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1 Introduction

Recently much effort has focused on the study of F-theory compactifications. This includes

both the study of F-theory vacua as well as the determination of the supersymmetric

effective actions [1–4]. F-theory is a non-perturbative formulation of Type IIB string theory

with space-time filling seven-branes, in which the complexified Type IIB string coupling is

geometrized in the complex structure of an auxiliary two-torus. Crucial parts of the seven-

brane physics can then be captured geometrically by studying degenerations of this torus.

More recently, it was argued that they also can admit appealing realizations of Grand

Unified Theories [5–12] and thus provide a very geometrical approach to phenomenological

questions. The derivation of the effective actions are crucial both to infer corrections to

the duality and to study phenomenological setups.

While there has been significant progress in the derivation of the leading classical

effective action the inclusion of corrections predicted by string theory is still challenging.

One of the obstacles to deriving these corrections is the fact that there is no low-energy

effective action of F-theory and one has to take a detour via M-theory to infer properties
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of F-theory vacua and lower-dimensional effective actions [2, 13, 14]. The limit from M-

theory to F-theory is, however, very non-trivial and still has not been worked out for general

four-dimensional F-theory reductions.

In order to gain some insights into this we can consider instead a reduction of F-

theory to six dimensions [15–18]. Here the increased amount of supersymmetry and the

requirement of anomaly cancellation restricts the discussion and simplifies the analysis. For

this reason the effective action of F-theory reduced on a Calabi-Yau threefold was recently

described in [17, 18]. In what follows we will consider generalisations of this reduction in

which the M-theory dual is reduced on an SU(3) structure manifold with four-form flux.

We will then understand the F-theory duals of these effects and show how they may modify

the vacua of the 6D effective theories. Finlay we will show how these 6D effective theories

may be further reduced to four dimensions and compared with F-theory reductions on

Calabi-Yau fourfolds with similar modifications.

We begin our investigation by deriving the 6D effective gauged supergravity action

obtained by reducing F-theory on an elliptically fibered Calabi-Yau threefold Y3 with back-

ground fluxes. These fluxes will correspond to worldvolume two-form flux located on the

two-cycle S in the base B2 of Y3 wrapped by a seven-brane. In practice the derivation

proceeds by uplifting M-theory on a Calabi-Yau threefold with a special class of four-form

fluxes G4 for the M-theory three-form potential. The uplifted 6D supergravity actions ad-

mit a gauged shift symmetry of an axion in the universal hypermultiplet generally present

in a Type IIB reduction to six dimensions.

We will also consider F-theory reductions in which extra massive U(1) symmetries

arise. The M-theory duals of these will result from a reduction on an SU(3) structure

manifold for which may be considered to be an appropriately small modification of the

original Calabi-Yau threefold. Here the harmonic forms of the threefold are supplemented

by additional non-harmonic forms for which the deviation from the harmonic constraint is

parametrised by a constant similar to the flux parameters in the case described above. The

effective theory again involves additional gauged shift symmetries of the hypermultiplet

scalars [19].

In certain cases we will see that the derived gauged theories may no longer admit 6D

Minkowski solutions. However, we find that compactifying solutions exist which contain

a 4D Minkowski factor and a compact two space B̂. Generally the scalars in the 6D

hypermultiplet moduli space have to admit a non-trivial profile over B̂ for these solutions

to exist. Concretely we find solutions preserving four supercharges with a profile for the

axion Φ and the volume V of the Calabi-Yau threefold for the F-theory reductions with

7-brane flux. Moreover, these solutions also describe a flux for the 6D gauge fields on the

compact space B̂. These new fluxes then ensure the self-duality of the total 7-brane flux

on the worldvolume S = B̂ × S. The solutions are sourced by the presence of additional

co-dimension-two localized sources. These sources fill the 4D Minkowski space and are

points on B̂. In what follows we will interpret them as additional seven-branes wrapping

the entire base B2.

Having found vacuum solutions with compact component B̂ of the 6D gauged super-

gravity theory we proceed to derive the 4D effective theory encoding the dynamics of the
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fluctuations around the 6D backgrounds. The resulting 4D theory is shown to be a gauged

supergravity theory consistent with an F-theory reduction to four dimensions. Remark-

ably the 6D solutions and the resulting four-dimensional effective action captures many

crucial features of a general 4D F-theory reduction. We find that the conditions on the 6D

solutions match with certain tadpole cancellation conditions, the 6D flux background lifts

to a self-dual G4 in a fourfold reduction and a non-trivial warp factor is induced. When

neglecting warping effects the 4D N = 1 characteristic data are shown to match the results

of [2, 14, 20–22]. Similarly we will show that massive U(1) symmetries in the 6D reduction

provide the same effects as massive U(1)s in the equivalent 4D F-theory reduction [21, 23].

Reductions of 6D gauged supergravities to 4-dimensions, on compact spaces similar

to those considered here, have been analysied in the past [24–30] and higher dimensional

origins for these theories have also been proposed [31, 32]. The reductions we consider

here differ from these as the 6D theories we describe have only gauged hypermultiplet shift

symmetries, so the fluxes that can be turned on have a different form. However, many

of the qualitative effects are comparable. One reason for the interest in these sorts of

solutions was based on the idea that local effects at the locations of certain branes in the

6D solutions may provide a natural solution to the cosmological constant problem [26–28].

We will not comment further on this idea here but will briefly mention that in future work

it may be interesting to investigate to what degree these mechanisms may be embedded in

F-theory by means of an intermediate reduction such as that shown here.

This paper is organized as follows. In section 2 we will determine the 6D effective

theories arising in modified F-theory compactifications by examining the dual M-theory

reductions. In section 3 we will examine the vacua of the 6D effective theories and consider

the subsequent reduction to 4D. These will then be matched with the effective theories of

more direct 4D F-theory compactifications in section 4. In appendix A we will list our

conventions. Finally in appendix B we will describe how certain 6D solutions we have

described may be related to the 5D domain wall solutions of [33].

2 6D gauged supergravity from F-theory and M-theory

In this section we derive certain 6D gauged supergravities which may be obtained by

reductions of F-theory. These 6D theories are arrived at by taking the F-theory limit of a

5D M-theory reduction on an SU(3) structure manifold with 4-form fluxes. In section 2.1

we briefly recall the 5D gauged supergravity action arising as a reduction of M-theory on

a Calabi-Yau threefold with G4 flux. We then evaluate the result for the special case of

an elliptically fibered Calabi-Yau threefold. In section 2.2 we derive an alternative gauged

5D supergravity which arises by deforming the Calabi-Yau to a SU(3) structure manifold.

A general class of 6D gauged supergravities is reduced on a circle in section 2.3. The 5D

actions of section 2.1 and section 2.2 are then matched to the 6D reduction of section 2.3

after taking the F-theory limit in section 2.4. This allows to infer the 6D actions arising

from a reduction of F-theory with either 7-brane fluxes or massive U(1)s.
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2.1 M-theory on Calabi-Yau threefolds with fluxes

We begin by reviewing the reduction of M-theory on a Calabi-Yau threefold Ŷ3 with ˆ̂G4-

flux [34, 35]. The at lowest order in derivatives the bosonic part of the 11D supergravity

action is given by [36]

S(11) =

∫

M11

1

2
ˆ̂Rˆ̂∗1− 1

4
ˆ̂G4 ∧ ˆ̂∗ ˆ̂G4 −

1

12
ˆ̂C3 ∧ ˆ̂G4 ∧ ˆ̂G4 , (2.1)

where ˆ̂G4 = d ˆ̂C3 and ˆ̂R is the 11D Ricci scalar for which we use the conventions outlined

in appendix A. Here we will indicate 11D objects by ˆ̂. When reducing this action on a

Calabi-Yau threefold Ŷ3 we make the following ansatz for the 11D metric

dˆ̂s2 = gmndx
mdxn + 2g

(6)
ı̄j dȳ

ı̄dyj , (2.2)

where m = 0, . . . 4 is a world index on the 5D external space which is raised and lowered

with the metric gmn and i = 1, . . . 3 is a world index on the complex threefold which is

raised and lowered with the metric g
(6)
ı̄j . In addition we will allow for a background flux

〈 ˆ̂G4〉 = Gflux
4 with indices along Ŷ3. This flux can be expanded in a basis of four-forms ω̃Λ

representing elements of H4(Ŷ3) as

Gflux
4 = θ′Λω̃

Λ . (2.3)

The coefficients θ′Λ are in fact quantized and integral when expanded in an integral basis

of H4(Ŷ3,Z).

The real scalars parameterizing the variations of the Kähler structure of Ŷ3 are denoted

by vΛ, while the complex scalars parameterizing the changes in the complex structure of

Ŷ3 are named zκ. Infinitesimally they modify the Calabi-Yau metric by

δgij̄ = −i(ωΛ)ij̄ δv
Λ , δgij ∝ (χ̄κ̄)ik̄l̄Ω

k̄l̄
j δz̄

κ̄ , (2.4)

where Λ = 1, . . . h1,1(Ŷ3) and κ = 1, . . . h1,2(Ŷ3). In these expressions we have introduced

a basis ωΛ of (1, 1)-forms representing elements of H1,1(Ŷ3), and a basis χκ of (2, 1)-forms

representing elements of H2,1(Ŷ3). Ω3 is the globally defined nowhere-vanishing holomor-

phic 3-form. Using the forms ωΛ one can also expand the Kähler form J of the Calabi-Yau

manifold as J = vΛωΛ defining the finite vΛ. This means that the volume V =
∫

Ŷ3
∗61 of

Ŷ3 is given in terms of vΛ by

V =
1

3!

∫

Ŷ3

J ∧ J ∧ J =
1

3!
VΛΣΘv

ΛvΣvΘ , VΛΣΘ =

∫

Ŷ3

ωΛ ∧ ωΣ ∧ ωΘ , (2.5)

where VΛΣΘ are the triple intersection numbers. In what follows it is useful to separate off

the volume and define the new scalars LΛ which satisfy

LΛ =
vΛ

V1/3
, N(M) ≡

1

3!
VΛΣΘL

ΛLΣLΘ = 1 . (2.6)

When distributed into five-dimensional supermultiplets the scalars LΛ are part of vector

multiplets while the volume V is part of the universal hypermultiplet.
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To complete the reduction one also has to consider fluctuations of the M-theory three-

form ˆ̂C3. Therefore, we make the ansatz

ˆ̂G4 = dξK ∧ αK − dξ̃K ∧ βK + F ′Λ ∧ ωΛ + G4 +Gflux
4 , (2.7)

where (ξK , ξ̃K) are 5D scalars, F ′Λ = dA′Λ are the field-strengths of 5D U(1) vectors

A′Λ, and G4 = dC3 is the field strength of a 5D three-form C3. Here we have introduced

a symplectic basis of three-forms (αK , β
K) on Ŷ3 representing elements of H3(Ŷ3) such

that K = 0, . . . , h1,2(Ŷ3). For an appropriately chosen basis the only non-vanishing double

intersections of the (αK , β
K) and (ωΛ, ω̃

Λ) are
∫

Ŷ3

αK ∧ βL = δK
L ,

∫

Ŷ3

ωΛ ∧ ω̃Σ = δΛ
Σ . (2.8)

Let us next turn to the determination of the 5D effective action by inserting the

reduction ansatz into (2.1). Integrating over the Calabi-Yau space and carrying out a

Weyl rescaling gmn → V− 2
3 gmn to bring the effective action into the 5D Einstein frame, we

find that

S
(5)
(M) =

∫

M5

[

1

2
R ∗ 1− 1

2
GΛΣ dL

Λ ∧ ∗dLΣ − 1

2
GΛΣ F

′Λ ∧ ∗F ′Σ

− 1

12
VΛΣΘA

′Λ ∧ F ′Σ ∧ F ′Θ − 1

4V2
dV ∧ ∗dV − 1

4
V2G4 ∧ ∗G4

− 1

4
(ξKdξ̃K − ξ̃Kdξ

K + 2A′Λθ′Λ) ∧ G4 − gκκ̄dz
κ ∧ ∗dz̄κ̄ (2.9)

+
1

4V (ImM)KL(dξ̃K −MKMdξ
M ) ∧ ∗(dξ̃L − M̄LNdξ

N )− 1

8V2
GΛΣθ′Λθ

′
Σ ∗ 1

]

,

where MKM (z, z̄) is a complex matrix depending on the scalars zκ, and GΛΣ(L) is a real

matrix depending on the scalars LΛ. The inverse of GΛΣ is denoted by GΛΣ, while the

inverse of ImMKM is denoted by (ImM)KM . Explicitly GΛΣ is derived to be

GΛΣ =
1

2

1

V1/3

∫

Ŷ3

ωΛ ∧ ∗6 ωΣ = −1

2
(∂LΛ∂LΣ lnN(M))|N(M)=1 , (2.10)

with N(M) being the cubic polynomial in LΛ defined in (2.6) but evaluated at 1 only after

taking the derivative. The explicit expressions for the metric gκκ̄(z, z̄) and the complex

matrix MKM (z, z̄) can be found in equations (A.4) and (A.6) of appendix A. We will not

need their precise form in the following.

To bring the action (2.9) into a standard supersymmetric form one first has to dualize

the three-form C3 into a 5D scalar Φ. We thus introduce a term in the action which imposes

the Bianchi identity for G4 given by

∆S
(5)
(M) =

∫

M5

−1

4
dΦ ∧ G4 . (2.11)

Upon varying the action with respect to G4, now treated as a fundamental field, we find

the equation

2V2 ∗5 G4 + dΦ+ 2A′Λθ′Λ + ξKdξ̃K − ξ̃Kdξ
K = 0 . (2.12)
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Substituting this back into the effective action (2.9) gives the effective action with G4

dualized. At this point it is useful to make a redefinition Φ → Φ+ ξ̃Kξ
K in order to move

into a basis where the scalar ξ̃K is purely axionic, which will be important for comparison

with what follows. This gives the 5D effective action

S
(5)
(M) =

∫

M5

[

1

2
R ∗ 1− 1

2
GΛΣ dL

Λ ∧ ∗dLΣ − 1

2
GΛΣ F

′Λ ∧ ∗F ′Σ

− 1

12
VΛΣΘA

′Λ ∧ F ′Σ ∧ F ′Θ − 1

4V2
dV ∧ ∗dV

− 1

16V2
(DΦ+ 2ξKdξ̃K) ∧ ∗(DΦ+ 2ξKdξ̃K)− gκκ̄dz

κ ∧ ∗dz̄κ̄

+
1

4V (ImM)KL(dξ̃K − M̄KMdξ
M ) ∧ ∗(dξ̃L −MLNdξ

N )− V
(5)
flux ∗ 1

]

, (2.13)

where we have abbreviated the invariant derivative DΦ and the scalar potential V
(5)
flux as

DΦ = dΦ+ 2A′Λθ′Λ , V
(5)
flux =

1

8V2
GΛΣθ′Λθ

′
Σ . (2.14)

These gaugings and the potential they induce then describe the deformation away from

the ungauged 5D supergravity caused by the background flux Gflux
4 .

The M-theory/F-theory duality, which we wish to use in order to lift this 5D action in

the F-theory limit, only applies when the Calabi-Yau manifold Ŷ3 is an elliptic fibration.

More precisely, Ŷ3 can be the resolution of a singular elliptic fibration over some base twofold

B2. When such spaces are considered the divisors of Ŷ3 can be split up into three sets with

different origins. Here we will label ω0 as the duals of the divisor associated to the section

of the elliptic fibration, ωα are the duals of the divisors associated with divisors of the base,

and ωi are the duals of the divisors associated with the resolution of the singularities of the

elliptic fibration. The 5D vector multiplets are then similarly split so that the vectors are

decomposed as A′Λ = (A′0, A′α, A′i) and the scalars as LΛ = (R,Lα, Li). The intersection

numbers VΛΣΘ also become constrained such that

V000 = Ωαβa
αaβ , V00α = Ωαβa

β V0αβ = Ωαβ ,

Vαβγ = 0 , V0iΛ = 0 , Vαβi = 0 ,

Vαij = −CijΩαβb
β , Vijk 6= 0 , (2.15)

where Cij is the Cartan matrix of the group associated with the singularity resolution of

the Calabi-Yau manifold.

To shift to a basis in which we can lift up to a 6D theory F-theory reduction it is

helpful to make the following field redefinitions

M0 = 2R , Mα =
1

2
Lα +

1

4
KαR , M i =

1

2
Li ,

A0 = 2A′0 , Aα =
1

2
A′α +

1

4
KαA′0 , Ai =

1

2
A′i ,

θ0 =
1

2
θ′0 −

1

4
Kαθ′α , θα = 2θ′α , θi = 2θ′i . (2.16)
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In terms of these redefined fields the scalar N(M) then takes the form

N(M) ≡ ΩαβM
0MαMβ − 4Ωαβb

αCijM
βM iM j +

1

192
Ωαβa

αaβM0M0M0

+
1

2
Ωαβb

αCijM
0KβM iM j +

4

3
VijkM

iM jMk = 1 . (2.17)

The fields can be arranged into multiplets of the 5D supersymmetry. For example the 5D

metric gmn together with one of the vectors A0
m form the bosonic part of the 5D gravity

multiplet. The remaining h1,1(Ŷ3)− 1 vectors combine with the constrained scalars LΛ to

form n5V = h1,1(Ŷ3)− 1 vector multiplets. Finally, we note that the 4(h1,2(Ŷ3) + 1) scalars

given by qu = (V ,Φ, zk, z̄k̄, ξK , ξ̃K) belong to n5H = h1,2(Ŷ3) + 1 hypermultiplets. The

resulting 5D action is then given by

S
(5)
(M) =

∫

M5

[

1

2
R ∗ 1− 1

2
GΛΣdM

Λ ∧ ∗dMΣ − 1

2
huvDq

u ∧ ∗Dqv (2.18)

− 1

2
GΛΣF

Λ ∧ ∗FΣ − 1

12
NΛΣΘA

Λ ∧ FΣ ∧ FΘ − V
(5)
flux ∗ 1

]

,

where huv is the hypermultiplet target space metric which can be read off by comparison

with (2.13) and

GΛΣ(M) = −1

2
(∂MΛ∂MΣ lnN(M))|N(M)=1 , NΛΣΘ = (∂MΛ∂MΣ∂MΘN(M))|N(M)=1 .

(2.19)

In this alternative basis the gauge invariant derivatives and the scalar potential are now

given by

Dqu =

{

dΦ+ 2AΛθΛ if qu = Φ ,

dqu if qu 6= Φ ,
V

(5)
flux =

1

8V2
GΛΣθΛθΣ . (2.20)

In general the potential of a 5D N=1 theory is given by [33, 37]

V (5) = −4(GΛΣ − 2MΛMΣ)PΛA
BPΣB

A +
1

2
huvk

u
Λk

u
ΣM

ΛMΣ , (2.21)

where kuΛ are the killing vectors which define the gaugings as Dqu = dqu+kuΛA
Λ and PΛA

B

is a function of the hypermultiplet degrees of freedom, valued in the adjoint of SU(2) and

is related to the SU(2) part of the hypermultiplet curvature Kuv by

kuΛKuvA
B = ∇vPΛA

B . (2.22)

The potential found in M-theory reduction we have carried out here results from a special

case of this in which (2.21) becomes simplified as

PΛA
BPΣB

A = − 1

16
kuΛk

v
Σhuv . (2.23)

We may then chose a gauge in which this is satisfied as

PΛA
B =

i

8V θΛσ
3
A
B , (2.24)
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where σ3 is the Pauli matrix. Substituting this back into (2.21) then results in the poten-

tial (2.20).

Let us note here that only shift symmetries are gauged by turning on the flux Gflux
4 .

In the M-theory reduction on the resolved Ŷ3 there is no charged 5D matter in the effective

theory and all gauge fields are U(1) fields. This can be attributed to the fact that this 5D

theory corresponds to an 6D F-theory compactification on an extra circle when pushing

the theory to the 5D Coulomb branch.

2.2 M-theory on SU(3) structure sixfolds

In addition to turning on the flux as described above we may also consider reductions on a

more general class of real six manifolds Ẑ6 that are no longer Calabi-Yau manifolds [38–42].

Concretely we will consider in the following six manifolds Ẑ6 that admit SU(3) structure

but which are in general neither Kähler, nor complex, and do not have vanishing Ricci

curvature. However, as a result of the SU(3) structure they do admit a globally defined,

no-where vanishing two-form J and three-form Ω. In contrast to Calabi-Yau spaces with

harmonic J , Ω one now has

dJ 6= 0 , dΩ 6= 0 , (2.25)

while we still impose

dJ ∧ J = 0 . (2.26)

To perform the reduction we must then expand in a basis that includes both the

harmonic forms that we considered before and also a different set of non-closed and exact

forms. To avoid extensive notation we will use the same indices as in section 2.1 and will

extend the range of Λ and K to include the non-harmonic forms. These then satisfy

dαK = e′KΛω̃
Λ , dβK = 0 , dωΛ = e′KΛβ

K , dω̃Λ = 0 . (2.27)

The deviation from Calabi-Yau condition is then described by the constants e′KΛ. These

deviations are introduced such that the expanded basis preserves the form of the inter-

section conditions (2.5) and (2.8) now integrated over Ẑ6. Moreover, we restrict to the

case that

ωΛ ∧ βK = 0 , (2.28)

at least in all integrals. This mimics the conditions valid in Calabi-Yau reductions and

accounts for the fact that no one-forms are used in the reduction ansatz.

The dimensional reduction of M-theory on Ẑ6 is performed in analogy with section 2.1

but taking into account the properties (2.27) of the forms. For simplicity we will include

the flux Gflux
4 only at the end of the discussion. The expansion of the M-theory three-form

then takes the form

ˆ̂G4 = dξKαK −Dξ̃Kβ
K + F ′ΛωΛ + G4 + ξKe′KΛω̃

Λ , (2.29)

where

Dξ̃K = dξ̃K + e′KΛA
′Λ . (2.30)
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In order to perform the F-theory lift it will again be necessary to split the index Λ into

directions associated to the divisors of different origins. In doing this we now extended the

range of the index i appearing the the decomposition in order to include the additional

non-harmonic 2-forms in (2.27). This means that when making the basis change (2.16) we

may then define

eK0 = 0 , eKα = 0 , eKi = 2e′Ki . (2.31)

When carrying out this decomposition we will also extend the definition of Cij appearing

in (2.15) so that now only the part associated with the harmonic 2-forms corresponds to

the Cartan matrix of the gauge group, associated with the singularity resolution. Reducing

as before, carrying out the rescalings and dualizing the three-from with field strength G4

into a scalar Φ we find that

S
(5)
(M) =

∫

M5

[

1

2
R ∗ 1− 1

2
GΛΣ dM

Λ ∧ ∗dMΣ − 1

2
huvDq

u ∧ ∗Dqv

− 1

2
GΛΣ F

Λ ∧ ∗FΣ − 1

12
NΛΣΘA

Λ ∧ FΣ ∧ FΘ − V (5)
geom ∗ 1

]

, (2.32)

where GΛΣ(M) is formally obtained by the same generating function N(M) as in (2.17).

The gaugings that appear here are now given by

Dqu =















dΦ+AΛeKΛξ
K , if qu = Φ ,

dξ̃K +AΛeKΛ , if qu = ξ̃K ,

dqu , if qu 6= Φ, ξ̃K .

(2.33)

These can be brought into a simplified form by once again making a field redefinition

Φ → Φ + ξK ξ̃K which modifies the hypermultiplet metric to match that shown in (2.13).

When this is done the scalar ξ̃K has a standard gauged shift symmetry and is the only

scalar with a gauge covariantized derivative such that Dξ̃K = dξ̃K +AΛeKΛ.

The potential V
(5)
geom now contains contributions which arise in the M-theory reduction

from both the ˆ̂G4 kinetic term and from the internal space Ricci scalar. These combine to

give a total potential which agrees with that which is required by supersymmetry (2.21)

for the gaugings we have described. The SU(2) adjoint valued functions PΛA
B can also

be derived by reducing the 11D gravitino variation and reading off the relevant term as

described in [40, 43]. For both the fluxes and the geometric deformations we have described

here this gives

vΛP3
Λ =

i

8V

∫

Ẑ6

J ∧G4 , vΛP1
Λ + ivΛP2

Λ =
i

8
√
V
e

1
2
Kc

∫

Ẑ6

Ω ∧ dJ , (2.34)

where Kc is the Kähler potential for the complex structure deformations zκ and we have

expanded PΛA
B in terms of the Pauli matrices as

PΛA
B = P x

Λσ
x
A
B , (2.35)
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for x = 1, 2, 3 . We note that for the SU(3) structure reductions we have considered

this gives

PΛA
B =

ie
1
2
Kc

16
√
V
eKΛ(Z

K+Z̄K)σ1A
B+

e
1
2
Kc

16
√
V
eKΛ(Z

K−Z̄K)σ2A
B+

i

8V eKΛξ
Kσ3A

B , (2.36)

where ZK are the scalars that appear in the expansion of Ω such that we may chose a basis

in which ZK = {1, zκ}.
To close this section let us also add the terms arising from a nontrivial background

flux Gflux
4 . Combining the gaugings (2.20) with the gauging induced by the non-vanishing

eKΛ one finds

Dqu =















dΦ+ 2AΛθΛ , if qu = Φ ,

dξ̃K +AΛeKΛ , if qu = ξ̃K ,

dqu , if qu 6= Φ, ξ̃K .

(2.37)

The total potential may then be derived from (2.34) and (2.21). The modifications (2.37)

encode the deviations from a standard Calabi-Yau reduction of M-theory. In the next sec-

tions we will demonstrate the up-lift of this five-dimensional gauged supergravity theory to

six-dimensions. This will then be interpreted as performing the M-theory to F-theory limit.

2.3 Circle reduction of gauged 6D supergravity

Having derived the 5D gauged supergravities obtained by M-theory compactifications we

will now turn to the F-theory side. The starting point will be a general 6D (1, 0) gauged su-

pergravity [44, 45]. We will dimensionally reduce this theory on a circle and then determine

the couplings by comparison with the M-theory reduction.

The 6D theory is specified by a “pseudo action” in the sense that self-duality conditions

for three-form field strengths need to be imposed by hand after variation of the action. In

the following we will indicate 6D quantities by a ˆ. The 6D tensor multiplets contain

a scalar ĵα and a two-form B̂α with field strength Ĝα as bosonic degrees of freedom.

The bosonic fields of the 6D hypermultiplets describe four scalars q̂U each. The bosonic

components of the 6D vector multiplets contain only the vectors ÂI . These are in general

non-Abelian with field strength F̂ I = dÂI + 1
2f

I
JKÂ

J ∧ ÂK . At lowest order in derivatives

the pseudo-action is given by

S(6) =

∫

M6

[

1

2
R̂∗̂1− 1

4
ĝαβĜ

α ∧ ∗̂Ĝβ − 1

2
ĝαβdĵ

α ∧ ∗̂dĵβ − 1

2
ĥUV D̂q̂

U ∧ ∗̂D̂q̂V

− 2Ωαβ ĵ
αbβCIJ F̂

I ∧ ∗̂F̂ J − Ωαβb
αCIJ B̂

β ∧ F̂ I ∧ F̂ J − V̂ (6)∗̂1̂
]

, (2.38)

with self-duality condition

ĝαβ ∗̂Ĝβ = ΩαβĜ
β , where Ĝα = dB̂α + 2bαω̂cs , dω̂cs = CIJ F̂

I ∧ F̂ J . (2.39)

The couplings bα,Ωαβ and CIJ = Tr(TITJ) are constants defining the theory. The ĵα

appear in the metric for the tensor multiplets and are normalized as

gαβ = 2ĵαĵβ − Ωαβ , ĵαĵβΩαβ = 1 , ĵα = Ωαβ ĵ
β . (2.40)
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Here α = 0, . . . n6T is an index in the fundamental of SO(n6T , 1) which counts the n6T tensor

multiplets, I = 1, . . . dim(G) is an index in the adjoint of G which counts the dim(G) vector

multiplets and U = 1, . . . , 4n6H is an index which counts the n6H hypermultiplets.

As in the 5D case the hypermultiplet gaugings define the covariant derivatives

and potential

D̂qU = dq̂U + ÂI k̂UI , V̂ (6) = −1

4

1

Ωαβ ĵαbβ
C−1IJ ÂU

A
BÂV

B
Ak̂

U
I k̂

V
J , (2.41)

where k̂UI and ÂU
A
B are in general functions of the hypermultiplet scalars. Here A = 1, 2 is

an index in the fundamental of the SU(2) R-symmetry of the 6D theory. The hypermultiplet

gaugings induce a transformation of objects which carry the the 6D R-symmetry index such

that the covariant derivative of the 6D supersymmetry parameter appearing in the gravitino

variation is given by

D̂M ǫ̂
A = ∇̂M ǫ̂

A + D̂M q̂
U ÂU

A
B ǫ̂

B . (2.42)

The covariant derivative of the 6D gravitino ψ̂A
M appearing in the gauged Rarita-Schwinger

term also has this structure.

In order to make contact with the 5D theory we have found in the previous section

and obtain the F-theory lift we reduce this action on a circle. The ansatz for the metric is

ŝ2(6) = gmndx
mdxn + r2(dy −A0)2 , (2.43)

where A0 is the Kaluza-Klein vector, r the circle circumference and y the coordinate along

the circle. The vector and tensor fields are reduced as

ÂI = AI + ζI(dy −A0) , B̂α = Bα + (Aα + 2bαCIJζ
IAJ) ∧ (dy −A0) . (2.44)

Substituting this ansatz into the action, integrating over the circle direction, performing

a Weyl rescaling of the 5D metric gmn → r−
2
3 gmn and using the self duality constraint

results in a 5D action with, in general, adjoint scalars ζI and non-Abelian vectors AI . We

will not display the whole non-Abelian action here, since we are mostly interested in the

Coulomb branch of the theory.

As the 5D M-theory reduction results in the Abelian theories defined by (2.18)

and (2.32), this must be compared with the Coulomb branch of the circle reduced ac-

tion. The 5D Coulomb branch is obtained by giving the adjoint scalars ζI a vacuum

expectation value that breaks the gauge group as G → U(1)rank(G). We therefore restrict

the vectors to those which gauge only this Cartan sub-algebra of G which we label as Ai

with i = 1, . . . , rank(G), for these Cartan elements one has f I ij = 0 so that F i = dAi. The

scalars in the vector multiplets are accordingly denoted by ζi. To determine the action in

the Coulomb branch is in general a hard task, since it requires us to integrate out massive

fields that gained their mass due to the breaking of G. In the following we will display

the truncated action. More precisely, we drop all massive modes that gained their mass by

moving to the Coulomb branch and the Kaluza-Klein reduction and do not include correc-

tions arising after integrating out these massive modes. In principle, one has to compute
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the Wilsonian effective action after integrating out both massive Coulomb branch modes

and Kaluza-Klein modes [18]. The retained fields also include hypermultiplets that admit

scalars with a gauged 6D shift symmetry. These gaugings will be induced by fluxes or the

non-Calabi-Yau geometry in the F-theory setup. In summary, we will restrict the hyper-

multiplet scalars to the set qu, where u = 1, . . . , n6H(Coulomb), which are neutral under the

gaugings or have only shift symmetries so that kui = const.1 These restrictions are made

in a supersymmetric way so that whole multiplets are truncated from the action.

With this restrictions in mind, we are now able to present the 5D action after circle

reduction. In order bring the action into a more standard form it will be necessary to

define the coordinates of the scalar target space [18]

M0 = r−
4
3 , Mα = r

2
3 (jα + 2bαr−2Cijζ

iζj) , M i = r−
4
3 ζi . (2.45)

The action then reads

S
(5)
(F ) =

∫

M5

[

1

2
R ∗ 1− 1

2
huvDq

u ∧ ∗Dqv − 1

2
GΛΣ dM

Λ ∧ ∗dMΣ

− 1

2
GΛΣ F

Λ ∧ ∗FΣ − 1

12
(Vred

ΛΣΘ +Xred
ΛΣΘ)A

Λ ∧ FΣ ∧ FΘ − V
(5)
red ∗ 1

]

, (2.46)

where the covariant derivatives for the hypermultiplet scalars are given by Dqu = dqu +

Aikui . The metric GΛΣ depends on the scalars MΛ = (M0,Mα,M i) and is given by

GΛΣ = −1

2
(∂MΛ∂MΣ lnN(F ))|N(F )=1 , N(F ) ≡ N p

(F ) +N np
(F ) , (2.47)

where

N p
(F ) ≡ ΩαβM

0MαMβ − 4Ωαβb
αCijM

βM iM j , N np
(F ) ≡ 4Ωαβb

αbβCijCkl
M iM jMkM l

M0
.

(2.48)

Let us note that when inserting the definitions (2.45) into this form of N(F ) one indeed finds

that N(F ) = 1 as a consequence of jαjβΩαβ = 1. The coefficients of the Chern-Simons-type

terms are separated into constant couplings Vred
ΛΣΘ and field-dependent couplingsXred

ΛΣΘ(M).

The former are given by

Vred
ΛΣΘ = ∂MΛ∂MΣ∂MΘ N p

(F ) , (2.49)

The field dependent Chern-Simons couplings are only symmetric in the last two indices

Xred
ΛΣΘ = Xred

Λ(ΣΘ). They are given by

Xred
0ΛΣ = Xred

αΛΣ = 0 , Xred
iΛΣ =

3

4
∂M i∂MΛ∂MΣ N np

(F ) , (2.50)

1One way of seeing this constraint is to notice that the truncation of the non-Abelian gauge fields AI ,

which gauge the symmetries of a set of scalars qU , has to be compatible with the equations of motion. On

the Coulomb branch we split the vectors into as AI = {Ai, AI′} where Ai are the gauge fields associated

to the Cartan sub-algebra and AI′ are the rest, and then set AI′ to zero. This is consistent if the AI′ field

equation D∗F I′ = −kI′

U ∗DqU + . . . remains satisfied when the truncation is carried out. Then decomposing

the scalars qU as qU = {qu, qU
′

} where kI′

u = 0, kI′

U′ 6= 0 we see that when AI′ is set to zero we must also

set qU
′

to zero on the right. For this reason scalars that are charged under the truncated vectors must also

be truncated. However the scalars that remain qu may still be charged under the remaining vectors so that

ki
u 6= 0 as is seen in our constructions.
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Finally, let us discuss the scalar potential, by reducing the 6D action we find

V
(5)
red =

1

4
r−

2
3

1

Ωαβjαbβ
C−1ijAu

A
BAv

B
Ak

u
i k

v
j +

1

2
r−

8
3huvζ

iζjkui k
v
j . (2.51)

To compare this with the 5D result it is useful to rewrite this expression using the inverse

metric GΣΛ. This requires us to explicitly invert GΣΛ computed using (2.47) and (2.48).

To do this one uses standard inversion formulas for block matrices to find

Gij = G̃
ij
+ G̃G̃

ik
G̃kG̃

jl
G̃l =

1

4
r−

2
3

1

Ωαβjαbβ
C−1ij + 2r−

8
3 ζiζj , (2.52)

where we have applied

G̃ = (G00 −G0α(Gαβ)
−1G0β − G̃iG̃

ij
G̃j)

−1 , G̃i = (G0i −Giα(Gαβ)
−1G0β) ,

G̃
ij
= (Gij −Giα(Gαβ)

−1Gβj)
−1 . (2.53)

and inserted the results for the components of GΛΣ which may be read off from (2.47).

Substituting this into potential (2.51) we find that this can be rewritten as

V
(5)
red = −

(

(Gij − 2M iM j)Au
A
BAv

B
Ak

u
i k

v
j −

1

2
huvM

iM jkui k
v
j

)

. (2.54)

2.4 Lifting to 6D F-theory

We now wish to match the 5D theory (2.46) arising after circle reduction of 6D supergravity

with the 5D theories (2.18) and (2.32) in the reduction of 11D supergravity. As the actions

are both supersymmetric, this can be done by matching the hypermultiplet gaugings, the

potential and the scalar N .

We will first review the matching of N(M) given in (2.17) with N(F ) given in (2.48).

To do this we first note that the F-theory lift applies in the limit in which the volumes of

the elliptic fibre and the resolution blowups vanish but where the threefold volume remains

finite. The effect of taking this limit on the effective action results in a rescaling of the

scalars as

M0 → ǫM0 , Mα → ǫ−
1
2Mα , M i → ǫ

1
4M i . (2.55)

and then taking the limit as ǫ→ 0. When this is done N(M) becomes

N(M) = ΩαβM
0MαMβ − 4Ωαβb

αCijM
βM iM j . (2.56)

Next we consider (2.48) this consists of a polynomial and a non-polynomial part. The

polynomial part N p
(F ) matches (2.56) and the non-polynomial part N np

(F ) can be interpreted

as a one-loop correction as discussed in [18]. Furthermore, N np
(F ) is proportional to the

contraction bαbβΩαβ that characterizes the 6D one-loop anomalies.

Let us now discuss the hypermultiplet gaugings induced by G4-fluxes. To do this we

compare the gaugings that appear in (2.20) with the gaugings (2.46). We note from (2.46)

that only gaugings associated with the vectors Ai
m are present. This implies that the G4-

fluxes corresponding to θ′0, θ
′
α in (2.3), or equivalently to the fluxes θ0, θα defined in (2.16),
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cannot be lifted to F-theory. The 6D Killing vectors are related to the remaining fluxes

and one has

kΦi = 2θi , θ0 = θα = 0 , (2.57)

with all other components of the Killing vectors vanishing. It is easy to check that these

kui indeed satisfy the Killing vector equations

Lkihuv = kwi ∂whuv + ∂uk
w
i hwv + ∂vk

w
i hwu = kΦi ∂Φhuv = 0 , (2.58)

as kvi are constant and the metric (which can be read off from (2.13)) is independent of Φ.

We can see that these allowed gaugings can be lifted to F-theory by considering the

reduction of Type IIB Supergravity on an orientifold quotient of K3 with D7-Branes which

represents the week coupling limit of the F-theory reduction. In this reduction the D7

brane action contains a term of the form
∫

D7

ˆ̂C4 ∧ Tr( ˆ̂F ∧ ˆ̂F ) , (2.59)

where ˆ̂ now indicates a 10D quantity, ˆ̂F is the field strength for the gauge field on the

D7 brane and ˆ̂C4 is the IIB Ramond-Ramond 4-form. To avoid breaking the 6D Lorentz

symmetry of the reduced theory the D7 brane must fill the lower dimensions and wrap a

2-cycle S on the internal space. When a flux is turned on such that ˆ̂F i = C−1ijθi[S], where

[S] is the 2-form which is the Poincaré dual of S, this gives
∫

D7

ˆ̂C4 ∧ Tr( ˆ̂F ∧ ˆ̂F ) =

∫

M6

2Ĉ4 ∧ CijF̂
i

∫

S
C−1jkθk[S] =

∫

M6

2Ĉ4 ∧ F̂ iθi , (2.60)

when the 6D 4-form Ĉ4 is dualized to the scalar Φ̂ this term is responsible for the appearance

of the gauging in the 6D covariant derivative DΦ̂ = dΦ̂ + 2θiÂ
i. From this we understand

that the F-theory dual of the 4-form flux we have described is flux on the world volume of

the 7-branes.

Next we can match the potentials. To do this we simply note that comparing (2.21)

with (2.54) we find that

PiA
B =

1

2
kui Au

A
B , P0A

B = PαA
B = 0 . (2.61)

Then for the potential induced by the flux gaugings in 5D where (2.24) applies the 6D

potential is given by

V̂
(6)
flux =

1

32Ωαβ ĵαbβV̂2
C−1ijθiθj . (2.62)

This potential has a runaway direction for the scalars ĵα and V̂ and as a result the 6D theory

effective theory has no maximally symmetric solutions. We will discuss the non-maximally

symmetric solution which replace this in the next section.

We can also up-lift the gaugings induced in the reduction on the SU(3) structure

manifold. As before we compare the gaugings that are arise in the circle reduction (2.46)
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with (2.33) to find that the only non-vanishing killing vectors of the 5D hypermultiplet

target space are k
ξ̃K
i = eKi with all other components of the killing vectors vanishing.

We can also consider the F-theory duals of these lifted SU(3) structure deformations.

Here we find that the gaugings of the 6D effective theories are caused in the IIB reduction

by the presence of extra massive U(1) symmetries. To see this we can note that when these

symmetries are included there will be an additional term of the from
∫

D7

ˆ̂C6 ∧ Tr( ˆ̂F ), (2.63)

where ˆ̂C6 is the Ramond-Ramond 6-form and these extra U(1) branes wrap new cycles Si
on the base B2. To reduce these extra terms to 6D we expand ˆ̂C6 = ẐK

4 ∧ iηαK , where η

is a vector that projects αK to a 2-form on the base, and then integrate over Si. This then

gives rise to extra terms in the 6D action of the form
∫

D7

ˆ̂C6 ∧ Tr( ˆ̂F ) =

∫

M6

ẐK
4 ∧ F̂ i

∫

Si

iηαK =

∫

M6

ẐK
4 ∧ F̂ ieiK . (2.64)

When the 4-form ẐK
4 is dualized to give the scalar

ˆ̃
ξK this term then gives rise to gaugings

present in our 6D effective theory. We note from this that if we make the gauge choice

as described in section 2.2 and expand αK into α0 and ακ then, as iηα0 is a (2, 0)-form

and Si is a (1, 1)-cycle, we see that e0i = 0 for the F-theory gaugings we describe here.

These are then dual to a restricted set of SU(3) structure deformations which also satisfy

this constraint.

As before we can also compare the scalar potentials find that in this case

V̂
(6)
U(1) =

1

32Ωαβ ĵαbβ
C−1ij

(

1

V2
eκieλjξ

κξλ +
eKc

V eκieλjz
κz̄λ

)

. (2.65)

When interpreted as coming from D7-branes the potential arises by expanding the Dirac-

Born-Infeld action. The first term of the potential depends on the Wilson line scalars,

while the second term depends on the D7-brane deformations. The latter indicates that

certain D7-brane deformations are actually massive since they require it to wrap a non-

supersymmetric cycle.

3 Vacua and reductions to 4D

In this section we will find and comment on certain vacua of the 6D effective theories

that result from the F-theory compactifications we have described. In doing this we will

approach the effective theories that result from 7-brane fluxes and massive U(1) symmetries

separately. In section 3.1 we will describe the vacua of the 6D theory deformed by fluxes.

As this effective theory has a potential with runaway directions a maximally symmetric

solution is not possible and is replaced by vacua which locally describe 4D flat space times

a 2D compact internal space. In section 3.2 we will consider the 4D effective theories that

result from a reduction on the compact 2D part of the solution. In section 3.3 we will

describe the vacua and reductions of the 6D effective theories that result from additional

massive U(1) symmetries.
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3.1 Vacua of 6D F-theory with 7-brane fluxes

As we have mentioned the 6D gauged supergravity that represents our F-theory reduction

with D7-brane flux has no maximally symmetric solution. For this reason it is interesting

to investigate what the vacua are. These vacua must solve the 6D equations of motion

combined with the pseudo action constraint which are given by

R̂MN = +
1

4
ĝαβĜ

α
M

RSĜβ
NRS − 1

24
ĝαβĜ

αRST Ĝβ
RST ĝMN

+ 4Ωαβ ĵ
αbβCIJ F̂

I
M

RF̂ J
NR − 1

2
Ωαβ ĵ

αbβCIJ F̂
IRSF̂ J

RS ĝMN

+ ĝαβ∂M ĵ
α∂N ĵ

β + ĥUV D̂M q̂
UD̂N q̂

V +
1

2
V̂ (6)ĝMN ,

d(ĥUV ∗̂D̂q̂V ) =
1

2
∂U ĥVW D̂q̂

V ∧ ∗̂D̂q̂W + ĥVW∂U k̂
V
I Â

I ∧ ∗̂D̂q̂W + ∂U V̂ (6)∗̂1 ,

d(Ωαβ ĝβγ ∗̂dĵγ) = ĵβĜ
α ∧ ∗̂Gβ+2ĵβdĵ

α ∧ ∗̂dĵβ + 2bαCIJ F̂
I ∧ ∗̂F̂ J− 1

Ωβγ ĵβbγ
bαV̂ (6)∗̂1 ,

D̂(4Ωαβ ĵ
αbβ ∗̂F̂ I) = − ĥUV C

−1IJ k̂UJ ∗̂D̂q̂V − 4bαĝαβF̂
I ∧ ∗̂Ĝβ

− 2Ωαβb
αbβCJKÂ

I ∧ F̂ J ∧ F̂K + 4Ωαβb
αbβCJK F̂

I ∧ ω̂cs ,

d(Ωαβ ĝβγ ∗̂Ĝγ) = 2bαCIJ F̂
I ∧ F̂ J ,

ĝαβ ∗̂Ĝβ = ΩαβĜ
β . (3.1)

This set of equations includes both the fields that correspond to the Coulomb branch,

which we have a good understanding of from the M-theory reduction, as well as the large

set of additional degrees of freedom that arise from branes warping shrinking cycles when

the F-theory limit is taken. This second set of fields is more mysterious, owing to its non-

perturbative origins and consequently we do not know the exact details of the associated

couplings. However, when looking for vacua this is not a problem as we know that these

additional fields can be consistently truncated out of the theory, leaving only the fields

and couplings for which the details are known. For this reason we will only consider vacua

which have non-trivial dependence on the Coulomb branch fields.

In what follows we will be particularly interested in 4D vacua of this 6D theory, we

therefore split the 6D world index M = 0, . . . 5 into µ = 0, . . . 3 and a = 1, 2 and we will

look for a solution for which the 6D metric is a warped product of 4D Minkowski and some

internal space so that

dŝ2 = e2W (yc)ηµνdx
µdxν + gab(y

c)dyadyb . (3.2)

This splitting means that in the vacuum we must have

Ĝα = 0 , and F̂ i =
1

2
F̌ i
abdy

a ∧ dyb , (3.3)

in order to preserve the 4D Lorentz symmetry. The Killing spinor equation then sim-

ply reads

δψ̂A
M = ∇̂M ǫ̂

A + D̂M q̂
uÂu

A
B ǫ̂

B = 0 . (3.4)
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By considering this equation with the free index pointing in the µ direction we find

δψ̂A
µ = ∂µǫ̂

A +
1

4
ω̂µνρΓ̂

νρǫA +
1

2
ω̂µνaΓ̂

ν Γ̂aǫ̂A +
1

4
ωµabΓ̂

abǫ̂A + D̂mq̂
uÂu

A
B ǫ̂

B = 0 . (3.5)

The term with ω̂µνa cannot cancel anything, so must vanish independently. However, this

means that

0 = ω̂µνa = ∂aWe2W ηµν . (3.6)

So in order for the vacuum to preserve 4D Lorentz invariance we must have ∂aW = 0. With

an appropriate 4D coordinate redefinition we can then absorb the constant warp factor to

give the 6D metric

dŝ2 = ηµνdx
µdxν + gab(y

c)dyadyb , (3.7)

which we shall consider from now on. The for the R̂µν field equation to be satisfied we

then require that in the vacuum

Ωαβ ĵ
αbβCijF̂

iabF̂
j
ab = V̂ (6) . (3.8)

Substituting this into the ĵα field equation we find that we may set dĵα = 0 as the run-

away direction for ĵα in the potential has been balanced by the ĵα dependence of the

flux term. By performing a constant conformal rescaling of the internal space such that

gab → 8Ωαβ〈ĵα〉bβgab we may then absorb the constant background value of ĵα in all

subsequent equations.

By considering the q̂u field equation we find that we can consistently set all the scalars

to some constant values apart from V̂ which has a runaway direction in the scalar potential

and Φ̂ which acts as a Stueckelberg field for the gauge potential. The scalars ẑκ describe the

complex structure moduli of the elliptically fibered Calabi-Yau threefold in our M-theory

reduction. Some of these degrees of freedom must therefore also describe the complex

structure modulus τ̂ of the auxiliary torus in the F-theory reduction. This means that the

kinetic terms for the scalars ẑκ may be expanded in terms a kinetic term for τ̂ and kinetic

terms for the remaining complex structure moduli as

−ĝκκ̄dẑk ∧ ∗dˆ̄zk̄ = −1

4

1

Imτ̂2
dτ̂ ∧ ∗dˆ̄τ + . . . . (3.9)

In what follows we will allow τ̂ to vary non-trivially over the 2-dimensional internal space

but, to simplify our construction, we will fix the remaining complex structure moduli to

be constant.

To summarize we propose that in our background

V̂ = V̌ , Φ̂ = Φ̌ , τ̂ = τ̌ , F̂ i = F̌ i , (3.10)

where V̌ and Φ̌ are real functions of the internal space, τ̌ is a complex function of the

internal space and F̌ i is a real 2-form field strength on the internal space. All other fields

of the 6D theory then vanish on the background.
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Using these arguments many of the 6D field equations are solved and the remaining

set are greatly simplified giving

Rab =
1

2Imτ̌2
∂(aτ̌ ∂b) ˇ̄τ +

1

2V̌2
∂aV̌∂bV̌ +

1

8V̌2
DaΦ̌DbΦ̌ +

1

2V̌2
C−1ijθiθjgab ,

Cijd(∗2F̌ j) = − 1

2V̌2
θi ∗2 DΦ̌ ,

CijF̌
i ∗2 F̌ j =

1

V̌2
C−1ijθiθj ∗2 1 ,

d ∗2 dτ̌ =
−i
Imτ̌

dτ̌ ∧ ∗2dτ̌

d ∗2 dV̌ =
1

V̌ dV̌ ∧ ∗2dV̌ − 1

4V̌DΦ̌ ∧ ∗2DΦ̌− 1

V̌C
−1ijθiθj ∗2 1 ,

d

(

1

V̌2
∗2 DΦ̌

)

= 0 , (3.11)

where we have used that that F̌ i
ab must be proportional to the 2D epsilon tensor as it is a

top form on the internal space.

As the internal space is two-dimensional the 2D Ricci scalar must satisfy Rab =
1
2Rgab.

So the R.H.S. of the Rab field equation must also be proportional to gab. We solve this

by setting

DΦ̌ = −2 ∗2 dV̌ , ∗2dτ̌ = idτ̌ , (3.12)

which also solves the Φ̌ and τ̌ field equations. The two equations for F̌ i are then solved if

F̌ i
ab =

1

V̌C
−1ijθjǫab . (3.13)

Furthermore we note that acting with the exterior derivative on (3.12) and using (3.13) we

recover the equation of motion for V̌ .
The remaining field equations then describe the geometry of the internal space and

the profile of the scalars V̌ and τ̌ on that space. These read

R = −∇a∇aln(V̌Imτ̌) , ∇a∇aV̌ +
1

V̌C
−1ijθiθj = 0 , ∇a∇aτ̌ = 0 . (3.14)

To identify the surviving supersymmetry preserved by this background we can use

the Killing spinor equation (3.4) with the free index pointing in the a direction. If we

assume that

ǫ̂A = eη(y
a)ǫabΓ

ab

ǫA0 , (3.15)

where ǫA0 is a constant spinor, then we find that the Killing spinor equation reads

∂aηǫbcΓ
bcǫ̂A +

1

4
ωabcΓ̂

bcǫ̂A +DaΦ̌ÂΦ
A
B ǫ̂

B +Daτ̌ Âτ
A
B ǫ̂

B +Da ˇ̄τÂτ̄
A
Bǫ

B = 0 . (3.16)

As the internal space is two dimensional we can use the identity ωabc = ωaǫbc to write this

expression in terms of ωa and simplify the algebra involved.
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We can then make a choice of gamma matrix decomposition where

Γµ = γµ ⊗ γ3 , Γa = 1l⊗ γa , (3.17)

where γµ are the 4D gamma matrices, γa are the 2D gamma matrices and γ3 = iγ1γ2.

Next we can chose a gauge in which

Âτ
A
B =

i

8Imτ̂
σ3AB Âτ̄

A
B =

i

8Imτ̂
σ3AB , ÂΦ

A
B =

i

8V̂
σ3AB , (3.18)

If we then impose the constraint

σ3ABǫ
B = γ3ǫA , (3.19)

which implies that the background breaks half the supersymmetry of the 6D theory, we

find that (3.16) and (3.12) then imply

∂aη +
1

4
ωa =

1

8
ǫab∂

bln(V̌Imτ̌) . (3.20)

As the 2D Ricci scalar takes the simple form in terms of ωa

R = 2ǫab∇aωb , (3.21)

we find that substituting (3.20) into this gives (3.14). So the vacua we have found do

indeed break the supersymmetry of the 6D theory by a half.

Similarly we can look at the killing spinor equation coming from the variation of the

vector multiplet fermions. This gives reads

F̂ i
abΓ̂

abǫ̂A +
C−1 ij

Ωαβ ĵαbβ
k̂uj Âu

A
B ǫ̂

B = 0 . (3.22)

Again substituting (3.13) and (3.18) into this we find that this equation is satisfied on the

constraint (3.19) and so again we find that this background breaks half the supersymmetry

of the 6D action.

We can now consider solutions to (3.14). These may have either constant or varying τ̌

but must have a non-trivial profile for V̌ due to the runaway potential. The solutions with

constant τ̌ correspond to the F-theory lift of 5D domain wall solutions and are described

in appendix B. However, here we will focus instead on solutions which are dominated by a

strongly varying τ̌ profile. These will correspond to the presence of extra co-dimension 2

sources, for the non-constant τ̌ , in our construction.

When θi = 0 and V̌ is constant these sorts of solutions are known and are related to

cosmic strings [46]. In this case we may work in a coordinate system where

ds2 = ηµνdx
µdxν +Ω(z, z̄)dzdz̄ , (3.23)

in which the self duality condition on τ̌ becomes

∂z̄ τ̌ = 0 , ∂z ˇ̄τ = 0 . (3.24)

– 19 –



J
H
E
P
0
6
(
2
0
1
3
)
0
1
2

The solution to the resulting field equations is complicated as there is no known solution

with finite energy per unit length for which τ̌ is both sourced and continuous. Instead the

solutions for τ̌ have discontinuities at which τ̌ undergoes an SL(2,Z) transformation. The

solutions are then described by the modular invariant function j(τ̌) as

j(τ̌) =
P (z)

Q(z)
, (3.25)

for polynomials P and Q which share no roots. The roots of these functions then determine

the locations and numbers of the co-dimension 2 sources.

The z dependence of the metric is then determined by the remaining field equation

∂z̄∂zlnΩ = ∂z̄∂zln(Imτ̌) , (3.26)

which has the modular invariant nowhere vanishing solution

Ω = Imτ̌ |η(τ̌)|4
N
∏

n=1

∣

∣(z − zn)−
1
12

∣

∣

2
, (3.27)

for N co-dimension 2 sources located at the zn. When N > 12 the internal space becomes

compact and is given by P
1. In this case the only allowed solution has N = 24. As we are

interested in compact solutions here this special case will be of particular relevance.

We now consider turning back on the fluxes θi. When this is done we modify the

metric ansatz so that

ds2 = ηµνdx
µdxν + V̌(z, z̄)Ω(z, z̄)dzdz̄ , (3.28)

This ansatz means that the field equations (3.24) and (3.26) are unmodified when V̌ and

θi are turned on. The remaining field equation for V̌ now becomes

∂z̄∂zV̌ + C−1ijθiθjΩ = 0 , (3.29)

solutions to this equation will then describe the geometry of the internal space in the

presence of the fluxes θi which deform the P
1 into a new compact space B̂.

3.2 Reduction of the flux deformed effective theory to 4D

Let us now consider an ansatz for fluctuations about this background for which the internal

space is given by B̂. As our M-theory analysis gives only information about the Coulomb

branch of the 6D effective theory we will only consider fluctuations in the Coulomb branch

fields in our ansatz. This could later be completed to the full set of fields that would be

present in the complete F-theory reduction.

In order to simplify our discussion we will work in the limit where θi are small and so

we may neglect terms in the reduction which are higher order than (θi)2. The advantage of

doing this is that we do not need to explicitly solve the equation (3.29) as only structures

which are linear in V̌ contribute to the effective action.
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We then make an ansatz for the fluctuations where

dŝ2 = e2φgµνdx
µdxν + e−2φ

(

1 +
C−1ijθiθj

V (∆−Ψ)

)

Ωdzdz̄ ,

Ĝα = (dBα + 2bαCijF
i ∧Aj) + (dkα + 4bαθiA

i) ∧ ∗21 ,

F̂ i = C−1ijθj ∗2 1 + F i ,

ĵα = jα ,

V̂ = V(1 + C−1ijθiθj∆) ,

Φ̂ = Φ(1 + C−1ijθiθjΨ) + Φ̌ (3.30)

where the function ∆ is related to the background value V̌ such that

V̌ = 1 + C−1ijθiθj∆ , (3.31)

so that at the order to which we are working (3.29) becomes

∂z̄∂z∆+Ω = 0 , (3.32)

and Ψ is a constant defined such that
∫

B̂
ΨΩdz ∧ dz̄ =

∫

B̂
∆Ωdz ∧ dz̄ . (3.33)

This ansatz satisfies the Bianchi identities for the 6D fields (2.40) when F i = dAi.

In addition to these fluctuations it will be possible to turn on some additional 4D

fluctuations in the 6D hypermultiplet scalars (V̂ , Φ̂, ξ̂K , ˆ̃ξK , ẑκ, ˆ̄zκ). As the fermions of the

6D theory must be expanded in terms of the constrained background spinor (3.19) we

find that only half the hypermultiplet degrees of freedom we can be turned on. For the

universal hypermultiplet (V̂ , Φ̂, ξ̂0, ˆ̃ξ0) we have already identified that the fluctuations in V
and Φ will be turned on, so fluctuations in ξ0 and ξ̃0 are forced to vanish. Alternatively

we may divide the remaining hypermultiplets (ξ̂κ,
ˆ̃
ξκ, ẑ

κ, ˆ̄zκ) as κ = {κ′, k′} and turn on

fluctuations in (ξκ
′

, ξ̃κ′) and (zk
′

, z̄k
′

) such that

ξ̂κ
′

= ξκ
′

(

1 +
1

2
C−1ijθiθjΨ

)

,
ˆ̃
ξκ′ = ξ̃κ′

(

1 +
1

2
C−1ijθiθjΨ

)

, ẑk
′

= zk
′

. (3.34)

where κ′ = 1, . . . , ns and k
′ = 1, . . . , h1,2(Ŷ 3)−ns. As we will see later supersymmetry then

requires that this splitting is performed such that Mκ′λ′ is an anti-holomorphic function of

zk
′

. This can be achieved by performing the split such that Mκ′k′ =Mκ′0 = 0 as is shown

in [47–49].

Substituting this into the action and keeping only terms up to and including quadratic

order in θi we may then reduce the 6D action to 4D. Following this we can impose the self
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duality condition for Ĝα in the standard way and can simplify the action by making the

redefinition ρα = e−2φjα. The resulting 4D effective theory is then given by

S(4) =

∫

M4

[

1

2
R ∗ 1− 1

2
g̃αβDk

α ∧ ∗Dkβ − 1

2
g̃αβdρ

α ∧ ∗dρβ − 1

4V2
dV ∧ ∗dV

− 1

16V2
(DΦ+ 2ξκ

′

dξ̃κ′) ∧ ∗(DΦ+ 2ξκ
′

dξ̃κ′)

+
ImMκ′λ′

4V (dξ̃κ′ −Mκ′δ′dξ
δ′) ∧ ∗(dξ̃λ′ − M̄λ′γ′dξγ

′

)− gk′k̄′dz
k′ ∧ ∗dz̄k̄′

− 2Ωαβb
αρβCijF

i ∧ ∗F j − 2Ωαβb
αkβCijF

i ∧ F j − V
(4)
flux ∗ 1

]

, (3.35)

where

V
(4)
flux =

C−1ijθiθj

32ραbα

(

1

V − 8ραb
α

|ρ|2
)2

, g̃αβ = 2
ραρβ

|ρ|4 − Ωαβ

|ρ|2 , (3.36)

and the gaugings are given by

Dkα = dkα + 4bαθiA
i , DΦ = dΦ+ 2θiA

i . (3.37)

The potential appearing here has 3 separate contributions arising from the internal space

Ricci tensor, the Kinetic term associated with the non-vanishing 2-form fluxes and the

reduction of the 6D potential. These then combine to give the perfect square appearing in

the 4D effective theory.

We note here that the 4D effective theory is not gauge invariant due to the presence of

the term Ωαβb
αkβCijF

i ∧ F j and the gauged shift symmetry for kα. This non-invariance

is of the sort required to cancel chiral anomalies in the 4D theory and descends from the

equivalent Green-Schwarz mechanism in the 6D action which was required to cancel the

anomalies present there [50–52]. This anomalous variation in the 4D theory is crucially

related to the flux that has been turned on on B̂, as without this the shift symmetry of kα

is not gauged, so the action is classically invariant.

In order to make the supersymmetry of this effective theory more apparent we can

write the reduced action as

S(4) =

∫

M4

[

1

2
R ∗ 1−KIJ̄DY

I ∧ ∗DȲ J̄ − 2Re(f)CijF
i ∧ ∗F j

− 2Im(f)CijF
i ∧ F j − 1

8Re(f)
C−1ijDiDj ∗ 1

]

, (3.38)

whereDY I = dY I+XI
i A

i and Y I can be divided into Y I = {TB, Tα, xκ′ , zk
′}. The complex

fields given here are related to the real fields appearing in the reduced action by

TB = V + i
1

2
(Φ +Mκ′λ′ξκ

′

ξλ
′

) , Tα = Ωαβ(ρ
α − ikα) , xκ′ = ξ̃κ′ −Mκ′λ′ξλ

′

. (3.39)

The Kähler potential and gauge coupling functions are then given by

K = K(TB, xκ′) +K(Tα) +K(zk
′

) , f = Tαb
β . (3.40)
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Complex field Real components Index range

TB (V ,Φ)
Tα (ρα, kα) α = 1, . . . , h1,1(B2)

xκ′ (ξ̃κ′ , ξκ
′

) κ′ = 1, . . . , ns

zk
′

k′ = 1, . . . , h1,2(Ŷ 3) + nSU(3) − ns

Ai
µ i = 1, . . . , h1,1(Ŷ 3) + nSU(3) − h1,1(B2)− 1

Table 1. Fields in the reduction of 6D F-theory on B̂.

where

K(TB, xκ′) = −ln

(

1

2
(TB + T̄B)−

1

8
ImMκ′λ′

(xκ′ − x̄κ′)(xλ′ − x̄λ′)

)

,

K(Tα) = −ln

(

1

4
Ωαβ(Tα + T̄α)(Tβ + T̄ β)

)

, K(zk
′

) = −ln

(
∫

Ŷ 3

Ω ∧ Ω̄

)

. (3.41)

We note here that for this Kähler potential to reproduce the reduced action (3.35) the

function of the truncated complex structure moduli Mκ′λ′ must now be anti-holomorphic

in zk
′

as mentioned above.

The gaugings are then given by

X
TB

i = iθi , XTα

i = −4ibαθi , (3.42)

and the potential may be determined from

Di = − θi

TB + T̄B − 1
4 ImM

κ′λ′(xκ′ − x̄κ′)(xλ′ − x̄λ′)
+

8θi(Tα + T̄α)b
α

Ωαβ(Tα + T̄α)(Tβ + T̄ β)
, (3.43)

which satisfies the standard D-term relation

i∂ĪDi = KĪJX
J
i . (3.44)

To summarize we note that this reduction gives an N=1 supersymmetric action with

the field content listed in table 1.

Here ns is the number associated with the hypermultiplet splitting in the reduction

of the 6D theory and nSU(3) is the number of additional non-harmonic 2-forms introduced

when turning on the SU(3) structure deformations in the reduction of M-theory.

The effective theory has certain gauged shift symmetries that depend on the parameters

θi. Some of these shift symmetries originate from the gauge shift symmetry of the 6D action,

while others arise as a result of the fluxes on B̂ that must be turned on in the reduction of

the 6D theory. In what follows we will show that this action can be interpreted as being a

particular limit of F-theory reduced to 4D on a Calabi-Yau fourfold with 7-brane fluxes.
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3.3 Vacua and reductions of 6D F-theory with massive U(1) symmetries

We may also consider the vacua that arise in the 6D F-theory reductions with massive

U(1) symmetries. However, here the analysis is significantly simpler. This is because the

potential in this case is given by (2.65) which is minimised by when

eκiξ̂
κ = eκiẑ

κ = 0, (3.45)

This sets the potential to zero in the vacuum so (3.8) can be solved with out the need

for any fluxes on the 2D internal space to be turned on. The solutions to these theories

then simply correspond to the standard cosmic string solutions we have described in sec-

tion 3.1, with no additional deformation related to the scalar V̌ , which is now constant.

The reduction of the action then proceeds as shown in the previous section but now with

θi = 0. As the massive U(1) gaugings pick out certain 6D hypermultiplet scalars
ˆ̃
ξκ which

have gauged shift symmetries we find that fluctuations in these scalars must be turned on

in the reduction to 4D.

The action for the 4D effective theory is then given by

S(4) =

∫

M4

[

1

2
R ∗ 1− 1

2
g̃αβdk

α ∧ ∗dkβ − 1

2
g̃αβdρ

α ∧ ∗dρβ − 1

4V2
dV ∧ ∗dV

− gk′k̄′dz
k′ ∧ ∗dz̄k̄′ − 1

16V2
(dΦ+ 2ξκ

′

Dξ̃κ′) ∧ ∗(dΦ+ 2ξκ
′

Dξ̃κ′)

+
ImMκ′λ′

4V (Dξ̃κ′ −Mκ′δ′dξ
δ′) ∧ ∗(Dξ̃λ′ − M̄λ′γ′dξγ

′

)

− 2Ωαβb
αρβCijF

i ∧ ∗F j − 2Ωαβb
αkβCijF

i ∧ F j − V
(4)
U(1) ∗ 1

]

, (3.46)

where the potential and gaugings are now

V
(4)
U(1) =

C−1ijeκ′ieλ′jξ
κ′

ξλ
′

32V2ραbα
, Dξ̃κ′ = Dξ̃κ′ + eκ′iA

i . (3.47)

As before this action can be derived from the standard supersymmetric form (3.38) where

the Kähler potential and gauge coupling function are given by (3.40). However, the gaug-

ings and D-Terms are now modified and are instead given by

X
xκ′

i = eκ′i , Di =
eκ′i

1
i2 ImM

κ′λ′

(xλ′ − x̄λ′)

TB + T̄B − 1
4 ImM

κ′λ′(xκ′ − x̄κ′)(xλ′ − x̄λ′)
. (3.48)

which again satisfies (3.44).

Finally we may consider the effect of turning on both 7-brane fluxes and massive U(1)

symmetries simultaneously. The 6D potential is now given by

V̂ (6) =
1

32Ωαβ ĵαbβ
C−1ij

(

1

V̂2
(θi + eκiξ̂

κ)(θi + eλj ξ̂
λ) +

eKc

V̂
eκieλj ẑ

κ ˆ̄zλ
)

. (3.49)

To make the vacua that arise from this more apparent it is useful to separate θi into

those which describe fluxes for the massive U(1) symmetries which we will call θ
U(1)
i and
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those which describe fluxes in the Cartan sub-algebra of the 7-brane field strengths θci .

These satisfy

C−1ijθci θ
U(1)
j = C−1ijθci eκj = 0 , (3.50)

so the potential may be divided as

V̂ (6) =
1

32Ωαβ ĵαbβ
C−1ij

(

1

V̂2
θci θ

c
i +

1

V̂2
(θ

U(1)
i + eκiξ̂

κ)(θ
U(1)
i + eλj ξ̂

λ) +
eKc

V̂
eκieλj ẑ

κ ˆ̄zλ
)

.

(3.51)

This is then minimised when

θ
U(1)
i + eκiξ̂

κ = eκiẑ
κ = 0, (3.52)

and the resulting vacuum is then simply that described in section 3.1 when only the fluxes

θci are turned on. Reducing to 4D as before then gives an effective theory described by the

action (3.38) with a Kähler potential and gauge coupling function given by (3.40) but now

with the gaugings

X
TB

i = iθ
U(1)
i + iθci , XTα

i = −4ibαθ
c
i , X

xκ′

i = eκ′i , (3.53)

and where the a D-term potential is given by

Di = − θci + θ
U(1)
i − 1

2ieκ′iImM
κ′λ′

(xλ′ − x̄λ′)

TB + T̄B − 1
4 ImM

κ′λ′(xκ′ − x̄κ′)(xλ′ − x̄λ′)
+

8θci (Tα + T̄α)b
α

Ωαβ(Tα + T̄α)(Tβ + T̄ β)
, (3.54)

This again satisfies (3.44) and so gives a supersymmetric action that can be related to

F-theory reduced to 4D with 7-brane fluxes and massive U(1) symmetries.

4 4D F-theory interpretation

The vacua of the 6D theory that we identify here can be related to vacua of F-theory on

a fourfold Ẑ4 which is an elliptic fibration over a base B3. The threefold base is chosen to

be the direct product

B3 = B2 × B , (4.1)

where B is the P
1 considered in section 3.1 before taking into account the back reaction

of the flux, which modifies the solution to B̂. This threefold base then admits a Kähler

structure inherited from B2 and B. Furthermore, we propose that the fourfold Ẑ4 with base

B3 can also be formed by fibering a the threefold Ẑ3 over B. As before we will consider

this threefold to be an elliptic fibration over a base B2. Such a construction is well-known

for Calabi-Yau fourfolds and threefolds, see for example [53], but is expected to extend to

the more general case considered here. In fact, Ẑ3 and Ẑ4 naturally arise as resolutions

of singular Calabi-Yau manifolds in order to be in accord with the interpretation of the

massive U(1)’s presented in section 2.4 [23].

The solution will then describe two sets of 7-branes, a class of 7-branes, including the

rank(G) 7-branes generating the original non-abelian gauge group G, will wrap cycles on
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the base B2 as well as wrapping B and filling the lower 4-dimensions. In addition to this

24 7-branes will wrap the whole of B2 and fill the lower 4-dimensions. This number can

be determined noting that for a direct product (4.1) one has c1(B3) = c1(B2) + c1(B). By
integrating the Kodaira condition over B and using that the Euler characteristic of B = P

1

is χ(B) = 2, we see that this matches the known result that 24 sources for τ̌ are required

to form a P
1 in the cosmic string solution described in section 3.1.

By construction the reduction of F-theory on the fourfold Ẑ4 gives the 6D effective

theory we describe here when B is very large. However, the intermediate reduction that we

have described does not capture all the degrees of freedom of the full fourfold reduction.

In particular certain complex structure moduli zn associated with the position of the 7-

branes on B in (3.27) are missed. In fact, it is a hard task to fully reconcile the complex

structure sector of Ẑ4, which is beyond the scope of this work. Nevertheless, many of the

key features of the reduction are captured by our approach and we may view this two step

analysis as a useful point of view to compute and understand certain complicated couplings

of the fourfold reduction. With this interpretation in mind we can understand many of the

features of our 6D solutions and also link known results in the reductions of F-theory to

4D and 6D.

A good check that the prescription we have described works in the limit of small fluxes

is given by matching the effective theories. Here we simply note that the 4D effective

theory we have found by reducing the 6D supergravity in section 3.2 matches the 4D

effective theory that is given by the reduction of F-theory on a fourfold, with certain

complex structure moduli and massive 7-brane gauge fields truncated out.

The first check can be performed in the Kähler moduli sector. By constructing B3 as

in (4.1) the number of degrees of freedom associated to Kähler moduli matches. To see

this we note that in the 4D theory obtained in section 3.2 the h1,1(B2) scalars given by Tα,

combine with the one extra scalar given by TB, to match the h1,1(B2) + 1 Kähler Moduli

of the base of the B3. It is therefore useful to label these scalars with a combined index

α̂ = 1, . . . , h1,1(B2) + 1 such that Tα̂ = {Tα, TB}. Furthermore we find that the complex

scalars Tα̂ and xκ′ given in (3.39) are then defined in terms of the real variables in a way

that matches their construction in [48]. Next we note that the volume of B is related to

the Kaluza Klein scalar φ appearing in our ansatz for the reduction from 6D (3.30) by

e−2φ = VBV
1
2 , (4.2)

as this takes into account the Weyl rescaling that has been performed to bring the 6D and

4D metrics into the Einstein frame. From this we see that the Kähler potential (3.40) can

be written as

K(TB, xκ′) +K(Tα) = −lnV − ln(VV2
B) = −2ln(VVB) = −2ln(VB3) , (4.3)

which matches the known result from the reduction of F-theory to 4D.

Next we can consider the gaugings that are induced by the 7-brane fluxes. The standard

result from reductions of F-theory to four dimensions [20, 22] or reductions of M-theory to

three dimensions [54], is that the Kähler moduli receive a gauged shift symmetry described
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by a matrix Θα̂i, which appears in the covariant derivative of Tα̂ as

DTα̂ = dTα̂ − i4Θα̂iA
i . (4.4)

These Θα̂i are then given in terms of the G4 flux by

Θα̂i =

∫

Y4

G4 ∧ ωα̂ ∧ ωi . (4.5)

Our reduction of the 6D theory involves 7-brane flux which is turned on in two parts.

Firstly there is the flux on the B2 in the reduction to the 6D theory and secondly there is

the flux on B in the reduction to 4D. The total 7-brane flux is then given by

ˆ̂F i = C−1ijθjωB − C−1ijθj
1

4Ωβγbβbγ
bαωα . (4.6)

By knowing that the 7-brane flux must be self dual on the 4-cycle on the fourfold wrapped

by the 7-branes we can understand the additional term that we have been forced to turn

on here as being that which completes the 7-brane flux to a self-dual quantity.

Then using the standard result that the 7-brane fluxes which we consider here are

related to ˆ̂G4 flux in the M-theory dual by ˆ̂Gflux
4 = ˆ̂F i ∧ ωi and substituting this back

into (4.5) we find that the 4D gaugings are given by

ΘBi =

∫

Ŷ 4

−C−1 jkθjωk ∧
1

Ωβγbβbγ
bαωα ∧ ωB ∧ ωi

= −b
αC−1 jkθj

4Ωβγbβbγ

∫

Ŷ 3

ωi ∧ ωk ∧ ωα

∫

B
ωB =

1

4
θi ,

Θαi =

∫

Ŷ 4

C−1 jkθjωk ∧ ωB ∧ ωα ∧ ωi

= C−1 jkθj

∫

Ŷ 3

ωi ∧ ωk ∧ ωα

∫

B
ωB = −θibα , (4.7)

which matches the XTα

i and XTB

i that we found in section 3.2. From this we see that the

action for the Kähler moduli that we find by a reduction of the 6D theory matches precisely

that found in a direct reduction of F-theory.

Similarly we can compare the gaugings that are turned on in our reduction of the

6D theory with massive U(1) symmetries with those that are present in the equivalent

4D F-theory reduction. Here we see that the scalars ξ̃κ′ develop a gauged shift symmetry

described by a parameter eiκ′ where

eik =

∫

Si

iηακ′ , (4.8)

which is precisely consistent with the gaugings that are seen due to massive U(1) symmetries

which are seen in [21].

The back-reaction of the G4 flux in the reduction of M-theory to 3D is known to give

rise to a warped reduction [55]. Using the 2-step reduction that we have described we can
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see that this corresponds to a warped reduction of F-theory. To demonstrate this we may

compare the metrics for the 4D and 6D reductions of F-theory that we have described.

Firstly in a reduction of IIB to 6D we see that the metric decomposition which leads to an

Einstein frame action is given by

dˆ̂s2 = V̂− 1
2 ĝMNdx̂

Mdx̂N + gij̄dy
idyj̄ , (4.9)

where the factor of V̂ in front of the 6D metric gives the required Weyl rescaling in order

to cancel the internal space volume factor. When this is further reduced to 4D on the

backgrounds we have described this becomes

dˆ̂s2 = V̌− 1
2 ηµνdx

µdxν + V̌ 1
2Ωdzdz̄ + gij̄dy

idyj̄ . (4.10)

From which we see that the background value for V̂ in the reduction of the 6D action

has resulted in an effective warp factor in the reduction to 4D generated by the 6D Weyl

rescaling. This relationship can be further emphasised by noting that the 6D field equation

for V̌ (3.29) takes precisely the same form as the warp factor equation in the reduction

of M-theory. The observation that in our 6D vacua 7-brane fluxes require a non-trivial

profile for V̌ then becomes translated to the statement that the flux in the 4D reduction is

associated to a non-constant warp factor.

In addition to this we see that, as the potential vanishes in the 6D vacua with only

massive U(1) gaugings, there is no need for a flux or a non-trivial profile for V̂ in these

reductions. This means that no additional component of the 7-brane flux is turned on and

no warping is present as a result of these gaugings.

When the 4D F-theory is reduced on a circle, certain one-loop corrections to the 3D

Chern-Simons terms are required to match the reduction of the M-theory dual [20]. These

terms have the form
∫

M3

ΘijA
i ∧ F j (4.11)

where Θij is dependent upon the charges and 4D chiralities of the massive tower of 3D

fields that have been integrated out. This is given by

Θij =
∑

r

qriqrj
∑

Λ

sign(qrΛv
Λ) , (4.12)

where qri denotes the charge in the representation r carried by fields. If Θij is non-zero

then the 4D effective theory is chiral and has associated anomalies. In the reduction of

M-theory on Ŷ 4 the value of these couplings is related to the ˆ̂G4 flux by

Θij =

∫

Ŷ 4

ˆ̂G4 ∧ ωi ∧ ωj , (4.13)

Substituting the flux found in our 2-step reduction into this we find that

Θij = θk
∫

Ŷ 3

ωi ∧ ωj ∧ ωk

∫

B
ωB = Vijkθ

k , (4.14)
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where Vijk are the intersection numbers which appear in the M-theory reduction on Y3. This

indicates that the additional fluxes that are turned on in our intermediate reduction make

the 4D effective theory chiral when the additional fields outside of the Coulomb branch

are restored. The associated chiral anomalies are then canceled by the Green-Schwarz

mechanism [50] referred to in section 3.2.

The constants Vijk which appear in this expression are themselves related to one-loop

Chern-Simons terms in the circle reduction of 6D F-theory. These are necessary to match

with the Chern-Simons terms present in the classical 5D M-theory reduction (2.18). On

the F-theory side these may also be expressed in terms of the charges of the fields in the

5D theory as

Vijk =
∑

r

qriqrjqrk
∑

Λ

sign(qrΛv
Λ) , (4.15)

As in the 3D/4D case, if Vijk is non-vanishing then the 6D theory is chiral and may

have anomalies which must be canceled. We can then understand (4.14) as relating chiral

anomalies in 6D and 4D and one-loop Chern-Simons terms in 5D and 3D.

5 Conclusion

In this paper we have derived the 6D effective theory resulting from a reduction of F-theory

on an elliptically fibered threefold with 7-brane fluxes and massive U(1) symmetries. These

effective theories were arrived at by considering the reduction of M-theory on an elliptically

fibered SU(3) structure manifold with G4 flux and making use of the duality between M-

theory and F-theory. In analysing this duality between the 5D and 6D effective theories

we see that 7-brane fluxes in F-theory are dual to G4 fluxes in M-theory and massive U(1)

symmetries in F-theory are dual to SU(3) structure deformations in M-theory. This agrees

with previous discussions of the duality between 3D and 4D effective theories carried out

in [2, 14, 20–22].

The 6D effective theories include hypermultiplets with gauged shift symmetries for

certain axionic scalars. These gaugings result in mass terms for certain 6D vector multiplets

and induce a potential which may have runaway directions. For 6D effective theories which

result from turning on 7-brane fluxes the runaway direction in the potential means that

6D Minkowski space is no longer a solution to the field equations. Instead this solution

is replaced by a product of 4D Minkowski space and compact internal space on which

the massive gauge field develops a flux. This solution is then similar to that considered

in [24, 26] except that now there is a non-trivial profile for an additional scalar V̂. These

solutions break half the supersymmetry of the 6D effective theory.

In addition to this the 6D effective theories may describe a non-trivial profile for the

complex scalar τ̂ which arises as the reduction of the IIB dilaton-axion. If the gauging

parameters in the 6D effective theory are turned off these solutions become those for 6D

cosmic strings. Restoring the gauge parameters we see that these solutions become modified

by the presence of an additional flux for the massive vector and the scalar profile for V̂.
For small fluxes we were then able to find the effective 4D theory that corresponds to the

reduction on the compact part of the solution.
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As the vacua we have studied break half the supersymmetry of the 6D theory these 4D

effective theories have N = 1 supersymmetry. The nature of this N=2 to N=1 breaking

means that only half of the possible modes on the internal space may be supersymmetricly

excited and proceeds in a similar way to the orientifold breakings described in [48, 49]. As

the 4D effective theory is N = 1 supersymmetric it may now be chiral. This chirality can

be confirmed by observing that the effective theory involves Green-Schwarz counter terms

which cancel the induced chiral anomalies.

The 4D effective theories were then related to direct F-theory compactifications to

4D with 7-brane fluxes and massive U(1) symmetries. Here we found that the additional

fluxes that must be turned on in the 6D reduction could be understood as completing the

7-brane fluxes to a quantity that is self-dual on the 7-brane internal space. Furthermore

the non-trivial profile for the scalar V̂ can also be related to a warping in the reduction of

F-theory to 4D. This analysis shows that many of the complicated effects associated with

the reduction of F-theory to four dimensions can be captured by the 2-step reduction that

we demonstrate here. These effects are significantly simpler in the effective theory than in

their 4D equivalent due to the larger amount of supersymmetry.

Higher order α′ corrections to the 4D effective theories resulting from F-theory com-

pactifications represent a challenging problem for F-theory phenomenology. In further

work it would therefore be interesting to investigate to what degree these higher order α′

effects in 4D may be deduced by considering this sort of intermediate reduction. These α′

modifications to the 6D effective theory may again be easier to deduce as a result of the

restrictions due to supersymmetry.
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A Conventions and Calabi-Yau identities

In this paper we have used conventions in which the metric in each dimension has a mostly

plus signature and

Γρ
µν =

1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) , Rµν = Rλ

µλν ,

Rλ
τµν = ∂µΓ

λ
ντ − ∂νΓ

λ
ντ + Γλ

µσΓ
σ
ντ − Γλ

νσΓ
σ
µτ , R = Rµνg

µν . (A.1)

We also use conventions in which the d dimensional epsilon tensor ǫµ1...µd satisfies

ǫ0...d−1 =
√−g , ǫµ1...µnρ1...ρd−n

ǫν1...νnρ1...ρd−n = −n!(d− n)!δν1[µ1
. . . δνnµn]

, (A.2)
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for a Lorentzian signature metric. In addition to this we define a p-form ωp to satisfy

ωp =
1

p!
ωµ1...µpdx

µ1 ∧ . . . ∧ dxµp ,

dωp =
1

p!
∂νωµ1...µpdx

νdxµ1 ∧ . . . ∧ dxµp ,

∗ωp =
1

p!(d− p)!
ωµ1...µpǫ

µ1...µp
ν1...νd−p

dxν1 ∧ . . . ∧ dxνd−p . (A.3)

Let us also summarize some useful identities for the complex structure moduli space

of Calabi-Yau threefolds. The metric on this moduli space is given by

gκκ̄ = −
∫

Ŷ3
χκ ∧ χ̄κ̄

∫

Ŷ3
Ω ∧ Ω̄

, (A.4)

where χκ are (2, 1) forms on Ŷ3 representing elements of H2,1(Ŷ3) as already introduced

in (2.4). gκκ̄ depends through χκ,Ω on the complex structure deformations zκ, z̄κ. One

also naturally defines a complex matrix MKL varying over the complex structure moduli

space by setting

∗6αK = AK
LαL +BKLβ

L , ∗6βK = CKLαL −AL
KβL , (A.5)

and

AK
L = (ReM)KH(ImM)−1HL ,

BKL = −(ImM)KL − (ReM)KH(ImM)−1HM (ReM)ML ,

CKL = (ImM)−1KL . (A.6)

The imaginary part of MKL is shown to be invertible and here we will denoted this by

ImMKL = (ImM)−1KL.

B 6D solutions and 5D domain walls

In section 3.1 we studied the vacua of the 6D effective theory that results from F-theory

compactified on a Calabi-Yau threefold with 7-brane flux. In that section we were partic-

ularly interested in vacua of this effective theory which were dominated by a non-trivial

profile for the scalar τ̌ . However, we can instead consider vacua for which τ̌ is constant. In

what follows we will demonstrate that these constant τ̌ solutions represent the lift of the

5D domain wall solutions that are described in [33].

To proceed we must chose a coordinate system on the 2D internal space in which to

solve (3.14). Here we will pick this coordinate system such that the results are easy to

compare with [33]. To do this we first separate off a circle in the reduction and expand the

metric with respect to this while performing a weyl rescaling of the remaining 5D part of

the metric such that the 5D action one would arrive at is in the Einstein frame

ds2 = r−
2
3 (a2ηµνdx

µdxν + b2dy2) + r2dφ2 , (B.1)
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where r, a and b are functions of y. The solutions of [33] satisfy b ∝ a4 so in order to have

an unwarped external space, as required for out solution, we must have

a ∝ r
1
3 , b ∝ r

4
3 . (B.2)

Then absorbing the constants of proportionality into the definition of y and xµ we find

that the appropriate coordinate system for carrying out the comparison is

ds2 = ηµνdx
µdxν + r2(y)dy2 + r2(y)dφ2 . (B.3)

where y is the coordinate normal to the domain wall in the solutions of [33].

Substituting this into (3.14) and requiring that the function V̌ depends only on y we

find that

∂y∂yln(r
2) = ∂y∂ylnV̌ ∂y∂yV̌ + C−1ijθiθj

r2

V̌ = 0 . (B.4)

This is solved by

V̌ = −A
2
C−1ijθiθjy

2 +By + C , r2 = AV̌ , (B.5)

for some integration constants A, B, and C.

We can then compare this solution with the results of [33] in which

a = k̃V̌ 1
6 , V̌ = (

1

6
NΛΣΘf

ΛfΣfΘ)2 , NΛΣΘf
ΣfΘ = HΛ = kθΛy + kΛ , (B.6)

where k̃, k and kΛ are constants. As r ∝ a3 we find that V̌ ∝ r2 which matches our results.

However, the solution for V̌ does not generally give the quadratic function of y that we find

in (B.5) as is shown in the examples of [33]. This is not surprising as we have seen that a

general M-theory reduction cannot be lifted to a 6D F-theory reduction. To restrict to the

case where the F-theory lift applies we must first impose that the Calabi-Yau is an elliptic

fibration. This means that N takes the form shown in (2.17). Then taking the F-theory

limit (2.55) and using the constraint that θα = θ0 = 0 for the fluxes that can be lifted, we

find

2Ωαβf
αfβ = k0 , −16Ωαβb

αfβCijf
j = Hi , 4Ωαβf

βf0 − 8Ωαβb
βCijf

if j = kα . (B.7)

By contracting these equations in different ways we find that

4Ωαβf
αfβf0 − 8Ωαβf

αbβCijf
if j = fαkα , 4kαf

αf0 − 8kαb
αCijf

if j = Ωαβkαkβ ,

4Ωαβb
αfβf0 − 8Ωαβb

αbβCijf
if j = bαkα , −16Ωαβb

αfβCijf
if j = f iHi ,

−16Ωαβb
αfβHif

i = C−1ijHiHj , 2Ωαβf
αfβ = k0 . (B.8)

Then imposing that the effective theory is classically gauge invariant requires that

Ωαβb
αbβ = 0. When this is satisfied (B.8) can be rearranged such that substituting back

into (B.6) gives

V̌ =

(

1

6
k0f

0 +
1

6
Hif

i +
1

6
kαf

α

)2

=
(8k0kαb

α − C−1ijHiHj)Ω
βγkβkγ

256kαbα

=
Ωβγkβkγ

256kαbα
(−C−1ijk2θiθjy

2 − 2C−1ijkkiθjy + 8k0kαb
α − C−1ijkikj) . (B.9)
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This solution is once again a quadratic in y and can be matched to our 6D result (B.5).

In this way we see that the solutions to our 6D field equations with constant τ̌ can be

interpreted as the F-theory lift of the domain wall solutions to the 5D M-theory dual.

Our solutions (B.5) may have singular points at the roots of the quadratic where V̌
vanishes. The presence of these singularities calls for the introduction of extra sources into

the action. To analyse these it is convenient to shift the coordinates y in order to absorb

the constant C in (B.5). The solution then has a singularity at y = 0 which requires an

additional source

Sbrane = Q

∫

My=0

(

1

V̂
∗̃41 + s̃∗Ĉ4

)

, (B.10)

where Q is a constant to be determined in terms of the integration constants of our solution.

In this action ∗̃ is the Hodge dual with respect to the induced metric on the brane source,

s̃∗ is the pullback to the brane and Ĉ4 is a 4-form which is the dual of Φ̂ such that
1
V̂2
DΦ̂ = 4 ∗6 dĈ4. Our analysis of the gaugings that are introduced by turning on D7-

brane flux (2.60) show that this is descended from the IIB Ramond-Ramond 4-form.

When this source is included the V̌ field equation (3.14) becomes modified to

∇a∇aV̌ +
1

V̌C
−1ijθiθj − 2Q

δ(y)√
g

= 0 . (B.11)

To solve this we integrate the equation over a Gaussian surface which goes out to a distance

y = y0 away from y = 0 such that only one singularity is enclosed. After using Stokes law

on the total derivative term this gives

∫

y=y0

√
gy0dφn

a∂aV̌ +

∫

0≤y<y0

√
gdydφ

(

1

V̌C
−1ijθiθj − 2Q

δ(y)√
g

)

= 0 , (B.12)

where na is the outward pointing unit normal (satisfying nan
a = 1) to the surface y = y0

and gy0 is the determinant of the induced metric on this surface. As we know that the

geometry of the solution is given by (B.3) we find that the induced metric and unit normal

satisfy

gy0 = r2 , ny =
1

r
, nφ = 0 . (B.13)

Substituting this into (B.12) and performing the integration gives

∂yV̌ = −A 1

V̌C
−1ijθiθjy + 2Q , (B.14)

which matches (B.5) if Q = 2B. Repeating this argument for the metric field equation or

the Bianchi identity for DΦ̂ we find again that the source terms (B.10) are required and

confirm the relationship between Q and B.

Finally we note that if the 6D theory we have described is reduced on the F-theory

circle then the source action (B.10) agrees with the form found in [56] for brane sources of

5D domain walls in the M-theory dual.
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