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1 Introduction

A modern trend in the study of SUSY gauge theories — with or without Lagrangian descrip-

tion and in various dimensions — is to define them in terms of geometric or combinatorial

objects. These are for example bipartite graphs on 2-tori [1, 2], Riemann surfaces [3–5]

and 3-manifolds [6]. In such constructions, complicated theories can typically be engineered

by gluing elementary building blocks. Furthermore, field theory equivalences — such as

Seiberg duality [7], S-duality [8] and mirror symmetry [9] — are mapped to rearrangements

of the underlying geometric object.

Along the lines of this general paradigm, a new class of gauge theories, whose UV

Lagrangian is defined in terms of a bipartite graph on a bordered Riemann surface, was

introduced in [10]. Such theories are called Bipartite Field Theories (BFTs). A similar class

of theories was simultaneously introduced in [11]. There are subtle differences between such

theories and BFTs. In section 2, we present some comments clarifying the relation between

them, emphasizing that the theories in [11] need not be regarded as a distinct class but

can be included in the more general BFT family. Certain subclasses of BFTs have already

appeared in the context of interesting physical systems, including D3-branes over toric

Calabi-Yau (CY) 3-folds [2], cluster integrable systems [12–15] and, more recently, leading

singularities in scattering amplitudes [16]. Moreover, similar gauge theories and graphs on

Riemann surfaces continue to arise in other areas, most notably in relation to the BPS

spectrum of 4d N = 2 gauge theories [17–23]. This suggests we are only scratching the

surface in terms of possible applications of BFTs. In addition, BFTs may provide a more

profound understanding of the physical connections between some of these systems.

– 1 –
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Bipartite graphs on a disk classify cells in the Grassmannian [24]. As explained in [10],

several concepts in this area — such as the boundary measurement, matching polytopes,

cells and their boundaries, and equivalence and reduction moves — have beautiful real-

izations in terms of BFTs. This list is extended in the current paper by explaining the

emergence of matroid polytopes for BFTs. Given the connection between scattering am-

plitudes in N = 4 SYM and the Grassmannian [25], these objects play an important role in

the calculation of leading singularities [16]. In this context, bipartite graphs are interpreted

as on-shell diagrams. BFTs provide an intuitive perspective on these mathematical struc-

tures and a natural platform for extending them in new directions, such as the non-planar

case.1 Starting the investigation of BFTs associated to non-planar graphs is indeed one of

the central goals of this paper.

An important conclusion of this article is that the universe of BFT theories is indeed

much richer — in fact twice as large — than originally envisioned in [10]. This follows from

a careful consideration of anomaly-free symmetries associated to bipartite graphs, which

leads to two natural alternatives for gauging. These choices give rise to two independent

classes of gauge theories. One of them requires the specification of an embedding of the

underlying bipartite graph into a Riemann surface, while the other one is, for Abelian

theories, independent of any embedding.

This article is organized as follows. Section 2 reviews the general concept of a BFT

and discusses the different classes of theories that arise from two possible ways of gauging

symmetries. The computation of master and moduli spaces for BFTs, which are toric CY

manifolds, is explained in section 3. Section 4 discusses graph equivalence and reduction

from a BFT viewpoint, explaining how it is possible to reduce graphs by higgsing. Section 5

introduces an alternative way for constructing the CY manifolds corresponding to the

master and moduli spaces of BFTs, based on the map between perfect matchings and

paths on the bipartite graph. Using this approach it is shown that, in the case of bipartite

graphs on a disk, the matroid polytope for the associated cell in the Grassmannian coincides

with the toric diagram of the moduli space of the corresponding BFT. Infinite classes of

BFTs and several operations for generating new theories are presented in section 6 to

section 11. Section 12 is devoted to Seiberg and Toric duality for BFTs on higher genus

Riemann surfaces. Section 13 discusses some of the most distinctive features of the BFTs

associated to the gauging choice that is independent of any embedding of the underlying

bipartite graph into a Riemann surface. Conclusions and directions for future research are

collected in section 14.

Note added. While this paper was ready for submission, [26] appeared, with interesting

additional results on BFTs.

1Here we use the usual scattering notion of non-planar graph, namely a graph that cannot be embedded

in a disk without crossings.
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2 Bipartite field theories

A BFT is a 4d N = 1 quiver gauge theory whose Lagrangian is defined in terms of a

bipartite graph living on a Riemann surface, possibly containing boundaries.

The next section discusses in detail two possible ways of gauging the symmetries in

these theories. These alternatives give rise to two independent classes of BFTs. As we

will explain, for one of the possible gaugings the resulting theories are independent of any

embedding of the bipartite graphs into a Riemann surface, in other words they can be

defined without appealing to any Riemann surface at all. Keeping the two possibilities in

mind, it is still useful to invoke an underlying Riemann surface in order to provide a unified

presentation of the two classes of BFTs.

External nodes are those nodes of the graph that sit on boundaries. In this article

we will not consider nodes that are not connected to any edge. Furthermore, we restrict

to graphs in which external nodes are attached to a single edge in the bipartite graph.

Turning this around, the property of being connected to a single edge can also be used as

a definition of an external node.

The basic elements of the graph have the following translation into the gauge the-

ory are:

• Faces: U(N) symmetry groups.

• Edges: chiral multiplets Xij transforming in the bifundamental representation of

the two groups, U(N)i × U(N)j , associated to the two faces adjacent to the edge.

The orientation of bifundamental fields is determined by the convention that they go

clockwise around white nodes and counterclockwise around black nodes.

• Nodes: a white/black internal node corresponds to a positive/negative monomial

in the superpotential involving the chiral fields corresponding to all the edges ter-

minating on it. The clockwise or counterclockwise orientation associated to nodes

determines the cyclic ordering of fields in each superpotential term. External nodes

are connected to a single edge and are not mapped to superpotential terms.

Below additional properties of bipartite graphs, which relate to gauging, are discussed.

These need to be taken into account when defining a BFT.

2.1 Two alternative gaugings

One possible way of gauging the U(N) symmetries of BFTs was considered in [10]. More

careful thought reveals that there exists yet another natural way of gauging them. We

refer to the two possibilities as gaugings 1 and 2 and review them below. Each gauging

leads to a different class of consistent theories, expanding the realm of BFTs by effectively

doubling it with respect to what was originally considered in [10].

2.1.1 Gauging 1

The faces sliced by the bipartite graph on the Riemann surface can be divided into two

classes. We call them internal or external, depending on whether their perimeter consists

entirely of edges or contains parts of the boundaries, respectively.

– 3 –
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Figure 1. A section of a bipartite graph and its dual BFT quiver for gauging 1. On the gauge theory

side, internal and external faces correspond to global and gauge symmetry groups, respectively.

Since the graph is bipartite, the number of edges around an internal face is even, and

there is an equal number of black and white nodes on its perimeter. This fact, together

with a convention for orientation of bifundamental fields, implies that the corresponding

node on the BFT quiver has an equal number of incoming and outgoing arrows and is

hence anomaly free. This fact is not generically true for external faces.

These observations motivate the definition of gauging 1, in which the U(N) groups

associated to internal faces are gauged while the ones for external faces remain global

symmetries. This is the gauging considered when BFTs were introduced in [10]. We say

that any BFT associated to this choice is of BFT1 type. BFT1 theories are quiver theories,

i.e. chiral fields transform in bifundamental or adjoint representations of the gauge and

global symmetry groups. Figure 1 shows a section of a bipartite graph and its connection

to a BFT1.

Gauging 1 arises naturally when thinking about theories with a D-brane interpreta-

tion. In this case, the worldvolume of D-branes spans the two graph directions, which are

internal, and has an infinite extension along some transverse dimensions on which the low

energy gauge theory lives. Internal faces correspond to D-branes with a finite extension in

the internal directions and hence give rise to gauge symmetries in the transverse dimen-

sions. On the other hand, external faces can be interpreted as D-branes that are infinite

along some of the internal dimensions, frequently denoted as flavor branes, which give rise

to gauge theories with a higher dimensional support, i.e. to global symmetries from the

perspective of the transverse dimensions.

Indeed, a subclass of BFT1’s has already appeared in this context in the literature,

playing a prominent role. It corresponds to the 4d, N = 1 worldvolume theories on D3-

branes probing toric Calabi-Yau 3-fold singularities. For this subclass of theories, the

Riemann surface is a 2-torus [2]. In this context, the corresponding bipartite graphs are

called brane tilings and have been the subject of extensive investigations [1, 2, 27–29].

The correspondence between these gauge theories and bipartite graphs has indeed been

instrumental in several important developments such as the determination of the super-

– 4 –
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Graph BFT

Internal face (2n-sided) Gauge group with n flavors

External face Global symmetry group

Edge between two faces i and j Chiral multiplet in the bifundamental

representation of the groups i and j. The

orientation of the corresponding arrow is such

that it goes clockwise around white nodes and

counterclockwise around black nodes.

k-valent node Monomial in the superpotential involving k

multiplets. The signs of the terms are

(+/-) for (white/black) nodes.

Table 1. The dictionary connecting bipartite graphs on Riemann surfaces and BFTs for gauging 1.

conformal field theories that are dual, via the AdS/CFT correspondence, to infinite families

of Sasaki-Einstein manifolds [27, 30, 31]

Table 1 summarizes the dictionary between bipartite graphs on Riemann surfaces and

BFT1’s. Let us conclude this section with a few comments on the connection between

BFT1’s and the theories introduced in [11]. In our language, these models are obtained

from ours by omitting the chiral fields associated to external legs terminating on black

external nodes and the superpotential terms they participate in. In physical terms, the

theories in [11] can be regarded as a sub-class of BFT1’s. Tuning some of the superpotential

couplings to zero, more precisely those associated to the white nodes connected to black

external nodes, our theories reduce to them plus decoupled singlets, which correspond

to the graph legs connected to black external nodes. The additional fields contained in

BFT1’s play a nice role in making detailed contact with objects such as matching and

matroid polytopes associated to cells in the Grassmannian.

2.1.2 Gauging 2

Gauging 1 was motivated by both anomaly considerations and the analogy with theories

with a known D-brane realization. However, our previous discussion makes it clear that

the symmetries associated to internal faces are not the only ones that are automatically

anomaly free. In fact, every closed path in the graph can be associated to an anomaly

free symmetry. Those associated to linear combinations of faces are U(N) symmetries.

Other types of closed paths, such as the ones along the fundamental directions appearing

when the underlying Riemann surface has genus greater than zero, correspond to U(1)

symmetries.2 In general, only a minimal set of independent closed paths has to be gauged.

Considering this gauging gives rise to a new class of theories which we call BFT2.

2Whether some of these symmetries can be consistently promoted to be non-Abelian is an interesting

question that deserves further study. Moreover, it is natural to address this question in the context of a

more general study in which arbitrary ranks for all symmetries are considered.
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Gauging 2 extends gauging 1 by gauging some additional symmetries. While the

quiver associated to gauging 1 still provides useful guidance, BFT2’s are not standard

quiver theories since chiral fields can be charged under more than two gauge symmetries.

For the reasons discussed below, gauging 2 is the appropriate one for making con-

tact with on-shell diagrams for scattering amplitudes, particularly in the non-planar case.

Furthermore, for this specific application, the relevant BFTs are the classical Abelian ones.

In section 5, a novel way of connecting BFTs to toric geometry will be introduced. As

shown in [10], perfect matchings can be identified with GLSM fields in the toric description

of the master and moduli spaces of the BFT. Demanding invariance under additional gauge

symmetries is a simple way, in field theoretic language, of projecting the coordinates which

identify perfect matchings onto a lower dimensional space. Gauging 2 corresponds to

distinguishing perfect matchings only by their external leg content.

The definition of BFT2’s is actually independent of any embedding of the bipartite

graph into a Riemann surface. In fact, an underlying Riemann surface becomes totally

unnecessary for defining a BFT2. This is a desirable feature for this class of BFTs to be

connected to on-shell diagrams, since the latter only care about the connectivity of the

graph. However, removing the Riemann surface from the discussion needs to be taken with

care, since it was not only used for identifying some of the gauge symmetries, but it was also

necessary for providing nodes with an orientation that determines the chirality of fields. It

is possible to define chirality without the need of a Riemann surface: one simply declares

that for any gauge symmetry, the fields associated to edges alternate between being in the

fundamental and antifundamental representations as one moves along the corresponding

closed path.3

One of the main motivations for considering gauging 2 is in connection to on-shell

scattering diagrams. As mentioned above, in this context one is only interested in the

classical Abelian theory. Since there is no RG running in this limit, the fact that the

Abelian theories are not UV complete is not a concern. Whether it is possible to find

a consistent UV completion of these theories is an extremely interesting question that is

beyond the scope of this paper. In our opinion, the usefulness of classical Abelian BFT2’s

as a tool for studying on-shell diagrams outweighs this interesting caveat and fully justifies

their investigation.

We conclude this section with some comments on the connection between the two

gaugings and the lattice U(1) gauge theory which can be defined on any bipartite graph [37,

38]. Edges in a bipartite graph have a natural orientation, e.g. going from white to black

vertices. Any weight function ε(e) on edges thus defines a 1-form satisfying ε(−e) = −ε(e),
where −e denotes the edge with opposite direction [37]. Edge weights are in one-to-one

correspondence with expectation values of the scalar components of the corresponding

chiral superfields [37]. Similarly, functions on nodes of the graph define 0-forms. The

gauge transformations of the lattice gauge theory corresponds to the following action on

3An analogous chirality assignment is also possible for global symmetries associated to open paths in

the graph.
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edge weights [37]

ε′(ei) = ε(ei) + df, (2.1)

where f is a 0-form. This expression should be interpreted as

ε′(ei) = ε(ei) + f(bi)− f(wi), (2.2)

with bi and wi the black and white nodes at the endpoints of edge ei. Given a closed path

on the tiling

γ = {w0, b0,w1, b1, . . . , bk−1,wk} wk = w0, (2.3)

the magnetic flux through γ is defined as

B(γ) =

∫
γ
ε =

k−1∑
i=1

[ε(wi, bi)− ε(wi+1, bi)] . (2.4)

Magnetic fluxes are gauge invariant in the lattice gauge theory. The space of solutions to

vanishing F-terms, i.e. the master space of the BFT, can be nicely parametrized in terms

of these magnetic fluxes [38]. This approach is related to the discussion of master spaces in

section 5. While the lattice gauge theory only depends on the graph, specific embeddings

into a Riemann surface lead to different bases for such fluxes.

It is important to emphasize that the lattice gauge theory has nothing to do with

the BFT gauge symmetry. It provides a natural language for addressing the freedom on

edge weights subject to F-terms, i.e. to study the master space of a BFT. The differences

between gaugings 1 and 2 arise in other places, e.g. when computing mesonic moduli spaces

due to the different D-terms.

Gaugings 1 and 2 coincide for planar graphs but they give rise to different gauge

theories in the non-planar case. Each alternative has natural applications and certainly

deserves independent investigation. Figure 2 summarizes the two classes of BFTs and

highlights some areas of applicability for each of them.

Both BFT1’s and BFT2’s can be analyzed with exactly the same tools. For concrete-

ness, our discussion in section 6 to section 12 focuses on gauging 1. We hope the reader

keeps this choice in mind, since we are not going to constantly refer to it. Section 13 col-

lects various results illustrating the main changes that arise when considering gauging 2.

Whenever we do not refer to any specific gauging in other sections, it means our discussion

applies to both sets of theories with the corresponding changes.

3 Moduli spaces

BFTs as 4d N = 1 theories have two classical moduli spaces known as the master space

F [ [32–34] and the mesonic moduli space Mmes [1, 2, 35, 36], which we refer to just as

the moduli space for brevity. As a first step towards a full investigation of BFTs, this

paper focuses on the case where N = 1, i.e. all symmetries are U(1). This simplification

has various motivations. First, Abelian BFTs are relevant for the study of scattering

amplitudes, which do not contain any parameter related to a non-trivial N . In fact, the

scattering problem can be mapped to a U(1) gauge theory living on the graph [16] which,

– 7 –
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Figure 2. Two types of gaugings in BFTs. Different gaugings lead to two classes of gauge theories

associated to bipartite graphs. Abelian BFT2 theories do not require an embedding of the bipartite

graph into a Riemann surface.

in turn, is directly related to Abelian BFTs. This correspondence was studied for graphs

on T 2 in [37, 38]. Furthermore, although the confining dynamics and Seiberg duality

that are discussed in section 4.1 and section 12 respectively only occur for N > 1 , the

corresponding graph moves imply the invariance of the Abelian moduli space. Turning this

around, the coincidence of the Abelian moduli space of two BFTs is a necessary condition

for the corresponding non-Abelian theories to be related by confinement and duality.

While in some cases, such as BFTs arising on stacks of D-branes, the moduli space of

the non-Abelian theory is a symmetrized product of N copies of the Abelian one, a simple

connection of this type need not hold for generic BFTs. Elucidating the structure of the

moduli space of non-Abelian BFTs is a very interesting question that certainly deserves to

be studied in the future. We envision powerful tools such as those based on Hilbert series

are going to be useful for this endeavor [36, 39–41].

Following the arguments above, all our discussions of moduli spaces in the following

sections are going to refer to the Abelian theories. Due to the restricted structure of BFTs

arising from their definition in terms of bipartite graphs on Riemann surfaces, both the

master and moduli spaces are toric Calabi-Yau manifolds [10]. This section reviews the

definition of the moduli spaces in terms of F and D-term constraints and discusses how they

can be expressed as symplectic quotients, with a parameterization in terms of gauged linear

sigma model (GLSM) fields. These GLSM fields can be identified with perfect matchings

of the bipartite graph, which are first reviewed.

Perfect Matchings [1, 28, 32, 42]. Given a bipartite graph, an almost perfect matching

p is a subset of the edges such that:

• Every internal node is the endpoint of exactly one edge in p.

• Every external node belongs to either one or zero edges in p.

– 8 –
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For brevity, they are going to be referred to as perfect matchings in the following

discussion. Perfect matchings are in one-to-one correspondence with GLSM fields [10].4

Remarkably, a very efficient systematic procedure for their determination was introduced

in [10], which in turns makes the computation of moduli spaces for BFTs straightforward.

This method is reviewed below.

Kasteleyn Matrix Technology [10]. The master Kasteleyn matrix K0, is an adjacency

matrix of the graph in which rows are indexed by white nodes and columns are indexed

by black nodes, i.e. for every edge in the bipartite graph between nodes wµ and bν , a

contribution to the K0,µν entry is introduced. When more than one edge extends between

the same pair of nodes, their contributions are added. K0 has the general form

K0 =

 Bi Be

Wi ∗ ∗
We ∗ 0

 , (3.1)

where internal and external white nodes are denoted respectively by Wi and We, and

internal and external black nodes are denoted by Bi and Be.

Notice that since in the presence of boundaries the number of white and black nodes

might not be equal, K0 generically needs not to be a square matrix. When it is square, its

permanent is a polynomial in which every term corresponds to a perfect matching of the

bipartite graph containing all the external nodes.5

Given subsets We,del ⊆ We and Be,del ⊆ Be of the white and black external nodes, let

us define the reduced Kasteleyn matrix as follows:

K(We,del,Be,del) ≡ matrix obtained by deleting the rows in We,del

and the columns in Be,del from K0. (3.2)

In analogy with K0, if K(We,Be) is a square matrix, its permanent is a polynomial encoding

the perfect matchings containing all external legs except from those in the We,del and Be,del
deleted sets.

We now have everything in order to determine all perfect matchings in the graph,

which are encoded in the characteristic polynomial

P =
∑

We,del,Be,del

detK(We,del,Be,del), (3.3)

where the sum runs over all possible subsets We,del and Be,del of the external nodes (in-

cluding the cases in which they are empty sets) such that the resulting reduced Kasteleyn

matrices are square. Every term in the characteristic polynomial is interpreted as the

product of edges in a perfect matching.

The characteristic polynomial contains all the information relating edges, i.e. bifunda-

mental fields, and perfect matchings. This information can be equivalently recast in terms

4This is a generalization of what happens for the BFTs on T 2 associated to D3-branes over toric CY

3-folds [2, 38].
5The permanent of a square matrix is the determinant with only positive signs.

– 9 –



J
H
E
P
0
6
(
2
0
1
3
)
0
3
2

of a (e × c)-dimensional perfect matching matrix P , where e is the number of edges Xi

and c is the number of perfect matchings pα. The components of the matrix are defined as

follows

Piα =

{
1 if Xi ∈ pα
0 if Xi /∈ pα

where i = 1, . . . , e and α = 1, . . . , c.

Notice that it is possible for the sum in (3.3) to contain no terms at all. This is the

case when it is not possible to reach a square matrix by deleting external nodes. Without

loss of generality, we can assume Bi > Wi + We, the case in which the roles of white

and black nodes are exchanged being completely analogous.6 The corresponding bipartite

graphs have no almost perfect matchings. From a physical point of view, this phenomenon

is very interesting. Given the identification between perfect matchings and GLSM fields, a

bipartite graph without perfect matchings corresponds to a BFT that spontaneously breaks

SUSY due to F-terms.

As we have just explained, (3.3) applies even to cases like Bi > Wi+We. An alternative

way of thinking about such graphs is as follows. It is possible to add “expectator” internal

white nodes, i.e. nodes that are not connected to any edge, until Bi ≥Wi+We. Their only

role is to add new rows (columns in the case of expectator black nodes) to K0. The new

nodes make it possible to obtain square reduced Kasteleyn matrices. Their determinants

vanish however, since all entries in the new rows are zero. This is another way of using

these techniques to conclude that such graphs do not have perfect matchings.

For BFTs, perfect matchings are in one-to-one correspondence with GLSM fields which

were originally used by Witten in order to study N = (2, 2) supersymmetric field theo-

ries [43]. The correspondence between GLSM fields and perfect matchings in the BFT

context can be used to study the moduli spaces. Fayet-Iliopoulos (FI) terms are not going

to play a crucial role for our discussion.

Symplectic Quotient Description of the Moduli Spaces. As mentioned above,

perfect matchings are used as GLSM fields in order to parameterize the moduli and master

spaces of BFTs. By doing so, they can be described as symplectic quotients.

• Master Space F [ [32–34]. F-term relations of the form ∂XiW = 0 are encoded in

the perfect matching matrix Pe×c. Here, Xi relate to internal edges in the bipartite

graph. The F-term relations can be implemented by assigning the following charges

to perfect matchings

QF = ker(Pc×e) . (3.4)

As in [10], we give a special treatment to the chiral fields associated to external legs,

not imposing the vanishing of the corresponding F-terms. This choice is motivated by

6A simple way, although certainly not the only one, of generating examples of this sort is by starting

from the well-behaved bipartite graphs on T 2 associated to D3-branes over toric CYs [2] and deleting white

nodes, together with all edges connected to them. The starting point has Bi = Wi 6= 0 and no external

nodes. After deleting white nodes, a bipartite graph with Bi > Wi is obtained.

– 10 –
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the connection with the Grassmannian for planar graphs. Furthermore, since these

fields appear in a single superpotential term, imposing the vanishing of their F-terms

would set to zero the product of fields they are coupled to. Finally, we expect this

assumption can be dynamically explained in explicit D-brane realizations of BFTs. It

is natural to envision that in such setups, these fields would arise at the intersection of

flavor branes. Their higher dimensional support would then justify considering their

expectation values to be non-dynamical parameters from the viewpoint of the lower

dimensional BFT. The conclusions present further thoughts about possible D-brane

realizations of BFTs for graphs with external legs.

The master space7 is defined by the symplectic quotient

F [ = Cc//QF . (3.5)

• Mesonic Moduli SpaceMmes [1, 2, 35, 44]. In order to construct the mesonic moduli

space, the master space has to be projected onto gauge invariants. It is then useful to

introduce the gauge charge matrix dG×E of the BFT, where G is the number of gauge

groups and E is the number of fields.8 The elements of the gauge charge matrix are

daj =


−1 if Xj is fundamental to U(N)a
+1 if Xj is anti-fundamental to U(N)a
0 if Xj is adjoint or neutral under U(N)a

where a = 1, . . . , G and j = 1, . . . , E. Note that the number of fundamental and

antifundamental fields for every gauge group is the same due to anomaly cancellation.

Each gauge group contributes a D-term. D-terms can be encoded in a charge matrix

QD, which is defined through the relation

dG×E = QD,G×c.P
t
c×E . (3.6)

The mesonic moduli spaceMmes is then defined as the following symplectic quotient

Mmes = Cc//QF //QD = F [//QD. (3.7)

Both the mesonic and master spaces of BFTs are toric Calabi-Yau. The toric diagram

of the mesonic moduli space is given by

G = ker

(
QF
QD

)
. (3.8)

Each perfect matching is a point in the toric diagram of Mmes. Columns in the G matrix

correspond to perfect matchings and contain the coordinates of the associated point in the

toric diagram.

7Note: this is the equivalent to the coherent component of the master space, and not the full master

space. The full master space usually decomposes into smaller irreducible spaces, most of them being Cl.
The coherent component is the largest irreducible subspace of the full master space.

8G clearly depends on whether one considers gauging 1 or 2.
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4 BFT perspective on graph equivalence and reduction

Based on the BFT interpretation of graphs it is possible to introduce a natural notion of

graph equivalence.9 We say that:

Two graphs are equivalent if

the corresponding BFTs have the same moduli space.

Of course the equivalence classes resulting from this definition depend on the specific gaug-

ing under consideration. This idea was already advocated in [10], after noting that the

moduli space is a natural geometric object that remains invariant under certain class of

moves and reductions that are reviewed in section 4.1. As explained in section 4.2, graph

equivalence is more subtle and can include transformations beyond those of section 4.1.

Leading singularities are one of the main areas which play an important role when

thinking about applications of BFTs. In this context, one needs to consider gauging 2 and

it is possible to see that two graphs are equivalent if the corresponding leading singularities

coincide. A general proof of the equality of the BFT moduli space and scattering approaches

will be given elsewhere [16].

Section 13.3 presents examples illustrating how the moduli space is useful for even de-

termining non-planar/non-planar and non-planar/planar equivalences. Furthermore, this

notion of equivalence also applies without changes to graphs without external legs, i.e.

those not associated to scattering.

It is also useful to introduce a notion of ordering among equivalent graphs. A natural

prescription is to order them according to the number of closed paths along edges.10 A

graph is called reduced if it has the minimum number of loops within a given equivalence

class. From a BFT point of view, a reduced graph corresponds to a quiver with the minimal

gauge symmetry. Clearly, reduced graphs in a given equivalence class are not unique, since

they are defined up to equivalence moves.

Reduced graphs are of particular interest. For example, they play a central role in the

context of scattering, giving the simplest expressions for leading singularities [16].

There are two natural questions that arise in connection with graph equivalence and

reducibility:

• How can one identify efficiently whether two graphs are equivalent?

• How can one determine whether the graph is reduced?

These two questions have elegant answers in the case of planar graphs. In this case, graphs

associated to the same permutation are equivalent [24].11 In addition, a graph is reducible if

9Following our general discussion in section 3, throughout this paper we focus on the moduli space for

the Abelian theory. For brevity, it is simply referred to as the moduli space.
10Here we mean the number of internal faces in gauging 1 or the actual number of independent closed

paths along edges in gauging 2.
11In a graph with boundaries, a permutation of the external nodes is defined as follows. Given two

external nodes bi and bj , we say that bi is permuted to bj if they are the starting and ending points of a

zig-zag path, respectively.
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Figure 3. Three basic transformations of a bipartite graph. They correspond to: (a) integrating

out massive fields, (b) confinement of an Nf = Nc gauge group (bubble reduction) and (c) Seiberg

duality on an Nf = 2Nc gauge group.

it contains self-intersecting zig-zag paths [42, 45] or multiple intersections between different

zig-zag paths. Whether some of these ideas can be generalized to non-planar graphs is an

interesting question worth pursuing. In any case, it is extremely interesting to explore

whether alternative approaches, which do not rely on zig-zag paths, exist.

From the discussion above, it is clear that the moduli space of the associated BFT

provides an ideal diagnostic for graph equivalence, which is physically intuitive and extends

without modifications to non-planar graphs. We are going to see later that BFTs also

provide efficient methods for determining graph reducibility.

4.1 Moves and bubble reduction

Figure 3 shows three basic transformations that can be applied to bipartite graphs. Their

field theoretic interpretation has been discussed in [10, 11], where the reader can find a

detailed discussion. In summary, they correspond to:

(a) Integrating out massive fields. In some cases 2-valent nodes, i.e. mass terms, can

appear on external legs of the graph. If this happens, we only integrate them out

whenever this operation does not take us outside of the realm of graphs that define

our theories as mentioned at the beginning of section 2, i.e. graphs in which external

nodes are connected to a single edge. This poses no limitation on the theories that

can be considered, since it is totally valid to consistently keep massive fields in their

analysis.

(b) Confinement of an Nf = Nc gauge group, staying on a branch of moduli space on

which mesons do not get expectation values.

(c) Seiberg duality [7, 35, 44, 46–49] on an Nf = 2Nc gauge group.12 Let us emphasize

that this rule correctly describes Seiberg duality even for faces adjacent to external

12The brane tiling transformation has many names: square move, urban renewal, and spider move.
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Figure 4. Higgsing. Removing an edge in the graph corresponds to turning on a vev for a

bifundamental scalar, resulting in the merging of two faces.

ones. There is no limitation of any sort in the type of Nf = 2Nc gauge groups that

can be dualized. For general situations, it is only necessary to appropriately take into

account the comments in point (a).

The (b) and (c) interpretation of moves require the theory to be non-Abelian, i.e. to

have N > 1. In any case, all these operations preserve the moduli space of the BFT even

for N = 1 and hence lead to equivalent graphs. Bubble reduction in (b) decreases the

number of loops by one, so it can be used for reducing graphs.

4.2 Reduction by higgsing

Edge removal, which has been discussed in detail in [10], is another natural operation on

graphs. Figure 4 shows an example of this operation, after which the two original faces at

both sides of the removed edge get combined into a single one.

In the BFT, the deletion of an edge corresponds to giving a non-zero vev to the

chiral field associated to the edge. When the removed edge is internal, the transformation

corresponds to higgsing [50] in the BFT. Removing edges decreases the number of loops.

In order for it to give rise to a reduced graph, it should also lead to a theory in the same

equivalence class of the original one. Naively, this might seem counterintuitive since, in

BFT language, it would correspond to a higgsing that preserves the moduli space. Elicit

examples are going to be provided in order to show that this is indeed possible. The

possibility of reducing graphs by removing edges was first discovered and investigated in

the language of leading singularities in scattering amplitudes [16].

The practical implementation of this algorithm is straightforward. The first step is to

determine the moduli space of the original theory, making a list of the perfect matchings

associated to each point in its toric diagram. It is important to emphasize that one only

needs to keep track of which perfect matchings belong to the same point in the toric

diagram, while remembering the actual coordinates of these points is not necessary.

Following the map between perfect matchings and chiral fields given in (3.4), deleting

an edge associated to the field Xi, implies the elimination of all perfect matchings pα with

Piα = 1; in other words all perfect matchings containing the edge under consideration. If

after this process the moduli space remains invariant, i.e. if there still is at least one perfect

matching for every point in the original toric diagram, it can be concluded that the higgsed

theory is equivalent to the original one.
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Figure 5. An example of a planar reducible graph.

One can scan over all edges of the graph and determine whether they are individually

removable. Iterating this process, it is possible to determine all combinations of edges that

can be simultaneously removed. Reduced graphs are reached when deleting edges without

eliminating points in the toric diagram is no longer feasible.

The procedure outlined above makes it possible to identify all combinations of vevs that

produce reduced graphs. Some of these sets of vevs can lead to different reduced graphs.

Whenever this happens, the original graph has multiple reductions. This phenomenon is

a manifestation of having multiple leading singularities. An attractive feature of the BFT

approach is that multiple reductions can be systematically identified.

Example. Let us illustrate these ideas with an explicit example. Consider the graph

shown in figure 5. It can be analyzed using the techniques discussed in section 4.2.

For future reference, we quote some of the intermediate details of the calculation. The

Master Kasteleyn matrix is

K0 =



7 8 9 10 11 12 13 14

1 X41 X18 0 0 X84 0 0 0

2 X15 0 X61 0 0 X56 0 0

3 0 X21 X13 X32 0 0 0 0

4 0 X82 0 X27 0 0 X78 0

5 0 0 X36 X73 0 0 0 X67

6 X54 0 0 0 0 0 0 0


. (4.1)

One can then determine the perfect matching matrix giving the translation between chiral

fields and perfect matchings, which becomes:
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P =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22
X21 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X27 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

X36 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0

X41 1 0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

X56 1 1 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0

X13 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0

X15 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0

X18 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0

X67 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1

X54 0 1 0 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 0 1 1

X61 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

X32 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 1 1

X78 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0

X73 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0

X82 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1

X84 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1



. (4.2)

Under vanishing D-terms for gauge groups 1, 2 and 3, the moduli space is a 5d toric

CY. The 22 perfect matchings form a toric diagram consisting of 10 points given by the

following matrix:

G =



-1 0 0 0 -1 1 -1 0 0 0

0 0 0 0 1 0 1 1 0 1

0 0 1 0 1 0 0 1 -1 0

1 1 0 0 0 0 1 0 1 0

1 0 0 1 0 0 0 -1 1 0

3 3 3 3 3 2 2 1 1 1


, (4.3)

where the last row summarizes the perfect matching multiplicity for each point in the toric

diagram. The 10 points in the toric diagram correspond to the following sets of perfect

matchings

{p1, p10, p15} , {p2, p12, p18} , {p3, p14, p20} , {p4, p9, p16} , {p6, p13, p19}
{p5, p22} , {p11, p17}
{p7} , {p8} , {p21}

(4.4)

where the numbering in (4.2) is used.

Only two fields can independently get vevs without deleting any point in the toric

diagram. They are X36 (which removes p1, p2, p3, p10, p11, p12, p13 and p14) and X82

(which removes p10, p12, p14, p15, p16, p18, p20 and p21). The resulting graphs are shown in

figure 6. It is straightforward to verify that these graphs are reduced, since it is impossible

to turn on a second vev without eliminating some of the points in the toric diagram.

In this example, the reduced graphs can alternatively be reached by the moves and

bubble reduction discussed in section 4.1, starting from Seiberg dualizing either face 2 or

3. The full scope of reductions by higgsing is going to be investigated in section 13.3. In

some cases higgsing produces reductions that cannot be achieved by any move or bubble

reduction and that it can also reduce non-planar graphs to planar ones.
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(a) (b)

Figure 6. Reductions of the theory in figure 4.2 obtained by higgsing. The fields acquiring a

non-zero vev are: X36 for (a) and X82 for (b).

5 Geometry from gauge theory: an alternative approach

Section 3 discussed how the master and moduli spaces of a BFT are parametrized in terms

of perfect matchings, and explained how to determine the resulting geometry; in other

words how to find the positions of perfect matchings in the corresponding toric diagram.

The constraints following from F and D-term equations can be implemented by assigning

charges to perfect matchings. While the methods in section 3 are used in explicit examples

throughout the paper, this section introduces an alternative procedure for finding toric

diagrams of moduli spaces, which provides additional intuition.

5.1 Master space

To every perfect matching one can associate an oriented path in the graph, which is given

by its difference with a reference perfect matching p0. The choice of p0 is not important,

since different choices correspond to overall modular transformations of the toric diagram.

The resulting paths can be expressed in terms of a basis, for which a convenient choice is

given by:

• Faces: A variable wi, i = 1, . . . , F , is considered for each path going clockwise around

a face, either internal or external. Face variables are subject to the constraint

F∏
i=1

wi = 1.

As a result, one of the face variables can always be regarded as redundant such that

it is expressed in terms of other w’s. For concreteness, in cases with boundaries the

variable associated to one of the external faces is chosen to be discarded.

• Fundamental cycles: There are αi and βi pairs of variables, i = 1, . . . g, that are

associated to the fundamental cycles in the genus g Riemann surface Σ.

• Boundaries: For a number of boundaries B ≥ 1, one needs to include paths con-

necting the different boundary components. This can be achieved with B − 1 paths,

which are called bi, i = 1, . . . , B−1. The specific choice of these B−1 representative

paths is unimportant.
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Figure 7. A planar graph defining a BFT.

Figure 8. The seven perfect matchings for the BFT in figure 7. Edges in the perfect matchings

are indicated in red.

The coordinates in this basis for the path associated to each perfect matching give

the position of the corresponding point in the toric diagram of the master space. This is

after projection to one lower dimension by using the Calabi-Yau condition, which forces

all points to lie on a hyperplane at unit distance from the origin. The dimension of the

master space is then given by the number of paths in the basis plus one, which becomes

B 6= 0 : dmaster = F +B + 2g − 1

B = 0 : dmaster = F + 2g
(5.1)

where we have distinguished the cases with and without boundaries. The coordinates

defined above fully distinguish different perfect matchings where every point in the toric

diagram of the master space corresponds to a single perfect matching.

Example. Let us illustrate this procedure with an example. Consider the bipartite graph

shown in figure 7. This model has one internal face w1 and four external faces w2, w3,

w4 and w5. One can use
∏5
i=1wi = 1 to eliminate w2 from all expressions, by setting

w2 = w−11 w−13 w−14 w−15 . The corresponding perfect matchings are shown in figure 8.
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Figure 9. Paths and Perfect Matchings. These are the paths in the graph obtained by subtracting

the reference perfect matching p1 from the perfect matchings in figure 8.

Taking p1 as the reference, the paths shown in figure 9 are obtained.

Path Coordinates : (w1, w3, w4, w5)

p1 1 (0, 0, 0, 0)

p2 w1 (1, 0, 0, 0)

p3 w−13 w−14 w−15 (0,−1,−1,−1)

p4 w−13 (0,−1, 0, 0)

p5 w1w4 (1, 0, 1, 0)

p6 w−15 (0, 0, 0,−1)

p7 w−13 w−15 (0,−1, 0,−1)

(5.2)

The table above gives the coordinates of points in the toric diagram of the 5-dimensional

master space.

5.2 Moduli space

Going from the master to the moduli space corresponds to demanding invariance under

all gauge symmetries. The discussion in this section is specialized for gauging 1, in which

gauge symmetries correspond to internal faces of the graph. Extending it to gauging 2 is

straightforward and simply amounts to requiring further invariance under additional gauge

symmetries. In terms of the procedure introduced in this section, this projection simply

amounts to dropping the coordinates associated to independent internal wi’s. Once again,

the resulting coordinates correspond to the projection of the toric diagram of the moduli

space to one dimension less using the CY condition. The dimension of the moduli space is

then

B 6= 0 : dmoduli = Fe +B + 2g − 1

B = 0 : dmoduli = 2g + 1
(5.3)

Notice that, while all internal faces are independent for B 6= 0, only F − 1 of them are

independent for B = 0.
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Example. Returning to the example in section 5.1, the toric diagram of the moduli space

is obtained by dropping the w1 coordinate, after which one obtains

Path Coordinates : (w3, w4, w5)

p1 1 (0, 0, 0)

p2 w1 (0, 0, 0)

p3 w−13 w−14 w−15 (−1,−1,−1)

p4 w−13 (−1, 0, 0)

p5 w1w4 (0, 1, 0)

p6 w−15 (0, 0,−1)

p7 w−13 w−15 (−1, 0,−1)

(5.4)

This example exhibits a well-known phenomenon [1, 2, 27–29] which has been discussed

in the context of general BFTs in [10]. Single points in the toric diagram of the moduli

space can correspond to multiple perfect matchings. The discussion in this section provides

an intuitive understanding of the origin of such multiplicities. If the loops (p − p0) and

(p′− p0) associated to two different perfect matchings p and p′ differ only by internal faces

of the graph, then they map to the same point in the toric diagram of the moduli space.

Equivalently, this happens when (p − p′) can be expressed solely in terms of internal face

variables. In the example, p2 − p1 = w1, and this difference disappears when projecting

down to the moduli space.

5.3 On the relation between the moduli space and the matroid polytope

The toric diagram of the BFT master space precisely coincides with a polytope which is

known as the matching polytope introduced in [51]. This does not restrict to the planar

case, but generalizes also to the non-planar case. The approach for computing master and

moduli spaces discussed in the previous section is particularly suitable for elucidating the

relation between the moduli space of the BFT and the matroid polytope. This is another

construction appearing in the mathematical literature for the study of planar graphs [51],

which is discussed in the remainder of this section.

Let us begin by briefly reviewing the definition of matroid polytopes in the specific

context of planar graphs. In combinatorics, a matroid generalizes the concept of linear

independence in vector spaces. In the following discussion we restrict to its explicit in-

carnation for bipartite graphs. Perfect matchings are in one-to-one correspondence with

perfect orientations, which are flows in the graph such that there are two outgoing and one

incoming arrows at each internal white node and two incoming and one outgoing arrows

at each internal black node. The reader is referred to [24] for details on the map between

perfect matchings and perfect orientations (see also [10] for a review). Given a perfect ori-

entation, its source set is defined as the set of external nodes that source arrows coming into

the graph. Two perfect matchings give rise to perfect orientations with identical source

sets if their difference is an internal closed loop. Furthermore, in order for two perfect

matchings to differ by an internal loop, their external leg content must be the same. We

conclude that the source sets sµ are in one-to-one correspondence with perfect matchings,
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considered modulo internal edges. This identification with perfect matchings is very useful

for practical applications.

One can now define the matroid polytope, which is encoded in an nlegs×nsource matrix

Q, whose definition is similar to the perfect matching matrix P for the matching polytope.

Denoting the external edges by Xe
i and the source sets by sµ, we have

Qiµ =

{
1 if X

(e)
i ∈ sµ

0 if X
(e)
i /∈ sµ

(5.5)

Example. Let us apply this definition to the example from the sections above. The

perfect matchings p1 and p2 coincide over external legs, so they correspond to the same

source set s1. Source sets are labelled according to

p1, p2 → s1 p5 → s4
p3 → s2 p6 → s5
p4 → s3 p7 → s6

(5.6)

Applying (5.5), one obtains

Q =


s1 s2 s3 s4 s5 s6

X52 0 1 0 0 1 1

X32 0 1 1 0 0 1

X34 0 0 1 1 0 1

X54 0 0 0 1 1 1

 . (5.7)

In general, the basic structure of the matching polytope and matroid polytope matrices

P and Q can be summarized as follows:

Matching Polytope P Matroid Polytope Q

edges

perfect matchingsxy
←−−−−−−−−−−→
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 Ψ−→ external

legs

source setsxy
←−−−−−−−→ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


(5.8)

The projection Ψ taking from P to Q acts on rows by keeping only those associated to

external legs and on columns by identifying perfect matchings that differ by closed loops.

The alert reader might notice that this projection is very similar to the one discussed in

section 5.2, connecting the master and moduli spaces.

At this point one can conclude that, for BFTs associated to planar graphs, the toric

diagram of the moduli space and the matroid polytope are, at the very least, extremely

similar constructions that can alternatively be used for addressing the same questions.

The following subsection explains that the two objects indeed coincide. The concept of

moduli space is more physically motivated and, in the case of theories with a microscopic

realization in string theory, is directly linked to the geometry probed by stacks of D-branes.
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Figure 10. General graph on a disk. The striped blob at the center of the graph is an arbitrary

connection between the external edges. The external edges and faces are labeled in blue.

Furthermore, the range of applicability of the moduli space is far more general. The moduli

space is defined for generic BFTs, including theories that are non-planar or even without

boundaries.

5.3.1 The equivalence

Below it is shown how the toric diagram of the moduli space of a BFT associated to a

planar graph is bijectively related to the matroid polytope. Provided the color of external

nodes is given, it is possible to explicitly construct the map between the two objects. The

following discussion assumes that the graph has internal lines. The case where all lines are

external is going to be discussed at the end of this section.

External edges of a disk can be numbered in a clockwise fashion, and external faces

can be analogously cyclically numbered: the external face between edge Xi and Xi+1 is

labeled wi. This is schematically drawn in figure 10, from which it is clear that there is a

one-to-one correspondence between external edges and faces.

It is convenient to order the rows of the matroid polytope using the cyclic numbering

prescribed in figure 10, i.e. assigning X1 to the first row and proceeding cyclically. The

rows of the toric diagram G describing the moduli space, obtained using the map presented

in section 5, can analogously be ordered using the numbering in figure 10.

Since there are internal lines, it is always possible to choose a reference perfect matching

that does not contain any external lines. In this way, perfect matchings specifying the

columns of the matroid polytope and those specifying the columns of G can be immediately

recognized, since the columns are distinguished only by external legs. For the purposes of

the bijection the precise network of internal edges is irrelevant: it does not alter the external

edges, thus preserving the matroid polytope as well as the powers of external faces required

to specify the perfect matching.

It is now possible to construct the bijection between the matroid polytope and the

toric diagram of the moduli space of a BFT on a disk. Each path from perfect matchings
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Figure 11. The general form of the Cn tiling.

contains an even number of external lines, because each path that leaves the boundary

must eventually return to the boundary. Since each wi consists of two external edges, one

leaving the boundary and one entering it, the product of two consecutive external faces

wiwi+1 occupies edges i and i+ 2.

Provided the toric diagram of the moduli space, the matroid polytope is thus obtained

by replacing in G consecutive ±1’s appearing in rows i, i+ 1, . . . , i+ k by a 1 in row i and

a 1 in row i+k+ 1. All remaining rows are assigned a 0. To obtain the toric diagram from

the matroid polytope, it is a simple matter of performing the inverse process, i.e. replacing

zeroes separating two 1’s by a sequence of ±1. The sign is finally determined by the color

of the external nodes, which determines the orientation of the path.

Any change in the basis for the toric diagram presented in section 5 is going to preserve

the bijection. As a final remark, changing the reference perfect matching corresponds to a

modular transformation of the toric diagram. Thus, the case of BFTs with only external

edges is going to work analogously to the case described above, provided that the reference

perfect matching is also given when constructing the explicit map.

6 Infinite families of non-planar BFTs

A central goal of this article is to show how our techniques apply to the study of BFTs,

putting special emphasis on the non-planar case. For this purpose, this section introduces

an infinite family of BFTs. Let us define a one parameter class of models on a cylinder,

which we denote Cn, where n measures the length of the graph along the periodic direction.

6.1 The Cn family

The general bipartite graph of the Cn model is shown in figure 11.
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For n = 1, . . . , 4, the master Kasteleyn matrix takes the form:

K
C1
0 =


4 5 6

1 X1 +X2 X3 +X4 0

2 0 X5 +X6 X8

3 X7 0 0

 K
C3
0 =



10 11 12 13 14 15 16 17 18

1 X1 0 X6 X7 0 X12 0 0 0

2 X2 X3 0 X8 X9 0 0 0 0

3 0 X4 X5 0 X10 X11 0 0 0

4 0 0 0 X13 0 X18 X24 0 0

5 0 0 0 X14 X15 0 0 X22 0

6 0 0 0 0 X16 X17 0 0 X23

7 X19 0 0 0 0 0 0 0 0

8 0 X20 0 0 0 0 0 0 0

9 0 0 X21 0 0 0 0 0 0



K
C2
0 =



7 8 9 10 11 12

1 X1 X4 X5 X8 0 0

2 X2 X3 X6 X7 0 0

3 0 0 X9 X12 X16 0

4 0 0 X10 X11 0 X15

5 X13 0 0 0 0 0

6 0 X14 0 0 0 0


K
C4,0

0 =



13 14 15 16 17 18 19 20 21 22 23 24

1 X1 0 0 X8 X9 0 0 X16 0 0 0 0

2 X2 X3 0 0 X10 X11 0 0 0 0 0 0

3 0 X4 X5 0 0 X12 X13 0 0 0 0 0

4 0 0 X6 X7 0 0 X14 X15 0 0 0 0

5 0 0 0 0 X17 0 0 X24 X32 0 0 0

6 0 0 0 0 X18 X19 0 0 0 X29 0 0

7 0 0 0 0 0 X20 X21 0 0 0 X30 0

8 0 0 0 0 0 0 X22 X23 0 0 0 X31

9 X25 0 0 0 0 0 0 0 0 0 0 0

10 0 X26 0 0 0 0 0 0 0 0 0 0

11 0 0 X27 0 0 0 0 0 0 0 0 0

12 0 0 0 X28 0 0 0 0 0 0 0 0


(6.1)

For n > 1, the master Kasteleyn matrix takes the general form:

KCn
0 =



X1 0 . . . 0 X2n X2n+1 0 . . . 0 X4n 0 . . . 0

X2 X3 0 X2n+2 X2n+3 0

0 X4

. . .
... 0 X2n+4

. . .
...

...
. . .

...

...
. . . X2n−3 0

...
. . . X4n−3 0

0 . . . 0 X2n−2 X2n−1 0 . . . 0 X4n−2 X4n−1 0 . . . 0

0 . . . 0 X4n+1 0 . . . 0 X6n X8n 0 . . . 0

X4n+2 X4n+3 0 0 X7n+1 ......
. . .

... 0 X4n+4

. . .
... ..

.
X7n+2

...
. . . X6n−3 0

. . . 0

0 . . . 0 0 . . . 0 X6n−2 X6n−1 0 . . . 0 X8n−1

X6n+1 0 . . . 0 0 . . . 0 0 . . . 0

0 X6n+2 ...

...
X6n+3

...
. . .

...
...

. . .
...

. . . 0

0 . . . 0 X7n 0 . . . 0 0 . . . 0


(6.2)

Let us summarize some general properties of this class of models:

• Faces/Groups: The number of internal as well as external faces is 2n, which gives a

total number of 4n faces.

• Edges/Fields: The total number of edges is 8n, with 6n internal edges and 2n external

legs.

• Nodes/W -Terms: There are 2n internal white nodes and 2n internal black nodes,

which correspond to positive and negative terms in the superpotential.
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(a) (b)

Figure 12. The bipartite graph and quiver for C1.

• Zig-Zag Paths: For all Cn models, the number of internal zig-zag paths is 3. The

number of external zig-zag paths is 2n.

• Master Space: It is a toric Calabi-Yau manifold of dimension (4n+ 1).

• Mesonic Moduli Space: It is a toric Calabi-Yau manifold of dimension (2n+ 1).

6.1.1 Examples

Let us now discuss the first members of the Cn family in further detail. As a reference for

the reader, the perfect matching matrices are collected in appendix A.

C1 Model. The bipartite graph and quiver diagram for this theory are shown in figure 12.

The moduli space is obtained by imposing invariance under Q1 and Q2, where Qi is a

shorthand for the gauge symmetry associated to face i. The moduli space then becomes a

3d CY with toric diagram given by

GC1 =


-1 -2 0 0 1

1 2 0 1 0

1 1 1 0 0

2 1 1 1 1

 . (6.3)

C2 Model. Figure 13 shows the corresponding graph and quiver.

In order to obtain the moduli space, we quotient by Q1, . . . , Q4. A 5d CY with toric

diagram is obtained. It is given by

GC2 =



0 -1 1 0 0 0 0 1 0 -1 0 0 0

1 -1 0 -1 0 1 -2 1 -1 0 0 -1 0

0 1 0 0 0 -1 1 -1 1 0 0 1 1

0 1 0 1 1 1 1 0 0 1 0 1 0

0 1 0 1 0 0 1 0 1 1 1 0 0

3 3 3 3 2 1 1 1 1 1 1 1 1


. (6.4)
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(a) (b)

Figure 13. The bipartite graph and quiver for C2.

(a) (b)

Figure 14. The bipartite graph and quiver for C3.

C3 Model. The graph and quiver for this theory are given in figure 14.

The C3 model has a total 96 perfect matchings. The moduli space is obtained by

quotienting with Q1, . . . , Q6. It is a 7d CY with toric diagram given by

GC3 =



-2 -1 0 -1 0 0 -1 0 0 -1 -1 -1 -1 0 -1 -1 -1 0 0

1 0 0 1 1 0 1 -1 0 0 1 0 0 -1 2 1 0 0 0

1 1 0 0 1 0 1 0 -1 0 2 0 1 -1 1 0 0 1 0

0 0 0 0 -1 0 0 1 1 1 -1 1 0 1 -1 0 1 0 0

0 0 -1 0 0 1 0 -1 1 -1 -1 1 -1 0 1 1 0 0 0

1 1 1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 0 1

0 0 1 0 0 0 0 1 0 1 0 0 1 1 -1 0 0 0 0

5 5 5 5 5 4 4 4 3 3 3 3 3 3 3 3 3 3 3

· · ·

(6.5)

· · ·

1 0 -1 -1 -2 -1 -1 -1 -1 -1 0 0 0 0 0 -1 0 0 1

-1 1 1 -1 2 -1 2 0 0 1 1 -1 -1 0 0 1 1 0 0

-1 0 1 -1 2 0 2 -1 0 1 1 -1 0 -1 0 1 1 0 0

1 0 -1 2 -1 1 -2 1 0 0 -1 2 1 1 0 0 -1 1 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 -1 -1 0 0

0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0 0

1 0 0 1 -1 1 -1 1 1 -1 -1 1 1 1 1 0 0 0 0

3 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.
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Figure 15. Double line implementation of zig-zag paths.

7 Untwisting

In this section and the ones which follow, we introduce several procedures for generating

new BFTs. The transformations that will be considered are: untwisting, (un)higgsing,

sewing, puncturing and edge-splitting. The interplay between higgsing and reducibility

has been already discussed in section 4.2. It is then not possible to analyze the impact

of the other transformations on reducibility in general terms. The main reason is that,

generically, both the initial and final BFTs are non-planar. At present, a general criterion

for determining the reducibility of a non-planar bipartite graph is not known. Of course,

the reducibility of the initial and final theories can be investigated on a case by case basis.

Finally, some operations such as untwisting can either increase or decrease the reducibility

of a graph, as shown in explicit examples below.

7.1 Zig-zag paths and untwisting

This section studies untwisting [12, 52–54], an operation acting on zig-zag paths. A zig-zag

path is an oriented path along the edges of a bipartite graph such that it turns maximally

left at white nodes and maximally right at black nodes. They can be elegantly encoded in

a double line notation, also denoted alternating strand notation, in which every edge has

two associated zig-zag paths going in opposite directions and crossing at its middle point,

as shown in figure 15. In this representation, each zig-zag path is translated into a path

across the edges such that white nodes are always to the right and black nodes are always

to the left.

Zig-zag paths have several important applications. For graphs on a disk, they can be

used to define permutations, which encode how external nodes are paired by zig-zag paths.

In turn, permutations identify whether two different graphs are related by a sequence of

moves and bubble reductions. On a related application, reducibility of graphs on a disk

translates into the existence of zig-zag paths with multiple crossings or self-intersections.13

For both theories on the disk and on T 2 without boundaries, zig-zag paths can be used to

reconstruct the underlying bipartite graph.14 Finally, for BFTs on T 2 without boundaries,

13The presence of self-intersecting zig-zag paths has been linked to inconsistencies in the BFTs on D3-

branes over toric CY 3-folds. These issues do not seem to extend to generic BFTs, although a detailed

investigation of potential problems associated to self-intersecting zig-zag paths is certainly desirable.
14This is probably true more generally, although such a construction has not been worked out in the

literature so far.
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Figure 16. The action of the untwisting map.

Figure 17. Closed and open zig-zag paths.

zig-zag paths correspond to external legs in the (p,q)-web diagram [55]. This is a graph

dual to the 2d toric diagram for the CY 3-fold moduli space.

Untwisting is a transformation of a bipartite graph defined by its action on zig-zag

paths, which is shown in figure 16. Equivalently, untwisting can be defined as a trans-

formation that maps zig-zag paths to paths along edges which constitute a face, and vice

versa. The underlying Riemann surface in general changes under untwisting.

The untwisting map is very important for certain sub-classes of BFTs. For example,

for graphs without boundaries on T 2, which correspond to D3-branes probing toric CY

3-folds, untwisting gives rise to the mirror configuration of intersecting D6-branes [52]. For

the same class of graphs, untwisting can also be interpreted as relating a graph defining a

cluster integrable system to the corresponding spectral curve [12, 13, 56]. More recently,

it has been used to identify BFTs that share the same master space, in a correspondence

which is called specular duality [54, 57]. It is natural to expect the importance of untwisting

to be much broader and that it plays a profound role, yet to be unveiled, for general BFTs.15

Let us identify some general properties of the untwisting map. As mentioned above, it

transforms zig-zag paths into faces and vice versa. It is useful to distinguish between open

and closed zig-zag paths, which are illustrated in figure 17. Untwisting has the following

effect:

• Open zig-zag paths become external faces, and vice versa

• Closed zig-zag paths become internal faces, and vice versa

15More concretely, we expect untwisting to be important in the context of BFT1’s. As we are going to

explain in section 13, BFT2’s are invariant under untwisting.

– 28 –



J
H
E
P
0
6
(
2
0
1
3
)
0
3
2

Figure 18. Untwisting on closed and open zig-zag paths.

This behavior is illustrated in figure 18. The number of boundaries generically changes

under untwisting. Let us define a boundary cycle as a subset of the external nodes that

is obtained by following open zig-zag paths until returning to the starting point. In other

words, one starts from an external node i and follow the zig-zag path emanating from it

until reaching a new external node j. Next, we consider the zig-zag that leaves from node

j and takes us to an external node k. This operation is repeated until one comes back to

the starting point. A boundary cycle is the set of all external nodes visited during such an

excursion. Each boundary cycle gives rise to a boundary component in the untwisted graph.

The master Kasteleyn matrix and its reductions remain invariant under untwisting. As

a consequence, in an extension of specular duality [54] to general BFTs, the master spaces

of the original and untwisted theories are the same. This follows from the fact that the

master space only cares about how edges are connected into nodes, i.e. how chiral multiplets

are coupled by the superpotential. This information is not modified by untwisting.

The following discussion is going to use untwisting to generate bipartite graphs on

bounded Riemann surfaces with arbitrarily large genus starting from relatively simple ones.

7.2 A new class of BFTs: untwisting Cn

Section 6.1 considered the infinite class of Cn theories, defined by bipartite graphs on a

cylinder. The following section introduces a new class of BFTs, denoted by C̃n, which is

generated by untwisting the Cn theories. Following the general discussion in the section

above, the master and reduced Kasteleyn matrices as well as the master space for these

models are identical to those for Cn theories. Let us summarize some general properties of

the C̃n family:

• Riemann Surface: The underlying Riemann surface has genus n − 1 and a single

boundary.
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Figure 19. The bipartite graph and quiver for C̃1. The bipartite graph lives on a disk.

• Faces/Groups: There are 3 internal faces for any n. All internal faces are 2n-sided.

The number of external faces is 2n. These are respectively the number of closed and

open zig-zag paths in the Cn models.

• Edges/Fields: The number of edges is the same as for the Cn models. The total

number of edges is 8n out of which 6n are internal and 2n are external.

• Nodes/W-Terms: The number of nodes is the same as for the Cn models. There are

2n white nodes and 2n black nodes.

• Zig-Zag Paths: There are 2n closed and 2n open zig-zag paths, which map via un-

twisting to the internal and external faces of the untwisted Cn.

• Master Space: It is the same as the one for Cn, i.e. a toric Calabi-Yau manifold of

dimension (4n+ 1).

• Mesonic Moduli Space: It is a toric Calabi-Yau manifold of dimension (4n− 2).

7.2.1 Examples

This section discusses in detail the first examples of the C̃n family. The perfect matchings

and master space of these theories are identical to those of the Cn models, and are obtained

using the master Kasteleyn matrix given in (6.2). Some of the resulting perfect matching

matrices are given in appendix A. The different face structure of the untwisted theories

results in a different gauging, which enters in the computation of the moduli space.

C̃1 Model. The bipartite graph and quiver for this model are shown in figure 19. The

fact that this graph is reducible is particularly obvious due to the presence of bubbles.

The moduli space is obtained by imposing gauge invariance under Q1, Q2 and Q3. It

is a 2d CY with toric diagram given by

G
C̃1

=

 1 0

0 1

4 2

 . (7.1)

Interestingly it coincides with the one for C1.
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Figure 20. The bipartite graph and quiver for C̃2. The bipartite graph lives on a torus with a

single boundary.

C̃2 Model. The bipartite graph and quiver for this model are shown in figure 20. As in

all the Cn models, the moduli space is obtained from quotienting by Q1, Q2 and Q3. The

moduli space is a 6d CY with toric diagram given by

G
C̃2

=



0 0 1 0 2 1 0 -1 1 0 -2 -1 -1 0 -1 0 0 1

0 0 0 0 -1 -1 0 0 -1 -1 1 0 1 0 1 0 1 0

0 0 -1 -1 -1 -1 0 0 0 0 1 1 0 0 1 1 0 0

1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 -1 0 -1 0 -1 0 -1 0 1 1 1 1 0 0 0 0

4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


. (7.2)

C̃3 Model. The bipartite graph and quiver for this model are shown in figure 21. In

order to get the moduli space, we quotient by Q1, Q2 and Q3, obtaining a 10d CY with

toric diagram given by

G
C̃3

=



-1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -1 -2 -1 0 -1 0 0 -1 0 0 0

0 0 0 0 -1 0 0 1 0 -1 0 0 -1 0 -1 -1 0 -1 -1 0 -1 -1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 -1 -1

0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1

-1 0 -1 0 -2 0 -1 1 0 -1 1 1 -3 -2 -2 -3 -2 -2 -2 -1 -1 -2 0

1 0 1 0 2 1 1 0 1 1 0 0 2 1 1 2 1 1 2 1 1 2 1

0 0 0 0 0 -1 0 -1 0 0 -1 0 1 1 1 1 1 1 1 1 1 0 -1

1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 0 1 1

0 0 -1 -1 0 -1 0 -1 -1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 -1

1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

· · ·

. . .

-1 -1 0 0 0 0 -1 -1 0 0 -1 0 0 -1 -1 0 0 -1 -1 -2 -1 0 -1

0 1 -1 0 -1 0 0 1 -1 0 1 -1 0 0 1 -1 0 0 0 1 0 0 1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

-1 1 -1 1 -1 1 0 2 0 2 0 -2 0 -1 1 -1 1 0 -2 -1 -1 -2 -1

1 0 1 0 2 1 1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0

0 -1 0 -1 0 -1 0 -1 0 -1 -1 0 -1 0 -1 0 -1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1

0 -1 0 -1 0 -1 0 -1 0 -1 -1 0 -1 0 -1 0 -1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .
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Figure 21. The bipartite graph and quiver for C̃3. The bipartite graph lives on a genus 2 Riemann

surface with a single boundary.

. . .

0 0 -1 0 -1 0 0 -1 -1 -2 -1 0 -1 0 -1 0 1 0 0 1 1 0 0

0 0 1 0 1 -1 0 0 0 1 0 -1 0 0 1 0 -1 0 1 -1 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 -1 -1 -1 -1 0

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

-1 -1 0 0 0 -2 0 -1 -2 -1 -1 -2 -1 -2 -1 -1 -2 -1 1 -1 1 0 -1

0 1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 -1 0 -1 0 0 0 0 1 1 0 0 0 1 1 -1 0 -1 0 0

1 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

. . .

-1 0 -1 -1 -1 -2 -1 -1 -1 0 -1 0 0 0 0 0 0 -1 0 -1 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0

0 0 0 0 1 1 1 1 1 0 0 0 0 0 -1 -1 0 0 0 1 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 -1 0 -1 0 -1 0 0 -1 0 -1 0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



. (7.3)

The explicit form of this large matrix is not particularly illuminating. It is presented

in order to show the very small perfect matching multiplicity of the points in the toric

diagram. The 96 perfect matchings of this theory project onto 92 distinct points in the

toric diagram of the moduli space, out of which only 2 have multiplicity greater than one.

The small multiplicities are directly correlated with the irreducibility of the corresponding

bipartite graph.
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8 Higgsing and unhiggsing

Section 4.2 above discussed in detail higgsing in BFTs, which corresponds to removal of

edges in the bipartite graph that are not external legs. There it is explained that, in some

instances, higgsing can lead to equivalent theories, i.e. theories with the same moduli space.

More generally, higgsing can be used to generate theories for which the moduli space is

different.16 The inverse procedure relates to introducing a new field which is associated to

an edge in the bipartite graph such that the new theory is still a BFT.17 This process is

referred to as unhiggsing. In the case of BFTs on T 2, both methods have been successfully

exploited for generating new gauge theories on D3-branes probing CY 3-folds. In [10], the

connection between certain higgsings of BFTs on a disk and the boundary operator in cells

of the positive Grassmannian was elucidated.

8.1 Another new class of BFTs: higgsing Cn

This section introduces a new class of BFTs, which are denoted C ′n. They are obtained from

Cn by higgsing with n non-zero vevs. These vevs correspond to removing edges between

pairs of square internal faces, turning them into hexagons. The perfect matching matrices

for these theories are collected in appendix B.

As for the Cn and C̃n families, some general properties of this class of theories can be

summarized as follows:

• Faces/Groups: There are n internal faces and 2n external ones, which gives a total

number of 3n faces.

• Edges/Fields: The total number of edges is 7n, with 5n internal edges and 2n external

legs.

• Nodes/W -Terms: There are 2n internal white nodes and 2n internal black nodes.

• Master Space: It is a toric Calabi-Yau manifold of dimension (3n+ 1).

• Mesonic Moduli Space: It is a toric Calabi-Yau manifold of dimension (2n+ 1).

8.1.1 Examples

C′
1 Model. This model is obtained from C1 by giving a non-zero vev to X3. The resulting

bipartite graph and quiver diagram are shown in figure 22.

16As explained in section 3 and motivated in part by applications to scattering amplitudes, this paper

focuses on the study of the Abelian moduli space. It is important to reiterate that, for general non-Abelian

BFTs, it is quite possible that the coincidence of Abelian moduli spaces does not imply a duality between

theories. This is an interesting question that certainly deserves future study. This would imply that even

higgsings leading to theories with the same Abelian moduli space might produce genuinely new models.

Keeping this possibility in mind, this section is devoted to the more dramatic case in which even the Abelian

moduli space of the higgsed theory differs from the original one.
17In parallel with the definition of higgsing, we do not call unhiggsing the addition of an edge that results

in two new external faces, i.e. the introduction of a new external leg. This is because the inverse process only

amounts to the spontaneous breaking of two global symmetry groups down to the diagonal combination.
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Figure 22. The bipartite graph and quiver for C ′
1.

(a) (b)

Figure 23. The bipartite graph and quiver for C ′
2.

Using the perfect matching matrix in appendix B, one sees that higgsing eliminates a

single perfect matching, removing the corresponding point from the toric diagram of the

moduli space. The toric diagram is given by

GC′1 =


-1 -2 0 1

1 2 0 0

1 1 1 0

2 1 1 1

 . (8.1)

C′
2 Model. This model is obtained from C2 by giving vevs to X5 and X7. The corre-

sponding bipartite graph and quiver diagram are shown in figure 23.

Higgsing results in the removal of 9 perfect matchings. The toric diagram for the

moduli space corresponds to

GC′2 =



0 -1 1 0 0 0 1 -1 0 0

1 -1 0 -1 0 1 1 0 0
-

1

0 1 0 0 0 -1 -1 0 0 1

0 1 0 1 1 1 0 1 0 1

0 1 0 1 0 0 0 1 1 0

2 1 1 2 2 1 1 1 1 1


. (8.2)
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Figure 24. The bipartite graph and quiver for C ′
3.

Comparing to (6.4), one notices that the multiplicity of 4 points is reduced and 3 points

disappear completely.

C′
3 Model. Starting from C3, vevs are given to X7, X9 and X11. The resulting theory

is shown in figure 24.
The toric diagram of the moduli space corresponds to

GC3 =



-2 -1 0 -1 0 0 -1 0 0 -1 -1 -1 -1 0

1 0 0 1 1 0 1 -1 0 0 1 0 0 -1

1 1 0 0 1 0 1 0 -1 0 2 0 1 -1

0 0 0 0 -1 0 0 1 1 1 -1 1 0 1

0 0 -1 0 0 1 0 -1 1 -1 -1 1 -1 0

1 1 1 1 0 0 0 1 0 1 1 0 1 1

0 0 1 0 0 0 0 1 0 1 0 0 1 1

3 2 3 2 2 3 1 1 1 1 1 2 2 2

· · ·

· · ·

-1 -1 0 1 -1 -1 -1 -1 -1 -1 0 0 0 0

2 1 0 -1 1 -1 -1 2 0 0 -1 -1 0 0

1 0 0 -1 1 -1 0 2 -1 0 -1 0 -1 0

-1 0 0 1 -1 2 1 -2 1 0 2 1 1 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 1 1 1 1 1 0 0 0 0

-1 0 0 1 0 1 1 -1 1 1 1 1 1 1

1 2 1 2 2 1 1 1 1 1 1 1 1 1


. (8.3)

Higgsing reduces the original 96 perfect matchings down to 44. A comparison with (6.6)

reveals that multiplicities of some points in the toric diagram decrease and that 10 points

disappear.

8.2 Unhiggsing C̃3

Unhiggsing effectively splits a face in the bipartite graph into two separate faces. Such

splitting is achieved by adding a diagonal edge and increasing the valence of a white and

black node adjacent to the split face. The dimension of the moduli space remains constant

in this process.

As an example, let us consider the C̃3 model. Figure 25 shows one possible unhiggsing

of this theory, which has a couple of square faces. Section 12 revisits this model in order
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Figure 25. Bipartite graph for a theory obtained by unhiggsing the C̃3 model.

to use it to illustrate Seiberg duality in a genus 2 BFT and to discuss its moduli space in

detail.

In this example, the moduli space of the new theory is different from that of the original

one. The addition of BCF bridges is a particular case of unhiggsing that becomes extremely

useful for generating identities in the context of scattering amplitudes [16, 58, 59]. Of

course, reversing the arguments in section 4.2, it is also possible to find unhiggsed theories

that share the moduli space of their parents.

9 Sewing

This section introduces an operation called sewing, which corresponds to the identification

of two boundary components of the graph containing the same number of external legs

terminating on them.18 The two glued boundaries might belong to the same Riemann

surface or, more generally, correspond to individual Riemann surfaces that are merged into

a single one. The sewing process is not unique, since there exist a discrete analogue of

a Dehn twist, to which we refer as the sewing twist, controlling how edges on the two

boundaries are identified. As long as one keeps track of which external edges are merged,

the process of sewing boundaries commutes with the untwisting move on a bipartite graph

on Σ which was discussed in section 7. The following section illustrates this feature with

explicit examples.

9.1 Orbifold theories from sewing cylinder BFTs

This section illustrates the effect of sewing in an interesting class of examples. Let us

consider BFTs defined on a cylinder with an equal number of external nodes on each of the

two boundaries. These are sewed together to obtain theories on T 2. The original theories

18Of course we can, more broadly, also consider the identification of individual pairs of external legs.
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Figure 26. Schematic representation of the sewing operation along the two boundaries of a BFT

on a cylinder. The resulting theory corresponds to an orbifold of order 5, whose geometric action

is controlled by the sewing twist, which can take the values τ = 0, . . . , 4.

are further restricted in order to be of a very specific type, in which the bipartite graph

corresponds to the repetition of n copies of a more elementary graph along the periodic

direction. For this class of models, sewing results on BFTs associated to orbifolds of CY

3-folds. The sewing twist controls how unit cells are identified in the resulting theory on T 2

which, in turn, is in one-to-one correspondence with the choice of orbifold action [60–64].

Figure 26 provides a schematic representation of the situation under consideration.

Let us focus on the Cn class of models introduced in section 6.1 and their corresponding

untwisted theories C̃n. The fundamental domain for Cn is given in figure 11. For Cn, the

sewing parameter can take values τ = 0, . . . , n−1. The sewed theory is called στ (Cn). The

perfect matching matrices for the models are collected in appendix C.

σ0(C1) Model and its Untwisting. σ0(C1) is obtained by sewing the external edges

7 and 8 in the bipartite graph for C1 given in figure 12. The resulting graph, shown in

figure 27 (a), is the brane tiling for D3-branes over a complex cone over the suspended

pinch point (SPP) [2]. Indeed, the toric diagram for the moduli space becomes

Gσ0(C1) =


-1 -2 0 0 1

1 2 0 1 0

1 1 1 0 0

2 1 1 1 1

 , (9.1)

which corresponds to the complex cone over SPP.

Untwisting σ0(C1), one obtains the graph on a sphere with no boundaries shown in

figure 27 (b), which is clearly highly reducible. The moduli space is 1-dimensional and its

toric diagram is given by

G
σ̃0(C1)

=

(
1

6

)
, (9.2)

i.e. the six perfect matchings of this theory collapse onto a single point.

σ0(C2) Model and its Untwisting. The bipartite graph for σ0(C2) is shown in figure 28

(a). The moduli space of this theory is again a 3d toric CY with the toric diagram given
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(a) (b)

Figure 27. The sewed model σ0(C1) and its untwisting, σ̃0(C1).

(a) (b)

Figure 28. The sewed model σ0(C2) and its untwisting, σ̃0(C2).

by the matrix

Gσ0(C2) =


1 0 0 1 1 2

-

1

0 0 1 -1 1 0 1

0 1 0 1 -1 -1 1

6 2 2 1 1 1 1

 . (9.3)

This is in fact an Abelian orbifold of the form SPP/Z2, corresponding to the orbifold action

(0, 1, 1, 1).19

The untwisted theory σ̃0(C2) is shown in figure 28 (b). The theory lives on a T 2, so

its moduli space is also a CY 3-fold. Its toric diagram corresponds to

G
σ̃0(C2)

=


0 1 0 -1 -1 0 1

1 1 2 2 1 0 0

0 -1 -1 0 1 1 0

8 1 1 1 1 1 1

 . (9.4)

19An Abelian orbifold action of the form (a1, a2, . . . , am) specifies the action of the quotienting group ZN
onM for an orbifold of the formM/ZN . The entries ai relate to the m generators zi of the spaceM such

that zi ∼ ωai zi and ωN = 1 [60–64].
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(a) (b)

Figure 29. The sewed model σ0(C3) and its untwisting, σ̃0(C3).

σ0(C3) Model and its Untwisting. Figure 29 (a) shows the σ0(C3) theory. Its moduli

space is a 3d CY with toric diagram given by

Gσ0(C3) =


0 -1 2 1 1 3 -1 -2 0

0 1 -1 0 -1 -2 0 2 1

1 1 0 0 1 0 2 1 0

15 9 3 3 2 1 1 1 1

 . (9.5)

This is an Abelian orbifold SPP/Z3, with orbifold action (0, 1, 2, 1).

The untwisted theory, shown in figure 29 (b), lives on a genus 2 Riemann surface and

its moduli space is a 5d CY, with toric diagram given by

G ˜σ0(C3)
=



1 2 1 1 1 2 1 2 2 1 1 2 1 2 1 0 0 1 1 1 1 0 0 0 0

0 0 1 1 -1 -1 0 0 1 1 2 0 -1 -1 0 -1 -1 -1 -1 0 1 0 0 0 1

0 0 -1 0 1 1 1 0 -1 0 -1 -1 0 0 -1 0 1 0 1 0 -1 0 0 1 0

0 0 1 0 0 -1 -1 -1 0 -1 0 1 1 0 1 1 0 0 -1 -1 0 0 1 0 0

0 -1 -1 -1 0 0 0 0 -1 0 -1 -1 0 0 0 1 1 1 1 1 0 1 0 0 0

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


. (9.6)

10 Puncturing

Continuing with the general discussion of basic transformations of bipartite graphs and

their BFT counterparts, this section discusses a procedure called puncturing. It corresponds

to replacing an internal face of a bipartite graph by a closed boundary.20 Consequently, all

the faces that are adjacent to the removed one become external and the edges terminating

on it become external legs, as illustrated in figure 30.

20Notice that we define puncturing as introducing a boundary rather than a puncture. The name has

been chosen for simplicity and we expect it is not going to cause the reader any confusion.
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Figure 30. Puncturing a bipartite graph. An internal face of the bipartite graph, in the example

above face 1, is replaced by a boundary. The adjacent faces become external along with the edges

between them.

Figure 31. BFT on D3-branes over C/(Z2 × Z2). It is also known as phase (d) of PdP5.

10.1 Examples

Let us consider the theory in figure 31, which corresponds to the worldvolume theory on

D3-branes probing a Z2 ×Z2 orbifold of the conifold C. In fact there are four BFTs on T 2

whose mesonic moduli space is C/(Z2 × Z2). The one for figure 31 is also known as phase

(d) of PdP5 [50]. They are all related by Seiberg duality transformations.

The moduli space for this theory is indeed C/(Z2×Z2) and its toric diagram is given by

GC/(Z2×Z2) =



1 0 0 2 2 -1 1 1 3

0 0 1 -1 0 1 -1 1
-

1

0 1 0 0 -1 1 1 -1
-

1

21 2 2 2 2 1 1 1 1


. (10.1)

The toric diagrams for the moduli spaces of the dual theories differ in the multiplicities of

perfect matchings for each toric point.

The effect on the moduli space of puncturing face 1 (theory (a)) or face 5 (theory (b))

is now investigated. The corresponding graphs are shown in figure 32.
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(a) (b)

Figure 32. Two possible ways of puncturing the theory in figure 31.

The resulting moduli spaces are given by the toric diagrams:

G(a) =



-1 0 0 1 -3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 -1

1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 0

1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1

0 0 0 0 0 0 0 -1 -1 0 0 0 0 1 1 0 -1 -1

0 0 0 0 1 1 1 1 1 0 0 1 1 0 0 1 1 1

0 0 0 0 0 0 0 0 1 0 1 -1 0 -1 0 0 0 1

0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 1 0

4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

. . .

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 -1 -1 0 0 0 0 1 1 -1 -1 0 0 0 0 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

0 1 -1 0 -1 0 0 1 0 1 -1 0 -1 0 0 1 0 1 -1 0 -1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


,

(10.2)

G(b) =



-3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 -1 -1 -1 -1 -1 -1

1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 -1 0 0 0 0 0 0 1 1 -1 -1 0 0 0 0 0 1

1 1 0 1 0 2 1 1 0 0 1 1 0 0 1 2 0 0 1 1 1 0

0 0 1 0 1 -1 -1 0 0 1 0 0 0 1 0 -1 0 1 -1 0 0 0

1 1 0 0 0 2 2 1 1 0 0 1 1 0 1 1 1 0 1 0 1 1

1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0

1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

. . .

. . .

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0

0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0

0 1 1 1 1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0

1 0 0 0 1 -1 -1 -1 0 0 0 0 0 1 -1 0 0 0

0 0 0 1 0 1 1 2 1 0 0 0 1 0 1 0 0 0

1 0 1 0 0 -1 0 -1 -1 0 0 1 0 0 -1 0 0 1

0 0 0 0 0 2 1 1 1 0 1 0 0 0 1 0 1 0

0 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

(10.3)
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Figure 33. Edge Splitting. The effect of splitting on the two possible classes of edges: (a)

internal/internal and (b) internal/external.

Interestingly, for theory (b) the multiplicities of all points in the toric diagram are equal

to 1. This is a consequence of the fact that there are no pairs of perfect matchings whose

difference is given by a loop enclosing the only surviving internal face, namely face 8.

11 Edge splitting

Having considered the effect of sewing edges, we now move in the opposite direction and

consider the splitting of an internal edge. Edge splitting can either increase the planarity of

a graph (this application has indeed been considered in [16]) or decrease it, by introducing

new boundaries.

It is possible to discuss in rather general terms how the master and moduli spaces

of the corresponding BFT are affected by this operation. The split edge can be of three

types, internal/internal, internal/external or external/external, depending on the two types

of faces it separates. The external/external case occurs when the split edge is an external

leg or an edge connected to an external leg by a number of massive fields. In this case, the

result of the splitting is a graph that is equivalent to the original one, plus a decoupled edge

that connects two external nodes. The geometry associated to this new graph is trivially

related to the original one, so we are not going to consider the external/external case any

further.

Figure 33 shows how a generic bipartite graph is modified by splitting, resulting in the

following changes in the number of boundaries and faces.
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Figure 34. Edge Splitting in a B = 0 Theory. (a) A BFT for F0 and (b) theory resulting from

splitting an internal/internal edge.

Split edge

internal/internal B → B + 1

Fe → Fe + 2

Fi → Fi − 2

internal/external B → B

Fe → Fe + 2

Fi → Fi − 1

(11.1)

These changes result in an increased dimension for the master and moduli spaces, except

for the case of the master space for originally B = 0 theories, whose dimension remains

constant. The table below summarizes the changes in dimensions depending on the type

of split edge and the initial number of boundaries. It is assumed that the genus of the

Riemann surface remains constant, although generally this may not be the case.

Split edge ∆dmaster ∆dmoduli

internal/internal B = 0 0 1

B 6= 0 1 3

internal/external B 6= 0 1 2

(11.2)

Generally, new perfect matchings arise when splitting edges. Every broken edge produces

two new edges. For any perfect matching of the initial graph, the original edge can be

either occupied (O) or empty (E). After splitting, the two new edges can be in one of four

combinations O-O, O-E, E-O or E-E. Original perfect matchings in which the edge under

consideration is O or E, are in one-to-one correspondence with perfect matchings of the new

graph in which the new edges are O-O and E-E, respectively. New perfect matchings are

associated to the O-E and E-O combinations and whether they actually appear depends

on the detailed structure of the graph.

11.1 Examples

F0 Theory. Let us consider the theory in figure 34 (a) which corresponds to D3-branes

probing the complex cone over F0 [2]. This is a B = 0 theory and we split an inter-

nal/internal edge as shown in figure 34 (b).
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Figure 35. Edge Splitting in a B = 1 Theory. (a) BFT for the top dimensional cell of G(2, 5) (b)

splitting of an internal/internal edge and (c) splitting of an internal/external edge.

In agreement with the general analysis, the moduli spaces are respectively 3d and 4d

CYs with toric diagrams given by

GF0 =


1 2 0 2 0

0 0 0 -1 1

0 -1 1 0 0

4 1 1 1 1

 , GF ′0 =


0 -1 0 0 0 1

1 1 0 2 0 0

0 0 0 -1 1 0

0 1 1 0 0 0

3 1 1 1 1 1

 . (11.3)

In this example, the total number of perfect matchings is preserved.

Top Dimensional Cell of G(2, 5). Next, let us study the theory in figure 35 (a),

which corresponds to the top dimensional cell of the Grassmannian G(2, 5). This theory

has B = 1 and its moduli space is a 5d CY with toric diagram

Ga =



1 0 0 0 -1 0 -1 0 -1 0

0 1 0 1 1 0 0 0 1 0

0 0 1 1 1 0 1 0 1 1

0 0 1 0 1 0 1 1 0 0

0 0 -1 -1 -1 1 0 0 0 0

3 2 2 1 1 1 1 1 1 1


. (11.4)

Splitting an internal-internal edge as in figure 35 (b) results in a 8d moduli space with

toric diagram given by
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Gb =



1 0 0 -1 0 0 -1 -1 0 0 -2 -1 -1 0 -1 0 -1 0 -2 -1 -1 0 -1 0 0 1

-1 0 0 1 0 -1 0 0 0 -1 1 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0

-1 0 -1 0 0 -1 0 -1 -1 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 0 0

-1 -1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0

1 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

1 1 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


.

(11.5)

The multiplicity of all points is equal to 1 because the theory we obtain does not have

any gauge group. If an internal/external edge is split as in figure 35 (c), the moduli space

becomes a 7d CY with toric diagram

Gc =



-2 -2 -1 -1 -1 -1 0 0 -1 -1 -1 0 -1 0 -1 -1 -1 0 0 0 0 1

0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 1 0 0 0 1 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0

1 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0

1 1 0 0 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0

0 0 0 0 -1 -1 -1 -1 1 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0

2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


. (11.6)

In both of the cases above, the number of perfect matchings increases after splitting and

edge.

12 Seiberg/toric duality for higher genus BFTs

Seiberg duality of quiver gauge theories has been extensively investigated in the past [7, 35,

44, 46–49]. In the context of gauge theories on D3-branes over toric CY 3-folds, which are

BFTs on T 2’s, the duality is also known as toric duality.21 As explained in section 4.1, in

the context of BFTs, Seiberg duality is implemented by the square move shown in figure 3.

We have already emphasized that the Abelian moduli space is invariant under square

moves and hence serves as an ideal diagnostic for identifying potentially dual theories.

Furthermore, it is a sufficient condition for two BFTs to be equivalent from a leading

singularity perspective. An explicit example illustrating this invariance for a BFT on a

genus 2 Riemann surface is presented in the following discussion.

Let us consider the theory introduced in section 8.2, which was obtained by unhiggsing

the C̃3 model. For convenience, it is presented again in figure 36 (a). The master Kasteleyn

matrix for this theory is

21More generally the coincidence of the Abelian moduli space for theories in which it is toric, regardless

of its dimension and the dimension in which the gauge theory lives, is also often referred to as Seiberg

duality.
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(a) (b)

Figure 36. Seiberg duality for BFTs living on a genus 2 Riemann surface. (a) shows the theory

obtained in section 8.2 by unhiggsing the C̃3 model and (b) shows the dual theory obtained by a

square move on face 2.

K
(a)
0 =



X1 0 X6 X7 0 X12 0 0 0

X2 X3 0 X8 X9 0 0 0 0

0 X4 X5 X25 X10 X11 0 0 0

0 0 0 X13 0 X18 X24 0 0

0 0 0 X14 X15 0 0 X22 0

0 0 0 0 X16 X17 0 0 X23

X19 0 0 0 0 0 0 0 0

0 X20 0 0 0 0 0 0 0

0 0 X21 0 0 0 0 0 0


, (12.1)

from which one can determine that this theory has a total of 114 perfect matchings. The

moduli space is obtained by demanding invariance under the gauge symmetries associated

to all the internal faces, i.e. under Q1, Q2, Q
′
2 and Q3. As for C̃3, the moduli space is a

10d Calabi-Yau, whose toric diagram consists of 101 distinct lattice points. For practical

purposes, we omit presenting the explicit list of these points, although we emphasize that

it is straightforward to determine the toric diagram using the tools discussed in the paper.

Let us now investigate the moduli space of the dual theory presented in figure 36 (b),

which is obtained from the previous one by performing a square move on face 2. The
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master Kasteleyn matrix for this theory is

K
(b)
0 =



X1 0 X6 X7 0 X12 0 0 0 0 0

X2 X3 0 0 0 0 X28 0 0 0 0

0 X4 X5 0 0 X11 0 X26 0 0 0

0 0 0 X13 0 X18 0 0 X24 0 0

0 0 0 X14 X15 0 0 0 0 X22 0

0 0 0 0 X16 X17 0 0 0 0 X23

0 0 0 0 X29 0 X9 X10 0 0 0

0 0 0 X27 0 0 X8 X25 0 0 0

X19 0 0 0 0 0 0 0 0 0 0

0 X20 0 0 0 0 0 0 0 0 0

0 0 X21 0 0 0 0 0 0 0 0



, (12.2)

where we have indicated the rows and columns associated to the new superpotential terms

in the dual theory. The total number of perfect matchings is now 144. Once again, the

moduli space is obtained by quotienting the master space by Q1, Q2, Q
′
2 and Q3. Its

toric diagram is indeed identical to the one for theory (a), being 10d and consisting of 101

different points, as expected from our general arguments. The different number of perfect

matchings in the two theories is reflected by the different multiplicities for the points in

the respective toric diagrams.

13 Remarks on Gauging 2

As discussed in section 2.1, two natural gaugings can be associated to a bipartite graph. The

two resulting classes of theories can be analyzed using identical tools. For example, section 3

explains the identification of moduli spaces in completely general terms, independent of

the choice of gauging. Other sections focused on illustrating our methods for the case of

gauging 1.

The most prominent feature of the theories resulting from gauging 2 is that, in the

Abelian case, they are independent of any embedding into a Riemann surface. This prop-

erty is related to the relevance of bipartite graphs for scattering amplitudes. This section

collects various examples of BFT2’s, emphasizing some of the main differences with respect

to BFT1’s.

13.1 Implications for surfaces with no boundaries

Bipartite graphs on surfaces Σ with no boundaries exhibit a special feature if the cor-

responding BFT admits extra gaugings. The corresponding BFT2 has precisely n extra

gaugings, where n = 2g is the number of fundamental cycles of the genus g Riemann sur-

face. This in return has the effect that the BFT2 has always, independent of the number

of fields, gauge symmetries and superpotential, a mesonic moduli space of dimension 1.

The toric diagram of the mesonic moduli space is a single point, i.e. it corresponds to the

complex plane, with multiplicity equal to the number of perfect matchings of the bipartite

graph.
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This phenomenon is a straightforward consequence of our discussion in section 5.

Mesonic operators are given by closed loops on the graph, which in turn can be expressed in

terms of a basis of cycles. The coordinates in the toric diagram are obtained by considering

the coordinates in this basis and eliminating those associated to gauge groups. In BFT2’s

all closed loops are gauged, which implies that the moduli space has a trivial toric diagram.

The moduli space of BFT2 theories becomes non-trivial when introducing boundaries.

13.2 Untwisting

One of the main differences between BFT1’s and BFT2’s is their behavior under untwisting.

Untwisting does not alter the bipartite graph itself, but generically changes the Riemann

surface on which the graph is embedded. Since BFT2’s are independent of any graph

embedding into a Riemann surface, we conclude that they are insensitive to untwisting.

A consequence of this statement is that while untwisting plays a central role in various

contexts in which bipartite graphs appear, it does not play any non-trivial role in the

study of scattering amplitudes. Below, explicit examples of this invariance are presented

by revisiting the Cn and C̃n theories under gauging 2.22

C1 and C̃1 Models. The bipartite graphs for these two theories are given in figures 12

and 19. Both of them have the same perfect matching matrix, which is listed in appendix A.

For the C1 model, gauging 2 implies the additional gauging of the path (X1, X2). The new

charge matrix becomes

dC1 =


X1X2X3X4X5X6X7X8

1 -1 -1 1 0 0 0 0

0 0 1 -1 -1 1 0 0

1 -1 0 0 0 0 0 0

 , (13.1)

where the last row corresponds to the new gauge symmetry. On the other hand, the C̃1

model has no further gauging beyond the one associated to internal faces. The charge

matrix is

d
C̃1

=


X1X2X3X4X5X6X7X8

1 -1 0 0 0 0 0 0

0 0 -1 1 0 0 0 0

0 0 0 0 1 -1 0 0

 . (13.2)

Imposing the D-term charges arising from the matrices above, one can see that, for

gauging 2, the moduli spaces for the C1 and C̃1 models coincide and have a toric diagram

given by

GC1 = G
C̃1

=

 0 1

1 0

4 2

 . (13.3)

22Strictly speaking, changing the gauging gives rise to new gauge theories. We continue using the Cn and

C̃n names to indicate that the new theories are generated by the same graphs.
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C2 and C̃2 Models. Figures 13 and 20 show the graphs for these models and the perfect

matching matrix, which is the same for both theories, appears in appendix A. For C2, the

extra gauging corresponds to the path (X1, X2, X3, X4). The new gauge charge matrix is

dC2 =



X1 X2 X3 X4 X5 X6 X7 X8 X9 X10X11X12X13X14X15X16

1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 -1 0 0 -1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 -1 1 0 0 1 -1 0 0 0 0 0

0 0 0 0 1 0 0 -1 -1 0 0 1 0 0 0 0

1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0


. (13.4)

C̃2 can be embedded into a torus with a single boundary. The two fundamental cycles

of the torus give rise to the new gauge symmetries, which can be identified with the loops

(X1, X2, X5, X6) and (X5, X8, X9, X12). The resulting gauge charge matrix is

d
C̃2

=



X1 X2 X3 X4 X5 X6 X7 X8 X9 X10X11X12X13X14X15X16

1 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 1 -1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 -1 1 -1 0 0 0 0

1 -1 0 0 -1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 -1 -1 0 0 1 0 0 0 0


. (13.5)

Once again, the resulting moduli spaces are identical. The toric diagram is given by

GC2 = G
C̃2

=


1 0 0 0 -1 0

0 1 0 -1 0 0

0 0 1 1 1 0

0 0 0 1 1 1

4 4 4 4 4 2

 . (13.6)

C3 and C̃3 Models. The graphs for these two models are in figures 14 and 21. For

C3, the extra gauging corresponds to the path (X1, X2, X3, X4, X5, X6). The new gauge

charges carried by the fields are (
X1X2X3X4X5X6

1 -1 1 -1 1 -1

)
. (13.7)

The bipartite graph of model C̃3 can be embedded into a g = 2 Riemann surface with

four fundamental cycles, which are(
X5 X11X12X6

1 -1 1 -1

)
,

(
X10X16X17X11

1 -1 1 -1

)
,

(
X9 X15X14X8

1 -1 1 -1

)
,

(
X2 X1 X7 X8

1 -1 1 -1

)
,

where we have given the edge charges for the new gauge symmetries, under which all other

edges are neutral.
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With gauging 2, the moduli spaces of models C3 and C̃3 are identical, with the toric

diagram given by

GC3 = G
C̃3

=



-2 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 1 0

1 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0

1 1 0 0 2 0 0 1 1 0 0 1 1 1 -1 1 1 0 0 0

0 0 0 0 -1 0 0 -1 -1 1 1 -1 0 0 1 0 0 0 0 1

0 0 0 1 -1 0 1 -1 0 0 1 0 -1 0 1 -1 0 0 0 0

1 1 1 0 1 1 0 1 0 1 0 1 1 0 0 1 0 0 0 0

6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 4 4 2


.

(13.8)

13.3 Reduction by higgsing: further examples

Following the initial discussion in section 4.2 on graph reduction, this section presents

examples illustrating higgsings that do not modify the moduli space. Since one of the main

applications of graph reduction is related to scattering amplitudes, it is rather natural to

study it in the context of gauging 2.23

We are first going to present a model exhibiting a non-planar to planar reduction and

then reconsider Cn and C ′n theories under gauging 2. One of the effects of the additional

gauging is to increase the multiplicity of points in the toric diagram of the moduli space

which, heuristically, can be linked to an increased reducibility. Indeed, one is going to

see that Cn theories are reducible when gauging 2 is considered, and that in this case C ′n
theories are related to them by reductions. Finally, an example is included which illustrates

how it is possible to systematically investigate all possible combinations of multiple vevs

that lead to reduced graphs.

13.3.1 Non-planar to planar reduction

Let us consider the non-planar model shown in figure 37. The corresponding master Kaste-

leyn matrix is

K0 =



6 7 8 9 10 11

1 X13 X31 0 0 0 0

2 0 X12 X21 X11 0 0

3 0 X23 X42 0 X34 0

4 X51 0 X14 0 0 X45

5 X35 0 0 0 0 0


. (13.9)

23It is also possible to study graph reduction for gauging 1. It would be interesting to determine whether,

for this gauging, it is possible to reduce graphs beyond the planar case.
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Figure 37. A 4-leg non-planar graph. We study it under gauging 2, which makes an embedding

into a Riemann surface unnecessary.

The perfect matching matrix is

P =



p1 p2 p3 p4 p5 p6 p7 p8 p9

X11 1 1 1 1 0 0 0 0 0

X13 1 0 0 0 1 1 1 0 0

X14 1 1 0 0 1 0 0 0 0

X23 1 0 0 0 0 1 0 0 0

X12 0 0 0 0 1 0 1 0 0

X34 0 1 0 0 1 0 0 1 1

X31 0 1 1 1 0 0 0 1 1

X35 0 1 1 0 0 0 0 1 0

X21 0 0 0 0 0 1 0 1 1

X45 0 0 1 0 0 1 1 1 0

X42 0 0 1 1 0 0 1 0 0

X51 0 0 0 1 0 0 0 0 1



. (13.10)

Gauging closed paths 1 and 2, a 4d moduli space is obtained with toric diagram given by

G =


0 1 0 0 -1 0

0 0 0 1 1 1

0 0 1 -1 0 0

1 0 0 1 1 0

2 2 2 1 1 1

 . (13.11)

The additional gauging of loop 1 is crucial for the reducibility of this theory. The toric

diagram associated to (13.11), is indeed the one for the moduli space of the BFT associated

to the single square box with four legs, as investigated in [10]. This fact already implies

that this theory is reducible. Let us illustrate the reduction in more detail.

Perfect matchings group themselves as follows over the 6 points in the toric diagram

{p1, p4} , {p5, p9} {p6, p7}
{p2} , {p3} , {p8}

(13.12)

It is straightforward to see that one can at most turn on a single non-zero vev while

preserving the moduli space. There are three options for doing so by giving vevs to X23, X12

or X51. Figure 38 shows the resulting graphs after the corresponding higgsings. For a fixed

– 51 –



J
H
E
P
0
6
(
2
0
1
3
)
0
3
2

〈X23〉 6= 0 〈X12〉 6= 0 〈X51〉 6= 0

Figure 38. Moduli Space preserving higgsings. These are the result of the three possible moduli

space preserving higgsings of the BFT in figure 37.

cyclic ordering of the external nodes, the graphs associated to the higgsings by X12 and X51

are identical, so we conclude that there are only two distinct reduced graphs. Notice that

there is no sequence of moves and bubble reductions capable of achieving this reduction.

Interestingly, the reduced graphs are planar, unlike the original theory. This model was

originally investigated in [16] using the leading singularity approach. Remarkably, their

results are in agreement with ours.

13.3.2 Reducing Cn theories

Interestingly, Cn theories become reducible when gauging 2 is considered. Below, it is shown

that the C ′n theories of section 8.1 are indeed reductions of them, since they have the same

moduli space and a smaller number of loops. The moduli space of Cn models for gauging

2 has been discussed in section 13.2. The moduli space for C ′n theories is computed in this

gauging and one finds full agreement. The perfect matching multiplicities of points in the

toric diagram however decrease. As discussed above, the perfect matchings that disappear

are associated to the fields acquiring non-zero vevs when higgsing from Cn to C ′n.

C′
1 Model. The toric diagram for the moduli space of this theory is given by

GC′1 =

 0 1

1 0

4 1

 , (13.13)

which is indeed equal to (13.3) up to multiplicities.

C′
2 Model. The toric diagram for the moduli space corresponds to

GC′2 =


0 0 -1 1 0 0

0 1 0 0 -1 0

1 0 1 0 1 0

0 0 1 0 1 1

4 2 2 2 2 1

 , (13.14)

i.e. it agrees with (13.6) up to multiplicities.

– 52 –



J
H
E
P
0
6
(
2
0
1
3
)
0
3
2

Figure 39. Reduced graph from the C3 theory by turning on vevs for X1, X3, X11 and X13.

C′
3 Model. The toric diagram of the moduli space corresponds to

GC′
3

=



-1 -2 -1 0 -1 0 0 -1 0 -1 -1 -1 -1 -1 0 0 1 0 0 0

1 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1 0

2 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 0 -1 0 0

-1 0 0 -1 0 0 -1 0 0 0 1 0 1 -1 0 0 0 1 0 1

-1 0 0 -1 0 0 0 1 1 -1 0 0 1 0 -1 0 0 1 0 0

1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 0

3 3 3 3 3 3 3 3 3 1 1 2 2 4 1 1 2 1 1 1


. (13.15)

Once again, the toric diagram in (13.8) is preserved up to reduced multiplicities.

13.3.3 Full reduction of C3

The models above can be further reduced. Let us focus on C3 and show how our methods

allow us to identify its maximal reductions. This theory has 24 chiral fields (6 of which

correspond to external legs) and 96 perfect matchings that distribute over 20 different

points of the moduli space toric diagram, as summarized by (13.8).

Using our methods, one can determine that there are 24 different combinations of four

non-zero simultaneous vevs that produce reduced graphs. They are given by:

{X1, X3, X11, X13} {X1, X5, X9, X17} {X1, X8, X12, X13} {X1, X9, X11, X13}
{X1, X9, X13, X17} {X2, X4, X12, X16} {X2, X6, X10, X14} {X2, X7, X9, X14}
{X2, X10, X12, X14} {X2, X12, X14, X16} {X3, X5, X7, X15} {X3, X7, X11, X15}
{X3, X8, X10, X15} {X3, X11, X13, X15} {X4, X6, X8, X18} {X4, X8, X12, X16}
{X4, X8, X16, X18} {X4, X9, X11, X16} {X5, X7, X9, X17} {X5, X7, X15, X17}
{X5, X10, X12, X17} {X6, X7, X11, X18} {X6, X8, X10, X18} {X6, X10, X14, X18}

(13.16)

Turning on any additional vev would lead to a different moduli space and hence an

inequivalent theory. Figure 39 shows the reduced graph resulting from turning on vevs for

X1, X3, X11 and X13. It is possible to check whether different combinations of vevs lead

to the same reduced graph, although we do not pursue this question any further.

14 Conclusions and future directions

This paper carried out a comprehensive study of BFTs, considerably extending the under-

standing of these theories in various directions. We recognized that there are two natural
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ways of assigning gauge symmetries to BFTs, which implies that in fact there are two

classes of gauge theories that can be associated to bipartite graphs. BFT1’s require speci-

fying an embedding of the graph into a Riemann surface for their definition, while BFT2’s

do not need a Riemann surface at all. The two classes of theories are interesting in their

own right and find applications in different contexts. For example, a subclass of BFT1’s

arise on D3-branes over toric CY 3-folds, while BFT2’s are related to scattering amplitudes.

An alternative approach for connecting BFTs and the toric CYs that correspond to

their master and moduli spaces was discussed. For planar BFTs, this perspective allowed

us to identify the toric diagram of the moduli space with the matroid polytope arising in

studies of cells in the positive Grassmannian [51].

We next investigated a vast array of graph transformations and used them to generate

new BFTs, including some infinite families. We also studied Seiberg dualities, reductions

by higgsings, and explored some of the main differences between the two possible gaugings

of BFTs.

Our work suggests several directions for future investigation of BFTs, regarding their

properties, string theory realization and applications. It is also desirable to understand the

physical origin of the connections between the different contexts in which BFTs appear.

Below we collect some interesting open questions and thoughts on how to address them.

• Stringy Implementation: We already know that BFT1’s on T 2 arise on the world-

volume of D3-branes probing toric CY 3-folds [1, 2, 27]. It would be extremely interesting

to find a stringy embedding for other classes of BFTs. It is natural to expect that planar

BFT1’s with boundaries can be engineered by fractional D3-branes and flavor D7-branes

on toric CY 3-folds. The chiral fields associated to external legs, which are singlets of

all gauge symmetries and transform as bifundamentals of global symmetry groups, would

correspond to higher dimensional fields living at the intersections between pairs of non-

compact D7-branes. This would provide additional motivation for the special treatment

we give to these fields. Orbifolds of C3 provide a simple setup to test these ideas, in which

the D3-D3, D3-D7 and D7-D7 spectrum can be determined using standard techniques [65].

After finding the spectrum of a generic brane configuration in these geometries, the BFTs

would correspond to combinations of branes leading to theories in which gauge symmetries

are anomaly free. Partial resolution could then be exploited to generate BFTs associated

to other CY 3-folds.

• General Graph Reducibility: It would be interesting to determine what the most

general operation leading to graph reduction is. Can all reductions be implemented by

either a) moves and bubble reductions or b) edge deletion, or are there more exotic examples

that do not fit into any of these two categories? Many reductions obtained by means of

(a) can also be achieved by using (b), it would also be desirable to determine whether this

is always true.

• Superconformal Invariance: It is interesting to investigate whether and under which

conditions, BFTs give rise to superconformal fixed points. In the case of BFT1’s, it is indeed

possible to map the R-charges of fields to angles in the isoradial or rhombus embeddings of
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the graph [28, 42, 66].24 In such embeddings, the vanishing of individual beta functions for

gauge and superpotential couplings translate into zero local curvature. For BFT1’s it thus

become natural to expect CFTs whenever the embedded graph has vanishing curvature

everywhere.

It is natural to speculate that, even in cases in which a superconformal fixed point

described by the full graph does not naively exist due to the curvature considerations in

the previous paragraph, the graph is still useful for identifying possible fixed points. The

non-vanishing curvature might be accommodated by ‘breaking the graph apart’ at some

places. The field theoretic interpretation of this operation would be that the corresponding

couplings disappear from the gauge theory. We can understand this phenomenon as a

graphical indication that it is possible to find a fixed point if these couplings flow to zero

and the vanishing of the corresponding beta functions disappears as a constraint.

It would also be interesting to revisit the question of conformal invariance while allow-

ing different ranks for gauge and global symmetry groups.

• Gauge Theory and Reducibility: From a BFT viewpoint, the reduction of degrees

of freedom associated to graph reductions is strongly reminiscent of an RG flow. It would

be interesting to determine whether this connection is indeed true. If so, it would provide

an alternative perspective on reduced graphs, which would be mapped to fixed points of

the RG flow.

On a related front, it would be interesting to establish whether there is a simple

field theoretic diagnostic for identifying reducible graphs. The graphical representation

of superconformal R-charges in terms of the isoradial or rhombus embeddings discussed

above provides a possible way of addressing this question. In fact, extending existing

results for BFTs on T 2 [66], in the planar case it is possible to connect the existence of

multiple intersecting zig-zag paths to non-positive values of R-charges. One limitation of

this approach is that the reducibility criterion based on zig-zag paths does not seem to

capture all possible reductions, particularly those that cannot be implemented in terms of

moves or bubble reductions but that require higgsing, as the one discussed in section 13.3.1.

This phenomenon becomes important for non-planar graphs.

• Detailed Investigation of Non-Abelian BFTs: The Abelian version of BFTs is

sufficient for certain applications, such as scattering amplitudes, and also captures some

features, like the connection by moves and bubble reductions, that are also present for non-

Abelian theories. Having said that, it is extremely interesting to perform a more detailed

study of non-Abelian BFTs. We envision powerful tools such as Hilbert series [36, 39–41]

and the superconformal index [67–69] can provide an interesting window into the dynamics

of the general theories.

• Non-Simply Connected Graphs: Our tools apply without changes to non-simply

connected graphs. Our discussion can certainly be extended to a more general class of

theories that includes this possibility.

24BFT2’s are independent of a Riemann surface embedding and hence there is no simple graphical trans-

lation of R-charges and beta functions.
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The above open questions and extensions of our enquiry illustrate the vast richness of

the subject of BFTs. We expect to report on new results on the subject in the near future.
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A Cn theories

This section summarizes as a reference the perfect matching matrices for the C1 and C2

models that have been in introduced in section 6. These are

PC1
=



p1 p2 p3 p4 p5 p6
X1 1 0 1 0 0 0

X2 0 1 0 1 0 0

X3 0 0 0 0 1 0

X4 0 0 0 0 0 1

X5 1 1 0 0 0 0

X6 0 0 1 1 0 0

X7 0 0 0 0 1 1

X8 0 0 0 0 1 1


,

and

PC2
=



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22
X1 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 1 0 0 0

X2 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

X3 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1

X4 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 0 1 0 0

X5 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

X6 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0

X7 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0

X8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1

X9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1

X10 1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0

X11 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0

X12 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

X13 0 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 1

X14 0 0 1 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0

X15 0 0 1 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 1 1

X16 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0



.

The perfect matching matrix for the C3 and any consecutive model are too large to be

included.
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B C′
n theories

This section summarizes the perfect matching matrices for the C ′1, C
′
2 and C ′3 models which

are discussed in section 8.1. The C ′n models correspond to higgsed Cn models. The perfect

matching matrices are

PC′
1

=



p1 p2 p3 p4 p5
X1 1 0 1 0 0

X2 0 1 0 1 0

X3 0 0 0 0 1

X4 1 1 0 0 0

X5 0 0 1 1 0

X6 0 0 0 0 1

X7 0 0 0 0 1


,

PC′
2

=



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16
X1 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

X2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

X3 0 0 0 0 1 1 1 1 0 2 1 1 1 0 0 2

X4 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0

X5 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0

X6 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1

X7 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

X8 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

X9 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0

X10 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

X11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X12 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1 0

X13 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 1

X14 0 1 1 1 0 1 1 1 1 1 1 1 0 0 0 0



,

PC′
3

=



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20 p21 p22
X1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

X2 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0

X3 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1

X4 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X5 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

X6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

X7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X8 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

X9 1 1 0 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0

X10 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 1 0 1 0 0 1

X11 0 1 0 1 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 1 1 0

X12 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0

X13 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 0 0 0 0

X14 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1

X15 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0

X16 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1

X17 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0

X18 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

X19 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1

X20 1 1 0 1 1 0 1 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0

X21 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0

. . .

. . .

p23 p24 p25 p26 p27 p28 p29 p30 p31 p32 p33 p34 p35 p36 p37 p38 p39 p40 p41 p42 p43 p44
0 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 1 1

0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0

0 1 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1

1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0

1 1 0 0 0 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 0 0

1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1



.
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C Sewed models

This section summarizes the perfect matching matrices for the sewed models σ0(C1), σ0(C2)

and σ0(C3). These models are discussed in section 9. The perfect matching matrices are

Pσ0(C1) =



p1 p2 p3 p4 p5 p6
X1 1 0 1 0 0 0

X2 0 1 0 1 0 0

X3 0 0 0 0 1 0

X4 0 0 0 0 0 1

X5 1 1 0 0 0 0

X6 0 0 1 1 0 0

X7 0 0 0 0 1 1


,

Pσ0(C2) =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14
X1 1 0 0 0 1 0 0 0 0 0 1 0 1 0

X2 0 1 1 0 0 0 0 0 0 0 0 1 0 1

X3 1 0 0 1 0 0 0 0 1 0 1 0 0 0

X4 0 1 0 0 0 1 1 0 0 0 0 1 0 0

X5 0 0 1 1 0 0 0 1 0 0 0 0 0 0

X6 0 0 0 0 1 1 0 0 0 1 0 0 0 0

X7 0 0 0 0 0 0 1 1 0 0 0 0 1 0

X8 0 0 0 0 0 0 0 0 1 1 0 0 0 1

X9 0 0 0 0 0 0 0 0 0 0 1 1 1 1

X10 1 1 0 0 0 0 1 0 1 0 0 0 0 0

X11 0 0 0 1 0 1 0 0 0 0 1 1 0 0

X12 1 1 1 0 1 0 0 0 0 0 0 0 0 0

X13 0 0 0 1 0 1 1 1 1 1 0 0 0 0

X14 0 0 1 0 1 0 0 1 0 1 0 0 1 1



,

Pσ0(C3) =



p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18
X1 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

X2 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 1

X3 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0

X4 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1

X5 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0

X6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

X7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

X8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

X10 1 0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 0 0

X11 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

X12 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0

X13 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0

X14 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 0

X15 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1

X16 0 0 0 0 0 1 0 1 1 1 0 1 0 0 1 0 0 0

X17 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0

X18 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1

X19 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0

X20 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0

X21 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1

. . .

. . .

p19 p20 p21 p22 p23 p24 p25 p26 p27 p28 p29 p30 p31 p32 p33 p34 p35 p36
0 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0

1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0

0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1

1 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0

0 1 0 1 0 1 0 1 1 1 1 0 0 1 0 1 1 1

1 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 1

0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 1 0
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