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emerging from a generic nonsupersymmetric renormalization group flow once the mass op-

erators have been properly subtracted away. We therefore conclude that four dimensional

supersymmetry can emerge as a fixed point theory from a nonsupersymmetric Lagrangian.

Our results suggest that supersymmetry can be viewed as an emergent phenomenon in

four dimensional field theory complementing recent discoveries in lower number of dimen-

sions [4, 5].
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1 Introduction

Gauge theories constitute the building blocks of our present understanding of natural phe-

nomena. The Standard Model (SM) of high energy particle interactions is, in fact, entirely

based on a semi-simple gauge group SU(3)× SU(2)×U(1). The SM accounts for roughly

four percent of the known universe. However, several puzzles remain still unexplained.

For example, why do we observe, at least, three generations of elementary particles. Be-

sides, the remaining 94% of the universe, of which 22% dark matter, and 72% dark energy,

remains largely unknown. It is therefore natural to expect that new gauge theories, or ex-

tensions of the present ones play a fundamental role in explaining the unknown side of the

universe. The space of four dimensional gauge theories at our disposal, without theoretical

prejudice, is very large and moreover a large fraction of it is still terra incognita due to our

limited methods to tackle nonperturbative dynamics.

In the late nineties, in a series of ground breaking papers [1, 2], Seiberg provided

strong support for the existence of duality at long distances between two fundamental

supersymmetric theories both exhibiting long distance conformality. Seiberg’s proposal is

an electric-magnetic type duality between two different asymptotically free gauge theories,

and the region in their external parameter space, such as the number of colors and flavors,

where they are both asymptotically free and duality should hold is called the conformal

window. One of the most relevant results put forward by Seiberg has been the identification

of the conformal window for supersymmetric QCD. Supersymmetry is, however, quite

special and the existence of such a duality does not automatically imply the existence of

nonsupersymmetric duals.
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The exploration of the possible existence of nonsupersymmetric gauge duals providing

a consistent picture of the phase diagram as a function of number of colors and flavors

has started [3, 6, 6–9] and recently several analytic predictions have been provided for the

conformal window of nonsupersymmetric gauge theories using different approaches [10–41].

The first goal of this work is to establish in perturbation theory the existence of fixed points

along the renormalization group flow for QCD with an adjoint Weyl fermion and scalar

matter reminiscent of magnetic duals of QCD [1–3]. We discover, for the first time, a large

number of calculable fixed points and classify them by analyzing their basin of attraction.

Interestingly we discover supersymmetric stable fixed points to emerge in the infrared

along nonsupersymmetric flows once the mass operators have been properly subtracted

away. The phenomenological interest of our studies relies also on the fact that theories

similar to the ones investigated here and featuring infrared fixed points have been used to

construct sensible extensions of the standard model of particle interactions of technicolor

type passing precision data and known as Minimal Walking Technicolor models [10, 15].

The theory studied here has also been used in [42] as a toy model-like dual of a Pati-Salam

extension of the SM.

Our results suggest that supersymmetry can emerge in four dimensional field theory

complementing similar discoveries in lower number of dimensions [4, 5].

2 Magnetic setup of QCD with one adjoint fermion.

To introduce the models analyzed in this work, we start with a brief review related to

duality arguments that lead us to the analysis in this work. Our results are, however,

independent of the existence of gauge duality.

In [3] the possible existence of a magnetic dual for a nonsupersymmetric electric theory

was put forward. This electric theory is a scalarless SU(N) gauge theory with Nf Dirac

fermions and N larger than two, as in QCD, but with an extra Weyl fermion transforming

according to the adjoint representation of the gauge group. The quantum global symmetry

of the electric theory is therefore:

SUL(Nf)× SUR(Nf)×UV(1)×UAF(1) . (2.1)

At the classical level there is one more UA(1) symmetry destroyed by quantum corrections

due to the Adler-Bell-Jackiw anomaly. Of the three independent U(1) symmetries only two

survive, a vector like UV(1) and an axial-like anomaly free (AF) UAF(1). The spectrum of

the theory and the global transformations are summarized in table 1.

A magnetic dual was constructed based on the minimal spectrum of composite states

and gauge group structure from the constraints:

• Matching all of the ’t Hooft anomaly conditions, for any number of colors and flavors,

which was accomplished for the first time.

• Allow for consistent flavor decoupling both in the electric and in the magnetic theory.

– 2 –
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Fields [SU(N)] SUL(Nf) SUR(Nf) UV(1) UAF(1)

λ Adj 1 1 0 1

Q 1 1 − N
Nf

Q̃ 1 −1 − N
Nf

Gµ Adj 1 1 0 0

Table 1. Field content of the electric theory and field transformation properties. The squared

brackets around SU(N) indicate that this is the gauge group.

Fields [SU(X)] SUL(Nf) SUR(Nf) UV(1) UAF(1)

λm Adj 1 1 0 1

q 1
Nf−X
X − X

Nf

q̃ 1 −Nf−X
X − X

Nf

M 1 0 −Nf−2X
Nf

φ̃ 1 −Nf−X
X

Nf−X
Nf

φ 1
Nf−X
X

Nf−X
Nf

Gµ Adj 1 1 0 0

Table 2. Field content of the magnetic theory and field transformation properties. The four upper

fields are Weyl spinors in the (1/2, 0) representation of the Lorentz group. The two φ-fields are

complex scalars and Gµ are the gauge bosons.

• Ensure duality involution; by dualizing the magnetic theory one should recover the

gauge structure of the electric theory.

The proposed nonsupersymmetric SU(X) magnetic gauge theory [3] is summarized in

table 2. It was shown that one has to have X = Nf − N . The spectrum in table 2 is

nonsupersymmetric. This should be clear, since there is no complex scalar partner of M .

Furthermore it was shown that one can build the gauge singlet states using the electric

variables. Subsequently in [42] it was argued that one could also add the complex scalar H

(appearing now in table 3). This is possible since it does not affect the anomaly conditions

and can be built naturally out of the electric fermionic variable as follows [42]:

H ∼ QλλQ̃ . (2.2)

It is crucial to be able to construct all these states directly from the electric fermionic

variables. This demonstrates that supersymmetry is not a fundamental ingredient in order

to construct these states. H in [42] plays the phenomenologically relevant role of the SM-

like Higgs, elementary in terms of the magnetic variables. Although when adding the new

complex scalar field the spectrum of the dual theory looks supersymmetric, the full theory

is not since the couplings, in the ultraviolet, are not taken to respect supersymmetric

relations.
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Fields [SU(X)] SUL(Nf) SUR(Nf) UV(1) UAF(1)

λm Adj 1 1 0 1

q 1
Nf−X
X − X

Nf

q̃ 1 −Nf−X
X − X

Nf

M 1 0 −Nf−2X
Nf

H 1 0 2X
Nf

φ̃ 1 −Nf−X
X

Nf−X
Nf

φ 1
Nf−X
X

Nf−X
Nf

Gµ Adj 1 1 0 0

Table 3. Field content of the magnetic theory with the addition of the Higgs-field, H and the field

transformation properties. The four upper fields are Weyl spinors in the (1/2, 0) representation of

the Lorentz group.

Motivated by the duality arguments above we move to investigate the actual existence

of the fixed points in the presumed magnetic theory.

3 Magnetic potential of the theory and beta functions

We start by considering the Yukawa terms of the magnetic theory in table 3:

LY = yλφ
∗λmq + y

λ̃
φ̃∗λmq̃ + y

M̃
φ̃Mq + yMφMq̃ + yH q̃ Hq + h.c. (3.1)

Quartic φ4-interactions do not affect our results to the perturbative order we will consider.

These interactions will be discussed in the end. We will be working in a mass-independent

scheme and can therefore, in the spirit of Coleman and E. Weinberg [43] (see also the

discussion by Gildener and S. Weinberg in [44]), work with the massless theory.

The Yukawa-sector contributes to the two-loop beta function of the gauge coupling in

the following manner:

β(g) =
dg

d lnµ
= −β0

g3

(4π)2
− β1

g5

(4π)4
− βY

g3

(4π)4
+O(g7) (3.2)

β0 =
11

3
C2(G)− 2

3

∑
r

T (r)Nf (r)− 1

6

∑
s

T (s)Nf (s) (3.3)

β1 =
34

3
C2(G)2−

∑
r

[
10

3
C2(G) + 2C2(r)

]
T (r)Nf (r)−

∑
s

[
1

3
C2(G) + 2C2(r)

]
T (s)Nf (s)

(3.4)

βY =
1

d(G)

∑
r

Tr
[
C2(r)Y jYj

†
]

(3.5)

where r denotes the representation of fermions and s denotes the representation of the

real scalars. T (·) is the trace normalization of the group generators, C2(·) is the quadratic

Casimir of these and d(G) is the dimension of the gauge group. We refer to appendix A for
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a careful derivation of the Yukawa contribution βY to the running of the gauge coupling.

The result is:

β(αg) = −2α2
g

[
β0 + αgβ1 + (αλ + α

λ̃
)
3X2 − 1

4X
Nf +

(
αM + α

M̃

2
+ αH

)
N2
f

]
, (3.6)

with

β0 = 3X −Nf , β1 = 6X2 − 7NfX +
3Nf

X
, (3.7)

and where we used the notation

αi ≡
| yi |2

(4π)2
.

We now consider the running of the Yukawa couplings. The one loop beta function for

the Yukawa couplings is given by [46, 47]:

(4π)2β(Y j) =
1

2

[
Y †2 (r)Y j + Y jY2(r)

]
+ 2Y kY †j Y

k +
1

2
Y kTr

[
Y †k Y

j + Y †j Y
k
]
− 3g2{C2(r), Y j}. (3.8)

Here Y j is the Yukawa coupling matrix defined by the particular interaction:

LY ∼ Y j
αβφjψ

αχβ,

where roman indices contract over the scalar gauge-flavor overall index and the greek indices

α, β are again gauge-flavor indices but reserved for the Weyl fermions ψ and χ. Y2(r) is

the group invariant:

Y2(r) ≡ Y †j Y
j .

For each scalar contraction we multiply, row by column, the Yukawa matrices over the

fermion indices. We again report the derivation of the beta function for each Yukawa

coupling in appendix A. To the second order in the couplings the set of beta function

equations reads:

β(αg) = −2α2
g

[
β0 + αgβ1 + (αλ + α

λ̃
)
3X2 − 1

4X
Nf +

(
αM + α

M̃

2
+ αH

)
N2
f

]
(3.9)

β(αλ) = 2αλ

[
3(X2 − 1)

4X
αλ + (αλ + α

λ̃
)
Nf

4
+Nf

(
α
M̃

+ αH

2
+ αM

)
− 3αg

3X2 − 1

2X

]
− 4Nf

yMyM̃yλyλ̃
(4π)2

(3.10)

β(αM ) = 2αM

[
3Nf +X

2
αM +

X

2
α
M̃

+
Nf

2
αH +

X2 − 1

2X

(α
λ̃

2
+ αλ

)
− 3αg

X2 − 1

2X

]
− 4

X2 − 1

2X

yMyM̃yλyλ̃
(4π)2

(3.11)

β(αH) = 2αH

[
αM + α

M̃
+ 2αH

2
Nf +

(
αλ + α

λ̃

2
− 6αg

)
C2( ) +XαH

]
(3.12)

β(α
λ̃
) = βαλ

(
yλ ↔ y

λ̃
, y
M̃
↔ yM

)
, (3.13)

β(α
M̃

) = βαM
(
yM ↔ y

M̃
, y
λ̃
↔ yλ

)
, (3.14)
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where:

β(αi) ≡
2yi

(4π)2
β(yi) . (3.15)

We impose CP invariance and therefore set all the Yukawa phases to zero. We discuss the

full set of equations, including the phases, in the appendix A.

In the supersymmetric limit αλ = α
λ̃

= 2αg, αM = α
M̃

= αH the beta function system

simplifies to:

β(αg) = −2α2
g

[
β0 + β′1αg + 2N2

fαM
]

(3.16)

β(αλ) = −2αλ [β0αg] (3.17)

β(αM ) = 2αM [(2Nf +X)αM − 4αgC2( )] (3.18)

β(αH) = 2αH [(2Nf +X)αH − 4αgC2( )] , (3.19)

where β′1 ≡ β1 + (3X2 − 1)Nf/X = 6X2 − 4NfX + 2Nf/X , which is the well-known

two-loop term of pure super QCD.

This result shows, as expected, that supersymmetry stays unbroken along the renor-

malization flow. Also note how the running of the gaugino Yukawa coupling has collapsed

to the one-loop result for the running of the gauge coupling. These results are in agreement

with the known result from supersymmetry: the all-orders supersymmetric beta functions

for Seiberg’s magnetic dual are:

βs(αg) = −2α2
g

[β0 +Nfγ0]

1− 2Xαg

βs(αM ) = αM [γM + 2γ0] , (3.20)

where the one-loop expressions for the anomalous dimensions of the chiral superfields read:

γ0 = −4C2(�)αg + 2NfαM + . . .

γM = 2XαM + . . . (3.21)

by which it is readily seen that the one-loop expansion of βs(αg) and βs(αM ) are in agree-

ment with the expressions in equations (3.16)–(3.19).

4 Magnetic fixed point analysis

Just below the critical number of flavors where the theory looses asymptotic freedom (β0 =

0) a Banks-Zaks perturbatively stable infrared fixed point (IRFP) emerges once the Yukawa

interactions are set to zero. The well known expression for the value of the gauge coupling

at this fixed point is:

α∗BZg = −β0

β1
. (4.1)

– 6 –
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In this phase the theory shows large distance conformality. We now investigate whether

the perturbatively stable IRFP persists when we turn on the Yukawa interactions. From

eq. (3.9), the perturbative fixed point value for the gauge coupling reads:

α∗g = −
4Xβ0 + (α∗λ + α∗

λ̃
)(3X2 − 1)Nf + 2X(α∗M + α∗

M̃
+ 2α∗H)N2

f

4Xβ1
. (4.2)

Perturbative consistency is ensured by the smallness of the Yukawa couplings at the fixed

point. There is, clearly, a symmetry between the tilded and untilded Yukawa coupling

constants at the beta functions level. This symmetry persists at the fixed point effectively

reducing the space of solutions.

The fixed points associated to zeros of β(αH) are:

α∗H = 0 ∧ α∗H =
12C2(�)α∗g − C2(�)(α∗λ + α∗

λ̃
)−Nf (α∗M + α∗

M̃
)

2(Nf +X)
. (4.3)

A perturbative nontrivial infrared fixed point for all the couplings is achieved when the

number of flavors are such that asymptotic freedom is almost lost. To express this point

mathematically we introduce the small parameter ε as follows:

β0 ≥ 0⇒ Nf ≤ 3X, Nf ≡ 3X(1− ε) .

We report in table 4 and table 5 the explicit solutions for the fixed points as a function of

ε. There are 18 physical solutions for the system (3.9)–(3.14), where 10 of these correspond

to the class α∗H = 0 and the remaining 8 to α∗H 6= 0. The solutions obtained exchanging

tilded couplings with untilted ones

αλ ↔ α
λ̃

αM ↔ α
M̃
,

are indicated in the tables 4 and 5 by an asterisk.

Solution (5) in table 4 corresponds to the perturbative infrared fixed point for super

QCD while the last solution (6) in table 5 corresponds to the perturbative fixed point for

Seiberg’s magnetic dual and it is the only one with all nonvanishing couplings. Interest-

ingly, when setting to zero α∗H = 0 (solution 7 in table 4) we find yet another fixed point

corresponding to the infrared stable fixed point of the non-supersymmetric magnetic dual

theory proposed in [3] and shown in table 2. This lends further support to the proposed

non-supersymmetric duality.

5 Stability analysis

The stability of the fixed points reported in tables 4 and 5 is determined by first evaluating

the following matrix

ωij =
∂βi
∂gj

∣∣∣∣
g∗

(5.1)

at the fixed point of interest denoted in brief by g∗. If the matrix ωij has only real and

positive eigenvalues the fixed point is said to be stable. We note as before that quantum

– 7 –
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# (∗)αλ ↔ α
λ̃
, αM ↔ α

M̃
O(ε)-expansion

1 α∗g=
(3X−Nf )X

Nf (7X2−3)−6X3 = Xε
5X2−3

α∗
λ,λ̃,M,M̃

=0

2(∗) α∗g=
2(3X−Nf )(X(Nf+3X)−3)X

2N2
fX(7X2−3)+3Nf (5−14X2+X4)−36X3(X2−1)

= 2X(2X2−1)ε
5−16X2+11X4

α∗λ=
12(3X−Nf )(3X2−1)X

2N2
fX(7X2−3)+3Nf (5−14X2+X4)−36X3(X2−1)

= 4X(3X2−1)ε
5−16X2+11X4

α∗
λ̃,M,M̃

=0

3(∗) α∗g=
2(3X−Nf )(3Nf+X)X

3N2
f (13X2−5)−12X4−2NfX(3+11X2)

= 20Xε
91X2−51

α∗M =
6(3X−Nf )(X2−1)X

3N2
f (13X2−5)−12X4−2NfX(3+11X2)

= 6(X2−1)ε
X(91X2−51)

α∗
λ,λ̃,M̃

=0

4 α∗g=
(3X−Nf )(3Nf+2X)X

2(N2
f (9X2−3)−6X4−NfX(3+2X2))

= 11Xε
2(23X2−12)

α∗M =α∗
M̃

=
3(3X−Nf )(X2−1)

2(N2
f (9X2−3)−6X4−NfX(3+2X2))

= 3(X2−1)ε
2X(23X2−12)

α∗
λ,λ̃

=0

5 α∗g=
(3X−Nf )(3X2+2NfX−3)X

2(9X3−9X5+N2
fX(7X2−3)+Nf (3−6X2−9X4))

= Xε
2(X2−1)

α∗λ=α∗
λ̃

=
3(3X−Nf )(3X2−1)X

2(9X3−9X5+N2
fX(7X2−3)+Nf (3−6X2−9X4))

= Xε
X2−1

=2α∗g+O(ε2)

α∗
M,M̃

=0

6(∗) α∗g=
2(3X−Nf )(3(N2

f−1)X−8Nf+9NfX
2+3X3)X

3N3
fX(13X2−5)−36X4(X2−1)+3NfX(5+18X2−31X4)+2N2

f (18−59X2+9X4))
= 2X(19X2−9)ε

41−141X2+100X4

α∗λ=
12(3X−Nf )(3X3−2Nf−X+8NfX

2)

3N3
fX(13X2−5)−36X4(X2−1)+3NfX(5+18X2−31X4)+2N2

f (18−59X2+9X4))
= 4X(27X2−7))ε

41−141X2+100X4

α∗
M̃

=
6(3X−Nf )(NfX−2)(X2−1)

3N3
fX(13X2−5)−36X4(X2−1)+3NfX(5+18X2−31X4)+2N2

f (18−59X2+9X4))
= (6X2−4)ε

100X3−41X

α∗
λ̃,M

=0

7 α∗g=
(3X−Nf )(3(N2

f−1)X−4Nf+6NfX
2+3X3)

2(9X3−9X5+N3
f (9X2−3)+N2

f (X−15X3)+Nf (3+6X2−21X4))
= X(16X2−5)ε

2(4X4−5X2+1)

α∗λ=α∗
λ̃

=
3(3X−Nf )(5NfX

2−2Nf−X+3X3)

9X3−9X5+N3
f (9X2−3)+N2

f (X−15X3)+Nf (3+6X2−21X4)
= X(18X2−7))ε

4X4−5X2+1

α∗M =α∗
M̃

=
3(3X−Nf )(NfX+3X2−2)(X2−1)

2X(9X3−9X5+N3
f (9X2−3)+N2

f (X−15X3)+Nf (3+6X2−21X4))
= (3X2−1)ε
X(4X2−1)

Table 4. Fixed point solutions on the critical surface α∗
H = 0. Solution 2,3 and 6 are doubled by

symmetry property (*). Note that to linear order in ε solution 5 is the super QCD fixed point.

effects will induce scalar masses which in general will drive the RG flow away from any

fixed point. This is cured by tuning the renormalized mass to zero, as usually done, and is

the only tuning we are assuming.

In the tables 6 and 7 we present the eigenvalues corresponding to the fixed points of

tables 4 and 5 respectively for X = 4 and ε = 0.05. For convenience, we have marked the

cells with negative eigenvalues in gray.

There is a rich structure of fixed points classified according to the relevant directions

clearly visible from the list of associated eigenvectors reported in the appendix B. The

– 8 –
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# (∗)αλ ↔ α
λ̃
, αM ↔ α

M̃
O(ε)-expansion

1 α∗g=
(3X−Nf )(Nf+X)

4N2
fX−6X3+Nf (X2−3)

= 4Xε
11X2−3

α∗H =
(3X−Nf )(X2−1)

X(4N2
fX−6X3+Nf (X2−3))

= 3(X2−1)ε
X(11X2−3)

α∗
λ,λ̃,M,M̃

=0

2(∗) α∗g=
(3X−Nf )(6X(X2−1)+Nf (7X2+2XNf−5))

2XN2
f (5X2+4XNf−13)−36X3(X2−1)−3Nf (4X2+9X4−5)

= X(15X2−7)ε
5−26X2+21X4

α∗H =
3(3X−Nf )(X2−1)(3X2+2XNf−5)

X(2XN2
f (5X2+4XNf−13)−36X3(X2−1)−3Nf (4X2+9X4−5))

= (9X2−5)ε
X(21X2−5)

α∗λ=
12X(3X−Nf )(3X2+2XNf−1)

2XN2
f (5X2+4XNf−13)−36X3(X2−1)−3Nf (4X2+9X4−5)

= 4X(9X2−1)ε
5−26X2+21X4

α∗
λ̃,M,M̃

=0

3(∗) α∗g=
(3X−Nf )(2X2+8XNf+5N2

f )

20N3
fX−12X4+N2

f (17X2−15)−2NfX(17X2+3)
= 71Xε

193X2−51

α∗H =
3(3X−Nf )(2X+5Nf )(X2−1)

X(20N3
fX−12X4+N2

f (17X2−15)−2NfX(17X2+3))
= 51(X2−1)ε
X(193X2−51)

α∗M =
6(3X−Nf )(X2−1)

20N3
fX−12X4+N2

f (17X2−15)−2NfX(17X2+3)
= 6(X2−1)ε
X(193X2−51)

α∗
λ,λ̃,M̃

=0

4 α∗g=
(3X−Nf )(2Nf+X)(Nf+2X)

2(4N3
fX−6X4+N2

f (7X2−3)−NfX(3+8X2))
= 35Xε

2(47X2−12))

α∗H =
3(3X−Nf )(Nf+X)(X2−1)

X(4N3
fX−6X4+N2

f (7X2−3)−NfX(3+8X2))
= 12(X2−1)ε
X(47X2−12)

α∗M =α∗
M̃

=
3(3X−Nf )(X2−1)

2(4N3
fX−6X4+N2

f (7X2−3)−NfX(3+8X2))
= 3(X2−1)ε

2X(47X2−12)

α∗
λ,λ̃

=0

5 α∗g=
(3X−Nf )(3X(X2−1)+2Nf (2X2+XNf−1))

2(4NfX+3X2−3)(N2
fX−3X3−Nf (X2+1))

= X(11X2−3)ε
2(5X2−1)(X2−1)

α∗H =
3(3X−Nf )(NfX−1)(X2−1)

X(4NfX+3X2−3)(N2
fX−3X3−Nf (X2+1)

= (3X2−1)ε
X(5X2−1)

α∗λ=α∗
λ̃

=
3X(3X−Nf )(3X2+2XNf−1)

(4NfX+3X2−3)(N2
fX−3X3−Nf (X2+1))

= X(9X2−1)ε
(5X2−1)(X2−1)

α∗
M,M̃

=0

6 α∗g=
(3X−Nf )(2Nf+X)(N2

f+2NfX+3X2−3)

2(4N4
fX+9X3−9X5+N3

f (X2−3)−N2
fX(3+23X2)+3Nf (1+4X2−9X4))

= 7Xε
2(X2−1)

α∗H =
3(3X−Nf )(NfX−N2

f+1)(X2−1)

X(4N4
fX+9X3−9X5+N3

f (X2−3)−N2
fX(3+23X2)+3Nf (1+4X2−9X4))

= ε
X

α∗λ=α∗
λ̃

3(3X−Nf )(X+2Nf )(3X2+XNf−1)

4N4
fX+9X3−9X5+N3

f (X2−3)−N2
fX(3+23X2)+3Nf (1+4X2−9X4))

= 7Xε
X2−1

=2α∗g+O(ε2)

α∗M =α∗
M̃

=
3(3X−Nf )(3NfX+3X2−2)(X2−1)

2X(4N4
fX+9X3−9X5+N3

f (X2−3)−N2
fX(3+23X2)+3Nf (1+4X2−9X4))

= ε
X =α∗H+O(ε2)

Table 5. Fixed point solutions on the critical surface α∗
H 6= 0. Solutions 2 and 3 are doubled by

symmetry property (*). Note that to linear order in ε solution 6 is the fixed point of Seiberg’s

magnetic dual.

dimensions of the critical surfaces are dictated by the number of positive eigenvalues.

Once the unstable directions, in the coupling space, are removed the remaining subset of

couplings generate a critical d-dimensional surface with d given by the number of positive
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# ν1 ν2 ν3 ν4 ν5 ν6

1 −0.049 −0.049 −0.031 −0.016 −0.016 0.0034

2 0.20 −0.048 −0.045 −0.015 0.0063 0.0011

3 −0.049 −0.044 0.035 −0.029 −0.015 0.0036

4 −0.064 0.038 0.030 −0.027 −0.023 0.0039

5 0.30 0.092 0.063 −0.060 −0.058 0.0089

6 0.20 −0.062 −0.043 0.031 0.021 0.0065

7 3.0 1.8 1.4 1.1 −0.14 0.033

Table 6. Eigenvalues corresponding to the fixed points in table 4 for X = 4 and ε = 0.05 case.

# ν1 ν2 ν3 ν4 ν5 ν6

1 0.12 −0.067 −0.067 −0.0073 −0.0073 0.0058

2 0.37 0.17 −0.078 0.026 0.012 0.00038

3 0.12 −0.067 −0.064 0.015 −0.0075 0.0058

4 0.12 −0.074 −0.053 0.015 0.014 0.058

5 0.73 0.26 0.18 0.16 −0.081 0.018

6 21 5.4 4.0 4.0 0.77 0.052

Table 7. Eigenvalues corresponding to the fixed points in table 5 for X = 4 and ε = 0.05 case.

eigenvalues containing the nontrivial fixed points. As an example consider the first fixed

point of table 6. Here we have a critical line with an infrared stable fixed point and five

unstable directions. The critical surface in this case is just a line.

Another interesting example is constituted by the fixed point solution 7 of table 4.

In this case we find a five-dimensional critical surface and one unstable sixth direction

parallel to the yH axis. We plot in figure 1 the projections of the renormalization group

flow around this solution for a subset of two couplings at the time. The other filled small

circles in the figure correspond to the projections on the chosen planes of fixed points such

as the Seiberg’s magnetic dual, indicated by the SUSY label on the plot, or the super QCD

Banks-Zaks fixed point labelled by susyBZ.

The fixed point featuring all positive eigenvalues is the one corresponding to Seiberg’s

magnetic dual.

In the analysis so far the quartic interactions among the scalar fields were not con-

sidered, since they do not affect the running of the gauge and Yukawa couplings to the

leading order in perturbation theory. Nevertheless, one should consider the evolution of

the quartic couplings to test the emergence of supersymmetry. We test the stability of the
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Figure 1. Projections of RG flows for X = 4 and ε = 0.05 in the planes (from left to right and

top to bottom): (yM , yH), (g, yH), (yλ,yH) and (yM , y
M̃

). The other couplings are kept fixed at

the fixed point value of solution 7 given in table 4. Besides solution 7 clearly indicated in the plot

we also plot the projections of the Seiberg’s magnetic dual indicated by the SUSY label on the plot,

and the super QCD perturbative fixed point indicated by susyBZ.

quartic sector restricted to the squark-like fields φ and φ̃ of the magnetic theory given in

table 2. The potential is:

Lquartic = − 4π

2
T aijT

a
kl

[
u(φA,∗i φAj )(φB,∗k φBl ) + ũ(φ̃Ai φ̃

A,∗
j )(φ̃Bk φ̃

B,∗
l )− 2w(φA,∗k φAl )(φ̃B,∗k φ̃Bl )

]
− 1

2

[
η(φA,∗i φAi )(φB,∗k φBk ) + η̃(φ̃Ai φ̃

A,∗
i )(φ̃Bk φ̃

B,∗
k )− 2ρ(φA,∗i φAi )(φ̃B,∗k φ̃Bk )

]
, (5.2)

where A and B are flavor indices and i, j, k, l are gauge indices. Supersymmetric QCD is

recovered for u = ũ = w = αg and η = ρ = 0.

The gauge and Yukawa couplings run to the IR supersymmetric fixed point corre-

sponding to αλ = α
λ̃

= 2αg. We assume these relations to hold to constrain the flow of the
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Figure 2. Renormalization group flow of quartic couplings. The dots show the various fixed points.

In the u,w system (or equivalently ũ, w) there are two fixed points, one is the supersymmetric fixed

point w∗ = u∗ = ag, which is stable in the direction u = w and unstable in the orthogonal direction

u = −w. The other fixed point is stable in the u,w system, which is decoupled from the other

quartic couplings. For the flows in the η, ρ system (or equivalently η̃, ρ) we have set the values of the

u, ũ, w couplings to either two fixed points; the middle figure corresponds to the supersymmetric

fixed point in u, ũ, w, the right figure corresponds to the stable fixed point in u, ũ, w. Note that the

stable fixed point in u, ũ, w is unstable in the other quartic couplings.

Yukawa couplings. We then investigate the theory near the asymptotically free boundary,

i.e. Nf/X = 3 and in the large X and Nf limit. The rescaled couplings in this limit reads

αg → αg/X , u→ u/X , w → w/X , η → η/X2 , ρ→ ρ/X2 . (5.3)

The beta functions of the rescaled quartic couplings read

βu ≡
8π

X

du

d lnµ2
= u2 + 3(u2 + w2)− 5α2

g − 2uαg , (5.4)

βw ≡
8π

X

dw

d lnµ2
= −w2 + 6wu− 3α2

g − 2wαg , (5.5)

βη ≡ 4π
dη

d lnµ2
=

1

2
(u2 − α2

g) + 3(η2 + ρ2)− 2ηαg , (5.6)

βρ ≡ 4π
dρ

d lnµ2
=

1

2
(α2

g − w2) + 6ρη − 2ραg , (5.7)

βũ = βu(u→ ũ) , βη̃ = βη(u→ ũ, η → η̃) . (5.8)

Note that the running of the couplings, u, ũ and w are independent of the other quartic

couplings.

There is a fixed point with u = ũ = w = αg and η = ρ = 0 corresponding to the

supersymmetric limit. The renormalization group flow reaches this supersymmetric fixed

point along the direction u = ũ = w, provided that the couplings η, η̃ and ρ are kept

zero. Any perturbation away from this tuning will not lead in the IR to the emergence of

supersymmetry. This is summarized with more details in figure 2.

– 12 –



J
H
E
P
0
6
(
2
0
1
3
)
0
3
7

6 Physical results and conclusions

We uncovered the full spectrum of perturbative fixed points associated to a SU(X) non-

supersymmetric gauge theory featuring scalars and fermions, of the type summarized in

table 3. Although the noninteracting field theory has a supersymmetric looking spectrum

we did not assume the bare couplings to respect supersymmetry, but instead assumed tun-

ing to the massless theory. This is similar to what is routinely done in condensed matter

physics [4, 5]. We then analyzed the fixed points of the beta functions to leading order,

which are renormalization-scheme independent. We discovered supersymmetric and non-

supersymmetric fixed points. We further analyzed their stability and discovered that in

the gauge-Yukawa sector:

• When the bare dimensionless couplings are nonzero the theory flows to Seiberg’s

magnetic dual fixed point. This occurs on supersymmetric and nonsupersymmetric

renormalization group flow.

• When the Yukawa couplings yM , y
M̃

and yH are all set to zero the theory flows to

the super QCD fixed point, as above, independently of whether the renormalization

group flow is supersymmetric.

• When all the Yukawa couplings are set to zero we achieve the perturbative nonsuper-

symmetric fixed point in the gauge coupling.

• When yM and y
M̃

are nonzero and yH = 0 we discover a new nonsupersymmetric fixed

point. This can be identified with the magnetic dual fixed point for nonsupersymmet-

ric gauge theories proposed in [3]. Another fixed point emerges when yM = y
M̃

= 0

and yH 6= 0.

• All the other fixed points emerge similarly by setting to zero different Yukawas.

We finally considered the scalar quartic sector and found the necessary conditions to

have supersymmetry as an emergent phenomenon, which read:

• The supersymmetric quartic couplings must be aligned according to the supersym-

metric relations, but are not necessarily in supersymmetric relation with the gauge

and Yukawa couplings.

• Supersymmetry breaking quartic operators must in general be tuned to zero.

The results above indicates that supersymmetry can emerge as a fixed point the-

ory from a nonsupersymmetric Lagrangian, once the mass operators and supersymmetry

breaking operators have been properly subtracted. This relevant result demonstrates that

supersymmetry can be viewed as an emergent phenomenon in field theory.1 Our results,

1The phenomenon of emergent supersymmetry in four dimensions was also suggested earlier, e.g. in [48–

50]. Our results are obtained using trustable perturbative computations while the earlier works make

assumptions regarding nonperturbative nonsupersymmetric strong dynamics which remain to be verified.
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among other things can be used to argue that one does not need to fine-tune the bare di-

mensionless couplings when performing Lattice simulations aimed to study supersymmetry

on the Lattice [51, 52]. As mentioned earlier similar examples of nonsupersymmetric gauge

theories flowing to supersymmetric fixed points were discovered recently in lower number

of space-time dimensions [4, 5] further reinforcing the possibility that supersymmetry could

be an emergent phenomenon.

It is also possible to speculate that duality is not a prerogative of supersymmetry given

that the theory features many nonsupersymmetric fixed points, depending on the details

of the interactions. Therefore these new fixed points could describe the nonperturbative

physics of electric dual gauge theories like the one envisioned in [3].
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A Derivation of the beta functions

We follow the notation of Machacek and Vaughn [45, 46], who derived the general expres-

sions to two-loop order for the running of the gauge coupling and Yukawa couplings for a

general gauge theory with real scalars and Majorana fermions. Quartic scalar couplings do

not contribute to the running of the gauge and Yukawa couplings in any general field theory

to the order in perturbation theory we will be working. The running of these couplings to

the perturbative order we are working here are therefore irrelevant.

In ref. [47] is showed how to use the expressions of Machacek and Vaughn for complex

scalars and Weyl fermions. We need only to do a slight rewriting of LY given in eq. (3.1)

to follow their notation:

LY = yλφ
∗T aqλam − yλ̃q̃T

aφ̃∗λam + yMφMq̃ + y
M̃
φ̃Mq + yHHqq̃ + h.c.

= Y α,a
j φ∗jqαλ

a
m + Ỹ j

α,aφ̃
∗
j q̃
αλam + U jαφjMq̃α + Ũαj φ̃

jMqα + V α
β Hqαq̃

β + h.c., (A.1)

where a = 1, . . . , d(G) is the gauge index reserved for the adjoint Majorana fermion with

d(G) the dimension of its representation, greek gauge indices α, β, . . . are reserved for the

Weyl fermions and roman gauge indices i, j, . . . are reserved for the complex scalars. Flavor

indices have been suppressed. The Yukawa matrices are defines as follows, once we take

flavor indices into account with l, l′ denoting the indices of SU(Nf)L and r, r′ indices of the

SU(Nf)R global symmetries:

Y αl,a
jl′ = yλ(T a)j

αδl
′
l , (A.2a)

Ỹ jr′
αr,a = −y

λ̃
(T a)α

jδr
′
r , (A.2b)

U jl
′,r′

αr,l = yMδ
j
αδ

l′
l δ

r′
r , (A.2c)

Ũαl,rjr′,l′ = y
M̃
δαj δ

l
l′δ
r
r′ , (A.2d)

V αl′,r′

βr,l = yHδ
α
β δ

l′
l δ

r′
r , (A.2e)
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where T a are the generators of the gauge group. The minus sign of y
λ̃
-term has been chosen

to facilitate the connection with supersymmetry, i.e. for SUSY yλ = y
λ̃

= i
√

2g.

We will first derive the Yukawa contribution to the 2-loop beta function, given in

eq. (3.2)–(3.5), in particular:

βY =
1

d(G)

∑
r

Tr
[
C2(r)Y jYj

†
]
, (A.3)

where C2(r) is the quadratic Casimir of the spinor representations r and d(G) is the di-

mension of the gauge group. It is instructive to consider the contribution from the Yukawa

sector to the two-loop beta function of the gauge coupling diagrammatically. There is only

one type of diagram that has non-vanishing contribution, which is:

where the solid line represents spinor fields, and the dashed line represents the scalar(s)

coupled via the Yukawa interactions. Note that the scalar-gauge interactions do not con-

tribute.

The fermion M is not coupled to the gauge fields. Thus we get:

βY
(4π)2

=
1

(4π)2d(G)
Tr
[
C2(λ)

{
Y jYj

† + Ỹ j Ỹ †j

}
+ C2(q)

{
Y jYj

† + Ũ jŨ †j + V V †
}

+ C2(q̃)
{
Ỹ j Ỹ †j + U jUj

† + V V †
}]

= (αλ + α
λ̃
)T ( )Nf [C2( ) + C2(G)] + (αM + α

M̃
+ 2αH)N2

f

C2( )X

d(G)

= (αλ + α
λ̃
)
Nf

2

3X2 − 1

2X
+

(
αM + α

M̃

2
+ αH

)
N2
f , (A.4)

where we used the notation

αi ≡
| yi |2

(4π)2
.

We now consider the running of the Yukawa couplings. The one loop beta function for

the Yukawa couplings is given in [46, 47]:

(4π)2β(Y j) =
1

2

[
Y †2 (r)Y j + Y jY2(r)

]
+ 2Y kY †j Y

k +
1

2
Y kTr

[
Y †k Y

j + Y †j Y
k
]

− 3g2{C2(r), Y j}. (A.5)

where Y2(r) is the group invariant:

Y2(r) ≡ Y †k Y
k (A.6)

It is again instructive to consider each term in the beta function in terms of the diagrams

they originate from. The first two terms in the bracket corresponds to the fermion leg

self-energy contribution from the Yukawa sector, and the expression tells us that they each

contribute with a factor of 1
2 to the beta function:
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1
2 +1

2

The next term in the beta function is the vertex correction from the Yukawa sector:

The fourth term is the scalar leg self energy contribution from the Yukawa sector:

+

Note the different directions of the arrow in the fermion loops. For Dirac fermions the

above contribution comes naturally with a factor of two. Finally the gauge sector has a

non-vanishing contribution only to the fermion leg self energy, and each term contributes

with a factor of -3:

−3 −3

We thus find the one-loop coefficient of the beta function for Y j to be:

(4π)2β(Y j) =
1

2

[{
Y †2 (q) + Ũ †2(q) + V †2 (q)

}
Y j + Y j

{
Y2(λ) + Ỹ2(λ̃)

}]
+ 2Ũ iU †j Ỹ

i

+ Y kTr
[
Y †k Y

j
]

+ Y kTr
[
UkU †j

]
− 3g2

{
C2(q)Y j + Y jC2(λ)

}
. (A.7)
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Inserting the definitions of the Yukawa-matrices, we find:

(4π)2β(Y j) =

[
1

2

{
C2( ) | yλ |2 +Nf | ỹM |2 +Nf | yH |2 +T ( )Nf (| yλ |2 + | y

λ̃
|2)
}

+ C2( ) |yλ |2 +Nf |yM |2−3g2 {C2( ) + C2(G)}
]
Y j−2Nfy

∗
MyM̃yλ̃(T a)α

jδl
′
l

Note that (T a)α
jδl

′
l in the last term is the matrix part of Y j , which cancels on both sides

of the equation once we do the rewriting β(Y j) = (T a)α
jδl

′
l β(yλ).

The beta function for Ỹ j is obtained via:

yλ ↔ ỹλ yM ↔ ỹM

β(U j) and β(Ũ j) are related by a similar transformation. We compute the former:

(4π)2β(U j) =
1

2

[{
U †2(M) + Ũ †2(M)

}
U j + U j

{
U2(q̃) + Ỹ2(q̃) + V2(q̃)

}]
+ 2Ỹ iY †j Ũ

i

+ UkTr
[
U †kU

j
]

+ UkTr
[
Y †k Y

j
]
− 3g2U jC2(q̃). (A.8)

Using the expression for the matrices we deduce:

β(U j) =

[
1

2

{
XαM +Xα

M̃
+NfαM + C2( )α

λ̃
+NfαH

}
+NfαM + C2( )αλ − 3αgC2( )

]
U j − 2C2( )

(4π)2
y
λ̃
y∗λyM̃δ

j
αδ

l′
l δ

r′
r , (A.9)

where we used αi =| yi |2 /(4π)2. As before δjαδl
′
l δ

r′
r is the matrix part of Uj, which cancels

on both sides of the equation.

The renormalization of the yH coupling reads:

(4π)2β(V ) =

[
1

2

{
Y †2 (q) + Ũ †2(q) + V †2 (q)

}
V + V

{
U2(q̃) + Ỹ2(q̃) + V2(q̃)

}]
+ V Tr

[
V †V

]
− 3g2 {C2(q)V + V C2(q̃)}

β(V ) =

[
αM + α

M̃
+ 2αH

2
Nf +

(
αλ + α

λ̃

2
− 6αg

)
C2( ) +XαH

]
V (A.10)
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6.1 yM y
M̃

yλ yλ̃ g yH

ν1 0 0 0 1.0 0 0

ν2 0 0 1.0 0 0 0

ν3 0 0 0 0 0 1.0

ν4 0 1.0 0 0 0 0

ν5 1.0 0 0 0 0 0

ν6 0 0 0 0 1.0 0

6.2 yM y
M̃

yλ yλ̃ g yH

ν1 0 0 0 −53. 1.0 0

ν2 0 0 1.0 0 0 0

ν3 0 0 0 0 0 1.0

ν4 1.0 0 0 0 0 0

ν5 0 0 0 1.8 1.0 0

ν6 0 1.0 0 0 0 0

6.3 yM y
M̃

yλ yλ̃ g yH

ν1 0 0 1.0 0 0 0

ν2 0 0 0 1.0 0 0

ν3 0 −46. 0 0 1.0 0

ν4 0 0 0 0 0 1.0

ν5 1.0 0 0 0 0 0

ν6 0 0.61 0 0 1.0 0

Table B.1. Eigenvectors associated to νi given in table 6 and corresponding to the fixed points

1,2 and 3 of table 4.

We summarize now the results for beta functions, after having cancelled the matrices:

β(αg) =−2αg

[
β0+αgβ1+NfT ( ) [C2( )+C2(G)] (αλ+α

λ̃
)+

C2( )XN2
f

d(G)
(αM+α

M̃
+2αH)

]
(A.11a)

β(yλ) =|yλ |eiθλ
[

3

2
C2( )αλ+

T ( )Nf

2
(αλ+α

λ̃
)+Nf

(
α
M̃

+αH

2
+αM

)
−3αg{C2( )+C2(G)}

]
− 2Nf

| yM || yM̃ || yλ̃ |
(4π)2

ei(θλ̃+∆θM ) (A.11b)

β(yM ) =| yM | eiθM
[

3

2
Nf

(
αM +

αH
3

)
+
X

2
(αM + α

M̃
) + C2( )

(α
λ̃

2
+ αλ

)
− 3αgC2( )

]
− 2C2( )

| y
M̃
|| yλ || yλ̃ |
(4π)2

ei(θM̃+∆θλ) (A.11c)

β(αH) = 2αH

[
Nf

2
(αM + α

M̃
+ 2αH) + C2( )

(
αλ + α

λ̃

2
− 6αg

)
+XαH

]
(A.11d)

β(α
λ̃
) = βαλ

(
yλ ↔ y

λ̃
, y
M̃
↔ yM

)
, β(α

M̃
) = βαM

(
yM ↔ y

M̃
, y
λ̃
↔ yλ

)
, (A.11e)

where we have made explicit the phases of the Yukawa’s couplings:

yi =| yi | eiθi

∆θM = θ
M̃
− θM , ∆θλ = θ

λ̃
− θλ.

Note also that we define

β(αi) ≡
2ȳi

(4π)2
β(yi),

where ȳi is the complex conjugate of yi.

We have considered the case of real couplings in the main text.

B Tables

We provide here the eigenvectors associated to the eigenvalues given in tables 6 and 7.

Shaded cells indicate unstable directions, i.e. corresponding to negative eigenvalues.
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6.4 yM y
M̃

yλ y
λ̃

g yH
ν1 0 0 1.0 1.0 0 0

ν2 −23. −23. 0 0 1.0 0

ν3 −1.0 1.0 0 0 0 0

ν4 0 0 0 0 0 1.0

ν5 0 0 −1.0 1.0 0 0

ν6 0.58 0.58 0 0 1.0 0

6.5 yM y
M̃

yλ y
λ̃

g yH
ν1 0 0 −22. −22. 1.0 0

ν2 0 0 −1.0 1.0 0 0

ν3 −1.0 1.0 0 0 0 0

ν4 1.0 1.0 0 0 0 0

ν5 0 0 0 0 0 1.0

ν6 0 0 1.5 1.5 1.0 0

Table B.2. Eigenvectors associated to νi given in table 6 and corresponding to the fixed points

4 and 5 of table 4.

6.6 yM y
M̃

yλ y
λ̃

g yH
ν1 −2.2 0 0 −49. 1.0 0

ν2 0 0.22 1.0 0 0 0

ν3 0 0 0 0 0 1.0

ν4 −40. 0 0 13. 1.0 0

ν5 0 −0.73 1.0 0 0 0

ν6 0.47 0 0 1.8 1.0 0

6.7 yM y
M̃

yλ y
λ̃

g yH
ν1 −0.035 −0.035 −3.1 −3.1 1.0 0

ν2 −0.41 0.41 −1.0 1.0 0 0

ν3 0.40 −0.40 −1.0 1.0 0 0

ν4 −2.0 −2.0 1.7 1.7 1.0 0

ν5 0 0 0 0 0 1.0

ν6 0.64 0.64 1.6 1.6 1.0 0

Table B.3. Eigenvectors associated to νi given in table 6 and corresponding to the fixed points 6

and 7 of table 4.

7.1 yM y
M̃

yλ y
λ̃

g yH
ν1 0 0 0 0 −0.052 1.0

ν2 0 0 0 1.0 0 0

ν3 0 0 1.0 0 0 0

ν4 0 1.0 0 0 0 0

ν5 1.0 0 0 0 0 0

ν6 0 0 0 0 1.1 1.0

7.2 yM y
M̃

yλ y
λ̃

g yH
ν1 0 0 0 5.2 −0.28 1.0

ν2 0 0 0 −1.3 −0.057 1.0

ν3 0 0 1.0 0 0 0

ν4 0 1.0 0 0 0 0

ν5 0 0 0 2.0 1.2 1.0

ν6 1.0 0 0 0 0 0

Table B.4. Eigenvectors associated to νi given in table 7 and corresponding to the fixed points 1

and 2 of table 5.

7.3 yM y
M̃

yλ y
λ̃

g yH

ν1 0 0.15 0 0 −0.054 1.0

ν2 0 0 1.0 0 0 0

ν3 0 0 0 1.0 0 0

ν4 0 −6.0 0 0 0.094 1.0

ν5 1.0 0 0 0 0 0

ν6 0 0.47 0 0 1.2 1.0

7.4 yM y
M̃

yλ y
λ̃

g yH

ν1 0.16 0.16 0 0 −0.057 1.0

ν2 0 0 1.0 1.0 0 0

ν3 0 0 −1.0 1.0 0 0

ν4 −1.0 1.0 0 0 0 0

ν5 −2.9 −2.9 0 0 0.093 1.0

ν6 0.49 0.49 0 0 1.2 1.0

Table B.5. Eigenvectors associated to νi given in table 7 and corresponding to the fixed points 3

and 4 of table 5.
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7.5 yM y
M̃

yλ y
λ̃

g yH

ν1 0 0 3.9 3.9 −0.54 1.0

ν2 0 0 −0.93 −0.93 −0.076 1.0

ν3 0 0 −1.0 1.0 0 0

ν4 −1.0 1.0 0 0 0 0

ν5 1.0 1.0 0 0 0 0

ν6 0 0 1.8 1.8 1.3 1.0

7.6 yM y
M̃

yλ y
λ̃

g yH

ν1 0.41 0.41 5.1 5.1 −7.4 1.0

ν2 −0.44 0.44 −1.0 1.0 0 0

ν3 0.37 −0.37 −1.0 1.0 0 0

ν4 1.7 1.7 −3.8 −3.8 −1.2 1.0

ν5 −0.38 −0.38 −0.26 −0.26 0.072 1.0

ν6 1.1 1.1 2.8 2.8 1.9 1.0

Table B.6. Eigenvectors associated to νi given in table 7 and corresponding to the fixed points 5

and 6 of table 5.
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[19] E. Poppitz and M. Ünsal, Conformality or confinement (II): One-flavor CFTs and

mixed-representation QCD, JHEP 12 (2009) 011 [arXiv:0910.1245] [INSPIRE].

[20] F. Sannino, Conformal Dynamics for TeV Physics and Cosmology, Acta Phys. Polon. B 40

(2009) 3533 [arXiv:0911.0931] [INSPIRE].

[21] J. Braun and H. Gies, Scaling laws near the conformal window of many-flavor QCD, JHEP

05 (2010) 060 [arXiv:0912.4168] [INSPIRE].

[22] O. Antipin and K. Tuominen, Resizing the Conformal Window: A β-function Ansatz, Phys.

Rev. D 81 (2010) 076011 [arXiv:0909.4879] [INSPIRE].

[23] O. Antipin and K. Tuominen, Constraints on Conformal Windows from Holographic Duals,

Mod. Phys. Lett. A 26 (2011) 2227 [arXiv:0912.0674] [INSPIRE].

[24] M. Jarvinen and F. Sannino, Holographic Conformal Window — A Bottom Up Approach,

JHEP 05 (2010) 041 [arXiv:0911.2462] [INSPIRE].

[25] M. Mojaza, C. Pica and F. Sannino, Hot Conformal Gauge Theories, Phys. Rev. D 82

(2010) 116009 [arXiv:1010.4798] [INSPIRE].

[26] J. Alanen, K. Kajantie and K. Tuominen, Thermodynamics of quasiconformal theories from

gauge/gravity duality, Phys. Rev. D 82 (2010), no. 5 055024 [arXiv:1003.5499].

[27] H.S. Fukano and F. Sannino, Conformal window of gauge theories with four-fermion

interactions and ideal walking technicolor, Phys. Rev. D 82 (2010), no. 3 035021

[arXiv:1005.3340].

[28] C. Pica and F. Sannino, β-function and Anomalous Dimensions, Phys. Rev. D 83 (2011)

116001 [arXiv:1011.3832] [INSPIRE].

[29] C. Pica and F. Sannino, Ultraviolet and infrared zeros of gauge theories at the four-loop order

and beyond, Phys. Rev. D 83 (2011), no. 3 035013 [arXiv:1011.5917].

[30] M.T. Frandsen, T. Pickup and M. Teper, Delineating the conformal window, Phys. Lett. B

695 (2011) 231 [arXiv:1007.1614] [INSPIRE].

[31] T.A. Ryttov and R. Shrock, Higher-Loop Corrections to the Infrared Evolution of a Gauge

Theory with Fermions, Phys. Rev. D 83 (2011) 056011 [arXiv:1011.4542] [INSPIRE].

[32] N. Chen, T.A. Ryttov and R. Shrock, Patterns of Dynamical Gauge Symmetry Breaking,

Phys. Rev. D 82 (2010) 116006 [arXiv:1010.3736] [INSPIRE].

[33] T.A. Ryttov and R. Shrock, Infrared Evolution and Phase Structure of a Gauge Theory

Containing Different Fermion Representations, Phys. Rev. D 81 (2010) 116003 [Erratum

ibid. D 82 (2010) 059903] [arXiv:1006.0421] [INSPIRE].

– 21 –

http://dx.doi.org/10.1103/PhysRevD.75.085018
http://arxiv.org/abs/hep-ph/0611341
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0611341
http://dx.doi.org/10.1103/PhysRevD.76.105004
http://dx.doi.org/10.1103/PhysRevD.76.105004
http://arxiv.org/abs/0707.3166
http://inspirehep.net/search?p=find+EPRINT+arXiv:0707.3166
http://dx.doi.org/10.1103/PhysRevD.78.065001
http://dx.doi.org/10.1103/PhysRevD.78.065001
http://arxiv.org/abs/0711.3745
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.3745
http://arxiv.org/abs/0804.0182
http://inspirehep.net/search?p=find+EPRINT+arXiv:0804.0182
http://dx.doi.org/10.1088/1126-6708/2009/12/011
http://arxiv.org/abs/0910.1245
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1245
http://arxiv.org/abs/0911.0931
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0931
http://dx.doi.org/10.1007/JHEP05(2010)060
http://dx.doi.org/10.1007/JHEP05(2010)060
http://arxiv.org/abs/0912.4168
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4168
http://dx.doi.org/10.1103/PhysRevD.81.076011
http://dx.doi.org/10.1103/PhysRevD.81.076011
http://arxiv.org/abs/0909.4879
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4879
http://dx.doi.org/10.1142/S0217732311036747
http://arxiv.org/abs/0912.0674
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.0674
http://dx.doi.org/10.1007/JHEP05(2010)041
http://arxiv.org/abs/0911.2462
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.2462
http://dx.doi.org/10.1103/PhysRevD.82.116009
http://dx.doi.org/10.1103/PhysRevD.82.116009
http://arxiv.org/abs/1010.4798
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.4798
http://dx.doi.org/10.1103/PhysRevD.82.055024
http://arxiv.org/abs/1003.5499
http://dx.doi.org/10.1103/PhysRevD.82.035021
http://arxiv.org/abs/1005.3340
http://dx.doi.org/10.1103/PhysRevD.83.116001
http://dx.doi.org/10.1103/PhysRevD.83.116001
http://arxiv.org/abs/1011.3832
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3832
http://dx.doi.org/10.1103/PhysRevD.83.035013
http://arxiv.org/abs/1011.5917
http://dx.doi.org/10.1016/j.physletb.2010.10.064
http://dx.doi.org/10.1016/j.physletb.2010.10.064
http://arxiv.org/abs/1007.1614
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1614
http://dx.doi.org/10.1103/PhysRevD.83.056011
http://arxiv.org/abs/1011.4542
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4542
http://dx.doi.org/10.1103/PhysRevD.82.116006
http://arxiv.org/abs/1010.3736
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3736
http://dx.doi.org/10.1103/PhysRevD.82.059903
http://arxiv.org/abs/1006.0421
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0421


J
H
E
P
0
6
(
2
0
1
3
)
0
3
7

[34] T.A. Ryttov and R. Shrock, Higher extended technicolor representations and fermion

generations, European Physical Journal C 71 (2011) 1523 [arXiv:1005.3844].

[35] J. Braun, C.S. Fischer and H. Gies, Beyond Miransky Scaling, Phys. Rev. D 84 (2011)

034045 [arXiv:1012.4279] [INSPIRE].

[36] M. Jarvinen and F. Sannino, Extreme Technicolor and The Walking Critical Temperature,

JHEP 02 (2011) 081 [arXiv:1009.5380] [INSPIRE].

[37] F. Sannino, Conformal windows of Sp(2N) and SO(N) gauge theories, Phys. Rev. D 79

(2009), no. 9 096007 [arXiv:0902.3494].

[38] T.A. Ryttov and F. Sannino, Conformal House, Int. J. Mod. Phys. A 25 (2010) 4603

[arXiv:0906.0307] [INSPIRE].

[39] F. Sannino, Mass deformed S parameter in conformal theories, Phys. Rev. D 82 (2010),

no. 8 081701 [arXiv:1006.0207].

[40] F. Sannino, Magnetic S Parameter, Physical Review Letters 105 (2010), no. 23 232002

[arXiv:1007.0254].

[41] S. Di Chiara, C. Pica and F. Sannino, Flavor Dependence of the S-parameter, Phys. Lett. B

700 (2011) 229 [arXiv:1008.1267] [INSPIRE].

[42] F. Sannino, The Standard Model is Natural as Magnetic Gauge Theory, Mod. Phys. Lett. A

26 (2011) 1763 [arXiv:1102.5100] [INSPIRE].

[43] S.R. Coleman and E.J. Weinberg, Radiative Corrections as the Origin of Spontaneous

Symmetry Breaking, Phys. Rev. D 7 (1973) 1888 [INSPIRE].

[44] E. Gildener and S. Weinberg, Symmetry Breaking and Scalar Bosons, Phys. Rev. D 13

(1976) 3333 [INSPIRE].

[45] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General

Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83

[INSPIRE].

[46] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General

Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

[47] M. Luo, H. Wang and Y. Xiao, Two-loop renormalization group equations in general gauge

field theories, Phys. Rev. D 67 (2003), no. 6 065019 [arXiv:hep-ph/0211440].

[48] M.J. Strassler, Nonsupersymmetric theories with light scalar fields and large hierarchies,

hep-th/0309122 [INSPIRE].

[49] H.-S. Goh, M.A. Luty and S.-P. Ng, Supersymmetry without supersymmetry, JHEP 01

(2005) 040 [hep-th/0309103] [INSPIRE].

[50] R. Sundrum, SUSY Splits, But Then Returns, JHEP 01 (2011) 062 [arXiv:0909.5430]

[INSPIRE].

[51] S. Catterall, E. Dzienkowski, J. Giedt, A. Joseph and R. Wells, Perturbative renormalization

of lattice N = 4 super Yang-Mills theory, JHEP 04 (2011) 074 [arXiv:1102.1725] [INSPIRE].

[52] S. Catterall, Supersymmetric lattices, arXiv:1005.5346 [INSPIRE].

– 22 –

http://dx.doi.org/10.1140/epjc/s10052-010-1523-z
http://arxiv.org/abs/1005.3844
http://dx.doi.org/10.1103/PhysRevD.84.034045
http://dx.doi.org/10.1103/PhysRevD.84.034045
http://arxiv.org/abs/1012.4279
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4279
http://dx.doi.org/10.1007/JHEP02(2011)081
http://arxiv.org/abs/1009.5380
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.5380
http://dx.doi.org/10.1103/PhysRevD.79.096007
http://dx.doi.org/10.1103/PhysRevD.79.096007
http://arxiv.org/abs/0902.3494
http://dx.doi.org/10.1142/S0217751X10050391
http://arxiv.org/abs/0906.0307
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0307
http://dx.doi.org/10.1103/PhysRevD.82.081701
http://dx.doi.org/10.1103/PhysRevD.82.081701
http://arxiv.org/abs/1006.0207
http://dx.doi.org/10.1103/PhysRevLett.105.232002
http://arxiv.org/abs/1007.0254
http://dx.doi.org/10.1016/j.physletb.2011.05.008
http://dx.doi.org/10.1016/j.physletb.2011.05.008
http://arxiv.org/abs/1008.1267
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1267
http://dx.doi.org/10.1142/S0217732311036279
http://dx.doi.org/10.1142/S0217732311036279
http://arxiv.org/abs/1102.5100
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.5100
http://dx.doi.org/10.1103/PhysRevD.7.1888
http://inspirehep.net/search?p=find+J+Phys.Rev.,D7,1888
http://dx.doi.org/10.1103/PhysRevD.13.3333
http://dx.doi.org/10.1103/PhysRevD.13.3333
http://inspirehep.net/search?p=find+J+Phys.Rev.,D13,3333
http://dx.doi.org/10.1016/0550-3213(83)90610-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B222,83
http://dx.doi.org/10.1016/0550-3213(84)90533-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B236,221
http://dx.doi.org/10.1103/PhysRevD.67.065019
http://arxiv.org/abs/arXiv:hep-ph/0211440
http://arxiv.org/abs/hep-th/0309122
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309122
http://dx.doi.org/10.1088/1126-6708/2005/01/040
http://dx.doi.org/10.1088/1126-6708/2005/01/040
http://arxiv.org/abs/hep-th/0309103
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309103
http://dx.doi.org/10.1007/JHEP01(2011)062
http://arxiv.org/abs/0909.5430
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.5430
http://dx.doi.org/10.1007/JHEP04(2011)074
http://arxiv.org/abs/1102.1725
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.1725
http://arxiv.org/abs/1005.5346
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.5346

	Introduction
	Magnetic setup of QCD with one adjoint fermion.
	Magnetic potential of the theory and beta functions
	Magnetic fixed point analysis
	Stability analysis
	Physical results and conclusions
	Derivation of the beta functions
	Tables

