correction, the square of the one-loop

amplitude and the singular limit of the real-virtual correction. We use this cancellation as

a consistency check on our numerical implementation. We calculate the one-loop gg → Hg

amplitude through O(ǫ2) and check that the higher-order ǫ terms do not contribute to the

final result due to the above-mentioned cancellations.

We note that computations of matrix elements squared for d 6= 4 are straightforward

if they are performed by adding and squaring Feynman diagrams. All one needs to do in

this case is to use the correct contractions of metric tensors obtained after summing over

polarization states of external particles. Unfortunately, if a calculation is done in this way,

the results rapidly become unwieldy, especially when a large number of gluons is involved.

Instead, we decided to compute higher-order ǫ terms directly at the amplitude level. This is

possible because for lower-multiplicity final states we can choose to parametrize momenta

of all particles as four-dimensional. The “extra-dimensional” polarization vectors then

have a simple property that they are orthogonal to all momenta, ǫs · pi = 0. Therefore,

the only way such polarizations can contribute to the amplitude and give non-vanishing

contributions is through scalar products ǫi,s · ǫj,s′ = −δs,s′ . This implies that the necessary
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condition for the amplitude to be non-vanishing is that an even number of particles has

“extra-dimensional” polarizations.

To illustrate how this works in detail, we consider the tree-level gg → Hg amplitudes.

We write the full amplitude as

A(1h1 , 2h2 , 3h3) = 2iλ
(0)
Hgggs(F

c2)c1c3A(1
h1 , 2h2 , 3h3), (5.1)

where λ
(0)
Hgg is the Higgs effective coupling defined in eq. (2.4) and (F c2)c1c3 = −i

√
2f c1c2c3 is

the color generator in the adjoint representation. Apart from normal helicities, we can have

amplitudes where exactly one pair of gluons has identical extra-dimensional polarizations.

We find one such independent color-ordered amplitude which reads

A(1s, 2s, 3+) =
[13][32]

[21]
+m2

h

〈12〉
〈23〉〈31〉 . (5.2)

Because extra-dimensional polarizations in the above amplitude should be the same and

because there are d − 4 = −2ǫ extra-dimensional directions, the polarization sum for the

gg → Hg matrix element squared can be written as

∑

hi

∣

∣

∣A(1h1 , 2h2 , 3h3)
∣

∣

∣

2
=
∑

hi=±

∣

∣

∣A(1h1 , 2h2 , 3h3)
∣

∣

∣

2

− 2ǫ

(

∑

h=±

∣

∣

∣A(1h, 2s, 3s)
∣

∣

∣

2
+
∣

∣

∣A(1s, 2h, 3s)
∣

∣

∣

2
+
∣

∣

∣A(1s, 2s, 3h)
∣

∣

∣

2
)

=(1− ǫ)
∑

hi=±

∣

∣

∣A(1h1 , 2h2 , 3h3)
∣

∣

∣

2
− 4ǫm2

h.

(5.3)

The final result here can be easily verified since it implies that, except for the −4m2
h

term, the O(ǫ) contribution to the squared matrix element for gg → Hg and the O(ǫ0)

contribution coincide up to a sign.

We note that, in addition to the matrix element squared, our construction requires

more complicated objects that appear in collinear limits

|Mspin(n)|2 =
∑

h2,h3

A(1n, 2h2 , 3h3) A∗(1n, 2h2 , 3h3), (5.4)

where the amplitudes on the right-hand side are computed under the assumption that the

polarization vector of the gluon g1 is nµ. To calculate |Mspin(n)|2, we write n as a linear

combination of suitable polarization vectors of gluon g1. In doing so, it is important to

remember that the vector n can have extra-dimensional components. We write

|Mspin(n)|2 =
∑

h1,h′

1

ρ(n, h1, h
′
1)|Mspin(h1, h

′
1)|2,

|Mspin(h1, h
′
1)|2 =

∑

h2,h3

A(1h1 , 2h2 , 3h3) A∗(1h
′

1 , 2h2 , 3h3),

(5.5)
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where ρ(n, h, h′) = (n · ǫh) (n · ǫ∗h′). The helicity labels h1, h
′
1 can assume the following

values: (h1, h
′
1) = (ij), (i, s), (s, j), (s, s) where i, j = ±. It is straightforward to compute

|Mspin(h1, h
′
1)|2 for all pairs of helicity labels. The key point here is that, for non-vanishing

amplitudes, there must be either zero or two s-helicity labels. We are then left with the

following non-zero entries

|Mspin(i, j)|2 = |Mspin|2d=4 (i, j)− 2ǫ
[

A(1i, 2s, 3s)A∗(1j , 2s, 3s)
]

,

|Mspin(s, s)|2 =
∑

i

[

A(1s, 2i, 3s)A∗(1s, 2i, 3s) +A(1s, 2s, 3i)A∗(1s, 2s, 3i)
]

. (5.6)

Finally, we note that following a similar approach, it is straightforward to obtain the double-

correlated matrix element |Mspin(h1, h
′
1, h2, h

′
2)|2, which is needed to describe singular

limits in the double-collinear sectors.

We also need to discuss the ǫ-dependent parts of 0 → Hgggg amplitudes. In this case,

we use the following color decomposition

A(1h1 , 2h2 , 3h3 , 4h4) = 2iλ
(0)
Hggg

2
s

∑

σ∈S2

(F cσ(2) · F cσ(3))c1c4A(1
h1 , 2h2 , 3h3 , 4h4). (5.7)

The situation now is slightly more involved than before because there are more options for

extra-dimensional polarizations. Indeed, with four gluons the amplitude does not vanish

if all of them have identical extra-dimensional polarizations but also when there are two

pairs of gluons with different extra-dimensional polarizations. We will denote color-ordered

amplitudes for these cases as A(1s, 2s, 3s, 4s) and A(1s, 2s, 3s
′

, 4s
′

). These amplitudes can

be written in a relatively compact form. For example,

A(1s, 2s, 3s, 4s) =
4
∑

i=0

RiF (1, 2, 3, 4),

F (1, 2, 3, 4) =
m2

h

s123

(

1 +
s12
s23

+
s23
s12

)

−
(

m2
h

2s12
+

m2
h

2s23

)

+
1

2

(

s12s34
s14s23

− s13s24
s12s34

)

,

A(1s, 2s, 3s
′

, 4s
′

) = m2
h

(

s14 + s12
s12s124

− s13
s12s123

+
s14 + s34
s34s134

− s24
s34s234

)

+
s14s23
s12s34

− s13s24
s12s34

− 1,

A(1s, 2s
′

, 3s, 4s
′

) = 2−m2
h

(

1

s124
+

1

s134
+

1

s234
+

1

s123

)

,

(5.8)

where R is a permutation operator defined as RF (a, b, c, d) = F (b, c, d, a). The amplitudes

remain compact even if only one pair of gluons has extra-dimensional polarization. For

example, we obtain

A(1s, 2+, 3s, 4+) = −〈1|ph|4]〈3|ph|4]
s123〈12〉〈23〉

+
〈1|ph|2]〈3|ph|2]
s134〈14〉〈34〉

+
m2

h〈13〉2
〈12〉〈14〉〈23〉〈34〉 , (5.9)

where ph is the outgoing momentum of the Higgs boson. Similar results for all other helicity

configurations can be derived.
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We are now in position to discuss how to use these amplitudes to assemble the matrix

element squared for 0 → Hgggg, summed over polarization vectors of all gluons. Similar

to the 0 → Hggg case that we already discussed, amplitudes with two gluons with extra-

dimensional polarizations, e.g. A(1i, 2j , 3s, 4s), enter with a (d−4) = −2ǫ weight. The same

is true for the amplitude A(1s, 2s, 3s, 4s), as s just counts the number of extra-dimensional

polarizations. For amplitudes like A(1s, 2s, 3s
′

, 4s
′

), we have again d − 4 polarizations for

the index s and d−5 for s′ since, by construction, s 6= s′. Combining everything, we obtain

|M(H, g1, g2, g3, g4)|2 = |M(H, g1, g2, g3, g4)|2d=4 − 2ǫ

[

|A(1s, 2s, 3s, 4s)|2

+
∑

hi,hj

(

|A(1s, 2s, 3hi , 4hj )|2 + |A(1s, 2hi , 3s, 4hj )|2 + |A(1s, 2hi , 3hj , 4s)|2

+|A(1hi , 2s, 3s, 4hj )|2 + |A(1hi , 2s, 3hj , 4s)|2 + |A(1hi , 2hj , 3s, 4s)|2
)

]

+

+ 2ǫ(2ǫ+ 1)
[

|A(1s, 2s, 3s
′

, 4s
′

)|2 + |A(1s, 2s
′

, 3s, 4s
′

)|2 + |A(1s, 2s
′

, 3s
′

, 4s)|2
]

.

(5.10)

In full analogy with the amplitudes for 0 → Hggg, we can calculate |M(h1, h
′
1)spin|2

which is required to describe spin correlations in collinear limits. A simple analysis reveals

that this spin-correlated matrix element squared is non-vanishing provided that (h1, h
′
1) =

(i, j) or (h1, h
′
1) = (s, s) so that no mixed terms as (i, s) or (s, s′) appear. The result can

be written as

|M(i, j)spin|2 = |M(i, j)spin|2d=4 − 2ǫ
∑

h=±

(

A(1i, 2s, 3s, 4h)A∗(1j , 2s, 3s, 4h)

+A(1i, 2s, 3h, 4s)A∗(1j , 2s, 3h, 4s) +A(1i, 2h, 3s, 4s)A∗(1j , 2h, 3s, 4s)
)

,

|M(s, s)spin|2 = A(1s, 2s, 3s, 4s)A∗(1s, 2s, 3s, 4s) +
∑

i,j

(

A(1s, 2i, 3j , 4s)A∗(1s, 2i, 3j , 4s)

+A(1s, 2i, 3s, 4j)A∗(1s, 2i, 3s, 4j) +A(1s, 2s, 3i, 4j)A∗(1s, 2s, 3i, 4j)
)

− (1 + 2ǫ)
(

A(1s, 2s, 3s
′

, 4s
′

)A∗(1s, 2s, 3s
′

, 4s
′

) +A(1s, 2s
′

, 3s, 4s
′

)A∗(1s, 2s
′

, 3s, 4s
′

)

+A(1s, 2s
′

, 3s
′

, 4s)A∗(1s, 2s
′

, 3s
′

, 4s)
)

.

(5.11)

6 Numerical implementation

In this section we discuss the implementation of the algorithm described above in a numer-

ical program. We choose to do so in FORTRAN 90 since it offers the option of performing

computations in double- and quadruple precision in a straightforward way. Such flexibility

is important because in our framework singular limits are approached numerically, and we

have to find a balance between the speed of the code and the numerical stability which

requires switching to quadruple precision computations when close to singularities.

For numerical implementation of the required amplitudes we used, as much as pos-

sible, pieces of the FORTRAN 77 code MCFM [97]. After translating to FORTRAN 90
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we checked our numerical implementation of the tree-level amplitudes for 0 → Hggg,

0 → Hgggg and 0 → Hggggg processes against MadGraph [99]. As we explained earlier,

since we work in conventional dimensional regularization, we need to know O(ǫ) parts of

tree-level amplitudes, which are presented in the previous section. These O(ǫ) parts were

checked against a Feynman diagram-based computation of amplitudes squared where ex-

plicit sums over gluon polarizations were performed. The relevant diagrams for 0 → H+ng,

n = 3, 4 were obtained with QGRAF [100] and manipulated with FORM [101]. Finally, we

note that since we require the one-loop corrections to gg → Hg through O(ǫ2), we recom-

puted the one-loop gg → Hg amplitudes and compared them against the results presented

in [102]. For the 0 → Hgggg one-loop amplitudes, we borrowed significant parts of the

FORTRAN code from MCFM. The one-loop integrals that are required for this calculation

are computed using QCDloops [103]. The box one-loop master integral gg → Hg is needed

to higher orders in the expansion in ǫ, and can be obtained starting from an all-orders

result in ref. [40].

A central part of the described computational algorithm is the calculation of integrals

of the following form

1
∫

0

dx1 . . . dxn d~y Di1(x1) . . .Din(xn)F (x1, . . . xn, ~y), (6.1)

where n counts the number of singular phase-space variables ( n = 4 for double-real and

n = 2 for real-virtual), ~y collectively denotes all non-singular variables, the functions D(x)

are defined as

D0(x) = δ(x), Di(x) =

[

lni−1 x

x

]

+

, (6.2)

and
∑

j ij ≤ 3. The function F (x1, . . . xn, ~y) is obtained by multiplying the matrix element

squared for a particular physics process by appropriate powers of x1, . . . xn, as explained in

section 3. To compute multi-dimensional integrals of the type shown in eq. (6.1), we use the

adaptive Monte-Carlo algorithm VEGAS [104] as implemented in the CUBA library [105].

We note that when plus distributions are expanded out in eq. (6.1), we obtain integrands

that are iterations of the following basic form

x−1
i [F (x1, . . . xi−1, xi, xi+1 . . . )− F (x1, . . . xi−1, 0, xi+1, . . . )] . (6.3)

To understand subtleties of the numerical implementation of eq. (6.1), it is important to

realize that the two terms in the numerator of eq. (6.3) are computed differently in the

numerical code. Indeed, the function F (x1, . . . xi−1, xi, xi+1 . . . ) is calculated from the ma-

trix element squared that describes the highest-multiplicity process for a given channel

(for example, it is 0 → Hggggg for the double-real emission processes). On the other

hand, F (x1, . . . xi−1, 0, xi+1 . . . ) is computed by first analytically calculating the appropri-

ate singular limit from the full matrix element and then implementing that limit as an

independent function or subroutine in the numerical code. This implies two things. First,

lim
xi→0

F (. . . xi, . . .) = F (. . . , 0, . . .), (6.4)
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is an important and non-trivial check of the calculation and of its implementation in the

numerical program. Second, because the full matrix elements become numerically unstable

for very small values of x, it is not possible to calculate integrands as in eq. (6.1) all the

way to x1,...,n = 0. In our numerical implementation, we follow the approach of ref. [67]

and require that the product of all generated singular variables is larger than a small

parameter δc,

x1x2 . . . xn ≥ δc. (6.5)

Independence of the final result from the value of δc is an essential check of the correctness

of the numerical implementation; we will discuss the necessary condition for that in the

next section.

To obtain results for partonic cross-sections that will be presented in the next section,

we use δc = 10−10. We introduce a switch in the program that forces a quadruple precision

calculation of the integrand in eq. (6.1) to occur provided that x1x2 . . . xn ≤ δs, where δs is

conservatively chosen to be δs = 10−7. We find that, compared to a pure double-precision

computation, our implementation of the switch slows a calculation by about a factor of

two. This, however, is not a problem since the program is quite fast because it employs

helicity amplitudes to construct the relevant matrix elements. To illustrate how fast the

program is, we note that to get contributions to integrated partonic cross-sections for one

center-of-mass collision energy, we need about half an hour to obtain all the poles in ǫ and

about four hours to obtain all the relevant finite parts provided that a calculation is done

on a cluster of twenty eight-core 2.83 GHz nodes.

Finally, we note that our current implementation of the numerical integration proce-

dure allows us to calculate partonic cross-sections but not kinematic distributions. This,

however, seems a relatively minor problem since at every step of the calculation we know

the kinematics of the final state and we can access the weight. It appears therefore that

the current implementation can be easily extended to make a true parton-level generator

capable of computing different observables in a single run. In fact, the possibility to do

this within the current framework was recently demonstrated for the simpler processes

t → be+ν and b → ueν̄ in refs. [106, 107]. We plan to return to the discussion of this issue

in the context of Higgs boson production in the near future.

7 Checks and final results

In this section, we describe checks on the calculation and present the results for the partonic

cross-section. The first check that we describe follows from the fact that, in the numerical

program, eq. (6.4) is non-trivial to satisfy, because of the different ways in which the

function F (x1, x2, . . .) and its boundary values are computed. On the other hand, eq. (6.4)

is a necessary requirement for the existence of integrals shown in eq. (6.1), so that its

validity in our numerical program should be carefully investigated. To check eq. (6.4), we

compute

Li1,i2,...(t) = 1− F (x1, . . . txi1 , . . . , txi2 , . . .)

F (x1, . . . , 0, xi1+1 . . . 0, xi2+1)
, (7.1)
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Figure 1. Scaling behavior for soft (left) and collinear (right) double-real emission limits, as

obtained with our Fortran code in quadrupole precision. See the text for explanation.

as a function of t → 0, for random choices of ~x = [x1, x2, . . .]. If the calculations are

done properly, we should find Lij...(t) → 0 as t → 0, independent of ~x. Also, because the

variables x define the kinematics of the process, each function Li1,i2...(t) probes a particular

singular limit of the full amplitude.

For the double real emission sectors, we consider fifteen different limits, for example

Lx1 , Lx2 , Lx3 . . ., Lx1,x2 . . ., Lx1,x3,x4 , and check numerically how these functions approach

zero. In particular, we know that all the soft limits should scale as t, while collinear limits

should scale as
√
t. To illustrate this point we plot distributions for the functions Lx1(t)

and Lx3(t) in figure 1, for two sample sectors. The function Lx1(t) describes the soft limit

and the function Lx3 describes the collinear limit. To obtain these plots, ten thousand ~x

points were randomly generated and the two functions Lx1(t) and Lx3(t) were computed

for two values of t that differ either by one (soft) or two (collinear) orders of magnitude.

It is evident from figure 1 that the widths of the resulting distributions scales with the

parameter t as expected. We also note that, in case of the collinear limit, the quality

of the distribution is very sensitive to the correct implementation of spin correlations.

In fact, by removing the spin-correlation part from collinear splitting functions, we find

Lx3(t) ∼ O(10−4) independent of t for t ∼< 10−8.

We note that we cannot follow the same strategy to check the O(ǫ) terms for lower-

multiplicity amplitudes, since we do not have a computation of the 0 → Hggggg amplitude

beyond O(ǫ0). We can nevertheless check the consistency of our calculation and implemen-

tation by comparing different limits against each other. In total, we consider 60 different

combinations for all double-real sectors and check that each of them behaves in a way that

is similar to what is shown in figure 1, for ǫ = 0, 1, 2.

To check the implementation of the real-virtual corrections, we need to modify the

above strategy, since FRV (~x) is given by a linear combination of three functions with

potentially logarithmically-singular coefficients, as shown in eq. (4.22). To probe soft and

collinear limits in the real-virtual case, we define two functions

L1(ǫ, t) = 1− Tǫ [FRV(tx1, x2, . . . .)]

Tǫ [G1(t, x1, x2, . . .)]
, L2(ǫ, t) = 1− Tǫ [FRV (ǫ, x1, tx2, . . .)]

Tǫ [G2(ǫ, t, x1, x2, . . .)]
, (7.2)
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Figure 2. Scaling behavior for soft (left) and collinear (right) real-virtual emission limits, as

obtained with our Fortran code in quadrupole precision. See the text for explanation.

where

G1(t, x1, x2, . . .) = F1(0, x2, . . .) + F2(0, x2, . . .)
[

t2x21x2
]−ǫ

+ F3(0, x2, . . .)
[

t2x21
]−ǫ

,

G2(t, x1, x2, . . .) = F1(x1, 0, . . .) + F2(x1, 0, . . .)
[

tx21x2
]−ǫ

.
(7.3)

The operator Tǫ in eq. (7.2) implies that the relevant term in the Laurent expansion in ǫ

of the corresponding function should be taken

Tk [f(ǫ, x)] = Tk
[

∞
∑

i=−∞

ǫifi(x)

]

= fk(x). (7.4)

For illustrative purposes, we show distributions of Lx1(0, t) and Lx2(0, t) for one of the

sectors in figure 2. Similar to the double real emission case, we observe the O(t) scaling in

the soft limit and the O(
√
t) scaling of the collinear limit.

A further check of the correctness of the calculation is provided by the cancellation

of poles. Singularities of double-real, real-virtual and double-virtual contributions start at

O(ǫ−4). Starting from order O(ǫ−2), collinear subtractions, renormalization and contribu-

tions related to extra-dimensional components of the unresolved momenta are required for

the cancellation of poles. We note that within our framework, we compute coefficients of

the Laurent expansion in ǫ and check the cancellation of poles numerically. To see how

well this cancellation works, we compute the ratios

δǫ =
σRR(ǫ) + σRV(ǫ) + σV V (ǫ) + σconv(ǫ) + σrenorm(ǫ) + σd−4(ǫ)

|σRR(ǫ)|+ |σRV(ǫ)|+ |σV V (ǫ)|+ |σconv(ǫ)|+ |σrenorm(ǫ)|+ |σd−4(ǫ)|
(7.5)

at various orders in ǫ. In eq. (7.5), we account for double-real, double-virtual, real-virtual

contributions as well as convolutions, renormalization and the contribution due to extra-

dimensional components of the unresolved gluon momenta. We show δ(ǫ) in figure 3 for

ǫ = −2 and ǫ = −1. Interestingly, it appears from figure 3 that we loose almost one

order of magnitude in the quality of cancellation when we move from O(ǫ−2) to O(ǫ−1).

Nevertheless, at O(ǫ−1) the cancellation is at the level of few per mille or better, which
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Figure 3. Residuals of poles in ǫ for the total cross-section as the function of partonic center-of-

mass energy. The left panel shows O(ǫ−2), and the right panel shows O(ǫ−1). See the text for

explanation.

is acceptable. Finally, we note that omission of extra-dimensional components in the

momentum parametrization leads to residual non-cancellation of singularities at the level

of δ2 ∼ 5 × 10−3 and δ1 ∼ 2 × 10−2, which is very large compared to values of δ that we

observe in figure 3.

As a final check of the calculation, we discuss the dependence of the result on the

renormalization and factorization scales. In this paper, we equate them and denote both

by µ. We can compute the µ-dependence of the cross-section either by introducing µǫ

per coupling constant in the various elements of the calculation in the standard way, or

by solving the renormalization group equation that follows from the fact that convolution

of the partonic cross-section with parton distribution functions is µ-independent. The

results of this computation can be found in section 2. We have checked that when the

µ-dependence is computed with our numerical code, the result agrees with the analytic

computation based on renormalization group invariance.

We now present our results. We compute the hadronic cross-section for the production

of the Higgs boson in association with a jet at the 8TeV LHC through NNLO in perturba-

tive QCD. We reconstruct jets using the k⊥-algorithm with ∆R = 0.5 and p⊥,j = 30 GeV.

The Higgs mass is taken to be mH = 125GeV and the top-quark mass mt = 172 GeV. We

use the latest NNPDF parton distributions [108, 109] and numerical values of the strong

coupling constant αs at various orders in QCD perturbation theory as provided by the

NNPDF fit. We note that in this case αs(mZ) = [0.130, 0.118, 0.118] at leading, next-to-

leading and next-to-next-to-leading order, respectively. We compute αs(µ) using the full

nf = 5 QCD evolution. We choose the central renormalization and factorization scales

to be µR = µF = mH . In figure 4 we show the partonic cross section for gg → H + j

multiplied by the gluon luminosity through NNLO in perturbative QCD

β
dσhad
d
√
s

= β
dσ(s, αs, µR, µF )

d
√
s

× L
(

s

shad
, µF

)

, (7.6)

where β measures the distance from the partonic threshold,

β =

√

1− E2
th

s
, Eth =

√

m2
h + p2⊥,j + p⊥,j ≈ 158.55 GeV. (7.7)
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Figure 4. Results for the product of partonic cross-sections gg → H+jet and parton luminosity in

consecutive orders in perturbative QCD at µR = µF = mh = 125 GeV. See the text for explanation.

The partonic luminosity L is given by the integral of the product of two gluon distribution

functions

L(z, µF ) =

∫ 1

z

dx

x
g(x, µF )g

( z

x
, µF

)

. (7.8)

It follows from figure 4 that NNLO QCD corrections are significant in the region√
s < 500GeV. In particular, close to partonic threshold

√
s ∼ Eth, radiative corrections

are enhanced by threshold logarithms lnβ that originate from the incomplete cancellation

of virtual and real corrections. There seems to be no significant enhancement of these cor-

rections at higher energies, where the NNLO QCD prediction for the partonic cross-section

becomes almost indistinguishable from the NLO QCD one. Note that we extend the calcu-

lation of the NNLO partonic cross-section to
√
s ∼ 500 GeV only. From leading and next-

to-leading order computations, we know that by omitting the region
√
s > 500GeV, we un-

derestimate the total cross-section by about 3%. To account for this in the NNLO hadronic

cross-section calculation, we perform an extrapolation to higher energies constructed in

such a way that when the same procedure is applied to LO and NLO cross-sections, it

gives results that agree well with the calculation without extrapolation. The correction for

the extrapolation is included in the NNLO QCD cross-sections results shown below.

We now show the integrated hadronic cross-sections for the production of the Higgs

boson in association with a jet at 8TeV LHC in the all-gluon channel. We choose to vary

the renormalization and factorization scale in the range µR = µF = mH/2, mH , 2mH .

After convolution with the parton luminositites, we obtain7

σLO(pp → Hj) = 2713+1216
−776 fb,

σNLO(pp → Hj) = 4377+760
−738 fb,

σNNLO(pp → Hj) = 6177−204
+242 fb.

(7.9)

7We checked our LO and NLO results against MCFM (gluons only), and found agreement.
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Figure 5. Scale dependence of the hadronic cross section in consecutive orders in perturbative

QCD. See the text for details.

We note that NNLO corrections are sizable, as expected from the large NLO K−factor,

but the perturbative expansion shows marginal convergence. We also evaluated PDFs error

using the full set of NNPDF replicas, and found it to be of order 5% at LO, and of order

1-2% at both NLO and NNLO, similarly to the inclusive Higgs case [108]. The cross-section

increases by about sixty percent when we move from LO to NLO and by thirty percent

when we move from NLO to NNLO. It is also clear that by accounting for the NNLO QCD

corrections we reduce the dependence on the renormalization and factorization scales in

a significant way. The scale variation of the result decreases from almost 50% at LO, to

20% at NLO, to less than 5% at NNLO. We also note that a perturbatively-stable result

is obtained for the scale choice µ ≈ mH/2. In this case the ratio of the NNLO over the LO

cross-section is just 1.5, to be compared with 2.3 for µ = mH and 3.06 for µ = 2mH , and

the ratio of NNLO to NLO is 1.2. It is interesting to point out that a similar trend was

observed in the calculation of higher-order QCD corrections to the Higgs boson production

cross-section in gluon fusion. It has been pointed out that because of the rapid fall of the

gluon PDFs, the production cross section is dominated by the threshold region, thus making

µ = mH/2 an excellent choice for the renormalization and factorization scales [14, 89]. The

reduced scale dependence is also apparent from figure 5, where we plot total cross-section

as a function of the renormalization and factorization scale µ in the region p⊥,j < µ < 2mh.

Finally, we comment on the phenomenological relevance of the “gluons-only” results

for cross-sections andK-factors that we reported in this paper. We note that at leading and

next-to-leading order, quark-gluon collisions increase the H+j production cross-section by

about 30 percent, for the input parameters that we use in this paper. At the same time, the

NLO K-factors for the full H + j cross-section are smaller by about 10− 15 percent than

the “gluons-only” K-factors, presumably because quark color charges are smaller than the

gluon ones. Therefore, we conclude that the gluon-only results can be used for reliable

phenomenological estimates of perturbative K-factors but adding quark channels will be

essential for achieving precise results for the H + j cross-section. We plan to return to this

issue in the future.
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8 Conclusions

In this paper we reported a calculation of the NNLO QCD corrections to the partonic

process gg → H + jet. This is one of the first calculations where NNLO QCD corrections

are computed to a 2 → 2 process whose cross-section depends on the implementation of

the jet algorithm already at leading order. We believe that gg → Hg is a sufficiently

typical process to expose all non-trivial features of a generic NNLO computation for a

2 → 2 process at a hadron collider. Indeed, we have used this process to show that the

computational technique that we describe in this paper can successfully deal with:

• a large number of contributing Feynman diagrams;

• colored particles in the initial and in the final state;

• collinear subtractions and parton distribution functions;

• all soft and collinear limits;

• known helicity matrix elements;

• spin correlations;

• a realistic jet algorithm.

The only “non-generic” feature that we benefited from is a much simpler bookkeeping that

is required for gg → Hg compared to the general case computation.

We believe that the techniques reported in this paper that built upon earlier work

described in refs. [66, 67, 74], allow computation of the NNLO QCD corrections to an

arbitrary 2 → 2 process at hadron colliders provided that the corresponding two-loop

matrix elements are available. Since this is the case for most of the processes that are

desirable to know at NNLO (cf. the “NNLO wishlist” in ref. [110]), our results open up a

way to perform the required calculations.

On the other hand, it is not entirely clear to us how to extend the computational

technology reported in this paper to make it practically applicable to 2 → n, n > 2

processes. In this case, the problem is related to the O(ǫ) parts of the amplitudes and

the choice of extra-dimensional components to parametrize four-momenta of unresolved

gluons. The point is that in the 2 → 2 process these details can still be dealt with by

brute force, as we did in this paper, but for large n this will be increasingly difficult to do.

Therefore, it is an interesting theoretical question to re-formulate this technique in such a

way that much of the irrelevant O(ǫ) dependencies is avoided. We hope to return to this

point in the future.
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A Appendix

We report here the formulae for the splitting functions and their convolution needed for

the renormalization of parton distribution functions at NNLO, as described in section 2.

P (0)
gg (x) = 2CA

[

11

12
δ(1− x) +

[

1

1− x

]

+

+ x(1− x) +
1− x

x
− 1

]

P (0)
gg ⊗ P (0)
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A
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22

3
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1

1− x

]

+
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[
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+

+
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3
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3x
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A
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(
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3
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δ(1− x) +

(
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9
− 2ζ2
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1

1− x
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+
4(x2 + x+ 1)2
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2(1 + x)
ζ2 +

4(x2 − x− 1)2

2(1− x2)
ln2(x)− 25

18
− 109

18
x

+

(

4(x2 + x+ 1)2

x(1 + x)
ln(1 + x)− 4(x2 − x+ 1)2

x(1− x)
ln(1− x)− 75
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33

9
x− 44x2
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